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ABSTRACT

In this work, we explore the possibility of training high-parameter 3D Gaussian
splatting (3DGS) models on large-scale, high-resolution datasets. We design a
general model parallel training method for 3DGS, named RetinaGS, which uses a
proper rendering equation and can be applied to any scene and arbitrary distribution
of Gaussian primitives. It enables us to explore the scaling behavior of 3DGS in
terms of primitive numbers and training resolutions that were difficult to explore
before and surpass previous state-of-the-art reconstruction quality. We observe a
clear positive trend of increasing visual quality when increasing primitive numbers
with our method. We also demonstrate the first attempt at training a 3DGS model
with more than one billion primitives on the full MatrixCity dataset that attains a
promising visual quality.

1 INTRODUCTION

Figure 1: Left: Different sizes of datasets require varying levels of computational power and numbers
of 3DGS Primitives. Larger and higher-resolution datasets can no longer be trained using just a single
GPU, which limits the pursuit of scale and fidelity in 3DGS reconstruction. Right: The billion-level
model bring better visual experience than million-level model on MatrixCity-ALL dataset, which is
trained via our distributed modeling with 64 GPUs.

3D scene reconstruction with Gaussian Splatting (GS)(Kerbl et al., 2023) has drastically improved
rendering quality and rendering speed over previous neural 3D representation(Mildenhall et al., 2021;
Zhang et al., 2020; Chen et al., 2022). However, this success has been largely limited to reconstructing
scenes with limited image or video resolution (typically <= 1600 pixels wide), data volume, and
view distance. Viewing the scene at high resolution or close range remains an unsolved challenge. To
achieve imaging effects flawless to the human retina, which we refer to as the goal of retina-level
reconstruction, we would desire to train the GS models with higher spatial resolution, larger datasets,
and more varying viewing distances, as illustrated in Fig. 1 (right).

Despite the success in scaling up machine learning models (Vaswani et al., 2017; Radford et al.,
2019; Brown et al., 2020). Training of 3DGS based reconstruction models have largely been limited
to a single GPU. However, in Fig. 1 we can see that the time and memory footprint needed for
3DGS training on moderately size scene quickly grows infeasible for even the best single GPUs. To
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overcome the limitation of single GPUs, recent works (Lin et al., 2024; Liu et al., 2024) resort to
approximately distributed training for specific data distribution, i.e., the bird’s-eye view city data.
These methods train independent 3DGS models in parallel on multiple GPUs, where each submodel
is responsible for one subspace of the dataset. These subspaces are carefully partitioned to minimize
the chance that a ray passes through multiple subspaces, and thus to ensure that the individual models’
rendering output can be concatenated to represent a large-scale scene. For bird’s-eye view datasets,
planar cells exist as a convenient choice of the partition. However, when the subspace partition
for “one subspace per ray” is infeasible, as shown in Fig. 2, these approximate distributed training
methods will either meet difficulty in training or lead to visible artifacts in rendering.

Figure 2: Left: Histogram about number of subspaces hit by each ray. We analyzed three datasets:
the Matrixcity(Li et al., 2023b) bird-view dataset, the Matrixcity street-view dataset, and the Scan-
net++(Yeshwanth et al., 2023) indoor dataset. All scenes were divided into 8 subspaces along the x,
y, and z directions. The statistics reveal that these datasets exhibit very different data distributions.
Right: Visual comparison of our distributed model and previous approximate distributed models.

In this paper, we present a method for distributed training of GS models that retains the exact
equivalence to the existing single-GPU training scheme, while not relying on a certain data distribution.
We start with the fact that the model space can be divided into a set of non-overlaping convex subspaces
and we can identify one subset of splats for each subspace so that all the subsets collectively form an
overlapping cover of the set of all splats. We then show that with a proper subset assignment strategy,
each ray’s original iterative alpha-blending process can be formulated in a hierarchical manner. In
this formulation, which applies to any distribution of splats and model space, we can first compute
partial color and alpha values for each subset and then obtain the rendered pixel color value by orderly
merging these partial values.

We derive our training method based on this formulation and designate one worker for each subset.
In the forward process, all workers compute subset-level color and alpha values for all rays in
parallel. The partial values, sufficient to compute rendered pixel values, can then be merged through
cross-worker communication with a minimal message size. After computing the reconstruction loss
and its gradients w.r.t. the partial values, we can distribute the corresponding gradients to each worker
and run the backward process in parallel. We further improve training efficiency by utilizing KD-tree
to produce subspaces that induce subsets with more even cardinality.

We validate the training method on multiple 3D reconstruction datasets with high resolutions training.
The trained GS models outperform single GPU trained 3DGS (Kerbl et al., 2023) and several baseline
distirbuted 3DGS training approaches on Mip-NeRF360(Barron et al., 2022), Mega-NeRF (Turki
et al., 2022), ScanNet++(Yeshwanth et al., 2023) and MatrixCity(Li et al., 2023b) datasets. Through
scaling study, we observe a clear tendency to improve visual quality when the GS models grow in
splat numbers. Finally, we demonstrate to our knowledge the first attempt at training GS models
with billion-scale primitives on city-level dataset with 140k images, resulting in unprecedented visual
experience using million-scale primitives.

2 RELATED WORK

Distributed Neural Radiance Fields. NeRF (Mildenhall et al., 2021) has revolutionized 3D scene
reconstruction and novel viewpoint generation with its photorealistic rendering capabilities, sparking
a series of subsequent innovations focused on enhancing various aspects of the technology. These

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

advancements strive to improve rendering quality (Zhang et al., 2020; Baumgartner et al., 2004;
Barron et al., 2021; 2022), optimize training speed (Sun et al., 2022; Fridovich-Keil et al., 2022; Chen
et al., 2022; Müller et al., 2022), increase memory efficiency (Reiser et al., 2023; Li et al., 2023a; Rho
et al., 2023) and expand the scale of reconstructed scenes (Zhenxing & Xu, 2022; Xiangli et al., 2022;
Tancik et al., 2022; Turki et al., 2022; Xu et al., 2023; Zhang et al., 2023; Song & Zhang, 2023; Wu
et al., 2023). While these fields might benefit from larger models or enhanced computational power, it
is primarily the pursuit of scaling scene sizes that has driven researchers to explore ways to speed up
or scale up NeRF models. Switch-NeRF (Zhenxing & Xu, 2022) utilizes a Mixture of Experts (MoE)
to increase the capacity of NeRF models, enabling them to represent urban-scale scenes effectively.
Bungee-NeRF (Xiangli et al., 2022) employs a hierarchical assembly of submodels, granting the
model extensive multiscale representational capabilities. Recognizing the limitations imposed by
GPU computational power and memory on model scale and training velocity, some researchers have
begun deconstructing models into smaller components, adopting distributed approaches to address
these challenges. Block-NeRF (Tancik et al., 2022) segments cities into multiple overlapping blocks,
each represented by its own NeRF model, and uses neural networks to fuse the outputs of multiple
NeRF models in image space, achieving seamless visual results. Mega-NeRF (Turki et al., 2022)
introduces a simple geometric clustering algorithm and partitions training pixels into various NeRF
submodules, which can then be trained in parallel. All the distributed methods mentioned above only
perform 2D planar cell partitioning on the ground, which is suitable for flat urban scenes. However,
for detailed rendering of typical indoor scenes and scenes that have a combination for multiple view
types, large model capacity is required in both the vertical and horizontal directions, making these
methods insufficient for the task.
Distributed Point-Based Representation. NeRF utilizes a volumetric rendering approach that
inherently limits their inference speed, which makes it challenging to achieve real-time performance.
Several studies (Yu et al., 2021; Reiser et al., 2023; Yariv et al., 2023; Tang et al., 2023) have focused
on optimizing inference speeds, yet achieving both real-time performance and high-quality rendering
remains elusive. In contrast, the 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) method, which
employs a point-based scene representation, achieves state-of-the-art rendering quality and speed and
has significant advantages in training speed. However, the "shallow and wide" structure of the 3DGS
model and its explicit representation lead to a larger parameter count and increased training memory
footprint. VastGaussian (Lin et al., 2024) is the first attempt to large-scale scene reconstruction
with 3DGS. It divides the ground plane into a series of 2D cells with one splat subset for each cell.
Unlike our method, all subsets are mutually exclusive and considered as independent 3DGS models in
training. To mitigate the deviation from the original 3DGS rendering equation at subspace boundaries,
VastGaussian introduces additional nearby cameras and Gaussian primitives to assist in training at the
cost of increased compute and memory. CityGaussian (Liu et al., 2024) uses a similar partitioning
strategy but trains an additional coarse GS model as the baseline to regularize submodels. However,
artifacts caused by deviation from the proper rendering equation could still intensify at certain view
angles and overcome the mitigations. As a result, these approaches mostly assume bird-eye-view
urban scenarios due to their simplicity in view angles and splat distribution. Our method is based
on an equivalent form of the 3DGS rendering equation. Thus it can be applied to any scene with
arbitrary splat distribution.
Distributed Deep Learning. Our work is also related to distributed deep learning, which aims to
scale up the training system for deep neural network models (Dean et al., 2012; Abadi et al., 2015; Li
et al., 2020). Early approaches revolve around training multi-GPU convolutional neural networks
(CNNs) (Krizhevsky et al., 2012) on image (Jia et al., 2014) and video (Wang et al., 2015) datasets,
with data parallelism being highly efficient thanks to CNNs’ high compute to bandwidth ratio. Recent
development of large language models presented new challenges in distributing model parameters
and larger clusters, resulting in dedicated model parallelism (Krizhevsky, 2014) approaches for
Transformers (Vaswani et al., 2017) models, such as tensor-parallelism (Shoeybi et al., 2019),
pipeline parallelism (Huang et al., 2018), or hybrid parallelism (Shoeybi et al., 2019; Liu & Abbeel,
2023; Lepikhin et al., 2020). Fully sharded data parallelism (FairScale authors, 2021), a type of
redundancy-free data parallelism (Rajbhandari et al., 2020), also works great with LLM training. Our
method is best described as model parallelism as it partitions GS model parameters onto multiple
workers to distribute workload and incurs communication cost only for Gaussian on the subspace
boundaries. This is well suited to GS models’ relatively low compute-to-parameter ratio1, which
makes data parallelism less efficient.

1also known as operational intensity (Williams et al., 2009).
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3 APPROACH

3.1 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) utilizes a series of anisotropic 3D Gaussian primitives to explicitly
characterize scenes. Each Gaussian primitive, known as a splat, is defined by its central position
µ ∈ R3, and a covariance matrix Σ ∈ R3×3. A splat’s influence at any given point x within the
scene’s world coordinate system is attenuated by the Gaussian function

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). (1)

In practice, the function is truncated to save computation. Each splat also carries an opacity α ∈ R.
Its color attributes F ∈ RC are expressed through spherical harmonics (SH) c ∈ R3 to allow
view-dependent textures. A view is rendered through rasterization the Gaussian primitives onto a
2D imaging plane, during which the 3D Gaussians are projected to 2D Gaussians G′(x′) through
Jacobian linearization as described in (Zwicker et al., 2001). As a result, the influence weight of each
3D primitive on a given ray l needs to be computed through path integration, whereas a 2D primitive
only requires a single sampling, that is, g(l) = G′(x′), where x′ is the intersection point of the ray l
with the 2D imaging plane. By employing alpha-blending, these primitives are rendered with the
following rendering equation

C(l) =
∑

gi∈Nl

ciσi

∏
gj∈Nl, j<i

(1− σj), σi = αigi(l), (2)

where Nl denotes the set of Gaussian primitives that contribute to ray l, arranged in order of their
depth.

3.2 DISTRIBUTED TRAINING OF 3DGS

Given the set of all splats N = {gi} and K workers {w1, . . . , wK}, we aim to devise a distributed
training method with minimal communication overhead that still conforms to the rendering equation
in Eq. 2. We first divide the scene space into a set of convex subspaces S1, . . . , SK . One worker
is expected to only work on a subspace and incur minimal communication needs. To achieve this,
we generate K subsets N1, . . . , NK and N1 ∪N2 ∪ ... ∪NK = N , which are allowed to overlap.
Below we show how to create Nk and manipulate Eq. 2 for distributed computation for the workers.

Given a ray l and a subspace Sk, we can always obtain a subset of N as Nlk which denotes all splats
that, when projected to a truncated 2D Gaussian according to l, intersects with l within Sk. Note since
the Gaussians are truncated, not all splats will intersect with l. Since Nlk is ray dependent, we define
N∗

k = ∪lNlk as the union of Nlk for all possible rays. Going through every possible ray to obtain
N∗

k is infeasible. However, we know that any intersection point must reside on its corresponding 3D
ellipse. So, we can instead define Nk as the set of splats whose corresponding 3D ellipsoid intersects
with Sk. Then it is obvious that N∗

k ⊆ Nk and Nk is not dependent on any specific ray. To render the
color for a given ray, We can first calculate the partial color Ck(l) and the partial opacity Tk(l) on
Nk as

Ck(l) =
∑

gi∈Nk

ciσi1(gi ∈ Nlk)
∏

gj∈Nk, j<i

(1− σj1(gj ∈ Nlk)),

=
∑

gi∈Nlk

ciσi

∏
gj∈Nlk, j<i

(1− σj) (3)

Tk(l) =
∏

gi∈Nk

(1− σi1(j ∈ Nlk))

=
∏

gi∈Nlk

(1− σi), (4)

where σi = αig
k
i (l) and 1(·) denotes the indicator function which equals to 1 when the condition

specified is true and otherwise equals to 0. Note splats in Nk are ordered by their distance to the
origin of l to attain the index i, j in Eq. 3 and Eq. 4. The introduction of the indicator function allows
the accumulation to be carried on the entire Nk for any ray l. Due to the convex assumption of the
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subspaces, when a ray traverses a subspace, the segment of the ray within that subspace is necessarily
continuous (Rockafellar, 2015). This enables us to achieve a fully equivalent and complete rendering
result by simply performing a weighted sum of the computation results from each subspace along
the direction of the ray’s path. The partial values can then be merged in the order that the ray passes
through them, which can be represented as a permutation ol of size K:

C(l) =
∑
k∈ol

Ck(l)
∏

m∈ol, m<k

Tm(l). (5)

Substituting Eq. 3 and 4 into Eq. 5, we can observe that Eq. 2 is equivalent to Eq. 5 for any l. The
relevant proof process has been placed in the appendix. Therefore we have transformed the rendering
equation of 3DGS into the independent computation of subset-level partial colors and opacities and
the subsequent merging. All workers can compute their corresponding partial values in parallel for
each subset Nk and perform the merge step through cross-worker communication. The result will be
identical to when rendered on a single worker.

Evaluating the condition of gi ∈ Nlk. Since the subspaces S1, S2, . . . , SK seamlessly partition the
entire space and each subspace is convex, it necessitates that all dividing surfaces are planar. Each
subspace Sk can be represented by a set of plane constraints: Sk = {x ∈ R3 : n⊤

km · x + dkm ≤
0, for all m} , which allows us to transform the indicator function 1 in Eq 3 into a form more
amenable to computation:

1(gi ∈ Nlk) = 1(xi ∈ Sk) =
∏
m

1(n⊤
km · xi + dkm ≤ 0), (6)

where xi represents the world coordinates of the intersection between the ray l and the 2D Gaussian
primitive G′

i. Expressing the ray l as the equation l(t) = o + td, which is defined by the camera
center o ∈ R3 and the unit ray direction d ∈ R3, then xi precisely equals the projection center point
ui of gi onto l, which can be represented as: xi = ui + (d⊤ · (o− ui))d.

3.3 DISTRIBUTED TRAINING WITH SUB-MODELS

To balance each subset’s size and each worker’s workload, we employ a KD tree to determine
the partition of the subspaces {Sk}. Initially, we construct a three-dimensional KD tree with a
depth of L using the center coordinates of Gaussian primitives. The KD tree recursively uses
hyperplanes perpendicular to the X, Y, and Z axes to bisect the space and equally divided primitives,
ultimately resulting in a series of rectangular subspaces S1, S2, . . . , SK , where K = 2L. Then, the
corresponding subsets for each worker can be derived as: Nk = {i : n⊤

km ·ui+dkm ≤ Di, for all m},
where ui is the center of primitives and Di is the truncation threshold for gi. In our implementation,
we set Di to be three times the length of the major axis of the Gaussian ellipsoid. Appendix.Fig 11
provides an intuitive illustration of how the primitives near the subspace boundary work.

3.4 THE COMPLETE TRAINING PIPELINE

Figure 3: By employing planes generated using KD-Tree, we spatially partitioned the initial 3DGS
model to a set of sub-models. These sub-models share certain primitives only when these primitives
cross boundaries. The rendering results of sub-models are then merged to form the final rendered
image. After the loss is computed uniformly, the corresponding gradients are returned to each
sub-model to update their primitive parameters.

The actual training pipeline is shown in Figure 3. We denote each subset as a sub-model and
assign it to a separate GPU, while a central manager is responsible for managing the KD-Tree and
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the subspaces {Sn}. This manager also handles the parsing of incoming rendering requests and
distributes rendering tasks to the relevant sub-models. The computational results from all sub-models,
{Tk} and {Ck}, are sent back to the central manager. These results can be represented in a 2D
map with the same resolution as the target image, which consumes only minimal communication
bandwidth. The central manager then completes the final rendering based on Eq 5, calculates the loss,
and sends the gradient back to each sub-model for model parameter updates. After a predetermined
number of training epochs, we repeat the partitioning process to accommodate any significant shift
of primitive centers. Note that primitives belonging to intersections of multiple subsets require
gradient synchronization after each training step. Empirically, we found this could be omitted without
significantly affecting reconstruction quality.

3.4.1 PRIMITIVE INITIALIZATION

In the original 3D Gaussian Splatting (3DGS) approach, initialization and densification processes
involved numerous heuristic strategies and hyperparameters to ensure that Gaussian primitives were
appropriately positioned. Such strategies made it difficult to control the number of primitives,
impeding our ability to effectively scale the model size and leverage the advantages of distributed
modeling to enhance rendering fidelity. Furthermore, we found that the densification process
does not always promote an increase in primitives in high-resolution training, which makes it
counterproductive.

In this paper, we adopt a simple yet effective strategy for initialization as shown in Fig 3 and do
not adjust the number afterwards. We performed Multi-View Stereo (MVS) on all training data to
obtain depth estimations for all training viewpoints, which were then transformed into dense 3D point
clouds. These point clouds could be flexibly sampled and initialized as Gaussian primitives. This
streamlined approach allowed us to control the number of primitives as desired. It is also easier to
balance workers’ workloads thanks to a predefined number of primitives.

4 EXPERIMENTS

Datasets. Our performance evaluation spanned 4 datasets that comprising indoor and outdoor
scenes. These datasets include all scenes from full-resolution MipNeRF-360 (Barron et al., 2022). We
extended our analysis to high-resolution scenarios based on the ScanNet++ dataset (Yeshwanth et al.,
2023), with a focus on scenes labeled 108ec0b806 and 8133208cb6. After distortion correction, two
scenes provided 863 and 476 high-resolution images respectively (8408 pixels wide). Furthermore,
we conducted tests in large-scale environments, including the Residence, Building, and Rubble
datasets from Mega-NeRF (Turki et al., 2022), as well as the entire MatrixCity Small City Aerial
dataset (referred to as MatrixCity-Aerial, 1920×1080), consisting of 6,362 images. We also utilized
the MatrixCity Small City Dense Street dataset, sampling 5 angles every meter along the centerline of
streets to gather 135,290 images (1000×1000). From the Small City Dense Street dataset, we selected
a focused test set of 2,480 images (referred to as MatrixCity-M). By combining all images from Aerial
and Dense Street (referred to as MatrixCity-ALL), we conducted a comprehensive Billion GS level
reconstruction. We followed the official Train/Test splits for Mega-NeRF and MatrixCity-Aerial, and
used every eighth image for testing in other datasets as recommended by MipNeRF-360. To obtain
superior MVS initial points, we reran Colmap’s sparse reconstruction based on full-resolution images
of MipNeRF-360 and ScanNet++ to obtain poses (using official provided poses of Mage-NeRF and
MatrixCity), and subsequently performed dense reconstruction (Schönberger et al., 2016) on all
datasets except MatrixCity-ALL. For MatrixCity-ALL, we replaced depth estimations of MVS with
official provided depth estimations to avoid super long time cost of Colmap’s dense reconstruction
(using MVS for MatrixCity-M and MatrixCity-Aerial).
Baselines and Metrics. Our comparisons include 3DGS and NeRF-related works. For fair com-
parisons, results from an equal number of iterations from our own 3DGS runs are also presented.
We primarily assessed the rendered image quality using three metrics consistent with 3DGS: PSNR,
SSIM, and LPIPS.
Implementation Details. Our method is based on 3DGS. We extended the number of training
iterations to 60k on MipNeRF-360, ScanNet++ and Maga-NeRF and 20 epochs on all MatrixCity
datasets for both 3DGS and ours to ensure adequate convergence. We do not adjust the number
of primitives during training. Since the primitives are initialized with relatively accurate position
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parameters from MVS, we reduce the learning rate for the position parameters in all primitives from
1.6× 10−6 to 1.6× 10−8 with a exponential decay function, which is 1/100th of the original setting
in 3DGS. All experiments are conducted on NVIDIA A100 GPUs.

4.1 EXPERIMENTAL RESULTS

(a) Garden (b) ScanNet++ (c) MatrixCity-M

Figure 4: PSNR vs. #GS analysis on various datasets. The markers represent 3DGS baseline, and
the curves denote our method. Results at various training resolutions are upsampled and evaluated
at the full resolution to unify the metrics. Our method achieves superior PSNR simply by naively
scale the model size. This trend is more pronounced on the high-fidelity dataset ScanNet++ and
larger-scale dataset MatrixCity-M.

Fig 4presents our quantitative results on the MipNeRF-360 (Garden), ScanNet++ (108ec0b806),
and MatrixCity-M with various training resolution. To standardize the metrics and align them more
closely with direct visual perception, we upsample all rendered results from different resolutions to
the full resolution using nearest-neighbor upsampling and evaluate on the full resolution. Utilizing
MVS for initializing Gaussian points and disabling densification allows us to easily control the
number of model points. Furthermore, our distributed training approach enables the use of a large
number of Gaussian primitives. We observed a strong positive correlation between the number of
Gaussian primitives and the final model’s PSNR. When the number of primitives is similar, our PSNR
closely matches the quality of 3DGS trained on a single GPU; however, we can effectively achieve
higher PSNRs by simply increasing the number of primitives. Table 1 shows results on more datasets,
uniformly showing that our method consistently performs better across all datasets, especially on
high-resolution and large-scale datasets. Note that, although current state-of-the-art methods on
bird-view datasets utilize complex post-processing or ensemble strategies, we achieved comparable
results simply by increasing the number of Gaussian splats.

Figure 5: Visualization of models and with various number of primitives and training resolution on
Garden and ScanNet++ dataset (top and bottom metrics: training resolution/splats count/PSNR). As
we get close to objects or zoom into camera, higher training resolutions and more primitives help
maintain rendering clarity and reveal more details, which bring better visual experience and better
quantitative results than the 3DGS baseline.

We further analyze the relationship between the number of Gaussian points and subjective visual
effects, as illustrated in Fig. 5. As revealed in Fig. 4, at a fixed number of GS primitives, higher
resolutions yield better image quality; similarly, at a fixed high resolution, an increased number
of primitives enhances image quality. We believe that the number of primitives determines the
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(a) Garden (b) MatrixCity-M

Figure 6: Comparative Analysis of Desification Strategies. The curves denote our MVS initial-
ization, showing a clear positive correlation between the number of primitives and visual quality.
Baseline results from the 3DGS method with its default densification threshold of 0.0002 are marked
as black dots. Lower thresholds were tested to assess their impact on point densification compared to
the default setting. The findings suggest that reducing the threshold does not consistently increase
model size and fails to outperform our method.

capacity of the 3DGS model, while higher image resolutions bring a greater amount of information,
necessitating a larger model capacity to achieve adequate fitting. Therefore, to ensure a Retina
quality effect, both high resolution and high-quality rendering are essential, which in turn imposes
substantial demands on the number of GS primitives.

Table 1: Comparison with SOTA. RetinaGS is the first distributed method for general scenes, e.g.
street and indoor scenes. It is also comparable to specialized methods for bird-view scenes via simply
increasing splats. * means that results are averaged across scenes. See Appendix for complete results.

Datasets MatrixCity-Aerial MatrixCity-M Mega-NeRF* ScanNet++* MipNeRF-360*
Pixels 13.19B 2.48B 2.25B 33.44B 2.32B
Type Bird-View Street-View Bird-View Indoor Indoor

Metrics PSNR #GS PSNR #GS PSNR #GS PSNR #GS PSNR #GS

GP-NeRF 23.56 N/A - - 22.46 N/A - - - -
3DGS 23.67 9.7M 27.62 1.01M 22.56 6.57M 28.42 1.87M 27.33 3.02M

CityGaussian 27.46 23.7M - - 23.10 11.23M - - - -
Ours 27.70 217.30M 31.12 62.18M 23.03 35.57M 28.91 39.89M 27.78 27.79M

4.2 EXPLORATION STUDY

Initialization and Densification. In practice, we observed issues with the original 3DGS’s point-
growing strategy, as shown in Appendix.Fig 12. Excessive iterations lead to deteriorating results.
Using an aggressive densification strategy in 3DGS did not yield better outcomes, and excessive point
splitting made the training unstable. In Fig 6, we show that initialization via MVS results in a more
stable training run and better model quality. By simply initializing using MVS with more primitives,
our model surpasses the original 3DGS even with careful tuning.

Validity of Distribute Rendering we devise a simple test to validate the correctness of the underlying
rendering equation in our method. We precisely positioned the camera’s optical axis on the dividing
plane between two subspaces sharing this plane, ensuring that each ray passes through only one
subspace. In this case, each image pixel should only be rendered by primitives on one side of the
plane. If we do not perform the step, we would expect a crisp boundary between color pixels and
completely dark pixels on the partially rendered images from the two subspaces. As shown in Fig. 7,
our method exhibits the expected behavior while baseline partition approaches (Lin et al., 2024; Liu
et al., 2024) that deviates from the proper rendering equation fails the test.

KD-Tree Partition vs. Fixed-size Partition. We compare our KD-Tree partitioning approach to a
naive grid division strategy that uniformly divides the scene into blocks of fixed size in Table 2. The
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Our Partition Cell-based Cell-based + Fine-tune
PSNR: 27.053 PSNR: - PSNR: 26.969

Figure 7: Our two submodels produced distinctly bounded outputs, and result in better PSNR results.
In contrast, spatial-based partitions exhibited blurry boundaries that could not be entirely eliminated
by comprehensive end-to-end refinement, demonstrating the superiority of our approach.

KD-Tree effectively balances the number of primitives in each sub-model, resulting in an optimal
balance in peak memory usage and the best training speed. KD-tree is used throughout all experiments
work without further notice.

Table 2: Partition efficiency. Range of primitive count, memory usage, total time, and communication
time of submodels under different partition strategies in distributed training. The fixed-size division
resulted in sub-models with significantly varied number of primitives and computation times, which
increased time spent blocking on waiting, thereby reducing the overall system efficiency.

Partition Batch Size GPU Primitives (M) Mem.(GiB) Total Time (s) Comm. (s)

KD-Tree 2 2 2.87∼2.88 6.26∼6.32 26.74∼26.76 4.39∼6.04
Fixed-size 2 2 0.81∼4.93 3.57∼9.01 32.45∼32.52 1.04∼23.83

KD-Tree 4 4 1.45∼1.47 5.26∼5.40 18.87∼18.90 5.33∼7.34
Fixed-size 4 4 0.05∼4.79 3.08∼10.95 32.26∼32.41 4.77∼26.83

Model parallelism vs. Data parallelism. We compare data parallel training and training with our
method, which is model parallelism, on the MipNeRF-360-garden dataset. As shown in Table 3, our
method achieve lower peak memory usage and higher training throughput. It is evident that even
with such a small GS model, our method maintains its advantages over DP and single GPU training.
However, as the size of submodels decreases and their quantity increases, it becomes increasingly
challenging for MP to achieve workload balance. As shown in Table 4, a straightforward solution is
to increase the batch size, which statistically leads to a more balanced workload.

Table 3: Parallel mechanism efficiency. Ef-
ficiency of data parallel(DP) and our model
parallel(MP) with various setting.

Parallel GPU Batch Size Mem. Time Comm.

- 1 1 8.33 32.35 0

DP 2 2 9.66 45.36 29.22
MP 2 2 6.26 26.76 6.038

DP 4 4 9.66 30.62 21.56
MP 4 4 5.26 18.90 7.34

DP 8 8 9.66 20.38 16.51
MP 8 8 5.05 17.738 12.73

Table 4: Efficiency vs. Batch Size. Increasing
the batch size enhances the balance of compu-
tation across processes, resulting in reduced
communication blocking.

Bacth Size GPU-ID Mem. Time Comm.

1 0 5.52 31.20 6.51
1 5.31 31.84 10.94

2 0 6.26 26.76 6.04
1 6.32 26.74 4.39

4 0 7.79 25.29 6.20
1 7.93 25.30 3.02
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5 TRAINING BILLION-SCALE 3DGS

Our distributed modeling method enables the GS model to scale up to extremely large sizes. Typically,
scenes in previous work are trained on a single GPU using 10 to 200 million pixels with a GS model
with millions of primitives. In this work, we use 64 A100 GPUs for 10 days to train a 3DGS model
with a billion primitives on the MatrixCity-ALL dataset, which includes 141,652 images containing
over 148 billion pixels. There have been no previous reports of successful training at this scale of
training set or model size. After training for 20 epochs, billion-scale model achieve superior results
compared to million-scale model as shown in Fig 8, Table. 5 and supplementary videos.

GT 1B 100M 10M

Figure 8: 1 billion vs. 100 million vs. 10 million splats for Maxtricity-ALL reconstruction.

Table 5: Qualitative results on full MatrixCity-All dataset (with 148 billion pixels). More primitives
effectivesly improve performance with the help of the proposed distributed training method, reaching
quality unattainable by single GPU training.

Metrics SSIM↑ PSNR↑ LPIPS↓ #GS GPU

Ours-10M 0.608 16.53 0.536 10.00M 1
Ours-100M 0.761 23.07 0.397 100.00M 8

Ours-1B 0.815 25.50 0.282 1023.13M 64

6 CONCLUSION AND LIMITATION

In this paper, we study the problem of distributed training of 3DGS models. We devise a model
parallelism-based training method that utilizes a proper rendering equation to avoid artifacts. This
allows us to significantly expand the model scale in terms of primitive numbers and seamlessly
support large-scale scene reconstruction and detailed rendering. Although our method allows for
improving the model’s capacity by simply increasing the number of splats, this also results in a
higher computational load per ray. We believe that an effective hierarchical Level-of-Detail (LOD)
description will address this issue, leading to enhancements in performance and rendering quality.
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A APPENDIX

A.1 MORE VISUALIZATIONS

GT Ours 3DGS

Figure 9: Comparisons of high-primitive-number RetinaGS models and 3DGS baseline on ScanNet++
dataset. Note the superior rendering quality, especially on high-frequency textures like text and
leaves.
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Dividing plane Our Partition Cell-based Cell-based + Fine-tune

Figure 10: Blending results at the sub-space boundaries for different partition approaches. Approxi-
mate methods leak through the boundaries in partial rendering, resulting in obvious artifacts after
merging. RetinaGS uses the equivalent form the 3DGS rendering equation, so it does not have this
issue and shows no artifacts in the final rendering.
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Figure 11: In RetinaGS, one primitive may be involved in partial value computation of more than
one overlapping subsets, but the indicator function in Eq 6 ensures sure its color and opacity will
only take effect once. For each ray, it can be illustrated as each subspace only possesses a fraction of
the Gaussian ellipsoid, and the fragments collaboratively and distributively accomplish the task of a
single primitive.

Figure 12: In 3DGS, as the densification threshold decreases, the growth rate of GS increases.
However, due to the rapid growth rate, floaters are generated in the model that cannot be eliminated
through training (marked with red rectangle), which deteriorates the reconstruction effect. The MVS
initialization strategy introduced in RetinaGS will mitigate this issue.
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A.2 EQUIVALENCE DERIVATION

Starting from Eq. 3 for partial color Ck(l):

Ck(l) =
∑

gi∈Nlk

ciσi

∏
gj∈Nlk, j<i

(1− σj),

Eq. 4 for partial opacity Tk(l):
Tk(l) =

∏
gi∈Nlk

(1− σi),

and Eq. 5 for merging formula:

C(l) =
∑
k∈ol

Ck(l)
∏

m∈ol, m<k

Tm(l),

we substitute the expressions for partial color and partial opacity into the merging formula:

C(l) =
∑
k∈ol

 ∑
gi∈Nlk

ciσi

∏
gj∈Nlk, j<i

(1− σj)

 ∏
m∈ol, m<k

 ∏
gj∈Nlm

(1− σj)

 .

Now we expand this expression step by step. First, applying the distributive property of multiplication,
we can pull out the inner summation symbol:

C(l) =
∑
k∈ol

∑
gi∈Nlk

ciσi

 ∏
gj∈Nlk, j<i

(1− σj)

 ∏
m∈ol, m<k

∏
gj∈Nlm

(1− σj)

 .

Then, utilizing the commutative property of multiplication, we can rewrite the above equation as:

C(l) =
∑
k∈ol

∑
gi∈Nlk

ciσi

 ∏
gj∈Nl1

(1− σj)

 ...

 ∏
gj∈Nl(k−1)

(1− σj)

 ·

 ∏
gj∈Nlk, j<i

(1− σj)

 .

Since Nl in Eq 2 and Nlk in Eq 3 follow a consistent rule for the ordering of elements, we have
Nl = (Nl1, Nl2, ...NlK). This allows us to reduce the product symbols to one:

C(l) =
∑
k∈ol

∑
gi∈Nlk

ciσi

 ∏
gj∈Nl, j<i

(1− σj)

 .

Similarly, nested summations can also be simplified into one:

C(l) =
∑

gi∈Nl

ciσi

 ∏
gj∈Nl, j<i

(1− σj)

 ,

which has the exact same form as Eq 2. Now we prove the original rendering equation of 3DGS is
equivalent to the hierarchical form underlying the distributed training framework of RetinaGS.

A.3 IMPLEMENTATION DETAILS OF TRAINING BILLION-SCALE 3DGS

For the initialization of primitives, we employed depth maps officially provided by MatrixCity, where
each aerial view image contributes approximately 1/64 million primitives, and each street view image
contributes about 1/128 million primitives (excluding pixels exceeding the maximum depth). Due
to the application of anti-aliasing on the depth maps, the directly generated initialization points are
accompanied by noise. Such noise in the initialization can lead to floters in the training results,
potentially compromising the visual quality of the model. To obtain a clean point cloud, we utilized
DBSCAN for noise filtration, treating aerial and street views separately. For aerial views, the epsilon
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and minimum number of points were set to 1 m and 15, respectively, while for street views, these
parameters were established at 1 m and 20, respectively. Following the noise reduction process, an
additional 2% of primitives were added to represent the sky (initialized as hemispheres at a fixed
distance from the city center, with the fixed distance being twice the length of the city), culminating
in a total of 1 Billion primitives.

We spatially partitioned the initial primitives to 64 sub-models and do not adjust the number of
primitives during training. Since the primitives are initialized with accurate geometrical parameters,
we reduce the learning rate for the position parameters from 1.6 × 10−7 to 1.6 × 10−9 with a
exponential decay function. Besides, we reduce the learning rate for the scale parameters from
5× 10−4 to 5× 10−6 with a exponential decay function to avoid unusually large primitives.

A.4 MORE EXPERIMENTAL RESULTS

In the main text, for the sake of brevity, we did not present the experimental results for each individual
scene on several datasets. Instead, we provided the average results across all scenes contained in
each dataset (as highlighted with * in the experimental tables of the main text). Here, we present the
detailed experimental data for each individual scene.

Table 6: Experimental results on MatrixCity. R & P means resolution and training pixels. The dagger
†indicates that the result was obtained using the same number of training iterations (20 epochs) as
our method.

Datasets MatrixCity-Aerial MatrixCity-M
R & P 1920×1080 & 13.19B 1000×1000 & 2.48B

Metrics SSIM↑ PSNR↑ LPIPS↓ #GS SSIM↑ PSNR↑ LPIPS↓ #GS

3DGS 0.735 23.67 0.384 9.70M 0.839 27.62 0.282 1.01M
CityGaussian 0.865 27.46 0.204 23.70M - - - -

3D-GS† 0.833 26.56 0.244 25.06M 0.851 27.81 0.271 1.53M
Ours 0.840 27.70 0.177 217.3M 0.932 31.12 0.110 62.18M

Table 7: Experimental results (60K iterations) on Mega-NeRF.

Datasets Residence Rubble Building

Metrics SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓
Mega-NeRF 0.628 22.08 0.489 0.553 24.06 0.516 0.547 20.93 0.504

Switch-NeRF 0.654 22.57 0.457 0.562 24.31 0.496 0.579 21.54 0.474
GP-NeRF 0.661 22.31 0.448 0.565 24.06 0.496 0.566 21.03 0.486

3DGS 0.751 21.43 0.274 0.709 24.47 0.337 0.723 21.74 0.302
CityGaussian 0.813 22.00 0.211 0.813 25.77 0.228 0.778 21.55 0.246

Ours 0.781 21.87 0.217 0.760 25.09 0.234 0.754 22.14 0.227

Table 8: PSNR vs. Primitive numbers (60K iterations) on Mega-NeRF.

Datasets Residence Rubble Building
R & P 1368×912 & 3.19B 1152×864 & 1.64B 1152×864 & 1.91B

Metrics PSNR #GS PSNR #GS PSNR #GS

3DGS 21.43 6.42M 24.47 4.7M 21.44 8.6M
Ours 21.87 51.41M 25.09 27.9M 22.14 27.4M
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Table 9: Experimental results (60K iterations) on ScanNet++.

Datasets 108ec0b806 8133208cb6
R & P 8408×5944 & 43.13B 8408×5935 & 23.75B

Metrics SSIM↑ PSNR↑ LPIPS↓ #GS SSIM↑ PSNR↑ LPIPS↓ #GS

3DGS 0.881 28.95 0.408 2.65M 0.908 27.89 0.355 1.09M
Ours 0.883 29.71 0.395 47.59M 0.908 28.11 0.340 32.19M

Table 10: #GS for Mip-NeRF360 scenes under 1.6K resolution and full resolution. The full marks
the results obtained in full resolution. The dagger †marks the results obtained in our own experiments
(60K iterations).

Method Scenes bicycle garden flowers stump treehill room counter kitchen bonsai
Resolution-Wide 4946 5187 5025 4978 5068 3114 3115 3115 3118

Pixels-full 3.15B 3.22B 2.87B 2.05B 2.37B 2.00B 1.55B 1.80B 1.89B

3D-GS† 7.03M 6.92M 4.11M 5.34M 4.17M 1.80M 1.27M 1.95M 1.05M
Ours 31.67M 62.94M 20.53M 15.32M 22.75M 22.41M 22.83M 28.31M 23.43M

3D-GS†-full 5.04M 7.39M 3.11M 3.30M 2.61M 1.70M 1.20M 1.91M 0.97M
Ours-full 31.67M 62.94M 20.53M 15.32M 22.75M 22.41M 22.83M 28.31M 23.43M

Table 11: SSIM scores for Mip-NeRF360 scenes under 1.6K resolution and full resolution. The full
marks the results obtained in full resolution. The dagger †marks the results obtained in our own
experiments (60K iterations).

Method Scenes bicycle garden flowers stump treehill room counter kitchen bonsai

3D-GS 0.771 0.868 0.605 0.775 0.638 0.914 0.905 0.922 0.938
3D-GS† 0.770 0.866 0.623 0.771 0.641 0.931 0.919 0.933 0.950

Mip-NeRF360 0.685 0.813 0.583 0.744 0.632 0.913 0.894 0.920 0.941
iNPG 0.491 0.649 0.450 0.574 0.518 0.855 0.798 0.818 0.890

Plenoxel 0.496 0.606 0.431 0.523 0.509 0.841 0.759 0.648 0.814
Ours 0.776 0.870 0.624 0.777 0.650 0.935 0.927 0.941 0.958

3D-GS†-full 0.732 0.817 0.604 0.795 0.696 0.922 0.917 0.926 0.941
Ours-full 0.751 0.827 0.635 0.800 0.703 0.927 0.925 0.932 0.947

Table 12: PSNR scores for Mip-NeRF360 scenes under 1.6K resolution and full resolution. The
full marks the results obtained in full resolution. The dagger †marks the results obtained in our own
experiments (60K iterations).

Method Scenes bicycle garden flowers stump treehill room counter kitchen bonsai

3D-GS 25.25 27.41 21.52 26.55 22.49 30.63 28.70 30.32 31.98
3D-GS† 25.33 27.58 21.85 26.74 22.46 31.93 29.54 31.52 33.10

Mip-NeRF360 24.37 26.98 21.73 26.40 22.87 31.63 29.55 32.23 33.46
iNPG 22.19 24.60 20.34 23.63 22.36 29.27 26.44 28.55 30.34

Plenoxel 21.91 23.49 20.09 20.66 22.24 27.59 23.62 23.42 24.67
Ours 25.41 27.74 21.94 26.86 22.67 32.86 29.91 32.49 34.09

3D-GS†-full 24.47 26.67 20.78 26.23 22.34 31.57 29.33 31.72 32.92
Ours-full 24.86 27.06 21.58 26.58 22.42 31.65 29.90 32.23 33.76
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Table 13: LPIPS scores for Mip-NeRF360 scenes under 1.6K resolution and full resolution. The
full marks the results obtained in full resolution. The dagger †marks the results obtained in our own
experiments (60K iterations).

Method Scenes bicycle garden flowers stump treehill room counter kitchen bonsai

3D-GS 0.205 0.103 0.336 0.210 0.317 0.220 0.204 0.129 0.205
3D-GS† 0.200 0.107 0.320 0.223 0.317 0.186 0.172 0.112 0.168

Mip-NeRF360 0.301 0.170 0.344 0.261 0.339 0.211 0.204 0.127 0.176
iNPG 0.487 0.312 0.481 0.450 0.489 0.301 0.342 0.254 0.227

Plenoxel 0.506 0.386 0.521 0.503 0.540 0.418 0.441 0.447 0.398
Ours 0.181 0.100 0.316 0.218 0.287 0.160 0.139 0.099 0.134

3D-GS†-full 0.375 0.268 0.438 0.386 0.447 0.277 0.261 0.188 0.263
Ours-full 0.290 0.195 0.379 0.334 0.362 0.233 0.212 0.163 0.223
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