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Text-Image Dual Consistency-Guided OOD Detection with Pretrained
Vision-Language Models

Abstract
The advent of vision-language models (VLMs)
such as CLIP has significantly advanced the de-
velopment of zero-shot out-of-distribution (OOD)
detection. Recent research has largely focused on
enhancing the textual label space to improve OOD
detection performance. However, these efforts of-
ten neglect the valuable information inherent in
the image domain. As a result, visual feature sim-
ilarities within in-distribution (ID) data remain
underutilized, limiting the OOD detection capa-
bilities of VLMs. To address this limitation, we
propose a novel approach, DualCnst, based on
text-image dual consistency. Our method eval-
uates test samples by jointly considering their
semantic similarity to textual labels and their vi-
sual similarity to synthesized images generated
from the textual label set using a text-to-image
generative model. By integrating textual and vi-
sual information, this approach establishes a uni-
fied OOD scoring framework. Furthermore, this
framework is fully compatible with existing meth-
ods, such as NegLabel, which focus on enriching
the textual label space. Extensive experiments
demonstrate that DualCnst achieves state-of-the-
art performance across a range of OOD detection
benchmarks while exhibiting robust generaliza-
tion across diverse VLM architectures.

1. Introduction
Out-of-Distribution (OOD) detection refers to identifying
whether input data lies outside the predefined distribution
of a machine learning model during inference (Hendrycks
& Gimpel, 2017). Its primary goal is to prevent models
from making erroneous predictions when confronted with
novel or anomalous samples that deviate from the training
data distribution. This capability is particularly critical in
high-stakes applications, such as medical imaging (Shen
et al., 2017; Wang et al., 2021; Kollias et al., 2024) and
autonomous driving (Gao et al., 2021; Henriksson et al.,
2023; Zhao et al., 2024), where undetected OOD samples
can lead to misdiagnoses or hazardous situations.

Traditional visual OOD detection methods primarily rely

on features extracted from the image domain, often neglect-
ing the rich semantic information contained in textual la-
bels. Recent advancements in large-scale vision-language
models (VLMs) have shifted the focus toward leveraging
multimodal information from both test images and textual
labels to enhance OOD detection accuracy. For example,
MCM (Ming et al., 2022) utilizes VLMs like CLIP (Radford
et al., 2021) to compute semantic similarity between test
images and in-distribution (ID) textual labels. Images with
high similarity are classified as ID, while those with low sim-
ilarity are deemed OOD. This approach enables zero-shot
OOD detection without requiring additional training.

However, solely relying on semantic similarity has inherent
limitations. Some challenging OOD samples, particularly
those near the overlap of ID and OOD score distributions
(Figure 1(b)), may share semantic features resembling those
of ID labels, making them difficult to detect through seman-
tic matching alone. Interestingly, such samples often remain
visually distinguishable. For example, as shown in Figure
1(a), wild horses and zebras are semantically similar but
visually distinct due to the zebras’ unique striped patterns.
This observation leads to the following question:

Can incorporating visual similarity between test data and
ID/OOD data improve detection accuracy for these

challenging samples?

Figure 1(c) confirms this hypothesis. By incorporating the
actual visual features of ID data, challenging OOD samples
become more distinguishable. However, real-world applica-
tions often face restricted access to ID visual features. To
address this limitation, we propose synthesizing ID visual
information using text-to-image generative models. These
models generate image data for ID classes directly from
textual prompts, without relying on any actual ID images,
as illustrated in Figure 1(d). Additionally, we introduce syn-
thesized OOD visual information, such as generating OOD
images from negative labels (e.g., via NegLabel (Jiang et al.,
2024)), to further enhance discriminative power.

To operationalize this idea, we propose DualCnst, a novel
approach leveraging the dual consistency between test data,
textual labels, and synthesized image labels. Technically,
we develop a scoring function that evaluates the semantic
similarity between test images and textual labels, while
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Figure 1: Comparison of zero-shot OOD detection score distribution. (a) The positive impact of visual similarity in detecting
challenging OOD samples. Compared to the model using (b) only the textual label set, (c) incorporating visual features
from the ID images significantly improves OOD detection performance. (d) Furthermore, by integrating visual features
synthesized from the label set, OOD detection results can be substantially enhanced, even without utilizing the actual visual
features from the ID images. Cifar100 (Krizhevsky et al., 2009) is used as the ID class, and iNaturalist (Van Horn et al.,
2018) as the OOD class.

simultaneously measuring the visual similarity between the
test data and synthesized ID/OOD image labels.

The proposed ID/OOD visual synthesis framework offers
substantial performance improvements and several key ad-
vantages: (1) Data-Agnostic: It does not require actual
visual information from ID/OOD data. (2) Zero-Shot: It
supports diverse task-specific ID datasets using a single pre-
trained model. (3) Scalability and Flexibility: The visual
similarity measure operates as a lightweight, plug-and-play
module that can be seamlessly integrated into existing se-
mantic similarity-based methods, making it adaptable across
various datasets and applications.

Our contributions can be summarized as follows:
• A novel perspective is proposed, integrating visual feature

similarity to address the limitations of relying solely on
semantic features in distinguishing challenging OOD sam-
ples (Section 3).

• The DualCnst framework, a novel approach for zero-shot
OOD detection, is introduced. It simultaneously evaluates
the semantic similarity between test images and textual
labels, while also leveraging synthesized ID/OOD image
labels to assess the visual similarity between the test data
and these synthesized labels (Section 3).

• The proposed DualCnst demonstrates superior performance,
significantly outperforming existing methods. DualCnst

achieves improvements of 2.35%, 3.9%, 9.9% on the
ImageNet-1K far OOD, near OOD, and Robust OOD detec-
tion tasks, respectively, in terms of FPR95 (Section 4).

2. Preliminaries
CLIP and Zero-shot OOD Detection: CLIP (Radford
et al., 2021) is a multimodal pre-trained model designed to
align visual and textual modalities within a shared embed-
ding space. Trained on large-scale image-text datasets using
contrastive learning, CLIP consists of an image encoder and
a text encoder that generate embeddings for images and text,
respectively. By computing cosine similarity between these
embeddings, the model performs similarity-based matching.
A key strength of CLIP is its remarkable zero-shot capabil-
ity: trained on diverse and extensive image-text pairs, it can
be directly applied to various vision tasks—including im-
age classification (Conde & Turgutlu, 2021; Fu et al., 2022;
Abdelfattah et al., 2023; Peng et al., 2023), object detec-
tion (Teng et al., 2021; Lin & Gong, 2023; Liu et al., 2024),
semantic segmentation (Liang et al., 2023; Zhou et al., 2023;
Wysoczańska et al., 2024), and OOD detection—without
requiring additional labeled data or fine-tuning.

For zero-shot OOD detection, CLIP determines whether
an input image belongs to one of the known categories or
represents an OOD sample. This is achieved by comparing
the image’s visual features with the semantic representa-
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Figure 2: The framework of the proposed DualCnst is outlined as follows. Given a set of ID class labels Y id, we first
leverage NegLabel (Jiang et al., 2024)) to generate OOD labels Yood. These class labels are then input into Stable Diffusion
(Rombach et al., 2022) to synthesize both ID and OOD images. Subsequently, both the ID/OOD class labels and the
synthesized images are fed into the text and image encoders to construct the textual and image classifiers. During the testing
phase, given an input image, its visual features are extracted using the image encoder, and the semantic similarity with the
class labels is computed, along with the visual similarity to the synthesized images. Finally, the OOD score is derived by
scaling and coupling these similarities using the proposed detection score function SDualCnst.

tions of known class labels encoded as text. Images with
low similarity to all known labels are identified as OOD
samples. This zero-shot paradigm offers high flexibility,
allowing CLIP to generalize across diverse domains without
retraining, making it a powerful tool for OOD detection in
real-world applications.

Stable Diffusion: Stable Diffusion is a generative model
based on Latent Diffusion Models (LDMs) (Rombach et al.,
2022), designed for efficient text-to-image synthesis. Unlike
conventional diffusion models that operate in pixel space,
Stable Diffusion performs the diffusion process in a lower-
dimensional latent space, significantly enhancing compu-
tational efficiency and scalability. The model employs a
pre-trained Variational Autoencoder (VAE) (Kingma, 2013)
to encode high-resolution images into a compact latent repre-
sentation, which serves as the input for the diffusion process.
Within this latent space, a U-Net-based (Ronneberger et al.,
2015) denoising network executes both forward and reverse
diffusion: in the forward process, noise is gradually added
to the latent representation until it converges to a Gaussian
distribution, while in the reverse process, the model learns to
iteratively denoise the latent representation, reconstructing
it into the original data distribution.

To enhance the fidelity and semantic alignment of generated
images, Stable Diffusion incorporates CLIP as a guidance
mechanism during the reverse diffusion process. CLIP pro-
vides a similarity-based gradient signal that directs the latent
representation toward alignment with the textual prompt,
ensuring that the generated images faithfully capture both
the semantic intent and fine-grained details. This method
builds on previous CLIP-guided generative models (Gala-
tolo et al., 2021; Desai et al., 2021; Qiao et al., 2022; Song
et al., 2021), which utilize multimodal representations to
improve the coherence and expressiveness of generated con-
tent. By leveraging CLIP’s semantic understanding, Stable
Diffusion generates visually coherent and contextually rel-
evant images, even for abstract or complex prompts. This
significantly broadens the model’s applicability in text-to-
image synthesis (Nichol et al., 2021).

3. Text-Image Dual Consistency-Guided OOD
Detection

In this paper, a novel approach is proposed to enhance zero-
shot OOD detection performance by leveraging text-image
dual consistency. Specifically, the method is divided into
two stages: (i) Synthesis Stage: To evaluate the visual sim-
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ilarity of test samples with ID and OOD images, a text-
to-image generative model, Stable Diffusion, is employed
to synthesize image labels from the combined label space,
Y id ∪ Yood. (ii) Testing Stage: To integrate textual and vi-
sual information, a novel score function is proposed. This
function simultaneously evaluates the semantic similarity
between test images and textual labels and measures the
visual similarity between test samples and the synthesized
ID/OOD image labels. The overall framework of the pro-
posed method is illustrated in Figure 2.

3.1. Synthesize Images from the Label Space

To broaden the scope of visual information, NegLabel (Jiang
et al., 2024) is employed to identify potential OOD labels,
which serve as prompts for an image generator. These
prompts guide the generation of semantically consistent
visual representations for OOD images. The label space is
defined as Y id ∪ Yood = y1, y2, . . . , yK , yK+1, . . . , yK+M ,
where K denotes the number of ID labels and M denotes
the number of OOD labels.

To ensure semantic alignment between textual descriptions
and generated images, the diffusion model’s capacity for
aligning textual and visual representations is utilized. For
each label, a consistent text prompt, such as “A photo of
a <label>,” is constructed. These prompts are input into
the diffusion model to generate synthetic images seman-
tically aligned with the combined label space Y id ∪ Yood.
This process enriches visual information and addresses the
limitations of relying solely on semantic information for
image-text alignment.

The generated images are represented as X̄ = {x̄i}, where
each x̄i corresponds to a unique synthetic image associated
with a specific label. These images not only capture the
known ID data distributions but also simulate visual repre-
sentations of OOD categories. By integrating this diverse
set of synthetic images into the OOD detection process, the
proposed method enhances the model’s ability to differenti-
ate ID from OOD instances. This is achieved by leveraging
visual distinctions between ID and OOD images, leading to
more accurate identification and rejection of OOD samples.

3.2. Integrate Textual and Visual Metrics for OOD
Detection

We calculate the visual similarity between the test sample
x and the synthesized image set X̄ , as well as the semantic
similarity with the label set Y , in the feature space encoded
by CLIP’s text encoder T (·) and image encoder I(·).

Image-to-Image Similarity. In particular, both low-level
and high-level visual features are incorporated. We extract
features from intermediate layers and the final output layer
of the image encoder to calculate cosine similarity between
the test sample and the synthetic images at multiple levels of
representation. Distinct weights are assigned to each layer

to balance their contributions. For instance, using ViT-B/16
as the visual encoder, we select the third, sixth, ninth, and
final semantic layers to compute cosine similarity between
the test image and each synthetic image. A weight of 0.25
is assigned to the similarity score from each layer, and the
overall visual similarity is calculated as the weighted sum
of these scores.

The visual similarity between the input image x and the
synthesized image set X̄ is defined as:

s
(l)
i,img(x) =

I(l)(x) · I(l)(x̄i)

∥I(l)(x)∥ · ∥I(l)(x̄i)∥
; x̄i ∈ X̄ . (1)

where I(l)(x) represents the feature embedding at layer l.
The final similarity score si,img(x) is obtained by summing
the weighted similarity scores across all layers:

si,img(x) =

L∑
l=1

wl · s(l)i,img(x), (2)

where wl represents the weight assigned to layer l and is
defined as:

wl =

{
r, l < L

1− r · (L− 1), l = L
,

where L denotes the total number of layers in the visual
encoder, and r is the weight factor applied to intermediate
layers, ensuring a balanced contribution across all layers.

Image-to-Text Similarity. The semantic similarity between
the test image x and the combined label space Y id ∪ Yood is
computed as:

si,text(x) =
I(x) · T (ti)

∥I(x)∥ · ∥T (ti)∥
. (3)

where ti = prompt < yi > and yi ∈ Y id ∪ Yood, and ti
represents the textual description of the label yi, using a
prompt format such as "A photo of a <label>."

Fusion of Similarity Scores. To fully utilize both image-
to-image and image-to-text similarity information, we com-
pute a fused similarity score using a weighted sum-softmax
method:

SDualCnst(x) =

K∑
i=1

exp(s̃i(x))∑K+M
j=1 exp(s̃j(x))

, (4)

where the fused similarity score s̃i(x) is defined as:

s̃i(x) = α · si,img(x) + (1− α) · si,text(x), (5)

where α is a fusion hyperparameter that balances the con-
tributions of image-to-image and image-to-text similarities.
Details on the choice of α are provided in Appendix B.4.
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Algorithm 1 Zero-shot OOD detection with text-image dual
consistency

1: Input: ID class labels Y id, test sample x, text encoder
T , image encoder I, Stable Diffusion (SD), NegLabel,
fusion coefficient α, layer weight w, threshold λ;
Synthesis stage:
// Synthesize OOD class labels

2: Given Y id, Yood = NegLabel(Y id);
// Synthesize ID/OOD image labels

3: Given Y id ∪ Yood, X̄ = SD(prompt < Y id ∪ Yood >);
Testing stage:
// Calculate image-to-image similarity

4: s
(l)
i,img(x) =

I(l)(x)·I(l)(x̄i)
∥I(l)(x)∥·∥I(l)(x̄i)∥

; x̄i ∈ X̄ ;

5: si,img(x) =
∑L

l=1 wl · s(l)i,img(x);
// Calculate image-to-text similarity

6: ti = prompt<yi>; yi ∈ Y id ∪ Yood;

7: si,text(x) =
I(x)·T (ti)

∥I(x)∥·∥T (ti)∥ ;
// Integrate text and visual information

8: s̃i(x) = α · si,img(x) + (1− α) · si,text(x);
// Calculate OOD detection score

9: SDualCnst(x) =
∑K

i=1
exp(s̃i(x))∑K+M

j=1 exp(s̃j(x))
;

10: Output: ID if SDualCnst(x) > λ, else OOD.

OOD Detection Framework. Based on SDualCnst(x), the
OOD detector Gλ(x;Y id∪Yood, T , I) is defined as a binary
classification function:

Gλ(x;Y id ∪Yood, X̄ , T , I) =

{
ID SDualCnst(x) ≥ λ

OOD SDualCnst(x) < λ
,

(6)
where λ is a threshold selected such that a high fraction of ID
samples (typically 95%) exceed this value. See Algorithm 1
for the complete zero-shot OOD detection procedure.
4. Experiments
4.1. Experiment Setup
Datasets and Benchmarks. For our experiments, we use
ImageNet-1k (Deng et al., 2009) as the primary ID dataset.
OOD datasets include iNaturalist (Van Horn et al., 2018),
SUN (Xiao et al., 2010), Places (Zhou et al., 2017), and
Textures (Cimpoi et al., 2014), which cover a wide vari-
ety of scenes and semantic categories. We also adopt the
experimental setup from MCM (Ming et al., 2022), which
leverages subsets of ImageNet-1k to evaluate our method.
Specifically, ImageNet-10 and ImageNet-20 are alternately
used as ID and OOD datasets. Furthermore, we extend our
evaluation to more generalized ImageNet variants, including
ImageNet-R (Hendrycks et al., 2021a).

Implementation Details. Our framework is built upon
CLIP (Radford et al., 2021) as the core model. Unless other-
wise noted, we utilize the ViT-B/16 architecture as the image
encoder and a Masked Self-Attention Transformer (Vaswani

et al., 2017) as the text encoder. For image generation, we
employ the Stable Diffusion. We set α = 0.1 and w = 0.1,
and provide ablation experiments. Further details can be
found in Appendix B. To improve inference efficiency, all
synthetic images are pre-generated before the evaluation
phase, eliminating the need for additional computational
overhead during testing. Further details in Appendix C.3.

For evaluation, we use two primary metrics: (1) FPR95:
The false positive rate (FPR) at a true positive rate (TPR) of
95% for ID data. (2) AUROC: The area under the receiver
operating characteristic curve. Additionally, we report the
results in terms of AUPR in Appendix C.2.

Baseline Methods. We benchmark our method against
several state-of-the-art zero-shot OOD detection approaches,
including Mahalanobis Distance (Lee et al., 2018), Energy
Score (Liu et al., 2020), ZOC (Esmaeilpour et al., 2022),
MCM (Ming et al., 2022), and NegLabel (Jiang et al., 2024).
Additionally, we compare our approach with OOD detection
models that have been trained or fine-tuned using ID data,
such as MOS (Huang & Li, 2021), MSP (Hendrycks &
Gimpel, 2017), CLIPN (Wang et al., 2023), VOS (Du et al.,
2022), and NPOS (Tao et al., 2023).

4.2. Main Results

Performance Comparison of ImageNet-1k on Far OOD
Detection. We compare our method with several existing
OOD detection approaches, as shown in Table 1. These
include zero-shot OOD detection methods such as MCM,
EOE, and NegLabel, as well as traditional methods that re-
implement CLIP fine-tuned on ImageNet-1k. Our approach
achieves the best performance on ImageNet-1k. Com-
pared to the current best-performing method, NegLabel, our
method reduces the average FPR95 by 1.75% and improves
the average AUROC by 0.14%. Moreover, it outperforms
NegLabel on all OOD datasets.

The limited improvement observed on the Textures dataset is
primarily attributed to the inherent challenges posed by this
dataset. We believe this is due to the relatively constrained
capabilities of the Stable Diffusion model, as well as insuffi-
ciently detailed prompt descriptions used to generate syn-
thetic images. These factors contribute to synthetic images
that exhibit discrepancies in both semantic alignment and
pixel-level representation with the Textures dataset. Nev-
ertheless, our method consistently achieves state-of-the-art
results, demonstrating its robustness and effectiveness even
in the face of such challenges.

Performance Comparison of Different ID Datasets on
Far OOD Detection. Table 2 presents the performance of
our method across seven distinct ID datasets: CUB-200-
2011 (Wah et al., 2011), Stanford-Cars (Krause et al., 2013),
Food-101 (Bossard et al., 2014), Oxford-IIIT Pet (Parkhi
et al., 2012), ImageNet-10, ImageNet-20, and ImageNet-
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Table 1: Performance Comparison of ImageNet-1k on Far OOD Detection. The bold indicates the best performance on each
dataset, and the gray indicates methods requiring an additional massive auxiliary dataset.

Method iNaturalist SUN Places Textures Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MOS (BiT) (Huang & Li, 2021) 9.28 98.15 40.63 92.01 49.54 89.06 60.43 81.23 39.97 90.11
MSP (Hendrycks & Gimpel, 2017) 40.89 88.63 65.81 81.14 67.90 80.14 64.96 78.16 59.89 82.04

CLIPN (Wang et al., 2023) 19.13 96.20 25.69 94.18 32.14 92.26 44.60 88.93 30.39 92.89
VOS (Du et al., 2022) 28.99 94.62 36.88 92.57 38.39 91.23 61.02 86.33 41.32 91.19

NPOS (Tao et al., 2023) 16.58 96.19 43.77 90.44 45.27 89.44 46.12 88.80 37.93 91.22
Mahalanobis (Lee et al., 2018) 99.33 55.89 99.41 59.94 98.54 65.96 98.46 64.23 98.94 61.50

Energy (Liu et al., 2020) 81.08 85.09 79.02 84.24 75.08 83.38 93.65 65.56 82.21 79.57
ZOC (Esmaeilpour et al., 2022) 87.30 86.09 81.51 81.20 73.06 83.39 98.90 76.46 85.19 81.79

MCM (Ming et al., 2022) 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77
NegLabel (Jiang et al., 2024) 1.91 99.49 20.53 95.49 35.59 91.64 43.56 90.22 25.40 94.21

DualCnst 0.99 99.69 17.60 95.89 31.63 91.73 42.00 90.32 23.05 94.41

Table 2: Performance Comparison of Different ID Datasets on Far OOD Detection. The bold indicates the best performance
on each dataset.

ID Dataset Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Stanford-Cars
MCM (Ming et al., 2022) 0.05 99.77 0.02 99.95 0.24 99.89 0.02 99.96 0.08 99.89

NegLabel (Jiang et al., 2024) 0.01 99.99 0.01 99.99 0.03 99.99 0.01 99.99 0.01 99.99
DualCnst 0.00 100.00 0.00 100.00 0.03 99.99 0.00 100.00 0.01 100.00

CUB-200
MCM (Ming et al., 2022) 9.83 98.24 4.93 99.10 6.65 98.57 6.97 98.75 7.09 98.66

NegLabel (Jiang et al., 2024) 0.18 99.96 0.02 99.99 0.33 99.90 0.01 99.99 0.13 99.96
DualCnst 0.12 99.98 0.02 99.99 0.38 99.89 0.00 100.00 0.13 99.96

Oxford-Pet
MCM (Ming et al., 2022) 2.85 99.38 1.06 99.73 2.11 99.56 0.80 99.81 1.70 99.62

NegLabel (Jiang et al., 2024) 0.01 99.99 0.02 99.99 0.17 99.96 0.11 99.97 0.07 99.98
DualCnst 0.00 100.00 0.00 100.00 0.15 99.97 0.09 99.98 0.06 99.99

Food-101
MCM (Ming et al., 2022) 0.64 99.78 0.90 99.75 1.86 99.58 4.04 98.62 1.86 99.43

NegLabel (Jiang et al., 2024) 0.01 99.99 0.01 99.99 0.01 99.99 1.61 99.60 0.40 99.90
DualCnst 0.00 100.00 0.00 100.00 0.01 100.00 1.52 99.57 0.38 99.89

ImageNet-10
MCM (Ming et al., 2022) 0.12 99.80 0.29 99.79 0.88 99.62 0.04 99.90 0.33 99.78

NegLabel (Jiang et al., 2024) 0.02 99.83 0.20 99.88 0.71 99.75 0.02 99.94 0.24 99.85
DualCnst 0.01 99.97 0.09 99.93 0.57 99.75 0.02 99.96 0.17 99.90

ImageNet-20
MCM (Ming et al., 2022) 1.02 99.66 2.55 99.50 4.40 99.11 2.43 99.03 2.60 99.32

NegLabel (Jiang et al., 2024) 0.15 99.95 1.93 99.51 4.40 98.97 2.41 99.11 2.22 99.39
DualCnst 0.13 99.97 1.22 99.66 3.66 99.13 2.18 99.17 1.80 99.48

ImageNet-100
MCM (Ming et al., 2022) 18.13 96.77 36.45 94.54 34.52 94.36 41.22 92.25 32.58 94.48

NegLabel (Jiang et al., 2024) 0.53 99.87 9.91 98.12 20.26 96.18 25.50 95.27 14.05 97.36
DualCnst 0.41 99.90 8.68 98.34 18.72 96.43 23.51 95.72 12.83 97.60

100. For each dataset, we set α = 0.1, select the 3rd, 6th,
and 9th layers of the visual encoder, and assign a weight of
w = 0.15. Our method demonstrates robust performance
across various datasets, underscoring its generalizability.

Performance Comparison of ImageNet Subsets on Near
OOD Detection. Table 3 presents the experimental results
with ImageNet-10 and ImageNet-20 used interchangeably
as ID and OOD datasets. When ImageNet-10 was the ID
dataset and ImageNet-20 the OOD dataset, our method
achieved a 2.4% reduction in FPR95 and a 0.1% increase in
AUROC compared to NegLabel. Similarly, when ImageNet-
20 was the ID dataset and ImageNet-10 the OOD dataset,
our method reduced FPR95 by 5.4% and improved AUROC
by 0.4%. The subset division and ID label configurations
follow the settings in MCM (Ming et al., 2022). For a fair
comparison, we reproduced the results of NegLabel and
MCM under these conditions.

Performance Comparison on Robust OOD Detection. To
assess the generalization ability of our method under do-
main shifts, we conducted experiments using the ImageNet
Domain Shift dataset, with ImageNet-R serving as the ID
dataset. Table 4 presents the results based on CLIP-B/16
with α = 0.1, selecting the 3rd, 6th, and 9th layers of the
visual encoder, and assigning a weight of w = 0.15. Our
method demonstrates stronger generalization performance
compared to NegLabel. ImageNet-R (Hendrycks et al.,
2021a) consists of 30,000 images spanning 200 ImageNet
categories, with representations in diverse artistic styles, in-
cluding art, cartoons, graffiti, embroidery, graphics, origami,
paintings, patterns, plastic objects, plush objects, sculptures,
sketches, tattoos, toys, and video game renditions.

4.3. Ablation Study

Score Functions. To demonstrate the superiority of the
proposed OOD detection score SDualCnst, we present the av-
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Table 3: Performance Comparison of ImageNet Subsets on Near OOD Detection. The bold indicates the best performance
on each dataset, and the gray indicates methods requiring an additional massive auxiliary dataset.

Method ID ImageNet-10 ImageNet-20 AverageOOD ImageNet-20 ImageNet-10

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
CLIPN (Wang et al., 2023) 7.80 98.07 13.67 97.47 10.74 97.77

MaxLogit (Hendrycks & Gimpel, 2017) 9.70 98.09 14.00 97.81 11.85 97.95
Energy (Liu et al., 2020) 10.30 97.94 16.40 97.37 13.35 97.66
MCM (Ming et al., 2022) 5.00 98.71 17.40 97.87 11.20 98.29

NegLabel (Jiang et al., 2024) 5.10 98.86 17.60 97.04 11.35 97.95
DualCnst 2.20 98.96 12.20 97.44 7.45 98.20

Table 4: Robustness results on ImageNet-R dataset. The black bold indicates the best performance.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Energy (Liu et al., 2020) 99.91 30.36 99.33 33.20 98.84 34.74 99.56 23.09 99.41 30.35
MaxLogit (Hendrycks & Gimpel, 2017) 86.53 81.58 82.11 81.48 78.16 79.86 91.24 69.45 84.51 78.09

MCM (Ming et al., 2022) 51.59 92.24 52.88 89.97 52.04 88.01 56.45 85.65 53.24 88.97
NegLabel (Jiang et al., 2024) 1.60 99.58 15.77 96.03 29.48 91.97 35.67 90.60 20.63 94.54

DualCnst 0.59 99.86 8.92 98.19 19.27 95.20 14.13 95.50 10.73 97.19

erage results on the ImageNet-1K dataset in Figure 3 (a),
comparing it with other scoring functions: SMAX, SEnergy,
and SMaxLogit. All these functions are specifically designed
for the Dual Consistency approach. Please refer to Ap-
pendix B.6 for the specific forms and results on more
datasets. Results show that our SDualCnst achieves the best
OOD performance. This verifies the superiority and impor-
tance of the proposed OOD detection score.

Different Layers of the Visual Encoder. To explore the
effectiveness of pixel-level features from different layers
of the visual encoder, we sample various pixel layers and
assign different weights, as shown in Figure 3 (b). Specifi-
cally, we experiment by selecting the (1st, 2nd, 3rd) layers,
(4th, 5th, 6th) layers, (7th, 8th, 9th) layers, (9th, 10th, 11th)
layers, and all pixel layers to combine with semantic layers.
In Figure 3 (c), we further investigate the impact of differ-
ent weight distributions for w to identify the most suitable
pixel-level feature weighting. For details on the selection of
w, layers, and results, refer to Appendix B.3.

4.4. Further Analysis

More Experimental Results. We conducted experiments
on the CIFAR-10/CIFAR-100 (Krizhevsky et al., 2009)
benchmark to further validate our method. The details of
the ImageNet-A (Hendrycks et al., 2021b) and ImageNet-
V2 (Recht et al., 2019) generalization datasets are also pro-
vided in the AppendixA.2. Additionally, we explored the
impact of randomness introduced by Stable Diffusion when
generating synthetic images with different random seeds, as
demonstrated in Table16 . The results show that the effect of
Stable Diffusion’s randomness on our method is negligible.
It is important to note that we did not manually select the
most favorable random seed for Stable Diffusion. Instead,
we generated a 32-bit integer random seed by hashing the

combination of each class label and synthetic image index.
Each synthetic image generated for a class using this seed
exhibits substantial randomness, further demonstrating that
our method is not influenced by the randomness of Stable
Diffusion-generated images. We also conducted experi-
ments with different CLIP visual encoders, and the results
showed that stronger visual encoders, which capture more
detailed information, are more beneficial to our method. For
more details, please refer to Appendix B.1.

Effectiveness of DualCnst. Figure 4 shows the T-SNE (Van
Der Maaten, 2014) visualization of the softmax outputs. We
compare the results of NegLabel and DualCnst, using the
ImageNet-10 dataset for ID and ImageNet-20 dataset for
OOD. In this setup, there are several semantically similar
pairs of ID and OOD categories, such as: horse (ID) vs.
zebra (OOD), Swiss mountain dog (ID) vs. timberwolf
(OOD), warplane (ID) vs. space shuttle (OOD), and garbage
truck (ID) vs. steam locomotive (OOD). In the presence
of such datasets, methods that expand the label space, like
NegLabel, often struggle to find labels with a high overlap
probability with true OOD labels, leading to suboptimal
performance. As shown in (a) with the black bounding box,
it is difficult to distinguish between ID and OOD samples,
as they tend to interweave. DualCnst, however, addresses
this issue by leveraging visual information to differentiate
between ID and OOD samples. As demonstrated in (b),
we incorporate visual information into NegLabel, allowing
for better differentiation based on unique visual features
inherent to ID and OOD samples, such as the stripes on a
zebra or the ears and fur of a timberwolf. These observations
indicate that DualCnst enables a significant improvement in
the classifier’s ability, making semantically similar ID and
OOD samples more separable.
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Figure 3: Ablation study on (a) score function, (b) Different Layers, and (c) Different Weight. ID dataset: ImageNet-10;
OOD dataset: ImageNet-20.

(b) NegLabel (b) DualCnst

ID Samples

OOD Samples

Figure 4: T-SNE visualizations obtained by the classifier
output. ID set: ImageNet-10; OOD set: ImageNet-20. We
use distinct colors to represent different OOD classes. Our
DualCnst method achieves better separability between ID
and OOD classes compared to NegLabel.

5. Related Works
OOD Detection. Early methods for OOD detection in-
clude classification-based approaches that rely on a well-
trained ID classifier, such as MSP (Hendrycks & Gim-
pel, 2017). Density-based methods, such as likelihood ra-
tios (Ren et al., 2019) and likelihood regret (Xiao et al.,
2020), estimate the likelihood of data points to identify
OOD samples. Reconstruction-based methods (Denouden
et al., 2018; Zhou, 2022; Liu et al., 2023) leverage recon-
struction errors from generative models, including VAEs
and autoencoders, to detect OOD instances. Post-hoc meth-
ods, including ODIN (Liang et al., 2017) and energy-based
scoring (Liu et al., 2020), enhance pre-trained models with-
out modifying their parameters. More recently, multimodal
vision-language models such as CLIP and its variants (Yuan
et al., 2021) have enabled zero-shot OOD detection by lever-
aging text-image embeddings, marking a shift toward more
versatile and scalable solutions.

Zero-shot OOD Detection. Recent advancements in zero-
shot OOD detection take advantage of the powerful pre-
training capabilities of models like CLIP, allowing for ef-
ficient OOD detection without the need for large external
OOD labels. ZOC (Esmaeilpour et al., 2022) introduces a
CLIP-based framework for zero-shot OOD detection, where
potential OOD labels are generated for input instances us-
ing image captions, aligning images and text for zero-shot
classification. MCM (Ming et al., 2022) performs OOD de-
tection by utilizing scaled softmax values of the maximum

logits as confidence scores, but it relies solely on ID class
labels and does not fully exploit open-world textual infor-
mation. CLIPN (Wang et al., 2023) improves the model’s
ability to reject mismatched inputs by introducing learnable
"negative" prompts and a dedicated "negative" text encoder.
EOE (Cao et al., 2024) utilizes the expert knowledge and
reasoning abilities of large language models (LLMs) to gen-
erate potential anomalies, enabling more effective OOD
detection. NegLabel (Jiang et al., 2024) proposes a novel
method that enhances the distinguishability between ID
and OOD samples by mining potential OOD labels from
a corpus. However, these methods do not fully consider
the visual effectiveness of images. In contrast, DualCnst
addresses this limitation by making semantically similar ID
and OOD samples more distinguishable. Moreover, it can
be seamlessly integrated into existing OOD frameworks.

Stable Diffusion for OOD Detection. Stable Diffusion
has been explored for OOD detection in several studies.
LMD (Liu et al., 2023) introduces a diffusion-based ap-
proach for image inpainting, where the input image is recon-
structed, and the reconstruction error is used as an indicator
for OOD detection. In contrast, DualCnst employs Stable
Diffusion for image generation, offering a more efficient
solution in open-world scenarios. Unlike LMD, DualCnst
reduces the computational burden on the inference process,
making it a more practical and scalable approach for OOD
detection in dynamic environments.

6. Conclusion
In this paper, a novel perspective was introduced that in-
corporated visual metrics to improve detection accuracy
for challenging OOD samples that were semantically sim-
ilar to ID data. Building on this, the DualCnst framework
was proposed as an innovative approach for zero-shot OOD
detection. Specifically, test samples were evaluated by si-
multaneously analyzing their semantic similarity to textual
labels and their visual similarity to synthesized images gen-
erated from the textual label set using a text-to-image gen-
erative model. Finally, extensive experiments validated the
effectiveness of this perspective, demonstrating that Dual-
Consistency achieved state-of-the-art performance across
various OOD detection benchmarks.
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Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Further Experiments
A.1. Robustness to Domain Shift

Table 5 presents an evaluation of DualCnst’s robustness using the ImageNet-A (Hendrycks et al., 2021b) generalization
dataset as the ID dataset, while iNaturalist (Van Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou et al., 2017), and
Textures (Cimpoi et al., 2014) serve as OOD datasets. We compare DualCnst against state-of-the-art methods. DualCnst
outperforms NegLabel across all datasets, achieving an improvement of 2.09% in FPR95 and 0.25% in AUROC on average.

In Table 6, we further investigate the robustness of DualCnst under the same experimental setup using another generalization
dataset, ImageNet-V2 (Recht et al., 2019). The experimental results demonstrate that our proposed method exhibits superior
performance in handling domain shifts.

Table 5: Robustness results on ImageNet-A dataset. The ID class labels are the same as ImageNet. The black bold indicates
the best performance.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Energy 99.48 50.03 95.01 58.83 93.52 60.86 97.46 42.18 96.37 52.97
MaxLogit 92.88 74.14 81.54 80.55 78.51 79.06 90.00 69.41 85.73 75.79

MCM 80.41 77.02 76.12 78.92 76.90 76.48 74.10 77.36 76.88 77.45
NegLabel 4.09 98.80 44.38 89.83 60.10 82.88 64.34 80.25 43.23 87.94
DualCnst 3.54 98.99 32.41 92.79 48.66 87.04 47.77 89.54 33.09 92.09

A.2. Other OOD Detection Benchmarks

In Table 7, we present the performance evaluation results using CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) as
the ID datasets, along with four OOD datasets: iNaturalist (Van Horn et al., 2018), SUN (Xiao et al., 2010), Places (Zhou
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Table 6: Robustness results on ImageNet-V2 dataset. The ID class labels are the same as ImageNet. The black bold
indicates the best performance.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Energy 99.85 32.93 99.12 34.45 98.02 39.51 99.57 21.52 99.14 32.10
MaxLogit 83.78 83.84 83.55 81.79 80.27 80.33 93.51 64.34 85.28 77.58

MCM 44.89 92.14 51.17 89.69 56.73 86.44 69.57 81.51 55.10 87.56
NegLabel 2.47 99.40 25.69 94.46 42.03 90.00 48.90 88.46 29.77 93.08
DualCnst 1.49 99.60 21.90 94.92 36.71 90.62 50.62 88.18 27.68 93.33

et al., 2017), and Textures (Cimpoi et al., 2014). Compared to the NegLabel method, our approach demonstrates significant
performance gains. Specifically, on CIFAR-100, DualCnst achieves an average improvement of 23.59% in FPR95 and 9.34%
in AUROC. On CIFAR-10, it yields improvements of 7.56% in FPR95 and 1.39% in AUROC. Although DualCnst does
not achieve the best performance on CIFAR-10 individually, it outperforms existing methods in terms of overall average
performance across both CIFAR-10 and CIFAR-100, highlighting its effectiveness in OOD detection across diverse datasets.

Additionally, in Table 8, we follow the fine-grained dataset setup proposed by EOE (Cao et al., 2024) and conduct
experiments on CUB-200-2011 (Wah et al., 2011), STANFORD-CARS (Krause et al., 2013), Food-101 (Bossard et al.,
2014), and Oxford-IIIT Pet (Parkhi et al., 2012).Under this experimental setting, the four datasets are randomly split into
two equal subsets, with one serving as the ID dataset and the other as the OOD dataset. Since NegLabel identifies the most
semantically distant candidate labels as potential OOD categories during the OOD label mining process, its performance in
fine-grained experiments is relatively suboptimal. In contrast, DualCnst demonstrates superior performance, achieving a
1.48% reduction in FPR95 and an 8.56% improvement in AUROC.

Table 7: Additional empirical results with CIFAR-10 and CIFAR-100 as ID datasets. The bold indicates the best performance
on each dataset.

ID Dataset Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CIFAR-10

Energy 60.70 82.12 53.14 86.00 58.29 82.86 62.52 77.89 58.66 82.22
MaxLogit 8.99 97.85 11.81 97.36 16.74 95.55 11.54 97.60 12.27 97.09

MCM 17.87 96.75 30.78 93.17 36.57 90.78 16.38 96.44 25.40 94.29
NegLabel 0.55 99.84 23.31 95.50 38.70 91.53 19.33 96.65 20.47 95.88
DualCnst 0.42 99.83 15.23 97.07 25.46 94.17 10.55 98.00 12.91 97.27

CIFAR-100

Energy 82.74 74.47 67.16 81.69 68.20 80.96 81.19 66.51 74.82 75.91
MaxLogit 67.77 81.41 63.26 80.72 65.73 80.81 62.94 82.00 64.93 81.24

MCM 97.95 67.50 97.69 60.71 98.40 61.34 90.23 73.58 96.07 65.78
NegLabel 13.95 96.47 86.61 69.04 91.50 62.08 70.60 80.26 65.66 76.96
DualCnst 2.88 99.23 49.35 84.25 60.68 79.06 55.35 82.65 42.07 86.30

Average

Energy 71.72 78.30 60.15 83.84 63.25 81.91 71.86 72.20 66.74 79.06
MaxLogit 38.38 89.63 37.54 89.04 41.24 88.18 37.24 89.80 38.60 89.16

MCM 57.91 82.12 64.24 76.94 67.49 76.06 53.31 85.01 60.73 80.03
NegLabel 7.25 98.15 54.96 82.27 65.10 76.81 44.96 88.45 43.07 86.42
DualCnst 1.65 99.53 32.29 95.75 37.45 90.31 45.79 86.77 27.49 91.78

Table 8: Zero-shot fine-grained OOD detection results. he black bold indicates the best performance. The gray indicates
that the comparative methods require training or an additional massive auxiliary dataset.

Method ID CUB-100 Stanford-Cars-98 Food-50 Oxford-Pet-18 AverageOOD CUB-100 Stanford-Cars-98 Food-51 Oxford-Pet-19

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CLIPN 73.54 74.65 53.33 82.25 43.33 88.89 53.90 86.92 56.05 83.18
Energy 76.13 72.11 73.78 73.82 44.95 89.97 68.51 88.34 65.84 81.06

MaxLogit 76.89 73.00 72.18 74.80 41.73 90.79 65.66 88.49 64.11 81.77
MCM 83.58 67.51 83.99 68.71 43.38 91.75 63.92 84.88 68.72 78.21

NegLabel 82.48 68.55 79.32 70.00 37.32 92.48 66.30 88.64 66.36 79.92
DualCnst 77.99 72.58 78.87 70.38 36.18 92.85 66.46 88.45 64.88 81.07
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B. Additional Ablation Studies
B.1. Vision Backbone

This section explores the performance of DualCnst using different CLIP vision encoders.

Table 9 presents the results for ImageNet-1K (ID) with various CLIP vision encoders, including ViT-B/321, ViT-L/142,
RN503, RN50x4, RN50x16, and RN101. Across all tested encoders, DualCnst achieves the highest performance. Specifically,
compared to ViT-B/16, using ViT-L/14 results in an improvement of 2.33% in FPR95 and 0.37% in AUROC. Furthermore,
DualCnst outperforms both zero-shot and fine-tuning methods in OOD detection, achieving the best results in terms of
FPR95 and AUROC when utilizing ViT-L/14.

Table 9: Prompt ensembling for text input using different backbones. The ID dataset is ImageNet-1K. The black bold
indicates the best performance.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Energy (ViT-B/16) 79.75 83.75 79.81 83.21 70.28 83.95 88.23 71.51 79.52 80.60
MaxLogit (ViT-B/16) 67.24 87.31 66.14 86.36 61.09 85.96 80.83 76.01 68.83 83.91

MCM (ViT-B/16) 40.33 92.75 35.43 92.78 44.08 89.60 54.41 87.10 43.56 90.56
NegLabel (ViT-B/16) 1.91 99.49 20.53 95.49 35.59 91.64 43.56 90.22 25.40 94.21
DualCnst (ViT-B/16) 1.29 99.65 17.60 95.89 31.91 92.13 42.15 90.51 23.24 94.55

Energy (ViT-B/32) 89.22 79.15 81.01 81.62 61.22 87.20 87.64 71.36 79.77 79.83
MaxLogit (ViT-B/32) 79.45 83.75 68.89 84.85 52.30 88.60 79.88 75.29 70.13 83.12

MCM (ViT-B/32) 49.81 91.37 40.31 91.80 42.94 90.08 59.33 85.32 48.10 89.64
NegLabel (ViT-B/32) 3.73 99.11 22.48 95.27 34.94 91.72 50.51 88.57 27.92 93.67
DualCnst (ViT-B/32) 3.10 99.27 18.93 95.87 32.43 92.13 53.56 88.10 27.01 93.84

Energy (ViT-L/14) 79.20 85.29 76.83 84.68 65.62 87.59 87.23 70.14 77.22 81.93
MaxLogit (ViT-L/14) 63.06 89.02 60.26 88.29 52.51 89.65 80.66 73.96 64.12 85.23

MCM (ViT-L/14) 31.63 94.43 23.64 94.99 30.99 92.79 57.77 85.19 36.01 91.85
NegLabel (ViT-L/14) 1.77 99.53 22.33 95.63 32.22 93.01 42.92 89.71 24.81 94.47
DualCnst (ViT-L/14) 1.33 99.70 19.54 96.06 26.55 93.72 42.48 89.87 22.48 94.84

Energy (RN50) 94.75 75.56 86.24 81.39 86.42 78.68 92.98 69.87 90.10 76.38
MaxLogit (RN50) 86.45 81.21 74.56 84.31 78.15 81.10 86.45 74.61 81.40 80.31

MCM (RN50) 45.42 91.50 43.33 91.40 55.92 86.73 55.92 86.68 50.15 89.08
NegLabel (RN50) 2.88 99.24 26.51 94.54 42.60 89.72 50.80 88.40 30.70 92.97
DualCnst (RN50) 1.81 99.51 20.75 95.39 35.10 91.13 51.19 88.90 27.21 93.73

Energy (RN50x4) 85.55 81.25 80.13 84.81 68.84 85.40 92.09 69.28 81.65 80.19
MaxLogit (RN50x4) 74.51 85.14 65.51 87.61 58.86 87.26 84.47 74.81 70.84 83.70

MCM (RN50x4) 48.00 90.86 33.81 93.14 42.90 89.93 52.16 87.44 44.22 90.34
NegLabel (RN50x4) 2.14 99.49 17.61 96.25 30.67 92.59 50.71 88.72 25.28 94.26
DualCnst (RN50x4) 1.58 99.62 16.89 96.27 29.04 92.63 47.29 89.60 23.70 94.53

Energy (RN50x16) 73.44 86.95 65.15 88.97 73.74 83.97 84.43 76.11 74.19 84.00
MaxLogit (RN50x16) 62.10 89.05 52.35 90.45 64.74 85.69 75.66 79.37 63.71 86.14

MCM (RN50x16) 43.02 91.69 34.24 93.27 46.96 89.27 51.93 87.94 44.04 90.54
NegLabel (RN50x16) 2.00 99.48 29.11 94.18 48.14 88.85 38.74 91.23 29.50 93.43
DualCnst (RN50x16) 1.22 99.66 19.42 95.80 34.51 91.73 39.34 91.17 23.62 94.59

Energy (RN101) 97.82 71.11 87.81 81.10 85.43 77.92 95.96 62.32 91.75 73.11
MaxLogit (RN101) 92.65 77.38 74.77 84.67 75.96 81.30 90.90 68.66 83.57 78.00

MCM (RN101) 60.90 88.14 39.37 91.96 48.62 88.08 59.49 85.34 52.09 88.38
NegLabel (RN101) 2.35 99.42 21.84 95.45 41.98 90.08 53.95 87.68 30.03 93.16
DualCnst (RN101) 2.56 99.36 18.93 95.88 37.52 90.89 56.03 86.88 28.76 93.26

B.2. Generative Models

To evaluate the effectiveness of DualCnst, different generative models are employed. Table 10 compares the performance of
Stable Diffusion v1.54 and v2.15 using ImageNet-1k as the ID dataset. As Stable Diffusion v2.1 achieves superior generation
quality and text-image alignment compared to v1.5, the results under the same random seed 1 show an improvement of
0.6% in FPR95 and 0.14% in AUROC. In terms of generation speed, both models exhibit similar efficiency, requiring

1https://huggingface.co/openai/clip-vit-base-patch32
2https://huggingface.co/openai/clip-vit-large-patch14
3https://github.com/openai/CLIP
4https://github.com/CompVis/stable-diffusion
5https://huggingface.co/stabilityai/stable-diffusion-2-1
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approximately 3 seconds per synthetic image.

Table 10: The impact of randomness under different random seeds is examined, with ImageNet-1k as the ID dataset.

Generative Models
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

stable diffusion v1.5 1.27 99.65 17.30 95.94 31.61 92.15 42.91 90.32 23.27 94.51
stable diffusion v2.1 1.42 99.63 17.93 95.86 32.22 92.13 39.11 90.97 22.67 94.65

B.3. Encoder Layer

An ablation study was conducted to evaluate the effectiveness of DualCnst using different layers of CLIP’s ViT-B/16 encoder.
Table 11 presents the results for various layer combinations: (1st, 2nd, 3rd), (4th, 5th, 6th), (7th, 8th, 9th), (9th, 10th, 11th),
(3rd, 6th, 9th), and all layers. For each combination, different values of w (0.05, 0.1, 0.15, 0.25) were explored to determine
the optimal balance between pixel-level and semantic information.

The results indicate that an equal weight distribution is not necessarily optimal across different layers. For instance, when
using the (1st, 2nd, 3rd) layers, setting w = 0.05 yields the best performance, as the lower layers primarily capture
edge-related features, requiring stronger semantic guidance. In contrast, for the (9th, 10th, 11th) layers, which encode more
localized details—such as the fur and ears of a wolf or the stripes of a zebra—assigning a higher weight to visual features
leads to improved performance within the DualCnst framework.

Table 11: Using different encoder layers and weights. The ID class labels are the same as ImageNet-1k. The black bold
indicates the best performance.

Layer w
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

(1st, 2nd, 3rd)

0.05 1.36 99.65 17.56 95.88 31.75 92.11 43.55 90.21 23.55 94.46
0.10 1.38 99.65 17.76 95.80 32.34 92.02 43.53 90.12 23.75 94.40
0.15 1.38 99.64 18.08 95.69 32.87 91.91 43.51 90.02 23.96 94.32
0.25 1.45 99.62 19.19 95.39 34.78 91.55 44.50 89.73 24.98 94.07

(4th, 5th, 6th)

0.05 1.27 99.66 17.63 95.88 31.61 92.12 42.96 90.33 23.37 94.50
0.10 1.22 99.66 17.98 95.79 32.11 92.02 42.54 90.33 23.46 94.45
0.15 1.24 99.65 18.40 95.65 33.36 91.86 42.41 90.27 23.85 94.36
0.25 1.25 99.63 20.11 95.28 35.68 91.43 42.57 89.96 24.90 94.08

(7th, 8th, 9th)

0.05 1.28 99.65 17.56 95.91 31.70 92.15 42.96 90.41 23.38 94.53
0.10 1.24 99.66 17.66 95.88 31.89 92.12 42.38 90.52 23.29 94.54
0.15 1.26 99.66 17.89 95.82 32.26 92.07 41.76 90.59 23.29 94.54
0.25 1.26 99.65 18.53 95.65 33.13 91.88 41.47 90.63 23.60 94.45

(9th, 10th, 11th)

0.05 1.33 99.65 17.51 95.92 31.62 92.16 42.89 90.40 23.34 94.53
0.10 1.29 99.65 17.60 95.89 31.91 92.13 42.15 90.51 23.24 94.55
0.15 1.31 99.65 17.84 95.85 32.18 92.10 41.77 90.59 23.28 94.55
0.25 1.31 99.64 18.32 95.73 32.80 91.97 41.05 90.67 23.37 94.50

(3rd, 6th, 9th)

0.05 1.33 99.65 17.44 95.90 31.52 92.15 43.07 90.35 23.34 94.51
0.10 1.29 99.65 17.75 95.86 32.05 92.10 42.70 90.39 23.45 94.50
0.15 1.28 99.65 17.98 95.79 32.37 92.03 42.39 90.40 23.51 94.47
0.25 1.35 99.64 18.71 95.59 33.73 91.81 42.45 90.32 24.06 94.34

all layer

0.01 1.33 99.65 17.55 95.91 31.63 92.15 43.16 90.32 23.42 94.51
0.02 1.29 99.65 17.53 95.87 31.69 92.11 42.87 90.35 23.35 94.50
0.05 1.30 99.65 18.05 95.70 32.81 91.93 42.16 90.35 23.58 94.41
0.08 1.35 99.63 19.20 95.42 34.62 91.60 42.30 90.16 24.37 94.20

B.4. Fusion Parameter α Of Dual Consistency

This section presents a comprehensive ablation study on the fusion parameter α in the dual consistency method. Experiments
are conducted using ImageNet-1k, CIFAR-10, and CIFAR-100 as ID datasets, with iNaturalist, SUN, Places, and Textures
serving as OOD datasets. Additionally, experiments are performed by alternately designating ImageNet-10 and ImageNet-20
as ID and OOD datasets.

All experiments utilize the ViT-B/16 visual encoder with selected layers (9th, 10th, 11th) and a fixed weight parameter of
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w = 0.1. As shown in Table 14, the optimal α value varies across different OOD datasets for ImageNet-1k. Specifically, the
best results are obtained with α = 0.3 for iNaturalist and Places, α = 0.1 for SUN, and α = 0.2 for Textures. In the main
results, the best-performing α is selected for each OOD dataset. Notably, when α = 0, DualCnst reduces to NegLabel.

Table 12 and Table 13 present the results for the CIFAR datasets, where DualCnst consistently outperforms NegLabel.
Furthermore, as shown in Table 15, when the ID and OOD datasets exhibit semantic similarities, integrating DualCnst leads
to notable performance improvements.

Table 12: An ablation study on the fusion parameter α for cifar10.

α
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

0 0.55 99.84 23.31 95.5 38.7 91.53 19.33 96.65 20.47 95.88
0.1 0.35 99.85 17.57 96.46 30.33 93.10 12.75 97.59 15.25 96.75
0.2 0.33 99.85 15.38 96.88 26.43 93.82 10.80 97.93 13.23 97.12
0.3 0.42 99.83 15.23 97.07 25.46 94.17 10.55 98.00 12.91 97.27
0.4 0.52 99.80 15.30 97.12 25.33 94.30 10.53 97.94 12.92 97.29
0.5 0.67 99.75 15.75 97.10 25.55 94.31 11.01 97.84 13.25 97.25
0.6 0.89 99.67 16.18 97.04 26.17 94.24 11.49 97.71 13.68 97.17
0.7 1.39 99.55 16.74 96.95 26.89 94.14 11.95 97.59 14.24 97.06
0.8 1.97 99.38 17.14 96.86 27.49 94.03 12.27 97.47 14.72 96.94
0.9 3.13 99.16 17.71 96.76 27.87 93.91 12.68 97.37 15.35 96.80
1 4.74 98.88 18.27 96.66 28.26 93.79 13.14 97.26 16.10 96.65

Table 13: An ablation study on the fusion parameter α for cifar100.

α
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

0 13.95 96.47 86.61 69.04 91.5 62.08 70.6 80.26 65.66 76.96
0.1 11.63 97.18 83.36 70.68 89.27 64.39 61.79 83.27 61.51 78.88
0.2 9.55 97.72 80.42 72.56 87.11 66.52 57.20 84.67 58.57 80.37
0.3 7.51 98.11 75.99 74.40 83.68 68.46 54.77 85.01 55.49 81.50
0.4 6.40 98.42 72.84 76.14 79.90 70.26 55.48 84.72 53.65 82.39
0.5 5.29 98.66 67.84 77.83 75.92 72.01 55.62 84.22 51.17 83.18
0.6 4.40 98.85 63.12 79.45 72.40 73.70 55.12 83.74 48.76 83.94
0.7 3.80 99.00 58.51 80.94 68.65 75.30 54.96 83.38 46.48 84.66
0.8 3.33 99.11 54.69 82.25 65.38 76.75 54.73 83.10 44.53 85.30
0.9 2.97 99.18 51.49 83.35 62.70 78.00 55.12 82.86 43.07 85.85
1 2.88 99.23 49.35 84.25 60.68 79.06 55.35 82.65 42.07 86.30

Table 14: An ablation study on the fusion parameter α for ImageNet-1k.

α
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

0 1.91 99.49 20.53 95.49 35.59 91.64 43.56 90.22 25.40 94.21
0.1 1.29 99.65 17.60 95.89 31.91 92.13 42.15 90.51 23.24 94.55
0.2 1.09 99.68 18.15 95.77 31.79 91.93 42.00 90.32 23.26 94.42
0.3 0.99 99.69 18.49 95.67 31.63 91.73 43.40 89.85 23.63 94.23
0.4 0.99 99.67 18.97 95.33 32.29 91.39 46.13 89.07 24.60 93.87
0.5 1.00 99.64 19.93 95.13 33.40 91.08 48.78 88.37 25.78 93.56
0.6 1.12 99.59 20.83 94.90 34.38 90.77 51.65 87.64 26.99 93.22
0.7 1.43 99.52 21.89 94.66 35.43 90.46 53.60 86.87 28.09 92.88
0.8 1.73 99.42 22.79 94.41 36.04 90.17 54.86 86.08 28.85 92.52
0.9 2.08 99.29 23.67 94.15 36.59 89.88 56.56 85.27 29.73 92.15
1 2.86 99.12 24.72 93.89 37.60 89.59 58.30 84.42 30.87 91.75

B.5. The Randomness Of Stable Diffusion

An ablation study is conducted to assess the impact of Stable Diffusion’s randomness on the effectiveness of DualCnst in
generating synthetic images. Specifically, synthetic images are generated using three different random seeds, and the results
are evaluated on ImageNet-1k. The experiments employ the ViT-B/16 visual encoder with selected layers (9th, 10th, 11th),
along with fixed parameters w = 0.1 and α = 0.1.
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Table 15: An ablation study on the parameter α, alternating ImageNet10 and ImageNet20 as ID and OOD datasets.

α
ID ImageNet-10 ImageNet-20 AverageOOD ImageNet-20 ImageNet-10

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

0.0 5.10 98.86 17.60 97.04 11.35 97.95
0.1 2.20 98.77 13.60 97.61 8.15 98.31
0.2 3.10 98.98 12.20 97.44 7.65 98.21
0.3 4.00 98.89 18.60 97.06 11.30 97.98
0.4 4.90 98.72 18.40 97.09 11.65 97.91
0.5 5.30 98.54 18.00 97.12 11.65 97.83
0.6 6.40 98.33 17.80 97.16 12.10 97.75
0.7 8.60 98.07 16.80 97.21 12.70 97.64
0.8 10.30 97.78 15.40 97.41 12.85 97.60
0.9 12.60 97.47 13.60 97.65 13.10 97.56
1 13.10 97.14 48.00 97.65 30.55 97.40

As shown in Table 16, the performance remains consistent across different random seeds, indicating that the inherent
randomness of Stable Diffusion does not significantly impact the effectiveness of DualCnst.

Table 16: The impact of randomness under different random seeds is examined, with ImageNet-1k as the ID dataset.

Random
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

random 1 1.27 99.65 17.30 95.94 31.61 92.15 42.91 90.32 23.27 94.51
random 2 1.29 99.65 17.60 95.89 31.91 92.13 42.15 90.51 23.24 94.55
random 3 1.26 99.66 18.16 95.64 32.26 91.90 41.90 90.33 23.39 94.38

B.6. Score Function

We present the specific form of the score function designed in the ablation study. They are SMAX, SEnergy and SMaxLogit.
Firstly, we review the definition of the fused visual-text cosine similarity s̃ as:

s̃i(x) = α · si,img(x) + (1− α) · si,text(x) (7)

where

si,img(x) =

L∑
l=1

wl · s(l)i,img(x)

with

s
(l)
i,img(x) =

I(l)(x) · I(l)(x̄i)

∥I(l)(x)∥ · ∥I(l)(x̄i)∥
, x̄i ∈ X̄ (8)

and

si,text(x) =
I(x) · T (ti)

∥I(x)∥ · ∥T (ti)∥
(9)

The specific form of SMAX is as follows:

SMAX(x;Y id ∪ Yood, X̄ , T , I) =


1
K , max

i∈[1,K]
s̃i < max

j∈[K+1,K+M ]
s̃j ,

max
i∈[1,K]

es̃i(x)∑K
j=1 es̃j(x) , max

i∈[1,K]
s̃i ≥ max

j∈[K+1,K+M ]
s̃j .

(10)

SMAX indicates that if the s̃j (j ∈ [K + 1,K +M ]) of an input sample is larger than the s̃i (i ∈ [1,K]), this sample is
recognized to be an OOD sample. This implies that the maximum similarity observed between the input sample and any
OOD visual-text similarity exceeds the similarity between the input sample and any ID visual-text similarity. Otherwise, the
input sample is evaluated based on the maximum softmax probability.
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Similarly, SEnergy and SMaxLogit are modifications of the Energy and MaxLogit metrics, respectively, incorporating visual-text
similarity into their secondary components.

SEnergy(x;Y id ∪ Yood, X̄ , T , I) = −T

log

K∑
i=1

ef̃i(x)/T − log

K+M∑
j=K+1

ef̃j(x)/T

 , (11)

SMaxLogit(x;Y id ∪ Yood, X̄ , T , I) = max
i∈[1,K]

s̃i(x)− max
j∈[K+1,K+M]

s̃j(x). (12)

Table 17 presents the detailed experimental results on ImageNet-1k (ID).

Table 17: Additional ablation studies on score functions. The bold indicates the best performance on each dataset.

Score Funtion
OOD Dataset AverageiNaturalist SUN Places Texture

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

SMAX 100.00 83.00 100.00 82.16 100.00 80.62 100.00 80.28 100.00 81.51
SEnergy 1.98 99.42 20.26 95.52 35.54 91.49 45.69 89.96 25.87 94.10
SMaxLogit 6.26 98.58 29.54 93.79 43.18 89.55 50.78 87.95 32.44 92.47
SDualCnst 0.99 99.69 17.60 95.89 31.63 91.73 42.00 90.32 23.05 94.41

C. Experimental Configuration and Details
C.1. Details of Mining Potential OOD Labels

Before generating synthetic images, it is crucial to identify effective OOD labels by leveraging ID labels as a reference.
Specifically, we define the set of ID labels as Y id = {y1, y2, . . . , yK} and collect a pool of nouns and adjectives from
open-world resources (e.g., WordNet (Fellbaum, 1998), ConceptNet (Speer et al., 2017), and Wikipedia Categories (wik,
2023)) as candidate OOD labels, denoted by Yc = {ỹ1, ỹ2, . . . , ỹC}, where C represents the total number of candidates.

To assess the semantic relationship between candidate OOD labels and ID labels, we utilize CLIP’s text encoder to extract
text embeddings for both sets. The embedding of a candidate OOD label is given by ẽc = T (prompt(ỹc)), while the
embedding of an ID label is represented as ek = T (prompt(yk)). By default, we employ the prompt format "A photo
of a <label>" to generate these embeddings.

Following the methodology outlined in NegMining (Jiang et al., 2024), we quantify the semantic distance between each
candidate OOD label and the ID labels using negative cosine similarity. Specifically, for a given candidate OOD label, we
compute its negative cosine similarity with all ID label embeddings, resulting in K similarity scores. The overall semantic
distance of an OOD label to the ID label set is then determined as the η-percentile (default η = 0.05) of these scores:

dc = percentileη
(
{− cos (ẽc, ek)}Kk=1

)
. (13)

After computing distances for all candidate OOD labels, we select the top M = 10, 000 labels with the greatest distances.
The selected OOD label set is defined as:

Yood = TopK
(
{dc}Cc=1,Yc,M

)
. (14)

During the generation phase, DualCnst utilizes Yood ∪ Y id as the label space for synthetic image generation. To ensure
semantic consistency, it employs stable diffusion to generate images that align with these labels, thereby providing
meaningful visual representations to enhance the inference process.

C.2. Evaluation Metrics

In this study, we adopt the most widely used evaluation metrics in the OOD detection domain, including FPR95 and
AUROC (Yang et al., 2022). To further assess the effectiveness of the proposed dual consistency method under additional
evaluation criteria, we also report AUPR results for CLIP-B/16 in Table 18. The results demonstrate that our dual consistency
method achieves superior performance across all evaluation metrics.
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Table 18: Performance in terms of AUPR. ID dataset: The experiments are zero-shot OOD detection results with ImageNet-
1K as the ID dataset. The black bold indicates the best performance. The gray indicates that the comparative methods
require training or an additional massive auxiliary dataset.

Method
OOD Dataset AverageiNaturalist SUN Places Texture

CLIPN 99.15 98.59 98.22 98.38 98.59
Energy 96.84 96.50 96.16 94.66 96.04

MaxLogit 97.74 97.12 96.65 95.61 96.78
MCM 98.86 98.28 97.49 98.04 98.17

NegLabel 99.80 98.79 97.76 98.08 98.61
DualCnst 99.92 99.02 98.01 98.72 98.92

C.3. Experimental Configuration

This paper introduces a dual consistency (DualCnst) method, implemented using Python 3.8 and PyTorch 1.13 library (Paszke
et al., 2019), with all experiments conducted on a single NVIDIA RTX A6000 GPU. Prior to experimentation, the proposed
method generates synthetic images, with each image requiring approximately 3 seconds for generation. To mitigate
redundant computational overhead across multiple runs, we precompute and store the visual features of the generated
images.

In Table 19, we report the computational cost of DualCnst in generating synthetic images based on NegLabel (Jiang et al.,
2024) and provide a comparative analysis of inference times. In ImageNet-1k experiments, DualCnst requires 10 hours and
22 minutes to generate one synthetic image per label, while inference takes 17 minutes. In comparison, NegLabel requires
14 minutes and 35 seconds for inference on ImageNet-1k. These results demonstrate that DualCnst does not introduce
excessive computational overhead during inference.

For the selection of negative label parameters, we adopt the optimal configuration recommended in NegLabel. All
experiments in this study are conducted within the CLIP framework. Unless otherwise specified, we utilize CLIP-B/16 for
zero-shot OOD detection. The default hyperparameter settings are as follows: We set w = 0.1 and extract intermediate-layer
features from the 9th, 10th, and 11th layers of the visual encoder, which are then fused with the final semantic features. The
sum-softmax score is employed, with the fusion parameter set to α = 0.1 and the temperature parameter to τ = 0.01.

Table 19: Computational cost of DualCnst and NegLabel on ImageNet-1k.

Method Image Generation Time Inference Time

DualCnst 10h 22m 17m
NegLabel (Jiang et al., 2024) - 14m 35s
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