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ABSTRACT

We address the problem of offline learning a policy that avoids undesirable demon-
strations. Unlike conventional offline imitation learning approaches that aim to
imitate expert or near-optimal demonstrations, our setting involves avoiding un-
desirable behavior (specified using undesirable demonstrations). To tackle this
problem, unlike standard imitation learning where the aim is to minimize the dis-
tance between learning policy and expert demonstrations, we formulate the learning
task as maximizing a statistical distance, in the space of state-action stationary
distributions, between the learning policy and the undesirable policy. This sig-
nificantly different approach results in a novel training objective that necessitates
a new algorithm to address it. Our algorithm, UNIQ, tackles these challenges
by building on the inverse Q-learning framework, framing the learning problem
as a cooperative (non-adversarial) task. We then demonstrate how to efficiently
leverage unlabeled data for practical training. Our method is evaluated on stan-
dard benchmark environments, where it consistently outperforms state-of-the-art
baselines.

1 INTRODUCTION

Reinforcement learning (RL) is a powerful framework for learning to maximize expected returns
and has achieved remarkable success across various domains. However, applying reinforcement
learning to real-world problems is challenging due to difficulties in designing reward functions and
the requirement for extensive online interactions with the environment. While some approaches have
addressed these challenges, they often rely on costly datasets, requiring either accurate labeling or
clean, consistent data, which is often impractical. Imitation learning (Abbeel & Ng, 2004; Ziebart
et al., 2008; Kelly et al., 2019) offers a more feasible alternative, enabling agents to learn directly
from expert demonstrations without the need for explicit reward signals. It has proven effective in
several tasks, even with limited expert data, and is particularly useful in capturing human preferences.

Most existing imitation learning approaches prioritize maximizing task performance (i.e., expected
return) by closely mimicking expert demonstrations (Ho & Ermon, 2016; Fu et al., 2018; Kostrikov
et al., 2019; Garg et al., 2021). However, in practice, expert or near-expert demonstrations may
be unavailable or insufficient. In many scenarios, instead of high-quality examples, there may be
collections of undesirable (or suboptimal) demonstrations that should be avoided. For example,
in a large dataset of user conversations used to train a chatbot, the system must learn to avoid
inappropriate or sensitive content that is present in the data (Duan et al., 2024). Similarly, in the
development of self-driving cars, while companies may collect user driving data to train their models,
the system must ensure it does not replicate faulty behavior, such as traffic violations or unsafe driving
practices (Bansal et al., 2018). In the field of treatment optimization, data may include actions that led
to bad patient outcomes and the system must learn to avoid such behaviors. In these cases, avoiding
undesirable behaviors is essential to training a safe and effective model. These types of undesirable
demonstrations are common in real-world applications and are crucial for shaping the desired policy.

Although this is an important and interesting problem setting, there has been limited research
addressing it effectively. Here, we formulate this challenge as an Offline Reverse Imitation Learning
problem: given a dataset containing undesired demonstrations we wish to avoid, alongside a much
larger unlabelled dataset consisting of both desired and undesired demonstrations, the goal is to learn
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a desired policy. The key question is whether we can leverage the undesired demonstrations to learn
a policy that avoids undesirable behaviors.

UNIQ

Offline Imitation learning
(DemoDICE, SMODICE, SPRINQL)

Labeled DatasetLarge 

Unlabeled Dataset

SafeDICE

Where

Figure 1: A general overview of offline imitation learning approaches: while prior approaches mostly
aim at minimizing the distance between the learning policy and expert data (or a combination of
non-expert and unlabeled data), our goal is to maximize the distance between the learning policy and
an undesired policy. In UNIQ, the unlabeled dataset (ρMIX) is used in the empirical approximation of
the main objective function.

To the best of our knowledge, only SafeDICE (Jang et al., 2024) directly addresses this setting
by mixing the undesirable and unlabeled datasets, assigning negative weights to the former, and
then mimicking the mixed policy. This approach, however, may suffer from the fact that the mixed
policy is not necessarily a desirable one to follow, which is often the case in practice. There are
existing methods that, while not specifically designed to address this problem, can be adapted to
handle it. For instance, preference-based RL methods (Brown et al., 2019; Lee et al., 2021b; Hejna
& Sadigh, 2024) can be modified by creating pairwise comparisons between the undesirable and
unlabeled demonstrations, assuming the unlabeled demonstrations are more preferred. However, this
approach is indirect and may not be effective. Similar to SafeDICE, this approach will also suffer
as the unlabeled dataset may contain undesirable demonstrations that are not necessarily preferable
to those in the undesirable dataset. Another approach, Discriminator-Weighted Behavioral Cloning
(DWBC) (Xu et al., 2022), can be adapted to train a discriminator to distinguish between desirable
and undesirable demonstrations, allowing the agent to avoid learning from undesirable samples.
Our experiments later will show that our method significantly outperforms the above baselines on
benchmark problems.

In this paper, we develop a principled framework for learning from undesirable demonstrations,
based on the well-known MaxEnt RL framework (Ziebart et al., 2008) and inverse Q-learning (Garg
et al., 2021) — a state-of-the-art imitation learning method. In our work, unlike traditional imitation
learning approaches where the main goal is to minimize the distance between the learning policy and
expert (or near-optimal) demonstrations, we instead aim to maximize a statistical distance between
the learning policy and the undesirable policy (represented by undesirable demonstrations) in the
state-action stationary distribution space. To address this novel learning objective, we adopt the
inverse Q-learning framework. In our context, since this objective requires optimization in the
opposite direction as compared to the standard IQ-learn method (Garg et al., 2021), it demands
significantly novel investigations. Specifically, our contributions can be summarized as follows:

• We demonstrate that maximizing the statistical distance between the learning policy and the
undesirable policy can be formulated as a cooperative training task, in contrast to previous
imitation learning approaches where the objective is adversarial Ho & Ermon (2016); Fu
et al. (2018); Kostrikov et al. (2019). This new cooperative training objective poses new
challenges that existing algorithms cannot readily solve. To tackle this, we show that certain
beneficial characteristics of the standard IQ-learn algorithm can be brought over in our
context – the training problem can be equivalently reformulated as a minimization problem
over the Q-space, where the optimal policy is recovered as a soft-max of the Q-function.

• To efficiently solve the training problem in the Q-space using limited undesirable demon-
strations, we introduce an occupancy correction to recast the training objective so that
the expectation over the undesirable policy can be empirically approximated by unlabeled
trajectories. This approach offers three main advantages: (i) the unlabeled data contains
many more samples than the undesired data set, so using unlabeled demonstrations would
greatly improve the accuracy of the empirical approximations, (ii) the training outcome is
theoretically independent of the quality of the unknown random policy (represented by the
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unlabeled data), and (iii) it does not require an additional hyper-parameter since we do not
combine the two datasets (undesired and unlabeled) as in most prior approaches. Moreover,
we show that the occupancy correction can be estimated by solving a convex optimization
problem using samples from both undesirable and unlabeled data.

• For policy extraction, we employ a weighted behavior cloning (WBC) formulation. This
WBC approach theoretically ensures to recover the optimal policy derived from the Q-
learning process while providing more stable offline training outcomes, compared to directly
extracting the policy from the Q-function. While our algorithm, UNIQ, tackles a significantly
different and more challenging setting compared to the original IQ-learn, it only requires a
minimal adaptation from the IQ-learn algorithm, with two additional steps — computing
the occupancy correction and extracting the policy via WBC — which can be carried out
quickly and efficiently.

• We evaluate our method on the Safety-Gym and Mujoco-velocity benchmarks (Ray et al.,
2019; Ji et al., 2023), two of the most challenging environments in constrained reinforce-
ment learning, and demonstrate superior performance compared to several state-of-the-art
baselines.

2 RELATED WORK

Imitation learning. Imitation learning is a key technique for learning from demonstrations. Behav-
ioral Cloning (BC) maximizes the likelihood of expert demonstrations but often struggles due to
distributional shift (Ross et al., 2011). To improve, Generative Adversarial Imitation Learning (Ho &
Ermon, 2016; Fu et al., 2018) aligns the learner’s policy with the expert’s using GANs (Goodfellow
et al., 2014), while SQIL (Reddy et al., 2019) assigns simple rewards to expert and non-expert
demonstrations to learn a value function. PWIL (Dadashi et al., 2021) uses the Wasserstein dis-
tance (Vaserstein, 1969) to compute rewards. While these methods show promise, they rely on online
interaction, which can be impractical. For offline learning, AlgaeDICE (Nachum et al., 2019) and
ValueDICE (Kostrikov et al., 2020) use Stationary Distribution Correction Estimation (DICE) but face
stability issues. Inspired by ValueDICE, O-NAIL (Arenz & Neumann, 2020) introduced an offline
method without adversarial training. IQ-learn (Garg et al., 2021), a popular approach, supports both
online and offline learning and offers a state-of-the-art framework with several variants developed
based on it (Al-Hafez et al., 2023; Hoang et al., 2024b). Unlike the above mentioned works, our
focus in this paper is on offline reverse imitation learning that aims to avoid undesirable trajectories,
as opposed to imitating expert trajectories. As indicated earlier, this requires fundamentally different
methods due to the nature of the problem.

Imitation Learning from Sub-optimal Demonstrations. There are two main research directions in
this area. The first focuses on online and offline preference-based imitation learning methods. Online
approaches, such as T-REX (Brown et al., 2019), PrefPPO (Lee et al., 2021a), and PEBBLE (Lee
et al., 2021b), leverage ranked sub-optimal demonstrations to learn a preference-based reward
function using the Bradley-Terry model (Bradley & Terry, 1952). While these methods achieve
strong performance, they rely on interaction with the environment. In contrast, offline methods,
such as those proposed by (Kim et al., 2023; Kang et al., 2023; Hejna & Sadigh, 2024), rely heavily
on extensive pairwise trajectory comparisons. SPRINQL (Hoang et al., 2024b) addressed this
limitation by utilizing demonstrations categorized into different levels of expertise, resulting in
better performance with fewer comparison demands. While these methods concentrate on imitating
preferred (or expert) trajectories, our focus is on avoiding non-preferred (or undesired) trajectories.
This important distinction necessitates significant changes in methodology.

The second direction focuses the use of additional unlabeled datasets to enhance learning from
expert data. Beginning with DemoDICE (Kim et al., 2021), several DICE-based methods (Ma
et al., 2022; Kim et al., 2022; Yu et al., 2023) have been developed to utilize small sets of expert
demonstrations, supplemented by larger unlabeled datasets. In addition to these DICE-based methods,
DWBC (Xu et al., 2022) propose a simple and efficient method based on training a classifier using
positive-unlabeled learning (Kiryo et al., 2017). SafeDICE (Jang et al., 2024) presents a DICE-
based framework capable of learning from undesirable demonstrations. This method combines an
undesirable policy (represented by an undesirable dataset) with a random policy (represented by
a larger unlabeled dataset), assigns negative weights to the undesirable policy, and then applies a
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standard DICE-based approach (Kim et al., 2021; 2022) to mimic the combined policy. In our paper,
we advance this line of work by developing an new inverse Q-learning algorithm (Garg et al., 2021)
where the primary goal is to maximize the statistical distance between the learning policy and the
undesirable policy. Our method offers several advantages over prior approaches, including minimal
hyper-parameter tuning and reduced sensitivity to the quality of the unlabeled data.

3 BACKGROUND

Preliminaries. We consider a MDP defined by the following tupleM = ⟨S,A, r, P, γ, s0⟩, where
S denotes the set of states, s0 represents the initial state set, A is the set of actions, r : S ×A→ R
defines the reward function for each state-action pair, and P : S ×A→ S is the transition function,
i.e., P (s′|s, a) is the probability of reaching state s′ ∈ S when action a ∈ A is made at state s ∈ S,
and γ is the discount factor. In reinforcement learning (RL), the aim is to find a policy that maximizes
the expected long-term accumulated reward maxπ

{
E(s,a)∼ρπ [r(s, a)]

}
, where ρπ is the occupancy

measure of policy π: ρπ(s, a) = (1− γ)π(a|s)
∑∞
t=1 γ

tP (st = s|π).

MaxEnt IRL The goal of MaxEnt IRL is to derive a reward function r(s, a) based on a set of
expert demonstrations, DE . Let ρE denote the occupancy measure of the expert policy. The MaxEnt
IRL framework, as introduced by (Ziebart et al., 2008), aims to recover the expert’s reward function
by optimizing the following expression: maxrminπ

{
EρE [r(s, a)]− Eρπ [r(s, a)]−H(π)− ψ(r)

}
,

where H(π) = Eρπ [− log π(s, a)] is the discounted causal entropy of the policy π and ψ(r) :
RS×A → R is a convex reward regularizer. In essence, the objective is to identify a reward function
that maximizes the gap between the expected reward under the expert’s policy and the maximum
expected reward across all other policies (as determined by the inner minimization).

Inverse Q-learning (IQ-Learn) from expert demonstrations. Given a reward function r and a pol-
icy π, the soft Bellman equation is defined as Bπr [Q](s, a) = r(s, a)+γEs′ [V π(s′)], where V π(s) =
Ea∼π(a|s)[Q(s, a)− log π(a|s)]. The Bellman equation Bπr [Q] = Q is contractive and always yields
a unique Q solution (Garg et al., 2021). In IQ-Learn, they further define an inverse soft-Q Bellman
operator T π[Q] = Q(s, a) − γEs′ [V π(s′)]. (Garg et al., 2021) show that for any reward function
r(a, s), there is a unique Q∗ function such that Bπr [Q∗] = Q∗, and for a Q∗ function in the Q-space,
there is a unique reward function r such that r = T π[Q∗]. This result suggests that one can safely
transform the objective function of the MaxEnt IRL from r-space to the Q-space as follows:

max
Q

min
π

Φ(π,Q) = EρE [T π[Q](s, a))]− Eρπ [T π[Q](s, a)]−H(π)− ψ(T π[Q](s, a))) (1)

which has several advantages, namely, the objective function ϕ(π,Q) is concave in π and con-
vex in Q. Moreover, the inner problem minπ ϕ(π,Q) has a closed form solution as π∗(a|s) =
exp(Q(s, a))/

∑
a exp(Q(s, a′)). As a result, the maximin problem can be converted to a non-

adversarial problem in the Q-space as:

max
Q

EρE [T [Q](s, a))]− (1− γ)Es0 [V Q(s)]− ψ(T [Q](s, a))) (2)

where T [Q](s, a)) = Q(s, a) − γEs′∼P (s′|s,a)[V
Q(s′)] and V Q(s) = log

(∑
a exp(Q(s, a))

)
,

which is a softmax of the Q function. The reward function can then be recovered as rQ(s, a) =
T [Q](s, a). Thus, in 2, the objective can be interpreted as training a reward function (via a Q-function)
that maximizes the expected reward under the expert policy while minimizing the overall expected
reward.

4 UNIQ: INVERSE Q-LEARNING FROM UNDESIRED DEMONSTRATIONS

We now introduce UNIQ, our framework for inverting a Q function based on undesired demonstrations.
This approach can be seen as a reverse version of the standard Inverse Q-learning algorithm (Garg
et al., 2021), where the goal is not to imitate but rather to avoid undesired behaviors.
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4.1 INVERSE Q-LEARNING FROM UNDESIRED DEMONSTRATIONS

In our setting, we have a set of undesired demonstrations, denoted asDUN, along with a supplementary
set of unlabeled demonstrations, denoted as DMIX. The unlabeled dataset DMIX may contain a mix of
random, undesired, and expert demonstrations, and it will be used to support offline learning. Let
ρUN be the occupancy measure (or stationary distribution) of the undesired policy (represented by
the undesired dataset). Adapting the MaxEnt RL framework, we consider the following learning
objective:

min
π

min
r

{
L(π, r) = EρUN [r(s, a)]− Eρπ [r(s, a)]−H(π) + ψ(r)

}
(3)

The objective can be interpreted as finding a reward function that assigns low rewards to the undesired
demonstrations and high rewards to others, while also identifying a policy function that maximizes the
expected long-term reward. It is important to note that, in our context, where the objective contrasts
with the standard learning-from-demonstration scheme, the learning problem is no longer adversarial
as in prior imitation learning approaches (Ho & Ermon, 2016; Kostrikov et al., 2019). Instead, it can
be framed as a cooperative learning problem, where the objective is to jointly identify a policy and
reward function that minimize the objective function L(π, r).

To gain a deeper understanding of the objective function in Eq. 3, the following proposition demon-
strates that solving Eq. 3 is indeed equivalent to maximizing the statistical distance, parameterized
by ψ, between the undesired policy and the learning policy.
Proposition 4.1. For a non-restricted feasible set of the reward function:

min
r

min
π
{L(π, r)} = −max

π
{dψ(ρπ, ρUN)−H(π)} (4)

where dψ(ρπ, ρUN) = ψ∗(ρπ − ρUN), and ψ∗ is the convex conjugate of the convex function ψ, i.e.,
ψ∗(t) = supz{⟨t, z⟩ − ψ(z)}.

It can be observed that solving 3 directly encourages the learning policy to deviate as much as possible
from the undesired policy, which is derived from undesirable demonstrations. This approach contrasts
with that of SafeDICE (Jang et al., 2024), which minimizes the KL divergence between the learning
policy and the mixed policy, enabling the use of standard imitation learning methods. The primary
limitation of this approach is that, with the quality of the unlabeled dataset being unknown, imitating
the mixed policy may not lead to the desired learning outcome. In contrast, our approach does not
rely on such a combination. Instead, we focus on maximizing the statistical gap in 4, leveraging the
unlabeled dataset to support the practical training of our primary objective in 3.

Even though the minimization problem Eq. 3 can be directly solved using standard optimization
algorithms to recover a reward and policy function, prior research indicates that transforming Eq. 3
into the Q-space can improve efficiency. As discussed in Section 3, there is a one-to-one mapping
between any reward function r and a corresponding function Q in the Q-space. Therefore, the
minimization problem in Eq. 3 can equivalently be transformed as:

min
Q

min
π

{
L(π,Q) = EρUN [T π[Q](s, a))]− Eρπ [T π[Q](s, a)]−H(π) + ψ (T π[Q](s, a))

}
(5)

where T π[Q](s, a)) = Q(s, a)− γEs′ [V π(s′)] and V π(s) = Ea∼π(a|s)[Q(s, a)− log π(a|s)]
Compared to the primary objective of the standard IQ-learn algorithm in Eq. 1, our objective function
in Eq. 5 is no longer adversarial with respect to Q and π. As a result, there are questions regarding
whether the key advantages of the IQ-learn algorithm—such as the closed-form for the optimization
over π and the concavity of the objective in the Q-space— would still hold with the new objective. To
address this, we introduce the following proposition, which states that if the regularizer function ψ(·)
is non-decreasing, then the objective function L(π,Q) is convex in π. Furthermore, the minimization
problem minπ L(π,Q) retains a closed-form solution, thereby simplifying the learning objective.
Proposition 4.2. The following statements hold:

(i) The function L(π,Q) is convex in π and the problem minπ L(π,Q) has a unique optimal
solution at πQ(s, a) = exp(Q(s,a))∑

a′ exp(Q(s,a′)) .

(ii) The learning objective function can be simplified as:

min
Q

min
π
{L(π,Q)} = min

Q

{
F(Q) = EρUN [rQ(s, a)]− (1− γ)Es0 [V Q(s0)] + ψ(rQ)

}
5
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where V Q(s) = log (
∑
a exp(Q(s, a))) and rQ(s, a) = Q(s, a)− γEs′∼P (·|s,a)V

Q(s′).

Proposition 4.2 shows that, similar to IQ-learn, our training objective can be framed as an optimization
problem over the Q-space, where the optimal policy can be computed as the soft-max of the Q-
function. However, there is a key difference lying in the nature of the objective: while in IQ-learn, the
training objective is convex within the Q-space, this is not the case in our context, where the objective
F(Q) is neither convex nor concave in Q.

We now discuss the learning within the Q-space:

min
Q

{
F(Q) = EρUN [rQ(s, a)]− (1− γ)Es0 [V Q(s0)] + ψ(rQ)

}
(6)

The learning objective can be interpreted as finding a reward function (expressed as a function of
Q) that assigns the lowest possible rewards to the undesired demonstrations while maximizing the
overall expected rewards, Es0 [V Q(S0)].

4.2 LEARNING WITH UNLABELED DATA

To solve Eq. 6, the expectation EρUN [rQ(s, a)] can be empirically approximated using samples from
the set of undesired demonstrations DUN. However, in our setting, this set is limited. Additionally,
since the learning process must be conducted offline, without interaction with the environment,
directly using the limited samples in DUN is not effective. Therefore, we leverage the larger set
of unlabeled data DMIX to enhance the offline training. To achieve this, we first let ρMIX be the
occupancy measure (or stationary distribution) of the policy represented by unlabeled dataset. We
rewrite the expectation over ρUN as:

EρUN [rQ(s, a)] =
∑
s,a

ρUN(s, a)rQ(s, a) =
∑
s,a

ρMIX(s, a)τ(s, a)rQ(s, a) = EρMIX [τ(s, a)rQ(s, a)]

Where τ(s, a) = ρUN(s,a)
ρMIX(s,a) represents the occupancy ratio between ρUN and ρMIX, we then rewrite the

learning objective as follows:

min
Q

{
F(Q) = EρMIX [τ(s, a)rQ(s, a)]− (1− γ)Es0 [V Q(s0)] + ψ(rQ)

}
In this approach, the expectation EρMIX [τ(s, a)rQ(s, a)] can be empirically approximated using the
unlabeled samples from DMIX, where τ(s, a) acts as an occupancy correction. This correction allows
us to leverage samples from the unlabeled dataset to estimate the expectation over the undesirable
policy. A key challenge here is that the occupancy ratio τ(s, a) is unknown. To address this, we
propose estimating the ratio by solving the following implicit maximization problem:

max
µ1,µ2:RS×A→[0,1]

g(µ1, µ2) = EρMIX [log(µ2(s, a)− µ1(s, a)µ2(s, a))]

+ EρUN [log(µ1(s, a)− µ1(s, a)µ2(s, a))] (7)

The above formulation is an extension of the discriminator formulation widely used in prior work
(Ho & Ermon, 2016; Kelly et al., 2019). The following proposition theoretically shows that solving 7
will exactly return the occupancy ratio τ .
Proposition 4.3. g(µ1, µ2) is strictly concave in µ1, µ2. Furthermore, let µ∗

1 and µ∗
2 be the unique

optimal solutions to 7, then we have: τ(s, a) = µ∗
1(s,a)
µ∗
2(s,a)

.

So, our learning process can be broken down into two steps. In the first step, we learn the occupancy
ratios by solving the maximization problems presented in 7. Following this, we optimize the following
problem to learn a Q function.

min
Q

{
F(Q) = EρMIX

[
µ∗
1(s, a)

µ∗
2(s, a)

rQ(s, a)

]
− (1− γ)Es0 [V Q(s0)] + ψ(rQ)

}
(8)

It is important to note that we utilize the stationary distribution ρMIX (represented by trajectories in
the unlabeled dataset) in the objective function in 8. However, thanks to the occupancy correction
µ∗
1(s,a)
µ∗
2(s,a)

, the outcome of the training is independent of the quality of the unlabeled policy ρMIX. This
distinguishes our approach from SafeDICE (Jang et al., 2024), where the performance heavily relies
on the quality of the unlabeled data.

6
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4.3 POLICY EXTRACTION

The Q function obtained from solving the minimization problem in 8 can be used to recover a soft
policy πQ(s, a) = exp(Q(s, a))/

∑
a′ exp(Q(s, a)), as stated in Proposition 4.2 above. However,

this approach may suffer from overestimation, a common issue in offline Q-learning caused by
out-of-distribution actions and function approximation errors (Ross et al., 2011). To address this
problem and improve policy extraction, we instead propose using weighted behavior cloning (WBC)
with the objective: maxπ

{∑
s,a exp(A(s, a)) log π(a|s)

}
, where A(s, a) is the advantage function

defined as A(s, a) = Q(s, a)−V (s). It can be shown that solving the WBC problem yields the exact
desired soft policy, i.e., πQ(a|s) = exp(Q(s,a))∑

a′ exp(Q(s,a)) , ∀a, s, is optimal for the WBC.

5 PRACTICAL IMPLEMENTATION

Our algorithm consists of two main steps. The first step involves solving 7 to estimate the occupancy
ratio τ(s, a) = ρUN(s,a)

ρMIX(s,a) . In the second step, we use these ratios to train the Q-function and extract a
policy by solving a weighted behavior cloning problem.

In the first step, we construct two networks, µϕ1(s, a) and µϕ2(s, a) ∈ [0, 1], where ϕ1 and ϕ2 are
learnable parameters. We then use samples from DUN and DMIX to estimate the expectations, leading
to the following practical objective:

max
ϕ1,ϕ2

g̃(ϕ1, ϕ2) =
∑

(s,a)∼DMIX

[log(µϕ2
(s, a)− µϕ1

(s, a)µϕ2
(s, a))]

+
∑

(s,a)∼DUN

[log(µϕ1
(s, a)− µϕ1

(s, a)µϕ2
(s, a))] (9)

In the second step, after obtaining ϕ∗1 and ϕ∗2 from the first step, we utilize the following empirical
training objective:

min
w

{
F̃(w) =

∑
(s,a,s′)∼DMIX

[
µϕ∗

1
(s, a)

µϕ∗
2
(s, a)

rQw(s, a, s′) + ψ(rQw(s, a, s′))

]
− (1− γ)

∑
s0∼DMIX

V Qw(s)
}

(10)

where w are the learnable parameters for the Q-network, and the reward function is computed as
rQw(s, a, s′) = Qw(s, a)− γV Qw(s′), with V Qw(s) = log (

∑
a∼DMIX exp(Qw(s, a))). Following

(Garg et al., 2021), we choose the reward regularizer function ψ(t) = t− t2, i.e., the χ2-divergence.
To extract a policy, we simply solve the weighted BC problem: maxθ

∑
(s,a)∈DMIX exp(Qw(s, a)−

V Qw(s)) log πθ(a|s), where θ are learnable parameters of the policy network. Our main algorithm,
UNIQ, is summarized as follows, noting that the training of the Q-function Qw and the updating of
the policy network πθ are performed simultaneously to enhance efficiency.

Algorithm 1 UNIQ: UNdesired Demonstrations driven Inverse Q Learning

Require: DUN ,DMIX , µϕ1, µϕ2, Qω, πθ, Nµ, N
1: # Estimating the occupancy ratios by solving 9
2: for certain number of iterations: i = 1...Nµ do
3: (ϕ1, ϕ2)← (ϕ1, ϕ2) +∇ϕ1,ϕ2

g̃(µϕ1
, µϕ2

)
4: end for
5: # train UNIQ
6: for certain number of iterations i = 1...N do
7: # Update Q function
8: ω ← ω −∇wF̃(w)
9: # Update policy via Weighted-BC

10: θ ← θ +∇θ
[∑

(s,a∼DMIX) exp(Qw(s, a)− V Qw(s)) log πθ(a|s)
]

11: end for

7
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6 EXPERIMENTS

We assess our algorithm in the context of safe RL (or constrained RL) problems, where each state-
action pair is associated with a cost value, and the objective is to learn a policy that satisfies certain
cost constraints. We define an undesirable trajectory as one where the accumulated cost exceeds a
specified threshold. This setting is similar to the one used in SafeDICE (Jang et al., 2024), one of the
SOTA algorithms in the context of learning from undesirable demonstrations.

6.1 EXPERIMENT SETUP

Baselines. We compare our algorithm against several baseline methods. First, we benchmark UNIQ
against standard imitation learning algorithms that utilize the entire unlabelled demonstration dataset,
specifically BC and IQ-learn, which we refer to as BC-mix and IQ-mix, respectively. Additionally,
we benchmark our approach against the SOTA preference-based reinforcement learning algorithm,
IPL (Hejna & Sadigh, 2024). Lastly, we include comparisons with DWBC (Xu et al., 2022) and
SafeDICE (Jang et al., 2024), both of which are recognized for their ability to learn from undesired
demonstrations. More details are provided in the Appendix B.3.

Environments and Data Generation. We evaluate our method in four Safety-Gym and two Mujoco
environments (Ray et al., 2019; Ji et al., 2023). Following the setup from (Jang et al., 2024),
the undesired policy1 is trained using unconstrained PPO, while the safe policy is trained with
SIM (Hoang et al., 2024a). The unlabeled dataset is constructed by combining trajectories from both
safe and undesired policies in a specified ratio. The undesired data consists of trajectories that violate
the constraint. Detailed information about the policies and datasets is provided in the Appendix B.2.

Metrics. The main goal is to train a policy that is safe in the context of constrained RL. Therefore,
an ideal outcome is achieving the lowest possible cost without significantly sacrificing return.
We report the accumulated return and cost for the trained policies, computed based on the last 20
evaluations, with all results summarized across at least 5 training seeds.

Experimental Concerns. Throughout the experiments, we aim to address several key questions:
(Q1) How does UNIQ perform compared to other baseline methods? (Q2) How does the presence of
undesired demonstrations impact the performance of UNIQ and other baselines? (Q3) What happens
if the policy is directly extracted from the Q-function, rather than by solving the WBC? (Q4) How
does the policy learned by UNIQ compare to a policy trained purely from expert demonstrations?
(Q5) How do UNIQ and other baselines perform when being trained without access to the unlabeled
dataset? While (Q1) and (Q2) are addressed in the main paper, the experiments for the remaining
questions are provided in the appendix. The appendix also includes proofs of the theoretical claims
made in the main paper, additional details about our experimental setup, and further results such as
CVaR cost comparisons, the complete set of experiments for the MuJoCo tasks, comparisons using
datasets from the SafeDICE paper, and detailed learning curves.

6.2 MAIN COMPARISON ON SAFETY-GYM TASKS

In this section, we aim to evaluate the performance of our method in comparison with the mentioned
baselines. We test across three difficulty levels for each environment by varying the amount of safe
data (100, 400, and 1600 trajectories) while keeping the number of undesired data fixed at 1600
trajectories. These settings are referred to as env-1, 2, 3, respectively. This allows us to examine
how the proportion of the desired and undesired demonstrations in the unlabeled dataset impacts the
performance of each baseline. The experiment results are shown in Tab. 1.

Overall, as the difficulty increases, both the cost and return of all methods rise. This is primarily
because the undesired data typically yields a much higher return than the safe data (except in the
Point-Goal task, where the returns of safe and undesired data are close in return). BC-mix and IQ-mix
struggle to distinguish between safe and undesired behaviors, leading to poor cost performance. IPL
also fails to capture the correct preference, as most of its pairwise comparisons involve undesired-
undesired pairs, making it unable to infer the correct preference. DWBC and SafeDICE manage
to achieve relatively high returns but fail to match the cost performance of the Safe Policy. Our

1In the context of safe RL, a desired policy is also referred to as a safe policy, while an undesired policy is
termed an unsafe policy.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

BC-mix IQ-Mix IPL DWBC SafeDICE UNIQ

Point-Goal-1 Return 26.8±0.1 26.7±0.6 26.9±0.1 26.5±0.2 26.6±0.2 20.7±0.7
Cost 42.7±3.5 43.9±11.9 53.7±3.7 33.0±3.2 36.3±2.9 23.5±4.5

Point-Goal-2 Return 27.1±0.1 27.0±0.4 26.9±0.1 26.9±0.1 27.0±0.1 23.4±0.4
Cost 48.8±2.9 46.7±10.4 52.7±3.4 45.8±3.4 46.8±3.1 27.1±3.0

Point-Goal-3 Return 27.1±0.1 43.8±29.1 26.9±0.1 27.1±0.1 27.1±0.1 26.4±0.2
Cost 51.0±3.4 55.6±27.6 53.6±3.7 50.2±3.6 50.7±3.6 40.6±3.1

Car-Goal-1 Return 32.0±0.6 31.7±1.6 33.6±0.5 28.1±1.2 29.8±0.8 21.0±0.8
Cost 43.4±4.1 42.0±12.5 51.1±3.9 30.5±3.3 36.4±2.9 15.4±2.1

Car-Goal-2 Return 34.1±0.5 34.2±1.5 34.7±0.3 32.8±0.7 33.5±0.7 27.9±0.8
Cost 52.0±4.2 49.7±13.2 54.4±3.7 47.4±3.8 50.5±4.0 31.0±2.8

Car-Goal-3 Return 35.2±0.3 35.3±0.7 35.2±0.2 35.0±0.3 35.1±0.3 34.3±0.4
Cost 56.2±4.8 55.2±14.3 56.4±4.1 55.3±4.0 55.5±3.8 53.1±4.1

Point-Button-1 Return 25.9±1.0 26.4±2.2 27.0±0.8 22.0±0.9 23.0±0.9 8.8±0.7
Cost 92.9±8.1 92.8±23.5 114.5±6.4 61.5±6.6 66.5±6.5 12.2±2.7

Point-Button-2 Return 29.2±0.7 29.8±2.2 28.7±0.8 28.3±0.8 28.8±0.8 10.3±0.9
Cost 118.7±7.3 123.0±21.4 122.1±7.3 113.2±7.5 114.6±8.7 19.1±3.0

Point-Button-3 Return 30.6±0.7 30.8±1.9 29.6±0.6 30.4±0.6 30.3±0.7 14.9±1.1
Cost 130.9±9.0 129.2±23.7 129.9±7.3 131.5±8.8 128.6±8.7 55.5±7.6

Car-Button-1 Return 14.1±1.2 14.3±3.6 17.6±1.5 10.1±1.1 11.8±1.3 2.3±0.4
Cost 132.3±12.7 126.6±38.3 165.7±14.4 101.0±14.3 116.2±13.1 35.9±5.4

Car-Button-2 Return 21.0±1.3 20.6±3.6 22.9±1.1 18.7±1.4 21.4±1.5 5.1±0.7
Cost 191.4±13.9 189.4±45.8 209.8±12.2 178.0±14.3 198.1±15.4 65.8±10.1

Car-Button-3 Return 24.8±0.9 24.3±3.4 25.2±0.9 24.1±1.1 24.7±1.0 14.0±1.5
Cost 223.7±10.8 229.5±41.6 230.4±11.2 220.9±12.8 232.5±10.9 144.0±15.2

Table 1: Comparison results for Safety-Gym tasks.

method consistently achieves the lowest cost across all experiments. However, in the Point-Button
and Car-Button tasks, the return for our method is lower, as it avoids undesired actions, leaving no
high-return options to pursue. The detailed learning curves are shown in Appendix D.1.

6.3 MUJOCO VELOCITY BENCHMARKS
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Figure 2: Learning curves of UNIQ, DWBC and SafeDICE in Mujoco-velocity tasks.

We test our method with two MuJoCo velocity tasks: Cheetah and Ant. We keep the same size
of the unlabelled dataset as difficulty level 2 of the Safety-Gym experiments (Section 6.2), which
is composed of 400 trajectories from the desired data and 1600 trajectories from the undesired
data. Moreover, due to the nature of the environment, we only require a smaller number of labeled
undesired datasets, which is 5. Detailed results are shown in Figure 2, and a more detailed comparison
of the MuJoCo domain is provided in Appendix C.8. In general, UNIQ outperforms other baselines
in both tasks with a significantly lower cost.
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6.4 ABLATION STUDY - PERFORMANCE WITH DIFFERENT SIZES OF UNDESIRED DATASET

In this experiment, we evaluate our method using varying sizes of the undesired dataset (25, 50,
100, 200, 300, and 500 trajectories), while keeping the unlabelled dataset fixed (400 desired and
1600 undesired trajectories) across two Safety-Gym environments. The results, reported in Figure 3,
include the return, cost, and CVaR 10% cost for each undesired dataset size, where CVaR 10%
cost is the mean cost of the worst 10% runs in the evaluation. The training curves are shown in
the Appendix D.2. Here, BC-safe refers to Behavioral Cloning with only the desired (or expert)
demonstrations, which serves as the highest safety performance benchmark. In general, increasing
the size of the undesired dataset tends to reduce the cost for all approaches, and UNIQ shows the
greatest effect in utilizing the undesired data. Interestingly, UNIQ is able to achieve a lower cost than
BC-safe, which can be explained by the fact that the main goal of UNIQ is to avoid the undesired
(i.e., high-cost) demonstrations, while BC-safe lacks this avoidance capability.
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Figure 3: Comparison results for different sizes of the undesirable dataset.

7 CONCLUSION, FUTURE WORK, AND BROADER IMPACTS

Conclusion. We have developed UNIQ, a principled framework based on inverse Q-learning to
facilitate learning from undesirable demonstrations. Our algorithm can be seen as a reverse version
of standard imitation learning frameworks, where the goal is to maximize the statistical distance
between the learning policy and the undesirable policy. UNIQ requires minimal hyper-parameter
tuning, as it does not introduce any additional hyperparameters beyond those typically used in inverse
Q-learning algorithms. Moreover, it demonstrates superior performance in producing safe policies in
several safe reinforcement learning experiments, outperforming other baseline methods.
Limitations and Future work. There are several aspects that have not been addressed in this paper,
as they are too significant to be fully explored here. For instance, we generally assume the presence
of only one set of undesirable demonstrations, whereas in practice, multiple datasets of varying
quality could be leveraged to enhance the training. Additionally, each undesirable trajectory may
not be undesirable in its entirety, as it could contain some good actions. Extracting the good parts
from undesirable demonstrations could improve sample efficiency but introduces new challenges that
warrant further investigation. Another open question is how to extend the framework to multi-agent
settings, which would be both relevant and interesting to explore in future research.
Broader Impact. Beyond the standard impacts of imitation learning, our work is particularly useful
in scenarios where undesirable demonstrations are richer, clearer, or more reliable than desirable
ones. This is especially valuable in critical applications like healthcare and autonomous driving,
where avoiding harmful actions is essential. However, our approach also carries potential negative
impacts. If not carefully designed, the system might unintentionally reinforce undesirable behaviors
or learn harmful actions from poorly curated data. Misinterpreting bad demonstrations could result
in unintended consequences, particularly in safety-critical contexts. Additionally, there is a risk
that malicious actors could misuse this framework to deliberately train AI systems with harmful or
unethical behaviors.
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ETHICAL STATEMENT

Our work on the UNIQ framework addresses learning from undesirable demonstrations. This research
holds potential for impactful real-world applications, including areas such as autonomous systems,
healthcare, and robotics, where avoiding harmful behaviors is crucial. However, it is important to
acknowledge the ethical implications and risks associated with our work.

While the UNIQ framework aims to learn safe policies by avoiding undesirable behaviors, there is a
potential risk that the algorithm could be misused in ways that reinforce unintended or harmful actions
if trained on poorly curated data. For example, in scenarios where undesirable demonstrations are not
clearly defined, the model could inadvertently reinforce biased or harmful behaviors. Furthermore,
there is the risk of deploying the framework in environments where safety-critical decisions are made
without sufficient validation or human oversight, leading to unintended consequences.

To mitigate these risks, we emphasize the importance of using well-curated datasets that accurately
represent undesirable behaviors and conducting thorough testing in controlled environments before
applying the system to real-world scenarios. Moreover, we encourage transparency and collaboration
with domain experts to ensure the framework is used responsibly, particularly in safety-critical
applications such as healthcare and autonomous driving. Finally, we advocate for the inclusion of
human oversight in the deployment of policies learned using the UNIQ framework to ensure ethical
and safe outcomes.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have submitted the source code for the UNIQ framework
along with the datasets used to generate the experimental results reported in this paper (this source
code and datasets will be made publicly available if the paper gets accepted). We also provide
comprehensive details of our algorithm in the appendix, including implementation details and key
steps required to reproduce the experimental outcomes. Additionally, we have included the hyper-
parameter configurations used in all experiments, ensuring that others can replicate the results under
the same conditions. We encourage the research community to build on our work and test the UNIQ
framework across different environments to validate and extend the findings presented in this paper.
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APPENDIX

The appendix contains the following details:

Missing Proofs: Refer to Appendix A for proofs omitted from the main paper.

Experimental Details: We provide information on:

• Baseline implementation (Appendix B.3)

• Hyper-parameter selection for each task domain (Appendix B.4)

• Task descriptions (Appendix B.1)

• Generation of undesirable and unlabelled datasets (Appendix B.2)

Additional Experiments: We address the following remaining questions:

• (Q3) What happens if the policy is directly extracted from the Q-function, rather than by
solving the WBC? (Appendix C.2)

• (Q4) How does the policy learned by UNIQ compare to a policy trained purely from expert
demonstrations? (Appendix C.3)

• (Q5) How do UNIQ and other baselines perform when being trained without access to the
unlabeled dataset? (Appendix C.4)

Additionally, we present experiments demonstrating the performance of UNIQ and other baseline
methods on the dataset from the safeDICE paper (see Appendix C.9) and provide comparison results
using CVaR costs (see Appendix C.1).

Supplementary Learning Curves: We provide learning curves to for the results reported in:

• Table 1 (Appendix D.1)

• Figure 3 (Appendix D.2)
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A MISSING PROOFS

A.1 PROOF OF PROPOSITION 4.1

Proposition. For a non-restricted feasible set of the reward function:

min
r

min
π
{L(π, r)} = −max

π
{dψ(ρπ, ρUN)−H(π)}

where dψ(ρπ, ρUN) = ψ∗(ρπ − ρUN), and ψ∗ is the convex conjugate of the convex function ψ, i.e.,
ψ∗(t) = supz(tz − ψ(z)).

Proof. We write the objective function as

L(π, r) =
∑
s,a

r(s, a)
(
ρUN(s, a)− ρπ(s, a)

)
+ ψ(r)−H(π)

So we can write the minimization of L(π, r) over r as:

min
r
L(π, r) = H(π) + min

r

∑
s,a

r(s, a)
(
ρUN(s, a)− ρπ(s, a)

)
+ ψ(r)

= H(π)−max
r

{∑
s,a

{
r(s, a)

(
ρπ(s, a)− ρUN(s, a)

)}
− ψ(r)

}
Since the feasible set of the reward function r is unrestricted, we know that

max
r

{
⟨r, ρπ − ρUN⟩ − ψ(r)

}
= ψ∗(ρπ − ρUN)

which allows us to rewrite the training problem as:

min
r

min
π
{L(π, r)} = min

π

{
H(π)− ψ∗ (ρπ − ρUN)}

= −max
π

{
ψ∗(ρπ − ρUN)−H(π)

}
= −max

π
{dψ(ρπ, ρUN)−H(π)}

We obtain the desired equation and complete the proof.

A.2 PROOF OF PROPOSITION 4.2

Proposition. The following statements hold:

(i) The function L(π,Q) is convex in π and the problem minπ L(π,Q) has a unique optimal
solution at πQ(s, a) = exp(Q(s,a))∑

a′ exp(Q(s,a′)) .

(ii) The learning objective function can be simplified as:

min
Q

min
π
{L(π,Q)} = min

Q

{
F(Q) = EρUN [rQ(s, a)]− (1− γ)Es0 [V Q(s0)] + ψ(rQ)

}
where V Q(s) = log (

∑
a exp(Q(s, a))) and rQ(s, a) = Q(s, a)− γEs′∼P (·|s,a)V

Q(s′).

Proof. We first express the second and third terms of the objective function L(π,Q) in 5 as:

Eρπ [T π[Q](s, a)] +H(π) = Eρπ [Q(s, a)− γEs′ [V π(s′)]]− Eρπ [log π(s, a)]

= Eρπ [Q(s, a)− log π(s, a)− γEs′ [V π(s′)]] = Eρπ [V (s)− γEs′∼P (·|s,a)[V
π(s′)]]

= (1− γ)Es0∼P0 [V
π(s0)].

Thus, the objective function becomes:

L(π,Q) = EρUN [Q(s, a)−γEs′ [V π(s′)]]−(1−γ)Es0∼P0 [V
π(s0)]+

∑
s,a

ψ(Q(s, a)−γEs′ [V π(s′)]).
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We now observe that V π(s) = Ea∼π(a|s)[Q(s, a)−log π(a|s)] is concave in π. Therefore, both terms
EρUN [Q(s, a) − γEs′ [V π(s′)]] and −(1 − γ)Es0∼P0 [V

π(s0)] are convex in π. Additionally, since
ψ(t) is convex and non-increasing in t, and Q(s, a) − γEs′ [V π(s′)] is convex in π, each function
ψ(Q(s, a)− γEs′ [V π(s′)]) is convex in π. Thus, combining all terms, we conclude that L(π,Q) is
convex in π.

Furthermore, each term Q(s, a)− γEs′ [V π(s′)], −(1− γ)Es0∼P0
[V π(s0)], and ψ(Q(s, a)− γEs′)

strictly decreases in V π , implying that the minimization of L(π,Q) over π is achieved when V π(s)
is maximized for all s. Since V π(s) is strictly concave in π, maximizing V π(s) over π has a unique
optimal solution:

πQ(a|s) = exp(Q(s, a))∑
a exp(Q(s, a))

.

This validates part (i) of the theorem.

For part (ii), we observe that the problem maxπ V
π(s) has the optimal solution πQ as shown above,

and the optimal value is:

max
π

V π(s) = max
π

{∑
a

π(a|s)Q(s, a)− π(a|s) log π(a|s)

}

= log

(∑
a

exp(Q(s, a))

)
def
= V Q(s).

This directly leads to:

min
Q

min
π
{L(π,Q)} = min

Q

{
F(Q) = EρUN [rQ(s, a)]− (1− γ)Es0 [V Q(s0)] + ψ(rQ)

}
,

as required.

A.3 PROOF OF PROPOSITION 4.3

Proposition: g(µ1, µ2) is strictly concave in µ1, µ2. Furthermore, let µ∗
1 and µ∗

2 be the unique
optimal solutions to 7, then we have:

τ(s, a) =
µ∗
1(s, a)

µ∗
2(s, a)

.

Proof. We begin by expressing the objective function as follows:

g(µ1, µ2) = EρMIX [log(1− µ1(s, a))] + EρUN [log(µ1(s, a))] +

EρUN [log(1− µ2(s, a))] + EρMIX [log(µ2(s, a))] .

Each term, log(1− µ1(s, a)), log(µ1(s, a)), log(1− µ2(s, a)), and log(µ2(s, a)), is strictly concave
in µ1 and µ2. Therefore, the objective function g(µ1, µ2) is also strictly concave in µ1 and µ2. To
find the unique optimal solution to this problem, we compute the first-order derivatives of g(µ1, µ2)
with respect to µ1 and µ2 and set them to zero:

ρUN(s, a)

µ1(s, a)
− ρMIX(s, a)

1− µ1(s, a)
= 0,

ρMIX(s, a)

µ2(s, a)
− ρUN(s, a)

1− µ2(s, a)
= 0.

This leads to the following system of equations:

ρUN(s, a)(1− µ1(s, a)) = ρMIX(s, a)µ1(s, a),

ρMIX(s, a)(1− µ2(s, a)) = ρUN(s, a)µ2(s, a).
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Solving this system yields the unique solutions:

µ∗
1(s, a) =

ρUN(s, a)

ρUN(s, a) + ρMIX(s, a)
,

µ∗
2(s, a) =

ρMIX(s, a)

ρUN(s, a) + ρMIX(s, a)
.

We observe that both µ∗
1(s, a) and µ∗

2(s, a) lie in the interval (0, 1), confirming that they are the
unique solutions that maximize g(µ1, µ2). Moreover, we validate the equality:

µ∗
1(s, a)

µ∗
2(s, a)

=
ρUN(s, a)

ρMIX(s, a)
.

B EXPERIMENT SETTINGS

B.1 ENVIRONMENT DETAILS

B.1.1 SAFE-GYM

Safe-Gym is a collection of reinforcement learning environments designed with a focus on safety,
built on top of the OpenAI Gym framework. It introduces constraints that simulate safety-critical
scenarios commonly encountered in real-world applications. In Safe-Gym, agents are rewarded
for completing task-specific objectives but face penalties for violating safety constraints, such as
surpassing speed limits, colliding with obstacles, or entering restricted zones. These constraints
enable Safe-Gym to replicate environments where safety is paramount, including robotic navigation
in congested areas, autonomous vehicle control, and industrial automation. The environment features
two types of agents: Point (an easy agent) and Car (a more challenging agent), as well as two types
of tasks: Goal (easy) and Button (hard). Additionally, the environment dynamics change with each
new episode, introducing variability and increasing the complexity of the tasks. Illustrations of these
tasks are shown in Figure 4.

Point-Goal Car-Goal Point-Button Car-Button

Figure 4: Safety-gym environments.

B.1.2 MUJOCO-VELOCITY

Mujoco-Velocity is a specialized environment within the Mujoco physics simulation suite, focusing
on controlling the velocity of two specific agents: Cheetah and Ant. These agents must complete
locomotion tasks while adhering to safety constraints on their speed. The goal is to balance task
performance with maintaining safe velocity limits. For instance, Cheetah must run as fast as possible
while staying within predefined speed bounds to avoid penalties, mimicking real-world scenarios
where exceeding speed limits can cause system failure or unsafe operations. Similarly, Ant must
navigate through its environment without violating velocity constraints, ensuring stability and safety.
The illustrations are shown in Figure 5.
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Cheetah Ant

Figure 5: Mujoco-velocity environments.

B.2 DATASET GENERATION DETAILS

In this paper, we tackle the problem of Offline Reverse Imitation Learning by utilizing two datasets:

• Unlabelled dataset DMIX : A large dataset comprising both desired and undesired demon-
strations, reflecting real-world data (e.g., chat conversations, driving behaviors, treatment
decisions, etc.).

• Undesired datasetDUN : A smaller, accurated dataset containing demonstrations that exhibit
behaviors we aim to avoid.

We simulate this scenario using the Safety-gym and Mujoco-velocity environments. First, we train
both unconstrained and constrained policies using PPO and SIM (Hoang et al., 2024a) (SIM is an
incremental method that achieves significantly higher returns while incurring lower costs compared
to other safe methods). We then collect the training datasets as follows:

• Unlabelled dataset DMIX : We roll out the constrained and unconstrained policies, mixing
them at ratios of (1 : 1, 1 : 4, 1 : 16) to progressively increase task difficulty.

• Undesired dataset DUN : We roll out the unconstrained policy, gathering trajectories that
violate the constraint.

B.2.1 SAFETY-GYM DATASET DETAILED QUALITY

The details information of Safety-Gym datasets are shown in Table 2.

Point-Goal Car-Goal Point-Button Car-Button

Mean Unconstrained return 26.8 ± 1.1 35.2 ± 2.1 30.0 ± 5.3 25.5 ± 8.4
Mean Constrained return 25.3 ± 2.1 25.7 ± 6.6 15.6 ± 7.3 4.1 ± 5.2
Mean undesired return 26.8 ± 1.1 34.7 ± 1.8 29.5 ± 5.3 25.3 ± 8.0
Mean Unconstrained cost 57.8 ± 38.9 61.9 ± 48.1 129.9 ± 77.3 245.5 ± 115.9
Mean Constrained cost 22.3 ± 28.0 21.0 ± 31.0 24.4 ± 34.1 51.6 ± 78.2
Mean undesired cost 80.9 ± 23.5 90.9 ± 32.2 139.0 ± 80.4 251.2 ± 105.7

Cost Threshold 25.0 25.0 25.0 50.0

Table 2: Safety-Gym expert policies performance.

B.2.2 MUJOCO-VELOCITY DATASET DETAILED QUALITY

The details information of safety-gym datasets are shown in Table 3.
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Cheetah Ant

Mean Unconstrained return 3027.4 ± 400.6 2972.2 ± 1020.0
Mean Constrained return 2751.2 ± 11.6 2830.0 ± 145.5
Mean undesired return 3010.3 ± 424.2 2996.5 ± 991.5
Mean Unconstrained cost 626.7 ± 95.0 624.0 ± 231.0
Mean Constrained cost 14.1 ± 4.5 18.7 ± 4.4
Mean undesired cost 622.5 ± 99.7 629.6 ± 221.4

Cost Threshold 25.0 25.0

Table 3: Mujoco-velocity expert policies performance.

B.3 BASELINE IMPLEMENTATION DETAILS

B.3.1 BC

We use the orginal BC objective:

min
π
−Es,a∼D log π(a|s) (11)

B.3.2 IQLEARN

We use the official implementation of IQ-Learn from the DualRL paper (Sikchi et al., 2024), available
through this link. Moreover, to improve stability in offline training, we modify the actor update part
to be the same as in UNIQ (Algorithm 1). The performance comparison between the two versions is
provided in Appendix C.2.

B.3.3 IPL

We use the official implementation of IPL (Hejna & Sadigh, 2024) from this link. The only difference
between our setting and IPL is the pairwise dataset. We create pairwise comparisons from the
unlabelled dataset and the undesired dataset and train the Q-function with the following new loss
function:

PQπ [σMIX > σUN ] =
exp

∑
t(T πQ)(sMIX

t , aMIX
t )

exp
∑
t(T πQ)(sMIX

t , aMIX
t ) + exp

∑
t(T πQ)(sUNt , aUNt )

,

where:
(T πQ)(s, a) = Q(s, a)− γEs′ [V π(s′)].

B.3.4 DWBC

We use the official implementation of DWBC (Xu et al., 2022) from this link. We modify the
algorithm to train a discriminator that assigns 1 to the undesired dataset DUN and 0 to the unlabelled
dataset DMIX while keeping the Positive Unlabeled learning technique from the paper:

min
θ

ηE(s,a)∼DUN [− log dθ(s, a, log π)]

+ E(s,a)∼DMIX [− log (1− dθ(s, a, log π))]
− ηE(s,a)∼DUN [− log (1− dθ(s, a, log π))] .

We then learn the policy by optimizing:

min
ψ
−E(s,a)∼DMIX

[(
1

dθ(s, a)
− 1

)
log πψ(a|s)

]
.

B.3.5 SAFEDICE

We use the official implementation of SafeDICE (Jang et al., 2024) from this link. As the algorithm
has been designed to solve this problem, we do not make any further modifications.
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B.4 HYPER-PARAMETER SELECTION

For fair comparison, we keep the same basic hyper-parameters across all the baselines which are
detailed as follow for Safety-gym and Mujoco-velocity tasks:

HYPER PARAMETER SAFETY-GYM MUJOCO-VELOCITY

ACTOR NETWORK [256,256,256] [256,256]
CRITIC NETWORK [256,256,256] [256,256]
TRAINING STEP 1,000,000 1,000,000
GAMMA 0.99 0.99
LR ACTOR 0.0001 0.0001
LR CRITIC 0.0003 0.0003
LR DISCRIMINATOR 0.0001 0.0001
BATCH SIZE 256 256
SOFT UPDATE CRITIC FACTOR 0.005 0.005

Table 4: Hyper parameters.

Lastly, we apply state normalization for Mujoco-velocity datasets as follow:

snormalized =
s− µ
σ

Where:
µ =

1

|D|
∑
s′∈D

s′

σ =

√
1

|D|
∑
s′∈D

(s′ − µ)2
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C ADDITIONAL EXPERIMENTS

C.1 CVAR 10% COST OF SAFETY-GYM COMPARISON

We also report the CVaR 10% cost, supporting the result of the Table 1 with CVaR is the mean of
10% highest in cost trajectories during the evaluation process. The full results are shown in Table 5.

BC-mix IQ-Mix IPL DWBC SafeDICE UNIQ

Point-Goal-1
Return 26.8±0.1 26.7±0.6 26.9±0.1 26.5±0.2 26.6±0.2 20.7±0.7
Cost 42.7±3.5 43.9±11.9 53.7±3.7 33.0±3.2 36.3±2.9 23.5±4.5
CVaR 106.3±10.3 103.8±54.4 119.3±7.8 90.1±9.6 94.8±10.9 101.0±38.0

Point-Goal-2
Return 27.1±0.1 27.0±0.4 26.9±0.1 26.9±0.1 27.0±0.1 23.4±0.4
Cost 48.8±2.9 46.7±10.4 52.7±3.4 45.8±3.4 46.8±3.1 27.1±3.0
CVaR 115.4±7.7 105.3±24.1 117.9±8.2 110.4±7.8 111.0±7.6 85.9±18.9

Point-Goal-3
Return 27.1±0.1 43.8±29.1 26.9±0.1 27.1±0.1 27.1±0.1 26.4±0.2
Cost 51.0±3.4 55.6±27.6 53.6±3.7 50.2±3.6 50.7±3.6 40.6±3.1
CVaR 116.8±7.6 106.6±21.7 119.5±8.3 115.7±7.8 116.6±8.1 102.6±10.3

Car-Goal-1
Return 32.0±0.6 31.7±1.6 33.6±0.5 28.1±1.2 29.8±0.8 21.0±0.8
Cost 43.4±4.1 42.0±12.5 51.1±3.9 30.5±3.3 36.4±2.9 15.4±2.1
CVaR 117.5±10.9 103.4±30.5 129.4±9.7 90.5±10.3 103.8±9.9 62.1±8.7

Car-Goal-2
Return 34.1±0.5 34.2±1.5 34.7±0.3 32.8±0.7 33.5±0.7 27.9±0.8
Cost 52.0±4.2 49.7±13.2 54.4±3.7 47.4±3.8 50.5±4.0 31.0±2.8
CVaR 132.8±10.6 114.5±29.0 134.9±8.7 123.2±10.6 128.5±10.2 93.3±8.4

Car-Goal-3
Return 35.2±0.3 35.3±0.7 35.2±0.2 35.0±0.3 35.1±0.3 34.3±0.4
Cost 56.2±4.8 55.2±14.3 56.4±4.1 55.3±4.0 55.5±3.8 53.1±4.1
CVaR 140.3±12.3 127.9±35.0 139.5±10.9 139.5±10.9 138.8±9.9 134.8±9.4

Point-Button-1
Return 25.9±1.0 26.4±2.2 27.0±0.8 22.0±0.9 23.0±0.9 8.8±0.7
Cost 92.9±8.1 92.8±23.5 114.5±6.4 61.5±6.6 66.5±6.5 12.2±2.7
CVaR 241.7±30.7 209.2±64.6 277.2±27.3 182.8±24.8 187.3±22.4 61.5±15.6

Point-Button-2
Return 29.2±0.7 29.8±2.2 28.7±0.8 28.3±0.8 28.8±0.8 10.3±0.9
Cost 118.7±7.3 123.0±21.4 122.1±7.3 113.2±7.5 114.6±8.7 19.1±3.0
CVaR 273.6±30.4 263.6±97.7 281.6±29.0 267.4±27.0 270.1±33.8 81.1±14.9

Point-Button-3
Return 30.6±0.7 30.8±1.9 29.6±0.6 30.4±0.6 30.3±0.7 14.9±1.1
Cost 130.9±9.0 129.2±23.7 129.9±7.3 131.5±8.8 128.6±8.7 55.5±7.6
CVaR 273.6±30.4 267.9±74.5 293.5±24.6 267.4±27.0 270.1±33.8 81.1±14.9

Car-Button-1
Return 14.1±1.2 14.3±3.6 17.6±1.5 10.1±1.1 11.8±1.3 2.3±0.4
Cost 132.3±12.7 126.6±38.3 165.7±14.4 101.0±14.3 116.2±13.1 35.9±5.4
CVaR 387.0±44.2 334.6±125.3 430.4±47.2 345.5±49.7 363.8±47.4 183.6±30.7

Car-Button-2
Return 21.0±1.3 20.6±3.6 22.9±1.1 18.7±1.4 21.4±1.5 5.1±0.7
Cost 191.4±13.9 189.4±45.8 209.8±12.2 178.0±14.3 198.1±15.4 65.8±10.1
CVaR 449.2±45.8 421.1±136.6 482.7±48.7 451.3±43.7 465.3±36.5 294.6±46.7

Car-Button-3
Return 24.8±0.9 24.3±3.4 25.2±0.9 24.1±1.1 24.7±1.0 14.0±1.5
Cost 223.7±10.8 229.5±41.6 230.4±11.2 220.9±12.8 232.5±10.9 144.0±15.2
CVaR 474.5±39.3 461.9±136.4 500.3±53.3 473.1±36.6 492.4±48.8 432.0±44.1

Table 5: Full comparison results in Return, Cost, and CVaR 10%.
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C.2 COMPARISON WITH POLICIES DIRECTLY EXTRACTED FROM Q-FUNCTIONS

As our method use a different policy update compared to the original policy update of IQlearn (Garg
et al., 2021), we want to show the reason why we modify policy update method into Weighted-BC.
Here, we keep the same data amount of level 2 for all four safety-gym environments. the comparison
results are shown in Figure 6. From 5 training seeds, the result showing that the performance of
direct extraction (original policy update of IQlearn) are not stable across different task while our
new Weighted BC version have better stability.
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Figure 6: We compared the performance of Q-inference (the original policy update of IQlearn) with
our Weighted-BC update. Despite averaging the results over 5 training seeds, the learning curves for
direct extraction runs showed significantly more fluctuation compared to those of our Weighted-BC
runs.
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C.3 COMPARISON WITH POLICIES LEARNED FROM EXPERT (OR DESIRED) DEMONSTRATIONS

We aim to evaluate the performance when learning directly from desired demonstrations (or expert
demonstrations), without the noise of unlabelled undesirable trajectories in the unlabelled dataset.
This can be considered the upper bound of performance without the need to handle undesired
demonstrations. The results of the safe policy are presented in Table 6. Overall, UNIQ emerges as
the algorithm closest to the Safe policy. In Section 6.4, we further demonstrate that when the amount
of undesired data becomes sufficiently large, UNIQ can outperform and achieve a lower cost than a
policy trained solely on desired demonstrations.

DWBC SafeDICE UNIQ Safe Policy

Point-Goal-1 Return 26.5±0.2 26.6±0.2 20.7±0.7 25.9±0.2
Cost 33.0±3.2 36.3±2.9 23.5±4.5 26.0±2.6

Point-Goal-2 Return 26.9±0.1 27.0±0.1 23.4±0.4 25.9±0.2
Cost 45.8±3.4 46.8±3.1 27.1±3.0 26.0±2.6

Point-Goal-3 Return 27.1±0.1 27.1±0.1 26.4±0.2 25.9±0.2
Cost 50.2±3.6 50.7±3.6 40.6±3.1 26.0±2.6

Car-Goal-1 Return 28.1±1.2 29.8±0.8 21.0±0.8 26.2±0.7
Cost 30.5±3.3 36.4±2.9 15.4±2.1 23.6±2.8

Car-Goal-2 Return 32.8±0.7 33.5±0.7 27.9±0.8 26.2±0.7
Cost 47.4±3.8 50.5±4.0 31.0±2.8 23.6±2.8

Car-Goal-3 Return 35.0±0.3 35.1±0.3 34.3±0.4 26.2±0.7
Cost 55.3±4.0 55.5±3.8 53.1±4.1 23.6±2.8

Point-Button-1 Return 22.0±0.9 23.0±0.9 8.8±0.7 16.4±0.9
Cost 61.5±6.6 66.5±6.5 12.2±2.7 29.1±3.5

Point-Button-2 Return 28.3±0.8 28.8±0.8 10.3±0.9 16.4±0.9
Cost 113.2±7.5 114.6±8.7 19.1±3.0 29.1±3.5

Point-Button-3 Return 30.4±0.6 30.3±0.7 14.9±1.1 16.4±0.9
Cost 131.5±8.8 128.6±8.7 55.5±7.6 29.1±3.5

Car-Button-1 Return 10.1±1.1 11.8±1.3 2.3±0.4 4.4±0.6
Cost 101.0±14.3 116.2±13.1 35.9±5.4 56.7±7.6

Car-Button-2 Return 18.7±1.4 21.4±1.5 5.1±0.7 4.4±0.6
Cost 178.0±14.3 198.1±15.4 65.8±10.1 56.7±7.6

Car-Button-3 Return 24.1±1.1 24.7±1.0 14.0±1.5 4.4±0.6
Cost 220.9±12.8 232.5±10.9 144.0±15.2 56.7±7.6

Table 6: Compare baselines with Safe policy
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C.4 LEARNING WITHOUT THE UNLABELED DATASET

Since our algorithm is based on Objective 6, which focuses solely on avoiding undesired demon-
strations, we want to compare its performance with a version that only avoids these undesired
demonstrations:

• IQlearn-UN: Here, IQlearn are only have Undesired dataset. We solve the Objective 6 which
only avoid the bad demonstration.

• BC-UN: similar to IQlearn-UN, here, we minimize the log prob of the bad demonstrations.

The results, shown in Figure 7, indicate IQlearn-UN and BC-UN have inconsistent performance.
Without support from desired trajectories in the unlabelled dataset, this version fails to learn a correct
policy.
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Figure 7: Inconsistent performance in IQlearn-UN and BC-UN compared to the full version of UNIQ.
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C.5 CONTROLLING CONSERVATIVENESS IN UNIQ
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Figure 8: Comparison results of UNIQ with different α selections.

The main paper demonstrates that the policy returned by UNIQ achieves significantly lower costs
(indicating safety) but, in some cases, also lower rewards compared to other imitation learning
baselines. While this aligns well with our objective of learning safe policies by avoiding unsafe
demonstrations, it also raises concerns about the algorithm’s conservativeness.

In this section, we show that the conservativeness of UNIQ can be effectively controlled by introducing
a parameter to the Weighted BC formulation. Specifically, we adjust the conservativeness of the
algorithm by adding a parameter α to the Weighted BC update:∑

(s,a)∼DMix

exp(α(Qw(s, a)− V Qw(s))) log πθ(a|s)

When α = 1, the Weighted BC theoretically returns the exact policy derived from Q-learning, as
reported in the main paper. In contrast:

• As α→ 0, the Weighted BC returns a random policy.
• As α → ∞, the resulting policy becomes deterministic, always selecting the best action

with probability 1.

Thus, by varying α, we can deviate the outcome of the Weighted BC from the policy given by
Q-learning, reducing the conservativeness of the learned policy.

To experimentally demonstrate this, we vary α and report the corresponding returns and costs on four
MuJoCo environments. The results are presented in Figure 8 and Table 7, showing how different
values of α impact the trade-off between safety and performance.

Figure 8 demonstrates that UNIQ achieves its safest (and most conservative) performance when
α = 1. At this value, the policy prioritizes minimizing costs, making it the most risk-averse option.
However, as α deviates from 1, both the cost and return increase. This indicates that the Weighted
BC formulation produces less conservative policies that are less safe but capable of achieving higher
rewards.

Table 7 provides a more detailed breakdown of the costs and returns for different values of α. The
results show that UNIQ can effectively balance safety and performance: by adjusting α, it is possible
to achieve a safer policy (i.e., lower cost) while maintaining competitive returns (compared to other
baselines). This adaptability highlights the flexibility of UNIQ.

When safety is critical, setting α = 1 ensures the most conservative policy, aligning with the objective
of avoiding unsafe demonstrations. On the other hand, by varying α, one can tune the trade-off to
achieve policies that are less safe but yield higher rewards, making UNIQ suitable for a range of
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scenarios depending on the desired safety-performance balance. This versatility demonstrates its
practicality across different applications with varying safety requirements.

DWBC SafeDICE UNIQ (0.01) UNIQ (0.1) UNIQ (0.3) UNIQ (1.0) UNIQ (3.0)

Point-Goal-2 Return 26.9±0.1 27.0±0.1 25.1 ± 0.1 25.0 ± 0.1 24.5 ± 0.2 23.4±0.4 24.3 ± 0.2
Cost 45.8±3.4 46.8±3.1 44.0 ± 3.6 40.5 ± 3.2 32.5 ± 3.2 27.1±3.0 30.8 ± 2.9

Car-Goal-2 Return 32.8±0.7 33.5±0.7 30.6 ± 0.5 30.1 ± 0.5 29.0 ± 0.6 27.9±0.8 28.9 ± 0.6
Cost 47.4±3.8 50.5±4.0 46.4 ± 4.7 45.9 ± 4.2 41.2 ± 3.4 31.0±2.8 40.4 ± 3.4

Point-Button-2 Return 28.3±0.8 28.8±0.8 23.2 ± 0.8 20.8 ± 1.0 16.6 ± 1.1 10.3±0.9 14.6 ± 1.2
Cost 113.2±7.5 114.6±8.7 92.7 ± 8.7 75.9 ± 7.7 52.7 ± 8.0 19.1±3.0 42.2 ± 7.6

Car-Button-2 Return 18.7±1.4 21.4±1.5 18.8 ± 1.4 12.3 ± 1.5 10.3 ± 1.6 5.1±0.7 9.6 ± 2.0
Cost 178.0±14.3 198.1±15.4 173.3 ± 15.6 114.9 ± 14.3 95.5 ± 14.1 65.8±10.1 90.6 ± 17.3

Table 7: Comparison with different α

C.6 EXPERIMENTS ON D4RL WITH RANDOM DEMONSTRATIONS

In this experiment, we test our algorithm UNIQ with unconstrained tasks in D4RL dataset (Fu et al.,
2020). We create the unlabeled dataset with the following trajectories:

• 300 expert trajectories.

• 500 medium trajectories.

• 800 random trajectories.

The undesirable dataset consists of 50% medium and 50% random samples. We compare our
method using different sizes of the undesirable data. The detailed results are shown in Figure 9.
The performance results indicate that in the HalfCheetah-v2 environment, only UNIQ is able to
learn effectively. However, in the Ant-v2 environment, DWBC achieves competitive performance
compared to UNIQ.
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Figure 9: D4RL comparison with increasing size of Undesirable dataset.

C.7 DISCUSSION ON DSRL

The DSRL dataset (Liu et al., 2024) is a public dataset specifically designed for safe reinforcement
learning (RL), generated to encompass every possible pair of return-cost values. This comprehensive
coverage helps agents learn to interpret and balance reward and cost signals effectively.

The dataset is constructed using trajectories generated by a mix of safe and unsafe policies, making it
particularly challenging for imitation learning methods, including standard approaches and our UNIQ
framework, to achieve good performance. The primary challenge lies in the lack of access to reward
and cost signals in imitation learning. When expert demonstrations are derived from a variety of
policies, current imitation learning methods can only recover a mixture of these policies, rather than
isolating the most desirable behaviors. Moreover, since imitation learning does not allow interaction
with the environment, the absence of feedback further complicates the learning process. This is in
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stark contrast to standard offline RL methods, where reward and cost signals are directly accessible,
providing a significant advantage.

To illustrate this difficulty, we used Behavior Cloning (BC), a standard yet effective imitation learning
method when sufficient data is available, to learn from a set of expert trajectories in the DSRL dataset.
However, BC failed to recover a good policy—the policy it returned deviates significantly from the
desirable regions in the return-cost space, as shown in Figure 10. This result highlights the inherent
challenges in applying imitation learning methods to DSRL.

We believe that the DSRL dataset is explicitly designed for offline constrained RL and is currently
too challenging for existing imitation learning approaches. To our knowledge, no imitation learning
methods have been successfully tested on DSRL, and our observations confirm the significant
difficulty of applying offline imitation learning in the absence of reward and cost information.
These findings reveal a critical limitation of current imitation learning algorithms, including UNIQ,
and underscore the need for future research to address these challenges. This dataset presents an
opportunity to develop and test new methods capable of overcoming these limitations in offline
constrained RL scenarios.

Point-Goal

0 20 40 60 80 100 120
Cost

−5

0

5

10

15

20

25

30

Re
tu
rn

Data
Desirable
BC-Desirable

Car-Goal

0 20 40 60 80 100 120 140
Cost

0

10

20

30

40

Re
tu
rn

Data
Desirable
BC-Desirable

Point-Button

0 50 100 150 200
Cost

−10

0

10

20

30

40

Re
tu
rn

Data
Desirable
BC-Desirable

Car-Button

0 50 100 150 200 250 300
Cost

−30

−20

−10

0

10

20

30

40

Re
tu
rn

Data
Desirable
BC-Desirable

Figure 10: In DSRL dataset, BC from only expert data unable to achieve good performance.

C.8 FULL NUMERICAL EXPERIMENT FOR MUJOCO VELOCITY TASKS

We evaluate our method on two MuJoCo velocity tasks: Cheetah and Ant. In addition to using a
fixed set of 5 trajectories in the undesired dataset, we also test the method with varying sizes of
the undesired dataset, annotated as ”env-UN= {1, 5, 10}”. The detailed results are summarized in
Table 8 and learning curves are shown in Figure 11 and Figure 12. Overall, increasing the size of the
undesired dataset helps SafeDICE and DWBC achieve higher performance, while UNIQ reaches its
peak performance with just a single undesired trajectory.
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Figure 11: Cheetah task with unlabelled dataset(400-1600) and different undesired dataset.
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Figure 12: Ant task with unlabelled dataset(400-1600) and different undesired dataset.
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DWBC SafeDICE UNIQ

Cheetah-UN=10
Return 3135.6±127.4 2841.9±56.1 2662.0±33.1
Cost 311.0±116.0 550.2±13.5 0.0±0.0

CVaR 897.7±10.0 682.2±14.4 0.0±0.0

Cheetah-UN=5
Return 3430.9±107.5 2860.8±57.8 2661.2±29.7
Cost 578.8±89.6 553.9±25.3 0.0±0.0

CVaR 909.2±6.3 686.7±17.3 0.0±0.0

Cheetah-UN=1
Return 3720.7±39.2 2910.0±61.8 2755.3±23.8
Cost 823.0±17.5 575.5±23.0 0.0±0.0

CVaR 916.4±5.0 702.2±20.0 0.0±0.0

Ant-UN=10
Return 2225.0±759.3 2713.0±56.2 2850.5±177.5
Cost 470.5±162.8 439.7±57.7 15.2±10.8

CVaR 795.0±103.7 668.7±14.6 24.6±13.7

Ant-UN=5
Return 2210.0±655.7 2727.4±49.8 2838.2±177.9
Cost 494.5±146.8 464.4±35.3 13.1±7.5

CVaR 805.7±16.4 671.2±16.0 22.1±10.5

Ant-UN=1
Return 2259.4±653.8 2724.4±90.7 2841.4±214.9
Cost 507.5±147.8 506.5±40.3 16.9±7.1

CVaR 789.3±91.3 685.8±16.4 27.2±9.6

Table 8: Full comparison between UNIQ and other baselines in Mujoco-velocity domain. With
decreasing of undesirable dataset size, the performance of DWBC and SafeDICE become worse. In
contrast, UNIQ able to achieve highest performance with just a single undesirable trajectory.

C.9 PERFORMANCE WITH THE DATASET EMPLOYED IN THE SAFEDICE PAPER (JANG ET AL.,
2024)

As we are using a different dataset from the SafeDICE dataset, we requested the authors of SafeDICE
to provide their dataset for comparison. The detailed performance of the expert dataset is shown in
Table 9:

Point-Goal Point-Button

Mean non-preferred demonstrations cost 20.018 21.933
Mean preferred demonstrations return 19.911 8.286
Mean non-preferred demonstrations cost 107.977 166.099
Mean preferred demonstrations return 13.798 12.085

Table 9: SafeDICE dataset performance.

We mix 300 preferred demonstrations and 1200 non-preferred demonstrations for the unlabelled
dataset and use 100 non-preferred demonstrations for the undesired dataset. The performance is
shown in Figure 13. It is clearly that our method can achieve lower cost than SafeDICE.
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Figure 13: Comparison between UNIQ compared to SafeDICE in their dataset.

D DETAILED LEARNING CURVES

D.1 LEARNING CURVES FOR THE RESULTS REPORTED IN TABLE 1

Learning curve of Table 1 are shown in Figure 14,Figure 15, and Figure 16.
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Figure 14: Training curves for difficulty 1 of the Table 1.
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Figure 15: Training curves for difficulty 2 of the Table 1.
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Figure 16: Training curves for difficulty 3 of the Table 1.
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D.2 LEARNING CURVES FOR THE RESULTS REPORTED IN SECTION 6.4

Learning curve of Figure 3. The detailed results are shown in Figure 17 (Point-Goal) and Figure 18
(Car-Goal).
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Figure 17: Training curves for Point-Goal task in Figure 3.
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Figure 18: Training curves for Car-Goal task in Figure 3.
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