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Abstract. Certifying the robustness of a graph-based machine learning
model poses a critical challenge for safety. Current robustness certificates
for graph classifiers guarantee output invariance with respect to the total
number of node pair flips (edge addition or edge deletion), which amounts
to an l0 ball centred on the adjacency matrix. Although theoretically at-
tractive, this type of isotropic structural noise can be too restrictive in
practical scenarios where some entries of the adjacency matrix are more
critical than others in determining the classifier’s output. The certificate,
in this case, gives a pessimistic depiction of the robustness of the graph
model. To tackle this issue, we develop a randomised smoothing method
based on adding an anisotropic noise distribution to the input graph
structure. We show that our process generates structurally-aware certifi-
cates for our classifiers, whereby the magnitude of robustness certificates
can vary across different pre-defined structures of the graph. We demon-
strate the benefits of these certificates on both synthetic and real-world
experiments.
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1 Introduction

Graph-based machine learning models have made considerable strides in the
last couple of years, with applications ranging from NLP [19], combinatorial
optimization [4] and protein function prediction [8]. As these tools become more
common, studying their vulnerability to potential adversarial examples turns
paramount for safety purposes.

Robustness certification is an active field of research whose goal is to develop
certificates guaranteeing invariance of the model prediction with respect to some
input perturbations. Diverse methods have been used to achieve this goal, from
interval bound propagation [9], convex relaxation [14], Lipschitz bounds com-
putation [10] or randomised smoothing [16]. Given a data point x and a set of
perturbed inputs B(x), a robustness certificate verifies that a model’s prediction
f(x) remains unchanged for all other inputs in the perturbation set. That is, for
all x′ ∈ B(x) it holds that f(x) = f(x′). Often the set of perturbed inputs B(x)
is parameterised, for example by a closed-ball Br(x) = {x′ : d(x,x′) ≤ r} under
some distance function d and radius r. In this case we are interested in knowing
the largest r that we can certify for, which r is called the certified radius.
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In the context of robustness certification of graph classifiers against struc-
tural perturbation, a common choice of perturbation set is the set of all graphs
reachable from an input graph x by up to r node pair flips (edge additions and
deletions)1. This corresponds to a closed ball on the upper triangle entries of the
adjacency matrix where the distance is induced by the ℓ1 norm and the bottom
triangle entries are determined by the constraint that the adjacency matrix is
symmetric2. In some cases, however, different node pairs of the graph can be
more predictive of the ground truth label than others. In such situations, cer-
tifying according to a total number of edge additions or deletions might gives
a pessimistic certified radius, because the set of perturbed inputs may include
perturbations which consist of flipping many critical node pairs (in terms of
determining the graph label).

In this work we solve this problem by defining disjoint regions of node pairs
and proposing robustness certificates that verify that the prediction of the clas-
sifier will not change for a potentially different number of node pair flips for
each region. Our approach relies on randomised smoothing, which is a powerful
framework to produce robustness certificates which hold with high probability.
Given some noise distribution over the input, randomised smoothing transforms
a base model f into a smoothed model g for which we can provide probabilistic
robustness guarantees.

Existing randomised smoothing approaches for certifying graph classification
mostly consider an isotropic noise distribution that flips each node pair with a
fixed probability [11, 6, 16]. The certificate in this case corresponds to the total
number of node pair flips. Instead, we propose using an anisotropic noise dis-
tribution based on the predefined regions whereby the probability of flipping a
node pair depends on to which region (if any) the node pair belongs. We show
that smoothed classifiers constructed using this anisotropic noise distribution
naturally lead to structure-aware robustness certificates whereby different num-
ber of node flips are certified for each of the regions. We demonstrate the benefits
of our approach on both synthetic and real-world experiments. To the best of
our knowledge, our method is one of the first of its kind that allows for flexible
graph certification in the input domain.

2 Preliminaries

Let X be the data space and f : X → Y be a classifier which maps each point
x ∈ X to a label y ∈ Y = {0, ..., C−1}. Let φ : X → P(X ) be a noise distribution
over our data, that is, φ(x) returns a distribution over X for every point x ∈ X .
We write f(φ(x)) to denote the random variable Pz∼φ(x)(f(z)). This represents
the distribution of outputs of the base classifier given the randomisation scheme

1 We use the term node pair flip instead of edge flip to emphasise that we are con-
sidering the addition of edges that do not exist in the original graph as well as the
deletion of existing edges.

2 We assume the graphs are unweighted and undirected.
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applied to the input. We define g to be the smoothed classifier of our base
classifier f as

g(x) = argmax
y∈Y

P(f(φ(x)) = y). (1)

The smoothed classifier can be interpreted as a neighbourhood vote, where the
output is the mode of the output of the classifier when inputs are sampled from
the distribution φ(x).

2.1 Certifying a smoothed classifier

We can construct a lower and upper bound on P(f(φ(x̃)) = y) for neighbouring
points x̃ ∈ X which will be the basis for certifying around a point x. We define
the notion of point-wise certificates from the framework of [12] where:

ρx,x̃(p, y) = min
h∈H:

P(h(φ(x))=y)=p

P(h(φ(x̃)) = y) (2)

ρx,x̃(p, y) = max
h∈H:

P(h(φ(x))=y)=p

P(h(φ(x̃)) = y) (3)

In this definition, F is the class the set of measurable classifiers with respect
to φ. Because the optimisation constraints include the base classifier f ∈ H it
follows that

ρx,x̃(p, y) ≤ P(f(φ(x̃)) = y) ≤ ρx,x̃(p, y). (4)

We define a perturbation set Br(x) as a family of sets Br(x) ⊆ X param-
eterised by some r ≥ 0 such that Br(x) ⊆ Br′(x) if and only if r ≤ r′. This
definition includes open or closed balls with respect to a metric over X . We say
that the smoothed classifier g is certified at x in some perturbation set Br(x)
if the output of g is the same for all neighbouring points x̃ ∈ Br(x) in the
perturbation set.

Following Cohen, we will write cA to be the output class of g(x) which is
returned with probability pA, and cB to be the "runner-up" class, i.e., the class
distinct from cA with the next highest probability pB . We can make use of
Equation 2 and Equation 3 to certify around a point by verifying if the following
holds

min
x̃∈Br(x)

Φx,x̃(cA, pA) > 0, (5)

where

Φx,x̃(cA, pA) , ρx,x̃(pA, cA)− ρx,x̃(pB , cB). (6)

Equation 6 can be thought of as a margin, which gives the difference between
a lower bound on pA and an upper bound on pB for some point x̃ in the per-
turbation set. Equation 5 then indidcates if this property holds for all x̃ in the
perturbation set.
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2.2 Certified radius

Given a perturbation set, we can define the certified radius to be the largest
value of r so that we can certify with respect to the set Br(x). Formally this is
defined to be

R(x) = sup r, s.t. min
x̃∈Br(x)

Φx,x̃(p
∗, y∗) > 0. (7)

In the case that the perturbation set is an open or closed ball, then R(x) is
the radius of the largest ball we can certify over.

2.3 Computing the certificate

We partition the space X =
⋃

i Hi into disjoint regions of equal likelihood ratios

Rk = {z ∈ X : P(φ(x̃)=z)
P(φ(x)=z) = ck} where without loss of generality we can assume

ck ∈ R are in an ascending order. The quantity Φx,x̃(pA, cA) can be computed
by solving the following linear programming (LP) problems [12]:

ρx,x̃(pA, cA) = min
h

hT r̃ s.t. hT r = pA, 0 ≤ h ≤ 1 (8)

and similarly,

ρx,x̃(pB , cB) = min
h

hT r̃ s.t. hT r = pB , 0 ≤ h ≤ 1. (9)

The variables h and t correspond to optimising over the classifiers that are
optimised over in Eq. 2 and Eq. 3. The vectors r and r̃ are ri = P(φ(x) ∈ Hi)
and r̃i = P(φ(x̃) ∈ Hi) respectively. This LP problem can be solved via a greedy
approach [12]. Given the ratios ck are ordered in an ascending manner, starting
with h = 0 we can assign hi for regions H1, ...Hk as long as hT r ≤ pA, and
partially fill the last hk such that hT r = pA. We can solve Equation 9 in a
similar way.

Given this efficient way to compute a certificate there remains some quantities
that must be calculated. The first is a partition of the space X into disjoint unions
of equal likelihood ratios. Next, the values ck must be computed, or at least given
in closed form, so the regions can be sorted in ascending order. Finally, a closed
form for P(φ(x) = z) allows us to compute r and we can compute r̃ by noticing
that P(φ(x̃) = z) = ckP(φ(x) = z). For our certificate, we provide disjoint unions
in Proposition 1, give a closed form for ck in Proposition 2 and finally compute
P(φ(x) = z) in Proposition 3.

2.4 Randomised smoothing for graph classification

In this work we are interested in the robustness of graph classification models
to structural perturbation of undirected, unweighted graphs3. In this situation

3 This work can be extended to the setting of directed graphs as well as the task of
node classification.
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the input domain is the set of finite graphs X = ∪∞
i=1Xn where Xn is the space

of graphs on n nodes. We can represent graphs on n nodes as a binary vector of
size

(

n
2

)

where each entry indicates the presence or absence of an edge. Without
loss of generality we will treat graphs as binary vectors x from here on in4.

We are interested in robustness with respect to node pair flips which can
represent an edge addition (change a zero to a one in x) or edge deletion (change
a one to a zero). This may be interpreted as adding “structural noise” to the input
graph. Two candidates for the distribution of such noise have been proposed in
the literature. The first one applies an independent Bernoulli distribution to
every node pair. That is, for all φ(x)i = xi ⊕ ǫi with ǫi ∼ Bern(p) for a fixed
p, where ⊕ is the bitwise XOR operator. We refer to this noise distribution
as isotropic, as it flips each node pair with equal probability. This approach
is used by [11, 16, 6]. The second approach, a sparsity aware noise distribution
[1], gives a different probability of edge flipping depending on whether the edge
is present in the initial graph. If an edge exists between a node pair then it
is flipped with probability p−, whereas if a node pair does not exist between
two nodes it is added with probability p+. This distribution can be written as
P (φ(x)i 6= xi) = pxi

− p1−xi

+ .
The sparsity-aware noise distribution of [1] distinguishes probabilities of edge

deletion and addition, which encapsulates the sparsity property of the graph. The
design of such noise comes from the rationale that real world graphs present a
sparsity structure which will break with a single Bernoulli distribution where
the number of edge additions will generally surpass the number of edge deletions
leading to an unrealistic graph. This can be considered as a simplest instance
of structure-aware perturbation (i.e., distinguishing between edge deletion and
addition). Inspired by this work, we propose structure-aware certificates where
node pairs can be partioned into one of many node pair sets and perturbed
according to their membership of these sets.

3 Randomised smoothing with anisotropic noise

Given x ∈ Xn, suppose we divide our input space of node pairs up into disjoint
regions

⊔

i∈I Ci such that each node pair belongs to exactly one region and
there are a total of C regions. We define a noise distribution where independent
Bernoulli distributions are applied to every node pair, and where the parameter
of the Bernoulli distribution is shared within every set Ci:

φ(x)k = xk ⊕ ǫk, where ǫk ∼ Bern(pi) and k ∈ Ci, (10)

We will certify using the following procedure. Let R ∈ Z
C be a tuple of

integers such that 0 ≤ Ri ≤ |Ci| and let BR(x) = {z ∈ XN : ‖zCi
− xCi

‖0 ≤ Ri}
be a perturbation set. Let x̃ ∈ BR(x) and J = {i : xi 6= x̃i} be indices of x

which are perturbed to give x̃. Furthermore, let Ji = J ∩ Ci be indices where x

is perturbed in collection Ci.

4 Note that due to isomorphism multiple different binary vectors can represent the
same graph.
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Proposition 1. We define regions RQ = {z ∈ XN : ‖zJi
− xJi

‖0 = Qi : i ∈ I}
that represent points z which agree with x by exactly Qi bits in sub-regions Ji.

Then XN can be represented by the following disjoint union

⋃

0≤Q≤R

RQ, (11)

where vector inequalities are element-wise.

Furthermore, the likelihood ratio is fixed for elements z in any one region.
This likelihood ratio has the following closed form.

Proposition 2. Consider a region RQ = {z ∈ XN : ‖zJi
− xJi

‖0 = Qi} then

for all z ∈ RQ the following holds

ηRQ =
P(φ(x̃) = z)

P(φ(x) = z)
=

C
∏

i=1

(

1− pi

pi

)Ri−2Qi

. (12)

Finally, we can compute the likelihood of a smoothed input belonging to these
regions:

Proposition 3. The probability of the output of a smoothed input φ(x) belonging

to a region RQ is given by

P(φ(x) ∈ RQ) =

C
∏

i=1

Bin(Ri −Qi|Ri, pi), (13)

where Bin(Ri − Qi|Ri, pi) is the probability mass function of the binomial dis-

tribution giving probability of Ri −Qi successes from Ri trials each with success

probability pi.

Using these results we can provide robustness certificates of the smoothed clas-
sifier. Given x ∈ X and our noise distribution, we can compute the values py(x).
In practice, these quantities are not available in closed form and are estimated
via sampling, as in [1]. A more detailed description is given in Appendix B, which
gives probabilistic certificates according to some confidence intervals. Without
loss of generality we order the regions R1, . . .RT (where T =

∏

i(Ri + 1)). The
corresponding ratios ηRQ as given by Proposition 2 are ordered c1 ≤ . . . ≤ cT ).
From these elements, Φx,x̃(p

∗, y∗) can be computed through eq. 6 and the opti-
misation problem eq. 7 can be solved. In practice, the optimisation of eq. 7 can
be solved efficiently by leveraging some symmetries displayed by Φx,x̃(p

∗, y∗)
when x̃ varies. This property is more thoroughly described in the appendix B.

4 Experiments

4.1 Synthetic experiment

We motivate the use of anisotropic noise by considering inputs x that are an
element of some space X = X1⊕X2 where ⊕ is the direct sum. Consider a point
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that is close to the decision boundary in the X1 subspace but far from the decision
boundary in the X2 subspace. An isotropic certificate can not certify beyond the
small distance to the decision boundary in X1. However, our certificate can certify
the distances of X1 and X2 jointly allowing us to certify a small distance in the
X1 subspace but a large distance in the X2 subspace.

We design a synthetic graph classification data set whereby the graphs are
constructed using a motif which determines the class label (corresponding to the
important subspace X1) connected to a randomly generated graph (correspond-
ing to the unimportant subspace X2) which is independent of the class label.
We can consider edges in the motif part to be in one node pair set Cmotif and
edges from the random part in Crandom. Given a model that solves this task,
we would expect changes in the motif to move the input closer or further away
from a decision boundary but changes in the random part of the graph to move
the point parallel to the direction of the decision boundary. We should be able
to certify a large number of node pairs in Crandom by applying a large value of
noise prandom without hurting the accuracy of the smoothed classifier. We can
not certify a large number of node pairs in Cmotif without drops in accuracy, so
we choose a small value of noise pmotif to retain high accuracy. The graphs we
generate and the noise we use to perturb the graphs are shown in Fig. 1.

We generate balanced train, validation and test sets of size 1000, 1000, and
100 respectively. The test set is smaller as the randomised smoothing procedure
is computationally expensive. This is because to estimate pA a large number of
random inputs need to be generated and inferred using the model. We generate
a binary classification problem where each graph has a motif part of nmotif = 10
nodes where a cycle determines a negative label and a complete graph determines
a positive label. We then generate a random part using a connected Erdős-Rényi
graph [7] with nrandom = 10 nodes and parameter p = 0.5. We join these graphs
using a single edge. See Fig. 1a for an example of the negative class and Fig. 1b
for an example of the positive class.

We train a SVM classifier using a node label histogram kernel [15] where the
node label corresponds to the node degree. Let c(G, d) be a function that counts
the number of nodes in a graph G with degree d. Then the kernel applied to
graphs G1 and G2 can be written as κ(G1,G2) =

∑∞

d=0 c(G1, d) · c(G2, d) which is
well defined for finite graphs. We use this model as we expect it to be sensitive
to the motif structure that determines the label; the negative label gives a large
value in the c(·, 2) dimension whereas the positive label gives a large value in the
in the c(·, nmotif − 1) dimension. Indeed, the base classifier gets 100% accuracy
on the train, validation and test data sets.

For the certification procedure, we apply noise separately for node pairs in
the motif part and noise pairs in the random part. We apply noise to internal
edges of the motif part only (i.e. not part of the outer cycle, see Fig. 1). We do
not apply noise to node pairs where one node lies in the motif and one does not.
We also do not perturb the edge that joins the motif part and the random part.
The noise matrix is shown in Fig. 1c. We generate 100, 000 perturbations per
test-sample and use these to estimate the output of the smoothed classifier and
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(a) Graph with negative label.

(b) Graph with positive label.
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(c) Noise matrix.

Fig. 1: Example graphs with a positive and negative label. Blue nodes and edges
denote a motif part of a positive label and red nodes and edges denote a motif
part of a negative label. The noise matrix show how edges are perturbed with
pmotif being the noise parameter for node pairs in the motif part and prandom

being the noise applied to node pairs in the random part. Notice that only the
internal edges of the motif are perturbed, and the bridge edge is not perturbed.
The upper triangle of the noise is shown only, in practice this is sampled and
applied to the upper and lower triangle of the adjacency so the graph remains
undirected.
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generate a certificate. We use a confidence level of α = 0.99 to estimate pA. We
also compute certificates using isotropic noise for comparison.

For our certificate with anisotropic noise we consider p = (pmotif, prandom) ∈
P where P = {0.02, 0.04, . . . , 0.2}×{0.05, 0.1, . . . , 0.45}. Recall that pmotif is the
noise parameter for the motif part and prandom is the noise parameter for the ran-
dom part. For the isotropic certificate we consider p ∈ {0.02, 0.04, . . . , 0.2}. For
the anisotropic certificate we certify over perturbation pairs r = (rmotif, rrandom)
which means that with high probability rmotif edge flips in the motif part and
rrandom edge flips in the random part will not change the label of the smoothed
classifier. The isotropic certificate guarantees the label does not change for r

edge flips anywhere in the graph.
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6.0 5.0 3.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0

7.0 5.0 4.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0

10.0 8.0 4.0 4.0 2.0 2.0 1.0 1.0 1.0 1.0

13.0 11.0 6.0 5.0 2.0 2.0 1.0 1.0 1.0 1.0

15.0 13.0 10.0 6.0 4.0 2.0 2.0 1.0 1.0 0.0

16.0 15.0 11.0 9.0 6.0 4.0 2.0 1.0 1.0 0.0

16.0 16.0 13.0 9.0 8.0 8.0 4.0 2.0 1.0 0.0
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(a) Score.
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1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.61

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.56

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.53

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.52

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.51
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(b) Test-set accuracy.

Fig. 2: The test-set accuracy of the smoothed classifier and the certified volume
for various values of p = (pmotif, prandom).
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Fig. 3: Comparison of an anisotropic certificates with p = (0.02, 0.45) and
isotropic certificates for various levels of p. We omit some values of p for the
isotropic certificate for readability.

We begin by analysing how the noise vector p influences the behaviour of
the smoothed classifier and the certificate. We introduce a score to evaluate the
noise parameters. For each r if we can certify strictly more than half of the test
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samples in this perturbation space then we add 1 to the score. To motivate the
utility of this score consider a smoothed model with large values of noise. In
the limit, a perfectly smooth classifier will be constant everywhere. In other-
words, it will predict the same label for all inputs and give a certified accuracy
of 50% for a balanced classification task. This classifier could be certified for
arbitrary numbers of edge flips. For this reason, metrics such as total certified
area averaged over samples do not necessarily tell us if a noise parameter is
useful.

In Fig. 2a we can see that our smoothed classifier has the highest score when
pmotif is small and prandom is large. In Fig. 2b we see that large values of prandom

does not effect the accuracy of the smoothed classifier, but if pmotif becomes too
large the accuracy begins to drop. These results are expected–pmotif cannot be
too large as the motif part is more important to determining the label. This
motivates us to fix pmotif to be small and increase prandom allowing us to retain
high test accuracy whilst increasing the number of edge flips we can certify in
C2.

We take a closer look at the smoothed classifier given by p = (0.02, 0.45), one
of the smoothed classifiers with the highest observed score. We are interested
in a smooth model with high test set accuracy that can certify for many values
of r. Our model has 100% certified accuracy. The proportion of the test set
that can be certified for varying values of r is shown in Fig. 3a. As the Figure
demonstrates we can certify 100% of the test-set samples to 0 or 1 edge flips
in the motif part of the graph and up to 45 edge flips in the random part of
the graph. This is the maximum number of possible node pairs in the random
part, so we can certify any perturbation in this part of the graph. The smoothed
classifier using isotropic noise can also achieve 100% test set accuracy for all
values of noise we tested. We show the certification results for when p = 0.02,
as this is the only value that allows us to certify the entire test-set for one edge
flip. We plot the proportion of the test set that can be certified at using this
value of isotropic noise in Fig. 3b. Using larger values of noise for the isotropic
certificate allows for some of the test-set to be certified at a radius of 2, but it
can no longer certify the entire test set at radius 1. By using anisotropic noise,
and being specific about where edges are being certified, we can certify 46 edge
flips with 100% accuracy compared to 1 edge flip with 100% accuracy.

4.2 Real-world experiment

We also experiment using a real-world data set. For this, we consider the MUTAG
data set [3]. In this data set each graph represents a molecule and the goal is
to predict the molecules mutagenicity on a specific bacterium, which is encoded
into a binary label. Each node has one of 7 discrete node labels corresponding
to atomic number which is one-hot encoded. The data set contains a total 188
molecular graphs.

We train a graph neural network which has a single GCN layer [17] with 64
hidden units, followed by a max pooling layer and a linear layer. We train on 80%
of the training set and use 10% of the data as a validation which is used to select
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the best weights during training, as measured by accuracy on the validation set.
We train for a maximum of 500 epochs using the AdamW optimiser [13] with
weight decay of 10−3. The initial learning rate is 10−3 and it is decayed by 0.5
every 50 epochs.

We compare our certificate to [1], which we refer to as a sparsity aware
certificate, as this is the only non-isotropic certificate used for graph classification
that we are aware of. We consider node pairs where there is an edge in the original
graph as C1 and all other node pairs as C2. In this scenario, we can certify edge
deletions and additions in a comparable way. Following the setup described in
[1] we consider p1 = 0.4 which corresponds to the probability of deleting and
edge and p2 = 0.2 which corresponds to the probability of adding an edge. We
apply noise during training to make the model more robust.

The values computed in Proposition 2 differ between the two approaches as
P(φ(x̃) = z) is computed differently. Furthermore, the probability φ(x) belonging
to a region in the anisotropic approach is a product of Binomial distributions
(Proposition 3) whereas for the sparsity-aware certificate this probability follows
a Poison-Binomial distribution. If the assignment of node pairs was dependent
on the individual sample, this would generalise our approach further, and would
also generalise the sparsity-aware certificate.

Our model has a test-set accuracy of 84%. In Fig. 4 we plot the ratio of
correctly predicted test points that are certified for varying numbers of edge
deletions and additions. We make a few observations from these results. The first
is that for values of r where both methods can certify test points, our method
certifies the same quantity of points and in some cases more. The second is that
there are two values of r where the sparsity-aware certificate can certify test
samples but the anisotropic certificate cannot. However, there are five values
of r where the anisotropic can certify but the sparsity-aware certificate cannot.
Finally, we note that in this experiment, as well as the synthetic experiments,
we find our certificates tend to be oblong, i.e. if pi is larger than we tend to
certify for larger values in the ri direction. This is advantageous in the case
where some node pairs are considered more important to the classification label
(as demonstrated in the synthetic experiment).

5 Conclusions

In this work we propose the first method that introduces structure-aware robust-
ness certificates in the context of undirected, unweighted graph classification. To
achieve this, we leveraged a flexible, anisotropic noise distribution in the context
of randomised smoothing and developed an efficient algorithm to compute cer-
tificates. We apply these certificates to a synthetic experiment and demonstrate
a clearly improved robustness of graph classifiers that cannot be achieved with an
isotropic certificates. We also validate our certificate on real-world experiments
and show superior results to an existing approach.

A requirement to using our approach is defining a priori which edges a user
believes to be more or less important to determining the graph label. One can
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Fig. 4: A comparison between the anisotropic certificate and the sparsity-aware
certificate. Each entry represents the ratio of correctly classified test-set samples
that could be certified at a specified number of edge deletions and additions.

use domain expertise (which we simulate in the synthetic experiment), or treat
edge deletions and additions differently as we do following the sparsity-aware ap-
proach. We may also consider approaches that have been used to identify edges
that may be vulnerable to attack. For example, a previous work found edges
vulnerable to adversarial attack are those not captured by a low-rank approxi-
mation of the adjacency [5]. Another line of work propose that edges where the
end-point node features have low Jaccard index are potentially vulnerable [18].
Beyond this, one could learn the importance of the node pairs in a data-driven
fashion. We leave these directions for future work. Finally, even though we have
applied our method in the context of graph classification, it can also used for
any type of task based on a discrete domain.
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A Proofs of propositions

A.1 Proof of Proposition 1

Disjoint Unions. Let z ∈ RQ and z̃ ∈ RQ
′ such that for some i ∈ I we have

Qi 6= Q
′

i. If z = z̃, it implies that ||zJi
−xJi

|| = Qi and ||z̃Ji
−xJi

|| = Q
′

i which
is a contradiction.
Partition. |Ji| ≤ Ri, and ||zJi

− xJi
|| ≤ Qi hence X = ∪Q≤RR

R
Q.

A.2 Proof of Proposition 2

As the noise for each entry is independent we can decompose the probabilities
as so

P (φ(x̃) = z)

P (φ(x) = z)
=

∏

k∈[N ]

P (φ(x̃)k = zk)

P (φ(x)k = zk)
. (14)

Furthermore, as each components belongs to exactly one edge community.

∏

k∈[N ]

P (φ(x̃)k = zk)

P (φ(x)k = zk)
=

I
∏

i=1

∏

k∈Ci

P (φ(x̃)k = zk)

P (φ(x)k = zk)
. (15)

We note that for k where x̃k = xk this fraction is one, so we can focus on terms
when x̃k 6= xk. In equations this can be written as

I
∏

i=1

∏

k∈Ci

P (φ(x̃)k = zk)

P (φ(x)k = zk)
=

I
∏

i=1

∏

k∈Ji

P (φ(x̃)k = zk)

P (φ(x)k = zk)
(16)

We can consider what the terms are equal to when xk = zk and when xk 6= zk
(assuming that xk 6= x̃k). We get

P (φ(x̃)k = zk)

P (φ(x)k = zk)
=

{

pi

1−pi

if xk = zk and xk 6= x̃k

1−pi

pi

if xk 6= zk and xk 6= x̃k

. (17)

In total there are Ri terms in each product, of which Qi are the first case and
Ri −Qi are in case two. Thus

I
∏

i=1

∏

k∈Ji

P (φ(x̃)k = zk)

P (φ(x)k = zk)
=

I
∏

i=1

(

pi

1− pi

)Qi
(

1− pi

pi

)Ri−Qi

(18)

=

C
∏

i=1

(

pi

1− pi

)2Qi−Ri

(19)

=
C
∏

i=1

(

1− pi

pi

)Ri−2Qi

(20)

as required. We provide Fig. 5 as a visual aid to the proof.
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xC 1 0 1 0 . . .

|C1| = R1 |C2| = R2

x̃C 0 1 0 1 . . .

Q1 Q2

z 1 0 1 0 1 0 1 0 . . .

P(φ(x) = z) p
Q1

1
(1− p1)

R1−Q1 p
Q2

2
(1− p2)

R2−Q2 . . .

P(φ(x̃) = z) (1− p1)
Q1 p

R1−Q1

1
(1− p2)

Q2 p
R2−Q2

2
. . .

Fig. 5: Pictorial representation of where the terms in Proposition 2 come from.

A.3 Proof of Proposition 3

We have RQ = {z ∈ X : ‖zJi
− xJi

‖0 = Qi}. The probability P(φ(x) ∈ RQ)
corresponds to each set Ri having Qi entries not being flipped or equivalently
Ri − Qi entries being flipped. Each node pair is flipped with a probability of
pi. Since all flips are independent we can express the probability as P(φ(x) ∈

RQ) =
∏C

i=1 Bin(Ri −Qi|Ri, pi).

B Implementation

B.1 Estimations of probabilities

The quantities py(x) cannot be computed in closed form for general f . Hence,
we resolve to lower bound p∗ and upper bound py(x), y 6= y∗ via sampling. To
achieve this, we use the Clopper-Pearson interval [2].

B.2 Symmetries certification

Solving the optimization problem defined in Eq. 7 is difficult as certificates have
to be computed for every x̃ in the ball around x: Br(x). However, in practice,
Φx,x̃(p

∗, y∗) displays some symmetries depending on the noise distribution φ(x).
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In the case of isotropic noise, the regions Hk and values ck only depends on
‖x − x̃‖0. This implies Φx,x̃(p

∗, y∗) = Φx,x̃
′ (p∗, y∗) for all x̃, x̃

′

∈ Sr(x) which
reduce the search on every spheres.

In the case of anisotropic noise, the regions Hk and values ck only depends
on ‖xCi

− x̃Ci
‖0. This implies Φx,x̃(p

∗, y∗) = Φx,x̃
′ (p∗, y∗) for all x̃, x̃

′

∈ SR(x).


