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ABSTRACT

The generation of Register-Transfer Level (RTL) code is a crucial yet labor-
intensive step in digital hardware design, traditionally requiring engineers to
manually translate complex specifications into thousands of lines of synthe-
sizable Hardware Description Language (HDL) code. While Large Language
Models (LLMs) have shown promise in automating this process, existing ap-
proaches—including fine-tuned domain-specific models and advanced agent-
based systems—struggle to scale to industrial IP-level design tasks. We identify
three key challenges: (1) handling long, highly detailed documents, where criti-
cal interface constraints become buried in unrelated submodule descriptions; (2)
generating long RTL code, where both syntactic and semantic correctness degrade
sharply with increasing output length; and (3) navigating the complex debugging
cycles required for functional verification through simulation and waveform anal-
ysis. To overcome these challenges, we propose LocalV, a multi-agent framework
that leverages the inherent information locality in modular hardware design. Lo-
calV decomposes the long-document to long-code generation problem into a set
of short-document, short-code tasks, enabling scalable generation and debugging.
Specifically, LocalV integrates hierarchical document partitioning, task planning,
localized code generation, interface-consistent merging, and AST-guided locality-
aware debugging. Experiments on REALBENCH demonstrate that LocalV sub-
stantially outperforms state-of-the-art (SOTA) LLMs and agents, showing the po-
tential of generating Verilog for IP-level RTL design.

1 INTRODUCTION

The generation of Register-Transfer Level (RTL) code is a core step in digital hardware design. This
process is notoriously labor-intensive and error-prone, as engineers must manually translate natural
language specifications into thousands of lines of synthesizable Hardware Description Language
(HDL) code (e.g., Verilog, VHDL). The promise of Large Language Models (LLMs) to automate
this step has spurred rapid innovation. Initial efforts focused on benchmarking general-purpose
models (Liu et al., 2023b; Thakur et al., 2023) and developing domain-specific solutions through
fine-tuning or data augmentation (Liu et al., 2024c; Cui et al., 2024; Liu et al., 2024b; Zhao et al.,
2025). More recently, the field has shifted towards sophisticated agent-based systems that mimic
human design workflows. These agents, such as VerilogCoder (Ho et al., 2025) and MAGE (Zhao
et al., 2024), decompose complex problems and can operate autonomously or in a human-in-the-
loop fashion, as explored in collaborative design platforms like ChatCPU (Wang et al., 2024) and
Spec2RTL-Agent (Yu et al., 2025).

Despite strong results on academic benchmarks like VerilogEval (Liu et al., 2023b), a clear gap
appears when applying current LLM-based methods to industrial hardware design. This is partic-
ularly evident with REALBENCH (Jin et al., 2025), an IP-level benchmark derived from real-world
open-source IP, which features significantly longer documentation (197.3 vs. 5.7) and code lengths
(241.2 vs. 15.8) compared to VerilogEval. Directly using SOTA models or agents often leads to
a sharp drop in performance, with many outputs failing to be even syntactically correct, let alone
functionally valid. This gap highlights a mismatch between current model capabilities and the high
requirements of real-world hardware engineering. We observe three main challenges:
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Figure 1: Performance of Claude 3.7 Sonnet on REALBENCH: Pass@k vs. (a) I/O signal count
and (b) code length (lines), reporting syntactic and functional Pass@k. Accuracy decreases with
interface complexity and output length.

Long-Document Handling. IP-level hardware specifications are typically verbose and detailed,
largely due to the increasing number of I/O signals and submodules. Although modern LLMs sup-
port context windows of 32k tokens or more, their ability to generate functionally correct RTL
code diminishes as document complexity grows. The accumulation of signal and module details
overwhelms the model’s limited understanding of hardware semantics. As a result, critical interface
constraints are often obscured by irrelevant details, leading to phantom signals, port list mismatches,
and logically incorrect Verilog code. This trend is illustrated in Figure 1a, which shows a consistent
decrease in LLM accuracy as the number of I/O signals increases.

Long-Code Generation. IP-level designs usually involve substantially longer code, which exacer-
bates the challenges LLMs face in HDL generation—a domain where they already underperform. As
shown in Figure 1b, both syntactic and semantic accuracy drop significantly with code length. When
the code exceeds 750 lines, even repeated sampling (e.g., 10 times) fails to yield a syntactically valid
result. Typical errors include incorrect macro references, use of non-synthesizable constructs, and
fundamental syntax errors, underscoring the model’s inherent limitations in generating reliable RTL
code.

Complex Debugging Process. In practice, IP-level hardware verification relies on carefully con-
structed testbenches to ensure the design conforms to specifications. Each simulation failure triggers
a laborious debugging cycle: engineers analyze waveforms to identify faulty signals, trace errors
back to ambiguous or misinterpreted specification segments, and iteratively refine the design. This
process not only corrects the code but also clarifies ambiguities in the specification itself, using
waveform behavior as a definitive reference for refinement.

To address these challenges, we propose LocalV, a multi-agent framework explicitly designed for the
real-world IP-level “long-document, long-code” hardware generation problem. Our key observation
is that IP-level specifications inherit strong information locality from modular hardware design:
code fragments can often be generated correctly by relying on only a portion of the document.
This suggests that long-document to long-code generation can be decomposed into a set of short-
document to short-code tasks without information loss, thereby mitigating the core challenges.

Specifically, LocalV organizes the following workflow as shown in Figure 2: (1) Preprocessing.
Documents are partitioned into fragments with hierarchical indices. (2) Planning. Code structure
is planned as sub-tasks with assigned document fragments. (3) Generation. Coding agents execute
”short-document, short-code” generation for each sub-task. (4) Merging. Fragments are merged
into a complete design with interface consistency. (5) Debugging. Error messages and AST-guided
waveform analysis trace failures back to specification fragments for locality-aware debugging.

Our contributions are summarized as follows: (1) We realized three fundamental challenges in
generating IP-level Verilog code, namely, long-document handling, long-code generation, and the
complex debugging process. (2) We observed the information locality principle for IP-level Ver-
ilog generation. Based on it, we introduce an index-driven document partitioning mechanism, a
fragment-based generation strategy that decomposes complex tasks into manageable subtasks, and
a traceable debugging pipeline that maps errors back to relevant specification fragments via AST-
guided analysis. (3) Based on these techniques, we present LocalV, a multi-agent framework for
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Figure 2: Workflow overview of LocalV.

generating correct Verilog from IP-level specifications. LocalV achieves a 45.0% pass rate on RE-
ALBENCH (Jin et al., 2025), surpassing SOTA agent-based frameworks by 23.4%.

2 RELATED WORK

LLM-based RTL Generation. The application of LLMs to automate RTL code generation
has emerged as a promising research area in electronic design automation (EDA). Early explo-
rations (Nair et al., 2023; Chang et al., 2023; Blocklove et al., 2023) focused on evaluating the
capability of general-purpose LLMs to translate natural language specifications into Hardware De-
scription Languages (HDLs) like Verilog and VHDL. Foundational benchmarks such as Verilo-
gEval (Liu et al., 2023b) and RTLLM (Lu et al., 2024) were established to systematically assess
model performance, revealing both the potential and limitations of off-the-shelf models. To improve
performance, subsequent research has focused on domain-specific adaptation through fine-tuning on
curated datasets (Liu et al., 2024c; Thakur et al., 2024; Liu et al., 2023a) or optimization via rein-
forcement learning (Pei et al., 2024; Zhu et al., 2025; Chen et al., 2025). While these models show
strong results on well-defined, smaller-scale problems, their effectiveness on real-world, IP-level
specifications is fundamentally limited. For many fine-tuned models, this stems from smaller model
scales, the lack of training data for IP-level hardware design, and constrained context windows that
fail to fully capture complex design documents. More critically, even for large-scale models with
extensive context capabilities, the single-pass generation paradigm is ill-suited for the complexity of
IP-level design. Attempting to synthesize functionally correct code from a verbose specification in
a single attempt struggles to capture the intricate dependencies and hierarchical nature of hardware,
often leading to subtle but critical errors.

Agent-based Frameworks for Hardware Design. To overcome the limitations of single-pass
generation, the field is shifting towards multi-agent frameworks that emulate the collaborative and
iterative nature of human design and verification workflows. This paradigm moves beyond a sin-
gle monolithic model to a team of specialized agents, each assigned a distinct role. For instance,
MAGE (Zhao et al., 2024) explicitly creates a four-agent team responsible for RTL generation,
testbench creation, functional evaluation (judging), and debugging, establishing a clear, recursive
loop of proposing and refining the design. Similarly, RTLSquad (Wang et al., 2025) organizes its
agents into ”squads” dedicated to distinct project phases—exploration, implementation, and verifi-
cation—thereby mimicking the structure of a human engineering team. Central to these systems is
a task decomposition phase, where a high-level specification is broken down into a structured plan
with manageable sub-tasks. These plans guide the execution of agents focused on coding, planning,
and reflection, as seen in frameworks like Spec2RTL-Agent (Yu et al., 2025) and VerilogCoder (Ho
et al., 2025). However, this decomposition process faces a critical challenge: translating the orig-
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inal specification into intermediate instructions can introduce cascading ambiguity, distorting the
design intent. Consequently, debugging becomes severely hampered, as agents must trace errors
through these distorted interpretations rather than the source document. Our approach addresses this
by maintaining a direct link between the specification and code, grounding the entire process in the
original document.

3 METHODOLOGY

We begin by formalizing the problem of IP-level Verilog generation (§3.1). We then introduce our
core hypothesis, the information locality in IP-level hardware specifications, with a quantitative
analysis (§3.2). We then present the detailed LocalV pipeline built on this insight(§3.3).

3.1 PROBLEM FORMULATION

Our objective is to synthesize a complete Verilog module from a natural language specification. We
formally define the problem as follows:

Input: A natural language specification document D, represented as an ordered sequence of N
semantic textual units (e.g., paragraphs or sections), D = {d1, d2, . . . , dN}. Also, a target module
name m and a simulation environment E that provides golden execution feedback (including error
messages and behavioral mismatches) for debugging purposes is given.

Output: A synthesizable Verilog module Vm. We model the generated code not as a monolithic
text file, but as a structured set of M semantic code units, Vm = {c1, c2, . . . , cM}. A code unit cj
represents a functionally cohesive and syntactically complete block of RTL code, such as a module
or a statement. The final output file is the concatenation of these units.

Objective: The generated module Vm must be functionally correct and can pass a suite of simulation
tests from E against a golden reference testbench, ensuring functional equivalence.

3.2 INFORMATION LOCALITY

Our approach is grounded in a core assumption we term Information Locality: for any semantic
code unit cj ∈ Vm, the information required to generate cj is primarily concentrated within a subset
of the specification D. This locality arises directly from the hierarchical and modular nature of hard-
ware design. Complex systems are built from well-defined submodules (e.g., ALUs, register files),
and IP-level specifications explicitly mirror this structure: dedicated sections describe each mod-
ule’s behavior, I/O, and internal logic. This creates a natural alignment, where the implementation
of a code unit cj depends predominantly on its corresponding documentation segment. In contrast,
general-purpose software specifications often describe high-level algorithms that do not decompose
neatly into code-level constructs, leading to more diffuse information sources.

The validity of this locality hypothesis is key. If it holds—as we will quantitatively demonstrate be-
low (Figure 3)—it enables a powerful divide-and-conquer strategy. The quantitative results confirm
that the “long-document to long-code” mapping problem can be effectively decomposed into a set of
parallelizable “short-document to short-code” subproblems without information loss, dramatically
improving tractability.

We quantify information locality by measuring the entropy of the information source distribution
for each code unit. Our analysis begins by segmenting the specification D into paragraphs {di}Ni=1

and the Verilog code Vm into statements {cj}Mj=1. For each code statement cj , we compute its
semantic similarity sim(di, cj) (cosine similarity of Qwen3-Embedding-0.6B embeddings) to every
specification paragraph di and transform them into conditional probability distribution P (di | cj)
using a softmax function with temperature τ = 0.1:

P (di | cj) =
exp(sim(di, cj)/τ)∑N

k=1 exp(sim(dk, cj)/τ)
. (1)
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code unit and all document paragraphs in the E203 CPU Top Module
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E203 CPU Top RTL

  ......
  `ifdef E203_HAS_DTCM //{
    ......         
  `endif//}
  `ifndef E203_HAS_LOCKSTEP//{
  `endif//}
    .rst_n         (rst_n),
    .clk           (clk  ) 
  );

  ......

Code Unit

  e203_srams u_e203_srams(
  `ifdef E203_HAS_DTCM //{
   .dtcm_ram_sd (tcm_sd),
   .dtcm_ram_ds (tcm_ds),
   .dtcm_ram_ls (dtcm_ls),
   ......
  );

  ......

Figure 3: Heatmaps of normalized cosine similarity across three tasks. Each column represents
a code unit and its sorted cosine similarity to all document paragraphs. Values in each column
are independently normalized to the range [0, 1], where lower values indicate higher information
locality. (a) 10 randomly selected and then combined modules from VerilogEval, demonstrating
extremely high information locality (since they are totally independent of each other) with H̄norm =
0.8206. (b) The E203 CPU Top Module from REALBENCH, showing high information locality with
H̄norm = 0.8680. (c) The Parse Lisp Expression problem, a typical software task, with H̄norm =
0.9126. (d) A detailed visualization of the cosine similarity between a single code unit and all
document paragraphs in the E203 CPU Top Module.

The locality for cj is then assessed by the entropy of this distribution:

H(cj) = −
N∑
i=1

P (di | cj) log2 P (di | cj), (2)

where lower entropy indicates that information is concentrated in a small number of textual units,
thus supporting the locality hypothesis.

To ensure comparability across specifications of different lengths, we normalize the entropy by its
theoretical maximum, Hmax = log2 N , which occurs under a uniform distribution. The normalized
entropy for a code unit is:

Hnorm(cj) =
H(cj)

log2 N
. (3)

This yields a scale-invariant measure where Hnorm(cj) ∈ [0, 1]. To report a single locality score for
an entire design, we average the normalized entropy across all M code units:

H̄norm =
1

M

M∑
j=1

Hnorm(cj). (4)

A lower H̄norm indicates stronger overall locality, and this metric is comparable across experiments
with varying N and M .

We evaluate three settings to contrast information locality: (a) a synthetic Verilog benchmark (10
concatenated VerilogEval cases) as an ideal locality baseline (lower bound); (b) the hardware IP
e203 cpu top from REALBENCH; and (c) a software counterpart (LeetCode “Parse Lisp Expres-
sion” in Python) with comparable length. Row-normalized heatmaps and the average normalized
entropy H̄norm quantify locality strength. As shown in Figure 3, the hardware design (b) exhibits
strong locality (H̄norm = 0.8680), much closer to the ideal (a) (H̄norm = 0.8206) than the soft-
ware case (c) (H̄norm = 0.9126). This pattern holds across REALBENCH, where the average
H̄norm = 0.8406 further confirms stronger locality in hardware specifications.
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Figure 4: The detailed workflow of LocalV. (a) Output of the planning stage, illustrating the structure
of a sub-task. (b) Overview of the code generation and merging process. (c) Overview of the
debugging loop and the generation of the final code.

3.3 LOCALV OVERVIEW

We now introduce our novel multi-agent framework, LocalV, designed to automate the generation
of Verilog code from long natural language documentation. The overall workflow is depicted in
Figure 4 and detailed in the subsequent sections.

3.3.1 PREPROCESSING

The first stage of our pipeline structures the input documentation for efficient retrieval and compre-
hension by the agents. Given a raw design document, we split the text into coherent paragraphs. For
each paragraph, an LLM is prompted to generate a dual-level description that indexes the source
content:

Semantic level: Provides a high-level summary of the paragraph’s functional intent, such as “inter-
face specification for the DMA controller” or “timing constraints for the DDR memory interface.”
This supports agents who require a conceptual understanding of a module’s purpose.

Lexical level: Extracts fine-grained hardware-specific entities—including signal names, module
identifiers, macros, and parameters—to ensure precise retrieval of low-level details that may be
omitted in semantic summaries.

The resulting description serves as keys indexing the original text segments and is used in subsequent
stages of the pipeline.

3.3.2 PLANNING AND TASK DECOMPOSITION

Upon receiving the indexed documentation from the previous stage, the Planner Agent constructs
the overall structure of the final Verilog code and generates a corresponding skeleton. This skeleton
is expressed as pseudo-code containing syntactic placeholders that represent various code compo-
nents—such as submodule instantiations or signal assignments.

The agent then decomposes the skeleton into sub-tasks, each corresponding to a code fragment that
requires implementation. For every sub-task, the Retriever queries the hierarchical index to identify
and retrieve the most relevant document sections, attaching them as focused context. This targeted
contextualization not only narrows the scope of each generation step but also ensures alignment with
the original specification.

Unlike approaches that naively partition hardware into submodules or create intermediate repre-
sentations, our fragment-based decomposition introduces no additional complexity. All sub-tasks
contribute directly to the same global design, each addressing a well-defined portion of the code.

6
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This method maintains tight alignment with the final output and mitigates common issues such as
objective drift that may arise from self-generated intermediate goals.

3.3.3 RTL GENERATION

With the sub-tasks and their associated documentation contexts prepared, multiple instances of the
RTL Agent proceed to fill the placeholders in the code skeleton. Each agent is assigned a specific
sub-task and operates within a constrained context, allowing it to focus exclusively on its local
objective. This narrow focus facilitates an accurate translation of the specification into synthesizable
Verilog for the corresponding code segment, thereby reducing errors such as phantom signals and
enhancing the overall quality of the generated code fragments.

3.3.4 CODE FRAGMENTS MERGING

After all RTL Agents complete fragment generation, the Merge Agent integrates the fragments
into a correct Verilog module. To resolve potential inconsistencies or implementation errors that
may arise during merging, the Retriever Agent first fetches relevant sections from the original doc-
umentation. Using this retrieved context, the Merge Agent then refines and integrates the fragments
using this additional information together with the generated code, ensuring that the final output is
correct and coherent.

3.3.5 LOCALITY-AWARE DEBUGGING

LocalV’s debugging pipeline leverages information locality to efficiently trace errors back to their
relevant documentation segments. The process begins by curating error messages from the simula-
tion environment to extract key signals—such as syntax error locations or functional mismatches,
and root-cause signal information from waveform analysis (inspired by VerilogCoder’s (Ho et al.,
2025)). Crucially, the Retriever Agent then uses this error context to fetch the small subset of
documentation fragments that are locally relevant to the faulty code section, as determined by the
underlying information locality hypothesis. A dedicated Debug Agent subsequently synthesizes
this focused context—the error details and the retrieved documentation—to produce precise, line-
number-aware edit actions (e.g., inserting or deleting specific lines). This debug loop iterates until
the code is error-free or a predefined iteration limit is reached, efficiently minimizing corrective
overhead by avoiding reprocessing the entire specification.

4 EXPERIMENTS

We evaluate LocalV’s performance on realistic hardware design tasks through a series of experi-
ments. We first describe our experimental setup, then report the main results comparing LocalV
against baselines, and finally perform an ablation study to quantify the contribution of components.

4.1 SETTINGS

Benchmarks. We adopt REALBENCH (Jin et al., 2025), a challenging benchmark specifically
designed for real-world, IP-level Verilog generation. REALBENCH comprises 60 RTL generation
tasks drawn from three IPs: AES encoder/decoder cores (6 modules), an SD card controller (14
modules), and a CPU core (40 modules). REALBENCH emphasizes practical applicability through
long-form natural language specifications (averaging 10k tokens) and substantial implementation
complexity (approximately 320 lines of Verilog code per target module on average).

Metrics. We evaluate models on syntactic and functional correctness using REALBENCH’s prede-
fined testbenches, and report both syntax and functional pass rate as the metric. We use Pass@1 in
Table 1 2, and extend to Pass@k (OpenAI, 2021; Liu et al., 2023b) in some analysis. As reported
in Table 1, the pass rates for direct prompting model baselines are averaged over 20 independent
generations per task, whereas Agent baselines are evaluated using a single generation per task.

Baselines. We establish comprehensive baselines comprising both standalone models and agent-
based systems. For standalone models, we evaluate both commercial and open-source mod-
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Table 1: Syntax and functional ppass rate comparison on the REALBENCH benchmark.
SDC AES E203 CPU ALL

Method Syn. Func. Syn. Func. Syn. Func. Syn. Func.

Model Baselines
Claude-3.7 41.4% 11.7% 46.6% 31.6% 42.7% 20.6% 42.8% 19.6%
DeepSeek-V3 44.2% 15.3% 55.8% 23.3% 19.5% 7.5% 28.9% 10.9%
DeepSeek-R1 28.5% 7.1% 66.6% 50.0% 12.5% 10.0% 21.6% 13.3%
Qwen3-32B 25.3% 15.3% 32.4% 16.6% 8.3% 6.2% 14.7% 9.4%
GPT-4o 14.2% 0.0% 50.0% 16.6% 5.0% 0.0% 11.6% 1.6%
GPT-5 7.1% 0.0% 50.0% 33.3% 30.0% 20.0% 26.6% 16.6%

Agent Baselines
MAGE (Claude) 57.1% 21.4% 66.6% 33.3% 62.5% 20.0% 61.6% 21.6%
VerilogCoder (Claude) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LocalV (DeepSeek-V3) 64.2% 28.5% 50.0% 50.0% 60.0% 35.0% 60.0% 35.0%
LocalV (Claude) 78.5% 35.7% 83.3% 50.0% 72.5% 47.5% 75.0% 45.0%

els, including Claude (Claude-3.7-sonnet-250219) (Anthropic, 2025), DeepSeek-V3 (DeepSeek-
v3-250324) (Liu et al., 2024a), DeepSeek-R1 (DeepSeek-r1-250528) (Guo et al., 2025), Qwen3-
32B (Yang et al., 2025), GPT-4o (OpenAI, 2024), and GPT-5 (OpenAI, 2025). For agent-based
approaches, we compare against SOTA methods, MAGE (Zhao et al., 2024) and VerilogCoder (Ho
et al., 2025), both implemented using Claude-3.7-sonnet-250219. Our LocalV method is evaluated
on two different backbone models: Claude-3.7-sonnet-250219 and DeepSeek-v3-250324.

4.2 MAIN RESULTS

Table 1 presents the evaluation results on the challenging REALBENCH benchmark. This benchmark
proves particularly difficult for current LLMs, as evidenced by the modest 19.0% functional Pass@1
achieved even by the strong Claude-3.7-sonnet-250219 model. Notably, our LocalV (Claude) sur-
passes the base model’s Pass@20 performance (35.0%) with just a single generation, highlighting
its significant advantages for IP-level hardware design tasks.

When compared against agent baselines, LocalV demonstrates superior performance over both
MAGE (overall 23.4%) and VerilogCoder. It is important to note that MAGE typically relies on
extensive high-temperature sampling to generate candidate programs—a computationally expensive
approach for long-form code generation. To ensure a fair comparison with LocalV’s single-shot
setting, we limited MAGE’s candidate size to two and allocated an equivalent debugging iteration
budget. VerilogCoder employs a ReAct-style workflow (Yao et al., 2023) that performs well on
simpler tasks but struggles with IP-level complexity. Without specific design adaptations for com-
plex hardware generation, its per-agent success rates diminish as context length increases, and its
nondeterministic orchestration leads to high computational costs and low completion rates. Under
reasonable cost constraints, VerilogCoder failed to solve any REALBENCH instances.

In contrast, LocalV achieves stronger performance with substantially improved resource efficiency,
enabled by its streamlined agent architecture and precise task decomposition strategy. The method
generates each code fragment only once, performs a single merge operation, and executes a bounded
debugging schedule (maximum 10 iterations), producing high-quality solutions while maintaining
controlled generation costs.

Also, we present a comparison between LocalV and direct sampling using Claude in Figure 5.
To demonstrate the superior functional accuracy of LocalV, we plot its performance alongside the
Pass@k values of direct sampling in Figure 5a. The results indicate that the Pass@k of direct sam-
pling tends to converge after k = 10, yet remains substantially lower than the accuracy achieved by
LocalV. Furthermore, we provide a detailed breakdown of syntax error categories for both methods
in Figure 5b. The results show that LocalV consistently exhibits a lower syntax error rate across all
categories, highlighting its robust syntactic performance in diverse problem settings.

4.3 ABLATION STUDY

We conduct ablation studies on LocalV (based on Claude) in Table 2.
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Table 2: Ablation study on the REALBENCH benchmark.

SDC AES E203 CPU ALL
Method Syn. Func. Syn. Func. Syn. Func. Syn. Func.

LocalV 78.5% 35.7% 83.3% 50.0% 72.5% 47.5% 75.0% 45.0%
w/o index 64.2% 21.4% 100.0% 50.0% 57.5% 37.5% 63.3% 35.0%
w/o index & debug 35.7% 7.1% 50.0% 33.3% 57.5% 22.5% 51.6% 20.0%
w/o index & debug & plan 35.7% 7.1% 50.0% 33.3% 45.0% 22.5% 43.3% 20.0%

First, replacing indexed document fragments with the full specification significantly degrades perfor-
mance across all benchmarks. The hierarchical indexing mechanism proves essential for managing
IP-level complexity, as long specifications introduce substantial irrelevant content that distracts the
model and harms generation quality. Even with other components intact, removing indexing alone
causes a notable 10.0% drop in overall functional pass rate.

Second, the debugging component demonstrates the importance of code correctness. When both in-
dexing and debugging are removed, performance drops to 20.0%—only marginally above the base
model’s Pass@1. This indicates that while our task decomposition strategy addresses core chal-
lenges, the debugging stage is vital for ensuring functional correctness of the generated IP blocks.

Finally, the planner provides complementary benefits by enhancing syntactic correctness and or-
chestrating the generation process. While its impact on functional accuracy is less pronounced than
indexing and debugging, it contributes to syntactic accuracy, and the full ablation (without index,
planner, and debug) yields the lowest performance (20.0%), confirming the planner’s role in main-
taining structural coherence for complex hardware design tasks.

Overall, these results confirm that information locality is the unifying principle behind LocalV’s
effectiveness. The hierarchical indexing establishes locality by focusing on relevant document frag-
ments, while the planner maintains locality through structured generation. The debugging compo-
nent extends this approach by tracing errors to specific documentation segments for targeted cor-
rections. The performance degradation when compromising locality—whether through fragmented
generation without indexing or monolithic generation without planning—demonstrates that locality-
aware decomposition is essential for IP-level code generation under constrained budgets.

5 CONCLUSION

We present LOCALV, a multi-agent framework with a workflow tailored to IP-level hardware design.
Our study observes and validates the information locality of IP-level hardware specifications. Most
RTL fragments can be correctly implemented based on a partial specification. Building on this
insight, we design a novel hierarchical indexing strategy, a fragment-oriented task decomposition,
and a locality-aware debugging loop. In REALBENCH, a real-world IP-level benchmark, LocalV
delivers a 10% improvement, advancing the practical generation of reliable RTL code with LLM.
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A THE SYSTEM LEVEL RESULT OF REALBENCH

Figure 6 presents the design hierarchy of RealBench and the corresponding performance of Lo-
calV. Specifically, it details the verification outcomes for (a) an SD card controller, (b) an AES
encoder/decoder core, and (c) the Hummingbirdv2 E203 CPU Core. A ”Pass” denotes successful
module generation by LocalV, whereas a ”Fail” indicates an unsuccessful attempt. The hierarchical
tree structure within the figure visually represents the intricate task interdependencies in RealBench,
underscoring its inherent complexity.

Figure 6: The system level result of RealBench.

B INTERMEDIATE RESULTS OF LOCALV

To better illustrate LocalV’s workflow, this section delves into the detailed intermediate results for
the e203 exu problem in REALBENCH. We’ll display the outputs generated by LocalV agents,
including document fragments, pseudocode, plans, code fragments, and debug actions, providing a
comprehensive understanding of the process.

Document Fragments
”section 0”: ”The ‘e203 exu‘ module represents the execution unit (EXU) of a processor core, re-
sponsible for executing instructions received from the instruction fetch unit (IFU) and handling excep-
tions, pipeline flushes, and write-back operations. This module integrates submodules for decoding,
dispatching, ALU operations, commit handling, and more, ensuring proper execution of instructions
and system state management.”,
”section 1”: ”| Direction | Port Name | Width | Description |
| ——— | —————- | —————- | ———————————————————— |
| output | commit mret | 1 | Indicates that an MRET instruction has been committed. |
| output | commit trap | 1 | Indicates that a trap (e.g., exception) has been committed. |
| output | exu active | 1 | Indicates whether the execution unit is currently active. |
| output | excp active | 1 | Indicates whether an exception is currently active. |
| output | core wfi | 1 | Indicates that the core is in a waiting-for-interrupt (WFI) state. |
| output | tm stop | 1 | Indicates that the timer should stop. |
| output | itcm nohold | 1 | Indicates no hold on the instruction TCM. |
| output | core cgstop | 1 | Core clock gating stop signal. |
| output | tcm cgstop | 1 | TCM clock gating stop signal. |
| input | core mhartid | E203 HART ID W | Hardware thread ID of the core. |
| input | dbg irq r | 1 | Debug interrupt request signal. |
......”,
......
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Pseudocode
// === SUBTASK 1: Module Header and IO Port Definitions ===
module e203 exu (
// <basic interface signals>
// <debug control interface signals>
// <IFU IR stage interface signals>
// <flush interface signals>
// <LSU write-back interface signals>
// <AGU ICB interface signals>
// <optional CSR NICE interface signals>
// <optional NICE interface signals>
);
// === SUBTASK 2: Internal Signal Declarations ===
// <register file interface signals>
// <decode stage signals>
// <dispatch stage signals>
// <OITF signals>
// <ALU signals>
// <commit stage signals>
// <CSR signals>
// <long-pipeline write-back signals>
// <write-back signals>
// === SUBTASK 3: Submodule Instantiations ===
// Register File
e203 exu regfile u e203 exu regfile (
// <register file connections>
);
// Decode
e203 exu decode u e203 exu decode (
// <decode connections>
);
// Dispatch
e203 exu disp u e203 exu disp (
// <dispatch connections>
);
// OITF
e203 exu oitf u e203 exu oitf (
// <OITF connections>
);
// ALU
e203 exu alu u e203 exu alu (
// <ALU connections>
);
// Commit
e203 exu commit u e203 exu commit (
// <commit connections>
);
// CSR
e203 exu csr u e203 exu csr (
// <CSR connections>
);
// Long-pipeline Write-back
e203 exu longpwbck u e203 exu longpwbck (
// <long-pipeline write-back connections>
);
// Write-back
e203 exu wbck u e203 exu wbck (
// <write-back connections>
);
// === SUBTASK 4: Conditional Logic and Signal Assignments ===
// <exu active signal logic>
// <dependency information logic>
// <optional NICE interface logic>
// <optional CSR NICE interface logic>
endmodule
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Plan
”subproblems”: [
{ ”id”: ”module header and io”, ”description”: ”**Pseudocode Block**: This subtask implements the
[SUBTASK 1: Module Header and IO Port Definitions] block in the provided pseudocode. **Target
Implementation**: Define the complete module header with all interface signals including basic inter-
face, debug control interface, IFU IR stage interface, flush interface, LSU write-back interface, AGU
ICB interface, and optional CSR NICE and NICE interfaces according to the specifications.”, ”re-
quired section indexes”: [ ”section 0”, ”section 1”, ”section 2”, ”section 3”, ”section 4”, ”section 5”,
”section 6”, ”section 7”, ”section 8” ] },
{ ”id”: ”internal signals”, ”description”: ”**Pseudocode Block**: This subtask implements the
[SUBTASK 2: Internal Signal Declarations] block in the provided pseudocode. **Target Imple-
mentation**: Define all internal signals needed for connecting the submodules, including regis-
ter file interface signals, decode stage signals, dispatch stage signals, OITF signals, ALU signals,
commit stage signals, CSR signals, long-pipeline write-back signals, and write-back signals.”, ”re-
quired section indexes”: [ ”section 9”, ”section 10”, ”section 11”, ”section 12”, ”section 13”, ”sec-
tion 14”, ”section 15”, ”section 16”, ”section 17” ] },
...... ]

Code Fragment
// === SUBTASK 4: Conditional Logic and Signal Assignments ===
// exu active signal logic
// Active when OITF is not empty, valid instruction entering, or exception active
assign exu active = (∼ oitf empty) | i valid | excp active;
// dependency information logic for IFU
// dec2ifu rden: Indicates whether current instruction writes to an integer register
assign dec2ifu rden = dec rdwen & (∼dec rdwen fp);
// dec2ifu rs1en: Indicates whether current instruction reads rs1 integer register
assign dec2ifu rs1en = dec rs1en & (∼dec rs1en fp);
// dec2ifu rdidx: Destination register index
assign dec2ifu rdidx = dec rdidx;
// rf2ifu rs1: Value of rs1 register
assign rf2ifu rs1 = read src1 dat;
‘ifdef E203 HAS NICE
// optional NICE interface logic
assign nice cmt off ilgl o = nice cmt off ilgl i;
assign nice xs off = nice xs off i;
‘endif
‘ifdef E203 HAS CSR NICE
// optional CSR NICE interface logic
assign csr nice csr valid = csr nice csr valid i;
assign csr nice csr ready = csr nice csr ready i;
assign csr nice csr addr = csr nice csr addr i;
assign csr nice csr wr = csr nice csr wr i;
assign csr nice csr wdata = csr nice csr wdata i;
assign csr nice csr rdata = csr nice csr rdata i;
‘endif

Debug Action

”fix operations”: [ { ”operation”: ”delete block”, ”start line”: 838, ”end line”: 843 }, { ”oper-
ation”: ”add block”, ”line”: 838, ”content”: [ ” // Flush interface logic - handle different flush
conditions”, ” // Flush can be triggered by exceptions, interrupts, or control flow instructions”, ”
assign pipe flush req = commit trap | commit mret;”, ” ”, ” // For normal exceptions and inter-
rupts, use the trap vector”, ” // For returns from exceptions (mret), use the saved EPC”, ” assign
pipe flush add op1 = commit mret ? csr epc r : csr mtvec r;”, ” assign pipe flush add op2 = 32’b0;”,
”‘ifdef E203 TIMING BOOST”, ” assign pipe flush pc = commit mret ? csr epc r : csr mtvec r;”,
”‘endif” ] }, { ”operation”: ”delete block”, ”start line”: 817, ”end line”: 819 }, { ”operation”:
”add block”, ”line”: 817, ”content”: [ ” // exu active signal logic”, ” // Active when OITF is not
empty, valid instruction entering, or exception active”, ” // Also active during flush operations”, ” as-
sign exu active = (∼oitf empty) | i valid | excp active | pipe flush req;” ] } ],
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C LLM USAGE

Large language models (LLMs) were utilized to assist in the writing and polishing of this manuscript.
Specifically, LLMs were employed to help refine language, improve readability, and enhance clarity
across various sections of the paper. This included tasks such as rephrasing sentences, checking
grammar, and improving the overall coherence and flow of the text.
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