
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LOCALV: EXPLOITING INFORMATION LOCALITY FOR
IP-LEVEL VERILOG GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The generation of Register-Transfer Level (RTL) code is a crucial yet labor-
intensive step in digital hardware design, traditionally requiring engineers to
manually translate complex specifications into thousands of lines of synthe-
sizable Hardware Description Language (HDL) code. While Large Language
Models (LLMs) have shown promise in automating this process, existing ap-
proaches—including fine-tuned domain-specific models and advanced agent-
based systems—struggle to scale to industrial IP-level design tasks. We identify
three key challenges: (1) handling long, highly detailed documents, where criti-
cal interface constraints become buried in unrelated submodule descriptions; (2)
generating long RTL code, where both syntactic and semantic correctness degrade
sharply with increasing output length; and (3) navigating the complex debugging
cycles required for functional verification through simulation and waveform anal-
ysis. To overcome these challenges, we propose LocalV, a multi-agent framework
that leverages the inherent information locality in modular hardware design. Lo-
calV decomposes the long-document to long-code generation problem into a set
of short-document, short-code tasks, enabling scalable generation and debugging.
Specifically, LocalV integrates hierarchical document partitioning, task planning,
localized code generation, interface-consistent merging, and AST-guided locality-
aware debugging. Experiments on REALBENCH demonstrate that LocalV sub-
stantially outperforms state-of-the-art (SOTA) LLMs and agents, showing the po-
tential of generating Verilog for IP-level RTL design.

1 INTRODUCTION

The generation of Register-Transfer Level (RTL) code is a core step in digital hardware design. This
process is notoriously labor-intensive and error-prone, as engineers must manually translate natural
language specifications into thousands of lines of synthesizable Hardware Description Language
(HDL) code (e.g., Verilog, VHDL). The promise of Large Language Models (LLMs) to automate
this step has spurred rapid innovation. Initial efforts focused on benchmarking general-purpose
models (Liu et al., 2023b; Thakur et al., 2023) and developing domain-specific solutions through
fine-tuning or data augmentation (Liu et al., 2024c; Cui et al., 2024; Liu et al., 2024b; Zhao et al.,
2025). More recently, the field has shifted towards sophisticated agent-based systems that mimic
human design workflows. These agents, such as VerilogCoder (Ho et al., 2025) and MAGE (Zhao
et al., 2024), decompose complex problems and can operate autonomously or in a human-in-the-
loop fashion, as explored in collaborative design platforms like ChatCPU (Wang et al., 2024) and
Spec2RTL-Agent (Yu et al., 2025).

Despite strong results on academic benchmarks like VerilogEval (Liu et al., 2023b), a clear gap
appears when applying current LLM-based methods to industrial hardware design. This is partic-
ularly evident with REALBENCH (Jin et al., 2025), an IP-level benchmark derived from real-world
open-source IP, which features significantly longer documentation (197.3 vs. 5.7) and code lengths
(241.2 vs. 15.8) compared to VerilogEval. Directly using SOTA models or agents often leads to
a sharp drop in performance, with many outputs failing to be even syntactically correct, let alone
functionally valid. This gap highlights a mismatch between current model capabilities and the high
requirements of real-world hardware engineering. We observe three main challenges:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1-20 21-60 61-120 121-200
Ports Number

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
k

syntax@1
syntax@5
syntax@10

func@1
func@5
func@10

(a) Pass@k vs. I/O signal count

1-125 126-375 376-750 751-1250
Code Lines

0.0

0.2

0.4

0.6

0.8

1.0

Pa
ss

@
k

syntax@1
syntax@5
syntax@10

func@1
func@5
func@10

(b) Pass@k vs. code length

Figure 1: Performance of Claude 3.7 Sonnet on REALBENCH: Pass@k vs. (a) I/O signal count
and (b) code length (lines), reporting syntactic and functional Pass@k. Accuracy decreases with
interface complexity and output length.

Long-Document Handling. IP-level hardware specifications are typically verbose and detailed,
largely due to the increasing number of I/O signals and submodules. Although modern LLMs sup-
port context windows of 32k tokens or more, their ability to generate functionally correct RTL
code diminishes as document complexity grows. The accumulation of signal and module details
overwhelms the model’s limited understanding of hardware semantics. As a result, critical interface
constraints are often obscured by irrelevant details, leading to phantom signals, port list mismatches,
and logically incorrect Verilog code. This trend is illustrated in Figure 1a, which shows a consistent
decrease in LLM accuracy as the number of I/O signals increases.

Long-Code Generation. IP-level designs usually involve substantially longer code, which exacer-
bates the challenges LLMs face in HDL generation—a domain where they already underperform. As
shown in Figure 1b, both syntactic and semantic accuracy drop significantly with code length. When
the code exceeds 750 lines, even repeated sampling (e.g., 10 times) fails to yield a syntactically valid
result. Typical errors include incorrect macro references, use of non-synthesizable constructs, and
fundamental syntax errors, underscoring the model’s inherent limitations in generating reliable RTL
code.

Complex Debugging Process. In practice, IP-level hardware verification relies on carefully con-
structed testbenches to ensure the design conforms to specifications. Each simulation failure triggers
a laborious debugging cycle: engineers analyze waveforms to identify faulty signals, trace errors
back to ambiguous or misinterpreted specification segments, and iteratively refine the design. This
process not only corrects the code but also clarifies ambiguities in the specification itself, using
waveform behavior as a definitive reference for refinement.

To address these challenges, we propose LocalV, a multi-agent framework explicitly designed for the
real-world IP-level “long-document, long-code” hardware generation problem. Our key observation
is that IP-level specifications inherit strong information locality from modular hardware design:
code fragments can often be generated correctly by relying on only a portion of the document.
This suggests that long-document to long-code generation can be decomposed into a set of short-
document to short-code tasks without information loss, thereby mitigating the core challenges.

Specifically, LocalV organizes the following workflow as shown in Figure 2: (1) Preprocessing.
Documents are partitioned into fragments with hierarchical indices. (2) Planning. Code structure
is planned as sub-tasks with assigned document fragments. (3) Generation. Coding agents execute
”short-document, short-code” generation for each sub-task. (4) Merging. Fragments are merged
into a complete design with interface consistency. (5) Debugging. Error messages and AST-guided
waveform analysis trace failures back to specification fragments for locality-aware debugging.

Our contributions are summarized as follows: (1) We realized three fundamental challenges in
generating IP-level Verilog code, namely, long-document handling, long-code generation, and the
complex debugging process. (2) We observed the information locality principle for IP-level Ver-
ilog generation. Based on it, we introduce an index-driven document partitioning mechanism, a
fragment-based generation strategy that decomposes complex tasks into manageable subtasks, and
a traceable debugging pipeline that maps errors back to relevant specification fragments via AST-
guided analysis. (3) Based on these techniques, we present LocalV, a multi-agent framework for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Workflow overview of LocalV.

generating correct Verilog from IP-level specifications. LocalV achieves a 45.0% pass rate on RE-
ALBENCH (Jin et al., 2025), surpassing SOTA agent-based frameworks by 23.4%.

2 RELATED WORK

LLM-based RTL Generation. The application of LLMs to automate RTL code generation
has emerged as a promising research area in electronic design automation (EDA). Early explo-
rations (Nair et al., 2023; Chang et al., 2023; Blocklove et al., 2023) focused on evaluating the
capability of general-purpose LLMs to translate natural language specifications into Hardware De-
scription Languages (HDLs) like Verilog and VHDL. Foundational benchmarks such as Verilo-
gEval (Liu et al., 2023b) and RTLLM (Lu et al., 2024) were established to systematically assess
model performance, revealing both the potential and limitations of off-the-shelf models. To improve
performance, subsequent research has focused on domain-specific adaptation through fine-tuning on
curated datasets (Liu et al., 2024c; Thakur et al., 2024; Liu et al., 2023a) or optimization via rein-
forcement learning (Pei et al., 2024; Zhu et al., 2025; Chen et al., 2025). While these models show
strong results on well-defined, smaller-scale problems, their effectiveness on real-world, IP-level
specifications is fundamentally limited. For many fine-tuned models, this stems from smaller model
scales, the lack of training data for IP-level hardware design, and constrained context windows that
fail to fully capture complex design documents. More critically, even for large-scale models with
extensive context capabilities, the single-pass generation paradigm is ill-suited for the complexity of
IP-level design. Attempting to synthesize functionally correct code from a verbose specification in
a single attempt struggles to capture the intricate dependencies and hierarchical nature of hardware,
often leading to subtle but critical errors.

Agent-based Frameworks for Hardware Design. To overcome the limitations of single-pass
generation, the field is shifting towards multi-agent frameworks that emulate the collaborative and
iterative nature of human design and verification workflows. This paradigm moves beyond a sin-
gle monolithic model to a team of specialized agents, each assigned a distinct role. For instance,
MAGE (Zhao et al., 2024) explicitly creates a four-agent team responsible for RTL generation,
testbench creation, functional evaluation (judging), and debugging, establishing a clear, recursive
loop of proposing and refining the design. Similarly, RTLSquad (Wang et al., 2025) organizes its
agents into ”squads” dedicated to distinct project phases—exploration, implementation, and verifi-
cation—thereby mimicking the structure of a human engineering team. Central to these systems is
a task decomposition phase, where a high-level specification is broken down into a structured plan
with manageable sub-tasks. These plans guide the execution of agents focused on coding, planning,
and reflection, as seen in frameworks like Spec2RTL-Agent (Yu et al., 2025) and VerilogCoder (Ho
et al., 2025). However, this decomposition process faces a critical challenge: translating the orig-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

inal specification into intermediate instructions can introduce cascading ambiguity, distorting the
design intent. Consequently, debugging becomes severely hampered, as agents must trace errors
through these distorted interpretations rather than the source document. Our approach addresses this
by maintaining a direct link between the specification and code, grounding the entire process in the
original document.

3 METHODOLOGY

We begin by formalizing the problem of IP-level Verilog generation (§3.1). We then introduce our
core hypothesis, the information locality in IP-level hardware specifications, with a quantitative
analysis (§3.2). We then present the detailed LocalV pipeline built on this insight(§3.3).

3.1 PROBLEM FORMULATION

Our objective is to synthesize a complete Verilog module from a natural language specification. We
formally define the problem as follows:

Input: A natural language specification document D, represented as an ordered sequence of N
semantic textual units (e.g., paragraphs or sections), D = {d1, d2, . . . , dN}. Also, a target module
name m and a simulation environment E that provides golden execution feedback (including error
messages and behavioral mismatches) for debugging purposes is given.

Output: A synthesizable Verilog module Vm. We model the generated code not as a monolithic
text file, but as a structured set of M semantic code units, Vm = {c1, c2, . . . , cM}. A code unit cj
represents a functionally cohesive and syntactically complete block of RTL code, such as a module
or a statement. The final output file is the concatenation of these units.

Objective: The generated module Vm must be functionally correct and can pass a suite of simulation
tests from E against a golden reference testbench, ensuring functional equivalence.

3.2 INFORMATION LOCALITY

Our approach is grounded in a core assumption we term Information Locality: for any semantic
code unit cj ∈ Vm, the information required to generate cj is primarily concentrated within a subset
of the specification D. This locality arises directly from the hierarchical and modular nature of hard-
ware design. Complex systems are built from well-defined submodules (e.g., ALUs, register files),
and IP-level specifications explicitly mirror this structure: dedicated sections describe each mod-
ule’s behavior, I/O, and internal logic. This creates a natural alignment, where the implementation
of a code unit cj depends predominantly on its corresponding documentation segment. In contrast,
general-purpose software specifications often describe high-level algorithms that do not decompose
neatly into code-level constructs, leading to more diffuse information sources.

The validity of this locality hypothesis is key. If it holds—as we will quantitatively demonstrate be-
low (Figure 3)—it enables a powerful divide-and-conquer strategy. The quantitative results confirm
that the “long-document to long-code” mapping problem can be effectively decomposed into a set of
parallelizable “short-document to short-code” subproblems without information loss, dramatically
improving tractability.

We quantify information locality by measuring the entropy of the information source distribution
for each code unit. Our analysis begins by segmenting the specification D into paragraphs {di}Ni=1

and the Verilog code Vm into statements {cj}Mj=1. For each code statement cj , we compute its
semantic similarity sim(di, cj) (cosine similarity of Qwen3-Embedding-0.6B embeddings) to every
specification paragraph di and transform them into conditional probability distribution P (di | cj)
using a softmax function with temperature τ = 0.1:

P (di | cj) =
exp(sim(di, cj)/τ)∑N

k=1 exp(sim(dk, cj)/τ)
. (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

E203 CPU Top Design Document

1. Introduction
......
2. Module Diagram
......
3. Interface List
......
4. Called Module List
 4.1 e203_cpu
 - Function Introduction:

 4.2 e203_srams
 - Function Introduction:
 - The e203_srams module is
 - This module also
 - Interface List:

5. Implementation Details
 5.1 Integration of the Core Module
and Memory Interfaces

Low

Sim
ilarity

So
rt

ed
 d

oc
um

en
t i

nd
ex

Code unit index

(b) E203 CPU Top Module

(a) 10 combined modules

(c) Parse Lisp Expression Problem (d) Detailed visualization of the cosine similarity between a single
code unit and all document paragraphs in the E203 CPU Top Module

0.0 0.2 0.4 0.6 0.8 1.0

High
Similarity

E203 CPU Top RTL

 `ifdef E203_HAS_DTCM //{

 `endif//}
 `ifndef E203_HAS_LOCKSTEP//{
 `endif//}
 .rst_n (rst_n),
 .clk (clk)
);

Code Unit

 e203_srams u_e203_srams(
 `ifdef E203_HAS_DTCM //{
 .dtcm_ram_sd (tcm_sd),
 .dtcm_ram_ds (tcm_ds),
 .dtcm_ram_ls (dtcm_ls),

);

Figure 3: Heatmaps of normalized cosine similarity across three tasks. Each column represents
a code unit and its sorted cosine similarity to all document paragraphs. Values in each column
are independently normalized to the range [0, 1], where lower values indicate higher information
locality. (a) 10 randomly selected and then combined modules from VerilogEval, demonstrating
extremely high information locality (since they are totally independent of each other) with H̄norm =
0.8206. (b) The E203 CPU Top Module from REALBENCH, showing high information locality with
H̄norm = 0.8680. (c) The Parse Lisp Expression problem, a typical software task, with H̄norm =
0.9126. (d) A detailed visualization of the cosine similarity between a single code unit and all
document paragraphs in the E203 CPU Top Module.

The locality for cj is then assessed by the entropy of this distribution:

H(cj) = −
N∑
i=1

P (di | cj) log2 P (di | cj), (2)

where lower entropy indicates that information is concentrated in a small number of textual units,
thus supporting the locality hypothesis.

To ensure comparability across specifications of different lengths, we normalize the entropy by its
theoretical maximum, Hmax = log2 N , which occurs under a uniform distribution. The normalized
entropy for a code unit is:

Hnorm(cj) =
H(cj)

log2 N
. (3)

This yields a scale-invariant measure where Hnorm(cj) ∈ [0, 1]. To report a single locality score for
an entire design, we average the normalized entropy across all M code units:

H̄norm =
1

M

M∑
j=1

Hnorm(cj). (4)

A lower H̄norm indicates stronger overall locality, and this metric is comparable across experiments
with varying N and M .

We evaluate three settings to contrast information locality: (a) a synthetic Verilog benchmark (10
concatenated VerilogEval cases) as an ideal locality baseline (lower bound); (b) the hardware IP
e203 cpu top from REALBENCH; and (c) a software counterpart (LeetCode “Parse Lisp Expres-
sion” in Python) with comparable length. Row-normalized heatmaps and the average normalized
entropy H̄norm quantify locality strength. As shown in Figure 3, the hardware design (b) exhibits
strong locality (H̄norm = 0.8680), much closer to the ideal (a) (H̄norm = 0.8206) than the soft-
ware case (c) (H̄norm = 0.9126). This pattern holds across REALBENCH, where the average
H̄norm = 0.8406 further confirms stronger locality in hardware specifications.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: The detailed workflow of LocalV. (a) Output of the planning stage, illustrating the structure
of a sub-task. (b) Overview of the code generation and merging process. (c) Overview of the
debugging loop and the generation of the final code.

3.3 LOCALV OVERVIEW

We now introduce our novel multi-agent framework, LocalV, designed to automate the generation
of Verilog code from long natural language documentation. The overall workflow is depicted in
Figure 4 and detailed in the subsequent sections.

3.3.1 PREPROCESSING

The first stage of our pipeline structures the input documentation for efficient retrieval and compre-
hension by the agents. Given a raw design document, we split the text into coherent paragraphs. For
each paragraph, an LLM is prompted to generate a dual-level description that indexes the source
content:

Semantic level: Provides a high-level summary of the paragraph’s functional intent, such as “inter-
face specification for the DMA controller” or “timing constraints for the DDR memory interface.”
This supports agents who require a conceptual understanding of a module’s purpose.

Lexical level: Extracts fine-grained hardware-specific entities—including signal names, module
identifiers, macros, and parameters—to ensure precise retrieval of low-level details that may be
omitted in semantic summaries.

The resulting description serves as keys indexing the original text segments and is used in subsequent
stages of the pipeline.

3.3.2 PLANNING AND TASK DECOMPOSITION

Upon receiving the indexed documentation from the previous stage, the Planner Agent constructs
the overall structure of the final Verilog code and generates a corresponding skeleton. This skeleton
is expressed as pseudo-code containing syntactic placeholders that represent various code compo-
nents—such as submodule instantiations or signal assignments.

The agent then decomposes the skeleton into sub-tasks, each corresponding to a code fragment that
requires implementation. For every sub-task, the Retriever queries the hierarchical index to identify
and retrieve the most relevant document sections, attaching them as focused context. This targeted
contextualization not only narrows the scope of each generation step but also ensures alignment with
the original specification.

Unlike approaches that naively partition hardware into submodules or create intermediate repre-
sentations, our fragment-based decomposition introduces no additional complexity. All sub-tasks
contribute directly to the same global design, each addressing a well-defined portion of the code.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This method maintains tight alignment with the final output and mitigates common issues such as
objective drift that may arise from self-generated intermediate goals.

3.3.3 RTL GENERATION

With the sub-tasks and their associated documentation contexts prepared, multiple instances of the
RTL Agent proceed to fill the placeholders in the code skeleton. Each agent is assigned a specific
sub-task and operates within a constrained context, allowing it to focus exclusively on its local
objective. This narrow focus facilitates an accurate translation of the specification into synthesizable
Verilog for the corresponding code segment, thereby reducing errors such as phantom signals and
enhancing the overall quality of the generated code fragments.

3.3.4 CODE FRAGMENTS MERGING

After all RTL Agents complete fragment generation, the Merge Agent integrates the fragments
into a correct Verilog module. To resolve potential inconsistencies or implementation errors that
may arise during merging, the Retriever Agent first fetches relevant sections from the original doc-
umentation. Using this retrieved context, the Merge Agent then refines and integrates the fragments
using this additional information together with the generated code, ensuring that the final output is
correct and coherent.

3.3.5 LOCALITY-AWARE DEBUGGING

LocalV’s debugging pipeline leverages information locality to efficiently trace errors back to their
relevant documentation segments. The process begins by curating error messages from the simula-
tion environment to extract key signals—such as syntax error locations or functional mismatches,
and root-cause signal information from waveform analysis (inspired by VerilogCoder’s (Ho et al.,
2025)). Crucially, the Retriever Agent then uses this error context to fetch the small subset of
documentation fragments that are locally relevant to the faulty code section, as determined by the
underlying information locality hypothesis. A dedicated Debug Agent subsequently synthesizes
this focused context—the error details and the retrieved documentation—to produce precise, line-
number-aware edit actions (e.g., inserting or deleting specific lines). This debug loop iterates until
the code is error-free or a predefined iteration limit is reached, efficiently minimizing corrective
overhead by avoiding reprocessing the entire specification.

4 EXPERIMENTS

We evaluate LocalV’s performance on realistic hardware design tasks through a series of experi-
ments. We first describe our experimental setup, then report the main results comparing LocalV
against baselines, and finally perform an ablation study to quantify the contribution of components.

4.1 SETTINGS

Benchmarks. We adopt REALBENCH (Jin et al., 2025), a challenging benchmark specifically
designed for real-world, IP-level Verilog generation. REALBENCH comprises 60 RTL generation
tasks drawn from three IPs: AES encoder/decoder cores (6 modules), an SD card controller (14
modules), and a CPU core (40 modules). REALBENCH emphasizes practical applicability through
long-form natural language specifications (averaging 10k tokens) and substantial implementation
complexity (approximately 320 lines of Verilog code per target module on average).

Metrics. We evaluate models on syntactic and functional correctness using REALBENCH’s prede-
fined testbenches, and report both syntax and functional pass rate as the metric. We use Pass@1 in
Table 1 2, and extend to Pass@k (OpenAI, 2021; Liu et al., 2023b) in some analysis. As reported
in Table 1, the pass rates for direct prompting model baselines are averaged over 20 independent
generations per task, whereas Agent baselines are evaluated using a single generation per task.

Baselines. We establish comprehensive baselines comprising both standalone models and agent-
based systems. For standalone models, we evaluate both commercial and open-source mod-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Syntax and functional ppass rate comparison on the REALBENCH benchmark.
SDC AES E203 CPU ALL

Method Syn. Func. Syn. Func. Syn. Func. Syn. Func.

Model Baselines
Claude-3.7 41.4% 11.7% 46.6% 31.6% 42.7% 20.6% 42.8% 19.6%
DeepSeek-V3 44.2% 15.3% 55.8% 23.3% 19.5% 7.5% 28.9% 10.9%
DeepSeek-R1 28.5% 7.1% 66.6% 50.0% 12.5% 10.0% 21.6% 13.3%
Qwen3-32B 25.3% 15.3% 32.4% 16.6% 8.3% 6.2% 14.7% 9.4%
GPT-4o 14.2% 0.0% 50.0% 16.6% 5.0% 0.0% 11.6% 1.6%
GPT-5 7.1% 0.0% 50.0% 33.3% 30.0% 20.0% 26.6% 16.6%

Agent Baselines
MAGE (Claude) 57.1% 21.4% 66.6% 33.3% 62.5% 20.0% 61.6% 21.6%
VerilogCoder (Claude) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LocalV (DeepSeek-V3) 64.2% 28.5% 50.0% 50.0% 60.0% 35.0% 60.0% 35.0%
LocalV (Claude) 78.5% 35.7% 83.3% 50.0% 72.5% 47.5% 75.0% 45.0%

els, including Claude (Claude-3.7-sonnet-250219) (Anthropic, 2025), DeepSeek-V3 (DeepSeek-
v3-250324) (Liu et al., 2024a), DeepSeek-R1 (DeepSeek-r1-250528) (Guo et al., 2025), Qwen3-
32B (Yang et al., 2025), GPT-4o (OpenAI, 2024), and GPT-5 (OpenAI, 2025). For agent-based
approaches, we compare against SOTA methods, MAGE (Zhao et al., 2024) and VerilogCoder (Ho
et al., 2025), both implemented using Claude-3.7-sonnet-250219. Our LocalV method is evaluated
on two different backbone models: Claude-3.7-sonnet-250219 and DeepSeek-v3-250324.

4.2 MAIN RESULTS

Table 1 presents the evaluation results on the challenging REALBENCH benchmark. This benchmark
proves particularly difficult for current LLMs, as evidenced by the modest 19.0% functional Pass@1
achieved even by the strong Claude-3.7-sonnet-250219 model. Notably, our LocalV (Claude) sur-
passes the base model’s Pass@20 performance (35.0%) with just a single generation, highlighting
its significant advantages for IP-level hardware design tasks.

When compared against agent baselines, LocalV demonstrates superior performance over both
MAGE (overall 23.4%) and VerilogCoder. It is important to note that MAGE typically relies on
extensive high-temperature sampling to generate candidate programs—a computationally expensive
approach for long-form code generation. To ensure a fair comparison with LocalV’s single-shot
setting, we limited MAGE’s candidate size to two and allocated an equivalent debugging iteration
budget. VerilogCoder employs a ReAct-style workflow (Yao et al., 2023) that performs well on
simpler tasks but struggles with IP-level complexity. Without specific design adaptations for com-
plex hardware generation, its per-agent success rates diminish as context length increases, and its
nondeterministic orchestration leads to high computational costs and low completion rates. Under
reasonable cost constraints, VerilogCoder failed to solve any REALBENCH instances.

In contrast, LocalV achieves stronger performance with substantially improved resource efficiency,
enabled by its streamlined agent architecture and precise task decomposition strategy. The method
generates each code fragment only once, performs a single merge operation, and executes a bounded
debugging schedule (maximum 10 iterations), producing high-quality solutions while maintaining
controlled generation costs.

Also, we present a comparison between LocalV and direct sampling using Claude in Figure 5.
To demonstrate the superior functional accuracy of LocalV, we plot its performance alongside the
Pass@k values of direct sampling in Figure 5a. The results indicate that the Pass@k of direct sam-
pling tends to converge after k = 10, yet remains substantially lower than the accuracy achieved by
LocalV. Furthermore, we provide a detailed breakdown of syntax error categories for both methods
in Figure 5b. The results show that LocalV consistently exhibits a lower syntax error rate across all
categories, highlighting its robust syntactic performance in diverse problem settings.

4.3 ABLATION STUDY

We conduct ablation studies on LocalV (based on Claude) in Table 2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pa
ss

@
k

LocalV 45.0%

Functional Pass@k

functional pass@k
LocalV(Our Method)

(a) Sampling results of Claude 3.7 Sonnet vs. Lo-
calV.

Erroneous Macro
References

Non-synthesizable
Syntax

Implementation
Error

Invalid Code
Structure

Error Categories

0.0%

10.0%

20.0%

30.0%

40.0%

Er
ro

r
Ra

te

10.0%
7.5%

16.7%

35.0%

5.0% 5.0%
3.3%

15.0%

Claude
LocalV(Claude)

(b) Distribution of syntactic error types for Claude
3.7 Sonnet and LocalV.

Figure 5: Comparison between LocalV and direct sampling

Table 2: Ablation study on the REALBENCH benchmark.

SDC AES E203 CPU ALL
Method Syn. Func. Syn. Func. Syn. Func. Syn. Func.

LocalV 78.5% 35.7% 83.3% 50.0% 72.5% 47.5% 75.0% 45.0%
w/o index 64.2% 21.4% 100.0% 50.0% 57.5% 37.5% 63.3% 35.0%
w/o index & debug 35.7% 7.1% 50.0% 33.3% 57.5% 22.5% 51.6% 20.0%
w/o index & debug & plan 35.7% 7.1% 50.0% 33.3% 45.0% 22.5% 43.3% 20.0%

First, replacing indexed document fragments with the full specification significantly degrades perfor-
mance across all benchmarks. The hierarchical indexing mechanism proves essential for managing
IP-level complexity, as long specifications introduce substantial irrelevant content that distracts the
model and harms generation quality. Even with other components intact, removing indexing alone
causes a notable 10.0% drop in overall functional pass rate.

Second, the debugging component demonstrates the importance of code correctness. When both in-
dexing and debugging are removed, performance drops to 20.0%—only marginally above the base
model’s Pass@1. This indicates that while our task decomposition strategy addresses core chal-
lenges, the debugging stage is vital for ensuring functional correctness of the generated IP blocks.

Finally, the planner provides complementary benefits by enhancing syntactic correctness and or-
chestrating the generation process. While its impact on functional accuracy is less pronounced than
indexing and debugging, it contributes to syntactic accuracy, and the full ablation (without index,
planner, and debug) yields the lowest performance (20.0%), confirming the planner’s role in main-
taining structural coherence for complex hardware design tasks.

Overall, these results confirm that information locality is the unifying principle behind LocalV’s
effectiveness. The hierarchical indexing establishes locality by focusing on relevant document frag-
ments, while the planner maintains locality through structured generation. The debugging compo-
nent extends this approach by tracing errors to specific documentation segments for targeted cor-
rections. The performance degradation when compromising locality—whether through fragmented
generation without indexing or monolithic generation without planning—demonstrates that locality-
aware decomposition is essential for IP-level code generation under constrained budgets.

5 CONCLUSION

We present LOCALV, a multi-agent framework with a workflow tailored to IP-level hardware design.
Our study observes and validates the information locality of IP-level hardware specifications. Most
RTL fragments can be correctly implemented based on a partial specification. Building on this
insight, we design a novel hierarchical indexing strategy, a fragment-oriented task decomposition,
and a locality-aware debugging loop. In REALBENCH, a real-world IP-level benchmark, LocalV
delivers a 10% improvement, advancing the practical generation of reliable RTL code with LLM.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude 3.7 sonnet, Feb 2025. URL https://www.anthropic.com/news/
claude-3-7-sonnet.

Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Chip-chat: Challenges and
opportunities in conversational hardware design. In 2023 ACM/IEEE 5th Workshop on Machine
Learning for CAD (MLCAD), pp. 1–6. IEEE, 2023.

Kaiyan Chang, Ying Wang, Haimeng Ren, Mengdi Wang, Shengwen Liang, Yinhe Han, Huawei Li,
and Xiaowei Li. Chipgpt: How far are we from natural language hardware design. arXiv preprint
arXiv:2305.14019, 2023.

Zhirong Chen, Kaiyan Chang, Zhuolin Li, Xinyang He, Chujie Chen, Cangyuan Li, Mengdi Wang,
Haobo Xu, Yinhe Han, and Ying Wang. Chipseek-r1: Generating human-surpassing rtl with llm
via hierarchical reward-driven reinforcement learning. arXiv preprint arXiv:2507.04736, 2025.

Fan Cui, Chenyang Yin, Kexing Zhou, Youwei Xiao, Guangyu Sun, Qiang Xu, Qipeng Guo, Yun
Liang, Xingcheng Zhang, Demin Song, et al. Origen: Enhancing rtl code generation with code-
to-code augmentation and self-reflection. In Proceedings of the 43rd IEEE/ACM International
Conference on Computer-Aided Design, pp. 1–9, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chia-Tung Ho, Haoxing Ren, and Brucek Khailany. Verilogcoder: Autonomous verilog coding
agents with graph-based planning and abstract syntax tree (ast)-based waveform tracing tool. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 300–307, 2025.

Pengwei Jin, Di Huang, Chongxiao Li, Shuyao Cheng, Yang Zhao, Xinyao Zheng, Jiaguo Zhu,
Shuyi Xing, Bohan Dou, Rui Zhang, et al. Realbench: Benchmarking verilog generation models
with real-world ip designs. arXiv preprint arXiv:2507.16200, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang,
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, et al. Chipnemo:
Domain-adapted llms for chip design. arXiv preprint arXiv:2311.00176, 2023a.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–8. IEEE, 2023b.

Mingjie Liu, Yun-Da Tsai, Wenfei Zhou, and Haoxing Ren. Craftrtl: High-quality synthetic data
generation for verilog code models with correct-by-construction non-textual representations and
targeted code repair. arXiv preprint arXiv:2409.12993, 2024b.

Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder:
Fully open-source and efficient llm-assisted rtl code generation technique. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024c.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design rtl
generation with large language model. In 2024 29th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 722–727. IEEE, 2024.

Madhav Nair, Rajat Sadhukhan, and Debdeep Mukhopadhyay. Generating secure hardware using
chatgpt resistant to cwes. Cryptology ePrint Archive, 2023.

OpenAI. Evaluating large language models trained on code, 2021. URL https://arxiv.org/
abs/2107.03374.

10

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o/. Ac-
cessed: September 24, 2025.

OpenAI. Introducing gpt-5, 2025. URL https://openai.com/index/
introducing-gpt-5/. Accessed: September 24, 2025.

Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. Betterv: Controlled verilog
generation with discriminative guidance. arXiv preprint arXiv:2402.03375, 2024.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large language models for automated
verilog rtl code generation. In 2023 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), pp. 1–6. IEEE, 2023.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. ACM
Transactions on Design Automation of Electronic Systems, 29(3):1–31, 2024.

Bowei Wang, Qi Xiong, Zeqing Xiang, Lei Wang, and Renzhi Chen. Rtlsquad: Multi-agent based
interpretable rtl design. arXiv preprint arXiv:2501.05470, 2025.

Xi Wang, Gwok-Waa Wan, Sam-Zaak Wong, Layton Zhang, Tianyang Liu, Qi Tian, and Jianmin
Ye. Chatcpu: An agile cpu design and verification platform with llm. In Proceedings of the 61st
ACM/IEEE Design Automation Conference, pp. 1–6, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Zhongzhi Yu, Mingjie Liu, Michael Zimmer, Yingyan Celine, Yong Liu, and Haoxing Ren. Spec2rtl-
agent: Automated hardware code generation from complex specifications using llm agent sys-
tems. In 2025 IEEE International Conference on LLM-Aided Design (ICLAD), pp. 37–43. IEEE,
2025.

Yang Zhao, Di Huang, Chongxiao Li, Pengwei Jin, Muxin Song, Yinan Xu, Ziyuan Nan, Mingju
Gao, Tianyun Ma, Lei Qi, et al. Codev: Empowering llms with hdl generation through multi-
level summarization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2025.

Yujie Zhao, Hejia Zhang, Hanxian Huang, Zhongming Yu, and Jishen Zhao. Mage: A multi-agent
engine for automated rtl code generation. arXiv preprint arXiv:2412.07822, 2024.

Yaoyu Zhu, Di Huang, Hanqi Lyu, Xiaoyun Zhang, Chongxiao Li, Wenxuan Shi, Yutong Wu, Jianan
Mu, Jinghua Wang, Yang Zhao, et al. Codev-r1: Reasoning-enhanced verilog generation. arXiv
preprint arXiv:2505.24183, 2025.

11

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A THE SYSTEM LEVEL RESULT OF REALBENCH

Figure 6 presents the design hierarchy of RealBench and the corresponding performance of Lo-
calV. Specifically, it details the verification outcomes for (a) an SD card controller, (b) an AES
encoder/decoder core, and (c) the Hummingbirdv2 E203 CPU Core. A ”Pass” denotes successful
module generation by LocalV, whereas a ”Fail” indicates an unsuccessful attempt. The hierarchical
tree structure within the figure visually represents the intricate task interdependencies in RealBench,
underscoring its inherent complexity.

Figure 6: The system level result of RealBench.

B INTERMEDIATE RESULTS OF LOCALV

To better illustrate LocalV’s workflow, this section delves into the detailed intermediate results for
the e203 exu problem in REALBENCH. We’ll display the outputs generated by LocalV agents,
including document fragments, pseudocode, plans, code fragments, and debug actions, providing a
comprehensive understanding of the process.

Document Fragments
”section 0”: ”The ‘e203 exu‘ module represents the execution unit (EXU) of a processor core, re-
sponsible for executing instructions received from the instruction fetch unit (IFU) and handling excep-
tions, pipeline flushes, and write-back operations. This module integrates submodules for decoding,
dispatching, ALU operations, commit handling, and more, ensuring proper execution of instructions
and system state management.”,
”section 1”: ”| Direction | Port Name | Width | Description |
———	—————-	—————-	————————————————————
output	commit mret	1	Indicates that an MRET instruction has been committed.
output	commit trap	1	Indicates that a trap (e.g., exception) has been committed.
output	exu active	1	Indicates whether the execution unit is currently active.
output	excp active	1	Indicates whether an exception is currently active.
output	core wfi	1	Indicates that the core is in a waiting-for-interrupt (WFI) state.
output	tm stop	1	Indicates that the timer should stop.
output	itcm nohold	1	Indicates no hold on the instruction TCM.
output	core cgstop	1	Core clock gating stop signal.
output	tcm cgstop	1	TCM clock gating stop signal.
input	core mhartid	E203 HART ID W	Hardware thread ID of the core.
input	dbg irq r	1	Debug interrupt request signal.
......”,
......

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Pseudocode
// === SUBTASK 1: Module Header and IO Port Definitions ===
module e203 exu (
// <basic interface signals>
// <debug control interface signals>
// <IFU IR stage interface signals>
// <flush interface signals>
// <LSU write-back interface signals>
// <AGU ICB interface signals>
// <optional CSR NICE interface signals>
// <optional NICE interface signals>
);
// === SUBTASK 2: Internal Signal Declarations ===
// <register file interface signals>
// <decode stage signals>
// <dispatch stage signals>
// <OITF signals>
// <ALU signals>
// <commit stage signals>
// <CSR signals>
// <long-pipeline write-back signals>
// <write-back signals>
// === SUBTASK 3: Submodule Instantiations ===
// Register File
e203 exu regfile u e203 exu regfile (
// <register file connections>
);
// Decode
e203 exu decode u e203 exu decode (
// <decode connections>
);
// Dispatch
e203 exu disp u e203 exu disp (
// <dispatch connections>
);
// OITF
e203 exu oitf u e203 exu oitf (
// <OITF connections>
);
// ALU
e203 exu alu u e203 exu alu (
// <ALU connections>
);
// Commit
e203 exu commit u e203 exu commit (
// <commit connections>
);
// CSR
e203 exu csr u e203 exu csr (
// <CSR connections>
);
// Long-pipeline Write-back
e203 exu longpwbck u e203 exu longpwbck (
// <long-pipeline write-back connections>
);
// Write-back
e203 exu wbck u e203 exu wbck (
// <write-back connections>
);
// === SUBTASK 4: Conditional Logic and Signal Assignments ===
// <exu active signal logic>
// <dependency information logic>
// <optional NICE interface logic>
// <optional CSR NICE interface logic>
endmodule

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Plan
”subproblems”: [
{ ”id”: ”module header and io”, ”description”: ”**Pseudocode Block**: This subtask implements the
[SUBTASK 1: Module Header and IO Port Definitions] block in the provided pseudocode. **Target
Implementation**: Define the complete module header with all interface signals including basic inter-
face, debug control interface, IFU IR stage interface, flush interface, LSU write-back interface, AGU
ICB interface, and optional CSR NICE and NICE interfaces according to the specifications.”, ”re-
quired section indexes”: [”section 0”, ”section 1”, ”section 2”, ”section 3”, ”section 4”, ”section 5”,
”section 6”, ”section 7”, ”section 8”] },
{ ”id”: ”internal signals”, ”description”: ”**Pseudocode Block**: This subtask implements the
[SUBTASK 2: Internal Signal Declarations] block in the provided pseudocode. **Target Imple-
mentation**: Define all internal signals needed for connecting the submodules, including regis-
ter file interface signals, decode stage signals, dispatch stage signals, OITF signals, ALU signals,
commit stage signals, CSR signals, long-pipeline write-back signals, and write-back signals.”, ”re-
quired section indexes”: [”section 9”, ”section 10”, ”section 11”, ”section 12”, ”section 13”, ”sec-
tion 14”, ”section 15”, ”section 16”, ”section 17”] },
......]

Code Fragment
// === SUBTASK 4: Conditional Logic and Signal Assignments ===
// exu active signal logic
// Active when OITF is not empty, valid instruction entering, or exception active
assign exu active = (∼ oitf empty) | i valid | excp active;
// dependency information logic for IFU
// dec2ifu rden: Indicates whether current instruction writes to an integer register
assign dec2ifu rden = dec rdwen & (∼dec rdwen fp);
// dec2ifu rs1en: Indicates whether current instruction reads rs1 integer register
assign dec2ifu rs1en = dec rs1en & (∼dec rs1en fp);
// dec2ifu rdidx: Destination register index
assign dec2ifu rdidx = dec rdidx;
// rf2ifu rs1: Value of rs1 register
assign rf2ifu rs1 = read src1 dat;
‘ifdef E203 HAS NICE
// optional NICE interface logic
assign nice cmt off ilgl o = nice cmt off ilgl i;
assign nice xs off = nice xs off i;
‘endif
‘ifdef E203 HAS CSR NICE
// optional CSR NICE interface logic
assign csr nice csr valid = csr nice csr valid i;
assign csr nice csr ready = csr nice csr ready i;
assign csr nice csr addr = csr nice csr addr i;
assign csr nice csr wr = csr nice csr wr i;
assign csr nice csr wdata = csr nice csr wdata i;
assign csr nice csr rdata = csr nice csr rdata i;
‘endif

Debug Action

”fix operations”: [{ ”operation”: ”delete block”, ”start line”: 838, ”end line”: 843 }, { ”oper-
ation”: ”add block”, ”line”: 838, ”content”: [” // Flush interface logic - handle different flush
conditions”, ” // Flush can be triggered by exceptions, interrupts, or control flow instructions”, ”
assign pipe flush req = commit trap | commit mret;”, ” ”, ” // For normal exceptions and inter-
rupts, use the trap vector”, ” // For returns from exceptions (mret), use the saved EPC”, ” assign
pipe flush add op1 = commit mret ? csr epc r : csr mtvec r;”, ” assign pipe flush add op2 = 32’b0;”,
”‘ifdef E203 TIMING BOOST”, ” assign pipe flush pc = commit mret ? csr epc r : csr mtvec r;”,
”‘endif”] }, { ”operation”: ”delete block”, ”start line”: 817, ”end line”: 819 }, { ”operation”:
”add block”, ”line”: 817, ”content”: [” // exu active signal logic”, ” // Active when OITF is not
empty, valid instruction entering, or exception active”, ” // Also active during flush operations”, ” as-
sign exu active = (∼oitf empty) | i valid | excp active | pipe flush req;”] }],

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C LLM USAGE

Large language models (LLMs) were utilized to assist in the writing and polishing of this manuscript.
Specifically, LLMs were employed to help refine language, improve readability, and enhance clarity
across various sections of the paper. This included tasks such as rephrasing sentences, checking
grammar, and improving the overall coherence and flow of the text.

15

	Introduction
	Related Work
	Methodology
	Problem Formulation
	Information Locality
	LocalV Overview
	Preprocessing
	Planning and Task Decomposition
	RTL Generation
	Code Fragments Merging
	Locality-aware Debugging

	Experiments
	Settings
	Main Results
	Ablation Study

	Conclusion
	The system level result of RealBench
	Intermediate Results of LocalV
	LLM Usage

