
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETINAGS: SCALABLE TRAINING FOR DENSE SCENE
RENDERING WITH BILLION-SCALE 3D GAUSSIANS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work, we explore the possibility of training high-parameter 3D Gaussian
splatting (3DGS) models on large-scale, high-resolution datasets. We design a
general model parallel training method for 3DGS, named RetinaGS, which uses a
proper rendering equation and can be applied to any scene and arbitrary distribution
of Gaussian primitives. It enables us to explore the scaling behavior of 3DGS in
terms of primitive numbers and training resolutions that were difficult to explore
before and surpass previous state-of-the-art reconstruction quality. We observe a
clear positive trend of increasing visual quality when increasing primitive numbers
with our method. We also demonstrate the first attempt at training a 3DGS model
with more than one billion primitives on the full MatrixCity dataset that attains a
promising visual quality.

1 INTRODUCTION

Figure 1: Left: Different sizes of datasets require varying levels of computational power and numbers
of 3DGS Primitives. Larger and higher-resolution datasets can no longer be trained using just a single
GPU, which limits the pursuit of scale and fidelity in 3DGS reconstruction. Right: The billion-level
model bring better visual experience than million-level model on MatrixCity-ALL dataset, which is
trained via our distributed modeling with 64 GPUs.

3D scene reconstruction with Gaussian Splatting (GS)(Kerbl et al., 2023) has drastically improved
rendering quality and rendering speed over previous neural 3D representation(Mildenhall et al., 2021;
Zhang et al., 2020; Chen et al., 2022). However, this success has been largely limited to reconstructing
scenes with limited image or video resolution (typically <= 1600 pixels wide), data volume, and
view distance. Viewing the scene at high resolution or close range remains an unsolved challenge. To
achieve imaging effects flawless to the human retina, which we refer to as the goal of retina-level
reconstruction, we would desire to train the GS models with higher spatial resolution, larger datasets,
and more varying viewing distances, as illustrated in Fig. 1 (right).

Despite the success in scaling up machine learning models (Vaswani et al., 2017; Radford et al.,
2019; Brown et al., 2020). Training of 3DGS based reconstruction models have largely been limited
to a single GPU. However, in Fig. 1 we can see that the time and memory footprint needed for
3DGS training on moderately size scene quickly grows infeasible for even the best single GPUs. To

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

overcome the limitation of single GPUs, recent works (Lin et al., 2024; Liu et al., 2024) resort to
approximately distributed training for specific data distribution, i.e., the bird’s-eye view city data.
These methods train independent 3DGS models in parallel on multiple GPUs, where each submodel
is responsible for one subspace of the dataset. These subspaces are carefully partitioned to minimize
the chance that a ray passes through multiple subspaces, and thus to ensure that the individual models’
rendering output can be concatenated to represent a large-scale scene. For bird’s-eye view datasets,
planar cells exist as a convenient choice of the partition. However, when the subspace partition
for “one subspace per ray” is infeasible, as shown in Fig. 2, these approximate distributed training
methods will either meet difficulty in training or lead to visible artifacts in rendering.

Figure 2: Left: Histogram about number of subspaces hit by each ray. We analyzed three datasets:
the Matrixcity(Li et al., 2023b) bird-view dataset, the Matrixcity street-view dataset, and the Scan-
net++(Yeshwanth et al., 2023) indoor dataset. All scenes were divided into 8 subspaces along the x,
y, and z directions. The statistics reveal that these datasets exhibit very different data distributions.
Right: Visual comparison of our distributed model and previous approximate distributed models.

In this paper, we present a method for distributed training of GS models that retains the exact
equivalence to the existing single-GPU training scheme, while not relying on a certain data distribution.
We start with the fact that the model space can be divided into a set of non-overlaping convex subspaces
and we can identify one subset of splats for each subspace so that all the subsets collectively form an
overlapping cover of the set of all splats. We then show that with a proper subset assignment strategy,
each ray’s original iterative alpha-blending process can be formulated in a hierarchical manner. In
this formulation, which applies to any distribution of splats and model space, we can first compute
partial color and alpha values for each subset and then obtain the rendered pixel color value by orderly
merging these partial values.

We derive our training method based on this formulation and designate one worker for each subset.
In the forward process, all workers compute subset-level color and alpha values for all rays in
parallel. The partial values, sufficient to compute rendered pixel values, can then be merged through
cross-worker communication with a minimal message size. After computing the reconstruction loss
and its gradients w.r.t. the partial values, we can distribute the corresponding gradients to each worker
and run the backward process in parallel. We further improve training efficiency by utilizing KD-tree
to produce subspaces that induce subsets with more even cardinality.

We validate the training method on multiple 3D reconstruction datasets with high resolutions training.
The trained GS models outperform single GPU trained 3DGS (Kerbl et al., 2023) and several baseline
distirbuted 3DGS training approaches on Mip-NeRF360(Barron et al., 2022), Mega-NeRF (Turki
et al., 2022), ScanNet++(Yeshwanth et al., 2023) and MatrixCity(Li et al., 2023b) datasets. Through
scaling study, we observe a clear tendency to improve visual quality when the GS models grow in
splat numbers. Finally, we demonstrate to our knowledge the first attempt at training GS models
with billion-scale primitives on city-level dataset with 140k images, resulting in unprecedented visual
experience using million-scale primitives.

2 RELATED WORK

Distributed Neural Radiance Fields. NeRF (Mildenhall et al., 2021) has revolutionized 3D scene
reconstruction and novel viewpoint generation with its photorealistic rendering capabilities, sparking
a series of subsequent innovations focused on enhancing various aspects of the technology. These

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

advancements strive to improve rendering quality (Zhang et al., 2020; Baumgartner et al., 2004;
Barron et al., 2021; 2022), optimize training speed (Sun et al., 2022; Fridovich-Keil et al., 2022; Chen
et al., 2022; Müller et al., 2022), increase memory efficiency (Reiser et al., 2023; Li et al., 2023a; Rho
et al., 2023) and expand the scale of reconstructed scenes (Zhenxing & Xu, 2022; Xiangli et al., 2022;
Tancik et al., 2022; Turki et al., 2022; Xu et al., 2023; Zhang et al., 2023; Song & Zhang, 2023; Wu
et al., 2023). While these fields might benefit from larger models or enhanced computational power, it
is primarily the pursuit of scaling scene sizes that has driven researchers to explore ways to speed up
or scale up NeRF models. Switch-NeRF (Zhenxing & Xu, 2022) utilizes a Mixture of Experts (MoE)
to increase the capacity of NeRF models, enabling them to represent urban-scale scenes effectively.
Bungee-NeRF (Xiangli et al., 2022) employs a hierarchical assembly of submodels, granting the
model extensive multiscale representational capabilities. Recognizing the limitations imposed by
GPU computational power and memory on model scale and training velocity, some researchers have
begun deconstructing models into smaller components, adopting distributed approaches to address
these challenges. Block-NeRF (Tancik et al., 2022) segments cities into multiple overlapping blocks,
each represented by its own NeRF model, and uses neural networks to fuse the outputs of multiple
NeRF models in image space, achieving seamless visual results. Mega-NeRF (Turki et al., 2022)
introduces a simple geometric clustering algorithm and partitions training pixels into various NeRF
submodules, which can then be trained in parallel. All the distributed methods mentioned above only
perform 2D planar cell partitioning on the ground, which is suitable for flat urban scenes. However,
for detailed rendering of typical indoor scenes and scenes that have a combination for multiple view
types, large model capacity is required in both the vertical and horizontal directions, making these
methods insufficient for the task.
Distributed Point-Based Representation. NeRF utilizes a volumetric rendering approach that
inherently limits their inference speed, which makes it challenging to achieve real-time performance.
Several studies (Yu et al., 2021; Reiser et al., 2023; Yariv et al., 2023; Tang et al., 2023) have focused
on optimizing inference speeds, yet achieving both real-time performance and high-quality rendering
remains elusive. In contrast, the 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) method, which
employs a point-based scene representation, achieves state-of-the-art rendering quality and speed and
has significant advantages in training speed. However, the "shallow and wide" structure of the 3DGS
model and its explicit representation lead to a larger parameter count and increased training memory
footprint. VastGaussian (Lin et al., 2024) is the first attempt to large-scale scene reconstruction
with 3DGS. It divides the ground plane into a series of 2D cells with one splat subset for each cell.
Unlike our method, all subsets are mutually exclusive and considered as independent 3DGS models in
training. To mitigate the deviation from the original 3DGS rendering equation at subspace boundaries,
VastGaussian introduces additional nearby cameras and Gaussian primitives to assist in training at the
cost of increased compute and memory. CityGaussian (Liu et al., 2024) uses a similar partitioning
strategy but trains an additional coarse GS model as the baseline to regularize submodels. However,
artifacts caused by deviation from the proper rendering equation could still intensify at certain view
angles and overcome the mitigations. As a result, these approaches mostly assume bird-eye-view
urban scenarios due to their simplicity in view angles and splat distribution. Our method is based
on an equivalent form of the 3DGS rendering equation. Thus it can be applied to any scene with
arbitrary splat distribution.
Distributed Deep Learning. Our work is also related to distributed deep learning, which aims to
scale up the training system for deep neural network models (Dean et al., 2012; Abadi et al., 2015; Li
et al., 2020). Early approaches revolve around training multi-GPU convolutional neural networks
(CNNs) (Krizhevsky et al., 2012) on image (Jia et al., 2014) and video (Wang et al., 2015) datasets,
with data parallelism being highly efficient thanks to CNNs’ high compute to bandwidth ratio. Recent
development of large language models presented new challenges in distributing model parameters
and larger clusters, resulting in dedicated model parallelism (Krizhevsky, 2014) approaches for
Transformers (Vaswani et al., 2017) models, such as tensor-parallelism (Shoeybi et al., 2019),
pipeline parallelism (Huang et al., 2018), or hybrid parallelism (Shoeybi et al., 2019; Liu & Abbeel,
2023; Lepikhin et al., 2020). Fully sharded data parallelism (FairScale authors, 2021), a type of
redundancy-free data parallelism (Rajbhandari et al., 2020), also works great with LLM training. Our
method is best described as model parallelism as it partitions GS model parameters onto multiple
workers to distribute workload and incurs communication cost only for Gaussian on the subspace
boundaries. This is well suited to GS models’ relatively low compute-to-parameter ratio1, which
makes data parallelism less efficient.

1also known as operational intensity (Williams et al., 2009).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 APPROACH

3.1 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) utilizes a series of anisotropic 3D Gaussian primitives to explicitly
characterize scenes. Each Gaussian primitive, known as a splat, is defined by its central position
µ ∈ R3, and a covariance matrix Σ ∈ R3×3. A splat’s influence at any given point x within the
scene’s world coordinate system is attenuated by the Gaussian function

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ). (1)

In practice, the function is truncated to save computation. Each splat also carries an opacity α ∈ R.
Its color attributes F ∈ RC are expressed through spherical harmonics (SH) c ∈ R3 to allow
view-dependent textures. A view is rendered through rasterization the Gaussian primitives onto a
2D imaging plane, during which the 3D Gaussians are projected to 2D Gaussians G′(x′) through
Jacobian linearization as described in (Zwicker et al., 2001). As a result, the influence weight of each
3D primitive on a given ray l needs to be computed through path integration, whereas a 2D primitive
only requires a single sampling, that is, g(l) = G′(x′), where x′ is the intersection point of the ray l
with the 2D imaging plane. By employing alpha-blending, these primitives are rendered with the
following rendering equation

C(l) =
∑

gi∈Nl

ciσi

∏
gj∈Nl, j<i

(1− σj), σi = αigi(l), (2)

where Nl denotes the set of Gaussian primitives that contribute to ray l, arranged in order of their
depth.

3.2 DISTRIBUTED TRAINING OF 3DGS

Given the set of all splats N = {gi} and K workers {w1, . . . , wK}, we aim to devise a distributed
training method with minimal communication overhead that still conforms to the rendering equation
in Eq. 2. We first divide the scene space into a set of convex subspaces S1, . . . , SK . One worker
is expected to only work on a subspace and incur minimal communication needs. To achieve this,
we generate K subsets N1, . . . , NK and N1 ∪N2 ∪ ... ∪NK = N , which are allowed to overlap.
Below we show how to create Nk and manipulate Eq. 2 for distributed computation for the workers.

Given a ray l and a subspace Sk, we can always obtain a subset of N as Nlk which denotes all splats
that, when projected to a truncated 2D Gaussian according to l, intersects with l within Sk. Note since
the Gaussians are truncated, not all splats will intersect with l. Since Nlk is ray dependent, we define
N∗

k = ∪lNlk as the union of Nlk for all possible rays. Going through every possible ray to obtain
N∗

k is infeasible. However, we know that any intersection point must reside on its corresponding 3D
ellipse. So, we can instead define Nk as the set of splats whose corresponding 3D ellipsoid intersects
with Sk. Then it is obvious that N∗

k ⊆ Nk and Nk is not dependent on any specific ray. To render the
color for a given ray, We can first calculate the partial color Ck(l) and the partial opacity Tk(l) on
Nk as

Ck(l) =
∑

gi∈Nk

ciσi1(gi ∈ Nlk)
∏

gj∈Nk, j<i

(1− σj1(gj ∈ Nlk)),

=
∑

gi∈Nlk

ciσi

∏
gj∈Nlk, j<i

(1− σj) (3)

Tk(l) =
∏

gi∈Nk

(1− σi1(j ∈ Nlk))

=
∏

gi∈Nlk

(1− σi), (4)

where σi = αig
k
i (l) and 1(·) denotes the indicator function which equals to 1 when the condition

specified is true and otherwise equals to 0. Note splats in Nk are ordered by their distance to the
origin of l to attain the index i, j in Eq. 3 and Eq. 4. The introduction of the indicator function allows
the accumulation to be carried on the entire Nk for any ray l. Due to the convex assumption of the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

subspaces, when a ray traverses a subspace, the segment of the ray within that subspace is necessarily
continuous (Rockafellar, 2015). This enables us to achieve a fully equivalent and complete rendering
result by simply performing a weighted sum of the computation results from each subspace along
the direction of the ray’s path. The partial values can then be merged in the order that the ray passes
through them, which can be represented as a permutation ol of size K:

C(l) =
∑
k∈ol

Ck(l)
∏

m∈ol, m<k

Tm(l). (5)

Substituting Eq. 3 and 4 into Eq. 5, we can observe that Eq. 2 is equivalent to Eq. 5 for any l. The
relevant proof process has been placed in the appendix. Therefore we have transformed the rendering
equation of 3DGS into the independent computation of subset-level partial colors and opacities and
the subsequent merging. All workers can compute their corresponding partial values in parallel for
each subset Nk and perform the merge step through cross-worker communication. The result will be
identical to when rendered on a single worker.

Evaluating the condition of gi ∈ Nlk. Since the subspaces S1, S2, . . . , SK seamlessly partition the
entire space and each subspace is convex, it necessitates that all dividing surfaces are planar. Each
subspace Sk can be represented by a set of plane constraints: Sk = {x ∈ R3 : n⊤

km · x + dkm ≤
0, for all m} , which allows us to transform the indicator function 1 in Eq 3 into a form more
amenable to computation:

1(gi ∈ Nlk) = 1(xi ∈ Sk) =
∏
m

1(n⊤
km · xi + dkm ≤ 0), (6)

where xi represents the world coordinates of the intersection between the ray l and the 2D Gaussian
primitive G′

i. Expressing the ray l as the equation l(t) = o + td, which is defined by the camera
center o ∈ R3 and the unit ray direction d ∈ R3, then xi precisely equals the projection center point
ui of gi onto l, which can be represented as: xi = ui + (d⊤ · (o− ui))d.

3.3 DISTRIBUTED TRAINING WITH SUB-MODELS

To balance each subset’s size and each worker’s workload, we employ a KD tree to determine
the partition of the subspaces {Sk}. Initially, we construct a three-dimensional KD tree with a
depth of L using the center coordinates of Gaussian primitives. The KD tree recursively uses
hyperplanes perpendicular to the X, Y, and Z axes to bisect the space and equally divided primitives,
ultimately resulting in a series of rectangular subspaces S1, S2, . . . , SK , where K = 2L. Then, the
corresponding subsets for each worker can be derived as: Nk = {i : n⊤

km ·ui+dkm ≤ Di, for all m},
where ui is the center of primitives and Di is the truncation threshold for gi. In our implementation,
we set Di to be three times the length of the major axis of the Gaussian ellipsoid. Appendix.Fig 11
provides an intuitive illustration of how the primitives near the subspace boundary work.

3.4 THE COMPLETE TRAINING PIPELINE

Figure 3: By employing planes generated using KD-Tree, we spatially partitioned the initial 3DGS
model to a set of sub-models. These sub-models share certain primitives only when these primitives
cross boundaries. The rendering results of sub-models are then merged to form the final rendered
image. After the loss is computed uniformly, the corresponding gradients are returned to each
sub-model to update their primitive parameters.

The actual training pipeline is shown in Figure 3. We denote each subset as a sub-model and
assign it to a separate GPU, while a central manager is responsible for managing the KD-Tree and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the subspaces {Sn}. This manager also handles the parsing of incoming rendering requests and
distributes rendering tasks to the relevant sub-models. The computational results from all sub-models,
{Tk} and {Ck}, are sent back to the central manager. These results can be represented in a 2D
map with the same resolution as the target image, which consumes only minimal communication
bandwidth. The central manager then completes the final rendering based on Eq 5, calculates the loss,
and sends the gradient back to each sub-model for model parameter updates. After a predetermined
number of training epochs, we repeat the partitioning process to accommodate any significant shift
of primitive centers. Note that primitives belonging to intersections of multiple subsets require
gradient synchronization after each training step. Empirically, we found this could be omitted without
significantly affecting reconstruction quality.

3.4.1 PRIMITIVE INITIALIZATION

In the original 3D Gaussian Splatting (3DGS) approach, initialization and densification processes
involved numerous heuristic strategies and hyperparameters to ensure that Gaussian primitives were
appropriately positioned. Such strategies made it difficult to control the number of primitives,
impeding our ability to effectively scale the model size and leverage the advantages of distributed
modeling to enhance rendering fidelity. Furthermore, we found that the densification process
does not always promote an increase in primitives in high-resolution training, which makes it
counterproductive.

In this paper, we adopt a simple yet effective strategy for initialization as shown in Fig 3 and do
not adjust the number afterwards. We performed Multi-View Stereo (MVS) on all training data to
obtain depth estimations for all training viewpoints, which were then transformed into dense 3D point
clouds. These point clouds could be flexibly sampled and initialized as Gaussian primitives. This
streamlined approach allowed us to control the number of primitives as desired. It is also easier to
balance workers’ workloads thanks to a predefined number of primitives.

4 EXPERIMENTS

Datasets. Our performance evaluation spanned 4 datasets that comprising indoor and outdoor
scenes. These datasets include all scenes from full-resolution MipNeRF-360 (Barron et al., 2022). We
extended our analysis to high-resolution scenarios based on the ScanNet++ dataset (Yeshwanth et al.,
2023), with a focus on scenes labeled 108ec0b806 and 8133208cb6. After distortion correction, two
scenes provided 863 and 476 high-resolution images respectively (8408 pixels wide). Furthermore,
we conducted tests in large-scale environments, including the Residence, Building, and Rubble
datasets from Mega-NeRF (Turki et al., 2022), as well as the entire MatrixCity Small City Aerial
dataset (referred to as MatrixCity-Aerial, 1920×1080), consisting of 6,362 images. We also utilized
the MatrixCity Small City Dense Street dataset, sampling 5 angles every meter along the centerline of
streets to gather 135,290 images (1000×1000). From the Small City Dense Street dataset, we selected
a focused test set of 2,480 images (referred to as MatrixCity-M). By combining all images from Aerial
and Dense Street (referred to as MatrixCity-ALL), we conducted a comprehensive Billion GS level
reconstruction. We followed the official Train/Test splits for Mega-NeRF and MatrixCity-Aerial, and
used every eighth image for testing in other datasets as recommended by MipNeRF-360. To obtain
superior MVS initial points, we reran Colmap’s sparse reconstruction based on full-resolution images
of MipNeRF-360 and ScanNet++ to obtain poses (using official provided poses of Mage-NeRF and
MatrixCity), and subsequently performed dense reconstruction (Schönberger et al., 2016) on all
datasets except MatrixCity-ALL. For MatrixCity-ALL, we replaced depth estimations of MVS with
official provided depth estimations to avoid super long time cost of Colmap’s dense reconstruction
(using MVS for MatrixCity-M and MatrixCity-Aerial).
Baselines and Metrics. Our comparisons include 3DGS and NeRF-related works. For fair com-
parisons, results from an equal number of iterations from our own 3DGS runs are also presented.
We primarily assessed the rendered image quality using three metrics consistent with 3DGS: PSNR,
SSIM, and LPIPS.
Implementation Details. Our method is based on 3DGS. We extended the number of training
iterations to 60k on MipNeRF-360, ScanNet++ and Maga-NeRF and 20 epochs on all MatrixCity
datasets for both 3DGS and ours to ensure adequate convergence. We do not adjust the number
of primitives during training. Since the primitives are initialized with relatively accurate position

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

parameters from MVS, we reduce the learning rate for the position parameters in all primitives from
1.6× 10−6 to 1.6× 10−8 with a exponential decay function, which is 1/100th of the original setting
in 3DGS. All experiments are conducted on NVIDIA A100 GPUs.

4.1 EXPERIMENTAL RESULTS

(a) Garden (b) ScanNet++ (c) MatrixCity-M

Figure 4: PSNR vs. #GS analysis on various datasets. The markers represent 3DGS baseline, and
the curves denote our method. Results at various training resolutions are upsampled and evaluated
at the full resolution to unify the metrics. Our method achieves superior PSNR simply by naively
scale the model size. This trend is more pronounced on the high-fidelity dataset ScanNet++ and
larger-scale dataset MatrixCity-M.

Fig 4presents our quantitative results on the MipNeRF-360 (Garden), ScanNet++ (108ec0b806),
and MatrixCity-M with various training resolution. To standardize the metrics and align them more
closely with direct visual perception, we upsample all rendered results from different resolutions to
the full resolution using nearest-neighbor upsampling and evaluate on the full resolution. Utilizing
MVS for initializing Gaussian points and disabling densification allows us to easily control the
number of model points. Furthermore, our distributed training approach enables the use of a large
number of Gaussian primitives. We observed a strong positive correlation between the number of
Gaussian primitives and the final model’s PSNR. When the number of primitives is similar, our PSNR
closely matches the quality of 3DGS trained on a single GPU; however, we can effectively achieve
higher PSNRs by simply increasing the number of primitives. Table 1 shows results on more datasets,
uniformly showing that our method consistently performs better across all datasets, especially on
high-resolution and large-scale datasets. Note that, although current state-of-the-art methods on
bird-view datasets utilize complex post-processing or ensemble strategies, we achieved comparable
results simply by increasing the number of Gaussian splats.

Figure 5: Visualization of models and with various number of primitives and training resolution on
Garden and ScanNet++ dataset (top and bottom metrics: training resolution/splats count/PSNR). As
we get close to objects or zoom into camera, higher training resolutions and more primitives help
maintain rendering clarity and reveal more details, which bring better visual experience and better
quantitative results than the 3DGS baseline.

We further analyze the relationship between the number of Gaussian points and subjective visual
effects, as illustrated in Fig. 5. As revealed in Fig. 4, at a fixed number of GS primitives, higher
resolutions yield better image quality; similarly, at a fixed high resolution, an increased number
of primitives enhances image quality. We believe that the number of primitives determines the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Garden (b) MatrixCity-M

Figure 6: Comparative Analysis of Desification Strategies. The curves denote our MVS initial-
ization, showing a clear positive correlation between the number of primitives and visual quality.
Baseline results from the 3DGS method with its default densification threshold of 0.0002 are marked
as black dots. Lower thresholds were tested to assess their impact on point densification compared to
the default setting. The findings suggest that reducing the threshold does not consistently increase
model size and fails to outperform our method.

capacity of the 3DGS model, while higher image resolutions bring a greater amount of information,
necessitating a larger model capacity to achieve adequate fitting. Therefore, to ensure a Retina
quality effect, both high resolution and high-quality rendering are essential, which in turn imposes
substantial demands on the number of GS primitives.

Table 1: Comparison with SOTA. RetinaGS is the first distributed method for general scenes, e.g.
street and indoor scenes. It is also comparable to specialized methods for bird-view scenes via simply
increasing splats. * means that results are averaged across scenes. See Appendix for complete results.

Datasets MatrixCity-Aerial MatrixCity-M Mega-NeRF* ScanNet++* MipNeRF-360*
Pixels 13.19B 2.48B 2.25B 33.44B 2.32B
Type Bird-View Street-View Bird-View Indoor Indoor

Metrics PSNR #GS PSNR #GS PSNR #GS PSNR #GS PSNR #GS

GP-NeRF 23.56 N/A - - 22.46 N/A - - - -
3DGS 23.67 9.7M 27.62 1.01M 22.56 6.57M 28.42 1.87M 27.33 3.02M

CityGaussian 27.46 23.7M - - 23.10 11.23M - - - -
Ours 27.70 217.30M 31.12 62.18M 23.03 35.57M 28.91 39.89M 27.78 27.79M

4.2 EXPLORATION STUDY

Initialization and Densification. In practice, we observed issues with the original 3DGS’s point-
growing strategy, as shown in Appendix.Fig 12. Excessive iterations lead to deteriorating results.
Using an aggressive densification strategy in 3DGS did not yield better outcomes, and excessive point
splitting made the training unstable. In Fig 6, we show that initialization via MVS results in a more
stable training run and better model quality. By simply initializing using MVS with more primitives,
our model surpasses the original 3DGS even with careful tuning.

Validity of Distribute Rendering we devise a simple test to validate the correctness of the underlying
rendering equation in our method. We precisely positioned the camera’s optical axis on the dividing
plane between two subspaces sharing this plane, ensuring that each ray passes through only one
subspace. In this case, each image pixel should only be rendered by primitives on one side of the
plane. If we do not perform the step, we would expect a crisp boundary between color pixels and
completely dark pixels on the partially rendered images from the two subspaces. As shown in Fig. 7,
our method exhibits the expected behavior while baseline partition approaches (Lin et al., 2024; Liu
et al., 2024) that deviates from the proper rendering equation fails the test.

KD-Tree Partition vs. Fixed-size Partition. We compare our KD-Tree partitioning approach to a
naive grid division strategy that uniformly divides the scene into blocks of fixed size in Table 2. The

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Our Partition Cell-based Cell-based + Fine-tune
PSNR: 27.053 PSNR: - PSNR: 26.969

Figure 7: Our two submodels produced distinctly bounded outputs, and result in better PSNR results.
In contrast, spatial-based partitions exhibited blurry boundaries that could not be entirely eliminated
by comprehensive end-to-end refinement, demonstrating the superiority of our approach.

KD-Tree effectively balances the number of primitives in each sub-model, resulting in an optimal
balance in peak memory usage and the best training speed. KD-tree is used throughout all experiments
work without further notice.

Table 2: Partition efficiency. Range of primitive count, memory usage, total time, and communication
time of submodels under different partition strategies in distributed training. The fixed-size division
resulted in sub-models with significantly varied number of primitives and computation times, which
increased time spent blocking on waiting, thereby reducing the overall system efficiency.

Partition Batch Size GPU Primitives (M) Mem.(GiB) Total Time (s) Comm. (s)

KD-Tree 2 2 2.87∼2.88 6.26∼6.32 26.74∼26.76 4.39∼6.04
Fixed-size 2 2 0.81∼4.93 3.57∼9.01 32.45∼32.52 1.04∼23.83

KD-Tree 4 4 1.45∼1.47 5.26∼5.40 18.87∼18.90 5.33∼7.34
Fixed-size 4 4 0.05∼4.79 3.08∼10.95 32.26∼32.41 4.77∼26.83

Model parallelism vs. Data parallelism. We compare data parallel training and training with our
method, which is model parallelism, on the MipNeRF-360-garden dataset. As shown in Table 3, our
method achieve lower peak memory usage and higher training throughput. It is evident that even
with such a small GS model, our method maintains its advantages over DP and single GPU training.
However, as the size of submodels decreases and their quantity increases, it becomes increasingly
challenging for MP to achieve workload balance. As shown in Table 4, a straightforward solution is
to increase the batch size, which statistically leads to a more balanced workload.

Table 3: Parallel mechanism efficiency. Ef-
ficiency of data parallel(DP) and our model
parallel(MP) with various setting.

Parallel GPU Batch Size Mem. Time Comm.

- 1 1 8.33 32.35 0

DP 2 2 9.66 45.36 29.22
MP 2 2 6.26 26.76 6.038

DP 4 4 9.66 30.62 21.56
MP 4 4 5.26 18.90 7.34

DP 8 8 9.66 20.38 16.51
MP 8 8 5.05 17.738 12.73

Table 4: Efficiency vs. Batch Size. Increasing
the batch size enhances the balance of compu-
tation across processes, resulting in reduced
communication blocking.

Bacth Size GPU-ID Mem. Time Comm.

1 0 5.52 31.20 6.51
1 5.31 31.84 10.94

2 0 6.26 26.76 6.04
1 6.32 26.74 4.39

4 0 7.79 25.29 6.20
1 7.93 25.30 3.02

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 TRAINING BILLION-SCALE 3DGS

Our distributed modeling method enables the GS model to scale up to extremely large sizes. Typically,
scenes in previous work are trained on a single GPU using 10 to 200 million pixels with a GS model
with millions of primitives. In this work, we use 64 A100 GPUs for 10 days to train a 3DGS model
with a billion primitives on the MatrixCity-ALL dataset, which includes 141,652 images containing
over 148 billion pixels. There have been no previous reports of successful training at this scale of
training set or model size. After training for 20 epochs, billion-scale model achieve superior results
compared to million-scale model as shown in Fig 8, Table. 5 and supplementary videos.

GT 1B 100M 10M

Figure 8: 1 billion vs. 100 million vs. 10 million splats for Maxtricity-ALL reconstruction.

Table 5: Qualitative results on full MatrixCity-All dataset (with 148 billion pixels). More primitives
effectivesly improve performance with the help of the proposed distributed training method, reaching
quality unattainable by single GPU training.

Metrics SSIM↑ PSNR↑ LPIPS↓ #GS GPU

Ours-10M 0.608 16.53 0.536 10.00M 1
Ours-100M 0.761 23.07 0.397 100.00M 8

Ours-1B 0.815 25.50 0.282 1023.13M 64

6 CONCLUSION AND LIMITATION

In this paper, we study the problem of distributed training of 3DGS models. We devise a model
parallelism-based training method that utilizes a proper rendering equation to avoid artifacts. This
allows us to significantly expand the model scale in terms of primitive numbers and seamlessly
support large-scale scene reconstruction and detailed rendering. Although our method allows for
improving the model’s capacity by simply increasing the number of splats, this also results in a
higher computational load per ray. We believe that an effective hierarchical Level-of-Detail (LOD)
description will address this issue, leading to enhancements in performance and rendering quality.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864,
2021.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5470–5479, 2022.

HK Baumgartner, OT Starodub, JS Joehl, L Tackett, and MH Montrose. Cyclooxygenase 1 is required
for ph control at the mouse gastric surface. Gut, 53(12):1751–1757, 2004.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields.
In European Conference on Computer Vision, pp. 333–350. Springer, 2022.

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,
Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. Large scale
distributed deep networks. In NIPS, 2012.

FairScale authors. Fairscale: A general purpose modular pytorch library for high performance and
large scale training. https://github.com/facebookresearch/fairscale, 2021.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5501–5510, 2022.

Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, and
Zhifeng Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism. CoRR,
abs/1811.06965, 2018. URL http://arxiv.org/abs/1811.06965.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14, 2023.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. ArXiv,
abs/1404.5997, 2014. URL https://api.semanticscholar.org/CorpusID:
5556470.

11

https://www.tensorflow.org/
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://github.com/facebookresearch/fairscale
http://arxiv.org/abs/1811.06965
https://api.semanticscholar.org/CorpusID:5556470
https://api.semanticscholar.org/CorpusID:5556470


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/
2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. CoRR, abs/2006.16668, 2020. URL https://arxiv.
org/abs/2006.16668.

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Liefeng Bo. Compressing volumetric radiance
fields to 1 mb. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4222–4231, 2023a.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experiences
on accelerating data parallel training. CoRR, abs/2006.15704, 2020. URL https://arxiv.
org/abs/2006.15704.

Yixuan Li, Lihan Jiang, Linning Xu, Yuanbo Xiangli, Zhenzhi Wang, Dahua Lin, and Bo Dai.
Matrixcity: A large-scale city dataset for city-scale neural rendering and beyond. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 3205–3215, 2023b.

Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong Liu, Jiayue Liu, Yangdi Lu, Xiaofei Wu,
Songcen Xu, Youliang Yan, et al. Vastgaussian: Vast 3d gaussians for large scene reconstruction.
arXiv preprint arXiv:2402.17427, 2024.

Hao Liu and Pieter Abbeel. Blockwise parallel transformer for large context models. Advances in
neural information processing systems, 2023.

Yang Liu, He Guan, Chuanchen Luo, Lue Fan, Junran Peng, and Zhaoxiang Zhang. City-
gaussian: Real-time high-quality large-scale scene rendering with gaussians. arXiv preprint
arXiv:2404.01133, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):
1–15, 2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimizations
toward training trillion parameter models. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’20. IEEE Press, 2020. ISBN
9781728199986.

Christian Reiser, Rick Szeliski, Dor Verbin, Pratul Srinivasan, Ben Mildenhall, Andreas Geiger, Jon
Barron, and Peter Hedman. Merf: Memory-efficient radiance fields for real-time view synthesis in
unbounded scenes. ACM Transactions on Graphics (TOG), 42(4):1–12, 2023.

Daniel Rho, Byeonghyeon Lee, Seungtae Nam, Joo Chan Lee, Jong Hwan Ko, and Eunbyung
Park. Masked wavelet representation for compact neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20680–20690, 2023.

Ralph Tyrell Rockafellar. Convex Analysis: (PMS-28). Princeton University Press, April 2015.
ISBN 978-1-4008-7317-3. doi: 10.1515/9781400873173.

12

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2006.15704


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. Pixelwise view
selection for unstructured multi-view stereo. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14, pp.
501–518. Springer, 2016.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism.
CoRR, abs/1909.08053, 2019. URL http://arxiv.org/abs/1909.08053.

Kaiwen Song and Juyong Zhang. City-on-web: Real-time neural rendering of large-scale scenes on
the web. arXiv preprint arXiv:2312.16457, 2023.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast con-
vergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5459–5469, 2022.

Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srinivasan,
Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8248–8258, 2022.

Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Errui Ding, Jingdong Wang, and Gang
Zeng. Delicate textured mesh recovery from nerf via adaptive surface refinement. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 17739–17749, 2023.

Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-nerf: Scalable construction
of large-scale nerfs for virtual fly-throughs. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12922–12931, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Limin Wang, Yuanjun Xiong, Zhe Wang, and Yu Qiao. Towards good practices for very deep
two-stream convnets. CoRR, abs/1507.02159, 2015. URL http://arxiv.org/abs/1507.
02159.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual
performance model for multicore architectures. Commun. ACM, 52:65–76, 04 2009. doi:
10.1145/1498765.1498785.

Xiuchao Wu, Jiamin Xu, Xin Zhang, Hujun Bao, Qixing Huang, Yujun Shen, James Tompkin,
and Weiwei Xu. Scanerf: Scalable bundle-adjusting neural radiance fields for large-scale scene
rendering. ACM Transactions on Graphics (TOG), 42(6):1–18, 2023.

Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt, Bo Dai,
and Dahua Lin. Bungeenerf: Progressive neural radiance field for extreme multi-scale scene
rendering. In European conference on computer vision, pp. 106–122. Springer, 2022.

Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan, Nanxuan Zhao, Christian Theobalt, Bo Dai,
and Dahua Lin. Grid-guided neural radiance fields for large urban scenes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8296–8306, 2023.

Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P Srinivasan, Richard Szeliski,
Jonathan T Barron, and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-time view
synthesis. In ACM SIGGRAPH 2023 Conference Proceedings, pp. 1–9, 2023.

Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-
fidelity dataset of 3d indoor scenes. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 12–22, 2023.

13

http://arxiv.org/abs/1909.08053
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://arxiv.org/abs/1507.02159
http://arxiv.org/abs/1507.02159


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752–5761, 2021.

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving
neural radiance fields. arXiv preprint arXiv:2010.07492, 2020.

Yuqi Zhang, Guanying Chen, and Shuguang Cui. Efficient large-scale scene representation with a
hybrid of high-resolution grid and plane features. arXiv preprint arXiv:2303.03003, 2023.

MI Zhenxing and Dan Xu. Switch-nerf: Learning scene decomposition with mixture of experts
for large-scale neural radiance fields. In The Eleventh International Conference on Learning
Representations, 2022.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa volume splatting. In
Proceedings Visualization, 2001. VIS’01., pp. 29–538. IEEE, 2001.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MORE VISUALIZATIONS

GT Ours 3DGS

Figure 9: Comparisons of high-primitive-number RetinaGS models and 3DGS baseline on ScanNet++
dataset. Note the superior rendering quality, especially on high-frequency textures like text and
leaves.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Dividing plane Our Partition Cell-based Cell-based + Fine-tune

Figure 10: Blending results at the sub-space boundaries for different partition approaches. Approxi-
mate methods leak through the boundaries in partial rendering, resulting in obvious artifacts after
merging. RetinaGS uses the equivalent form the 3DGS rendering equation, so it does not have this
issue and shows no artifacts in the final rendering.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 11: In RetinaGS, one primitive may be involved in partial value computation of more than
one overlapping subsets, but the indicator function in Eq 6 ensures sure its color and opacity will
only take effect once. For each ray, it can be illustrated as each subspace only possesses a fraction of
the Gaussian ellipsoid, and the fragments collaboratively and distributively accomplish the task of a
single primitive.

Figure 12: In 3DGS, as the densification threshold decreases, the growth rate of GS increases.
However, due to the rapid growth rate, floaters are generated in the model that cannot be eliminated
through training (marked with red rectangle), which deteriorates the reconstruction effect. The MVS
initialization strategy introduced in RetinaGS will mitigate this issue.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.2 EQUIVALENCE DERIVATION

Starting from Eq. 3 for partial color Ck(l):

Ck(l) =
∑

gi∈Nlk

ciσi

∏
gj∈Nlk, j<i

(1− σj),

Eq. 4 for partial opacity Tk(l):
Tk(l) =

∏
gi∈Nlk

(1− σi),

and Eq. 5 for merging formula:

C(l) =
∑
k∈ol

Ck(l)
∏

m∈ol, m<k

Tm(l),

we substitute the expressions for partial color and partial opacity into the merging formula:

C(l) =
∑
k∈ol

 ∑
gi∈Nlk

ciσi

∏
gj∈Nlk, j<i

(1− σj)

 ∏
m∈ol, m<k

 ∏
gj∈Nlm

(1− σj)

 .

Now we expand this expression step by step. First, applying the distributive property of multiplication,
we can pull out the inner summation symbol:

C(l) =
∑
k∈ol

∑
gi∈Nlk

ciσi

 ∏
gj∈Nlk, j<i

(1− σj)

 ∏
m∈ol, m<k

∏
gj∈Nlm

(1− σj)

 .

Then, utilizing the commutative property of multiplication, we can rewrite the above equation as:

C(l) =
∑
k∈ol

∑
gi∈Nlk

ciσi

 ∏
gj∈Nl1

(1− σj)

 ...

 ∏
gj∈Nl(k−1)

(1− σj)

 ·

 ∏
gj∈Nlk, j<i

(1− σj)

 .

Since Nl in Eq 2 and Nlk in Eq 3 follow a consistent rule for the ordering of elements, we have
Nl = (Nl1, Nl2, ...NlK). This allows us to reduce the product symbols to one:

C(l) =
∑
k∈ol

∑
gi∈Nlk

ciσi

 ∏
gj∈Nl, j<i

(1− σj)

 .

Similarly, nested summations can also be simplified into one:

C(l) =
∑

gi∈Nl

ciσi

 ∏
gj∈Nl, j<i

(1− σj)

 ,

which has the exact same form as Eq 2. Now we prove the original rendering equation of 3DGS is
equivalent to the hierarchical form underlying the distributed training framework of RetinaGS.

A.3 IMPLEMENTATION DETAILS OF TRAINING BILLION-SCALE 3DGS

For the initialization of primitives, we employed depth maps officially provided by MatrixCity, where
each aerial view image contributes approximately 1/64 million primitives, and each street view image
contributes about 1/128 million primitives (excluding pixels exceeding the maximum depth). Due
to the application of anti-aliasing on the depth maps, the directly generated initialization points are
accompanied by noise. Such noise in the initialization can lead to floters in the training results,
potentially compromising the visual quality of the model. To obtain a clean point cloud, we utilized
DBSCAN for noise filtration, treating aerial and street views separately. For aerial views, the epsilon

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

and minimum number of points were set to 1 m and 15, respectively, while for street views, these
parameters were established at 1 m and 20, respectively. Following the noise reduction process, an
additional 2% of primitives were added to represent the sky (initialized as hemispheres at a fixed
distance from the city center, with the fixed distance being twice the length of the city), culminating
in a total of 1 Billion primitives.

We spatially partitioned the initial primitives to 64 sub-models and do not adjust the number of
primitives during training. Since the primitives are initialized with accurate geometrical parameters,
we reduce the learning rate for the position parameters from 1.6 × 10−7 to 1.6 × 10−9 with a
exponential decay function. Besides, we reduce the learning rate for the scale parameters from
5× 10−4 to 5× 10−6 with a exponential decay function to avoid unusually large primitives.

A.4 MORE EXPERIMENTAL RESULTS

In the main text, for the sake of brevity, we did not present the experimental results for each individual
scene on several datasets. Instead, we provided the average results across all scenes contained in
each dataset (as highlighted with * in the experimental tables of the main text). Here, we present the
detailed experimental data for each individual scene.

Table 6: Experimental results on MatrixCity. R & P means resolution and training pixels. The dagger
†indicates that the result was obtained using the same number of training iterations (20 epochs) as
our method.

Datasets MatrixCity-Aerial MatrixCity-M
R & P 1920×1080 & 13.19B 1000×1000 & 2.48B

Metrics SSIM↑ PSNR↑ LPIPS↓ #GS SSIM↑ PSNR↑ LPIPS↓ #GS

3DGS 0.735 23.67 0.384 9.70M 0.839 27.62 0.282 1.01M
CityGaussian 0.865 27.46 0.204 23.70M - - - -

3D-GS† 0.833 26.56 0.244 25.06M 0.851 27.81 0.271 1.53M
Ours 0.840 27.70 0.177 217.3M 0.932 31.12 0.110 62.18M

Table 7: Experimental results (60K iterations) on Mega-NeRF.

Datasets Residence Rubble Building

Metrics SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓
Mega-NeRF 0.628 22.08 0.489 0.553 24.06 0.516 0.547 20.93 0.504

Switch-NeRF 0.654 22.57 0.457 0.562 24.31 0.496 0.579 21.54 0.474
GP-NeRF 0.661 22.31 0.448 0.565 24.06 0.496 0.566 21.03 0.486

3DGS 0.751 21.43 0.274 0.709 24.47 0.337 0.723 21.74 0.302
CityGaussian 0.813 22.00 0.211 0.813 25.77 0.228 0.778 21.55 0.246

Ours 0.781 21.87 0.217 0.760 25.09 0.234 0.754 22.14 0.227

Table 8: PSNR vs. Primitive numbers (60K iterations) on Mega-NeRF.

Datasets Residence Rubble Building
R & P 1368×912 & 3.19B 1152×864 & 1.64B 1152×864 & 1.91B

Metrics PSNR #GS PSNR #GS PSNR #GS

3DGS 21.43 6.42M 24.47 4.7M 21.44 8.6M
Ours 21.87 51.41M 25.09 27.9M 22.14 27.4M

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 9: Experimental results (60K iterations) on ScanNet++.

Datasets 108ec0b806 8133208cb6
R & P 8408×5944 & 43.13B 8408×5935 & 23.75B

Metrics SSIM↑ PSNR↑ LPIPS↓ #GS SSIM↑ PSNR↑ LPIPS↓ #GS

3DGS 0.881 28.95 0.408 2.65M 0.908 27.89 0.355 1.09M
Ours 0.883 29.71 0.395 47.59M 0.908 28.11 0.340 32.19M

Table 10: #GS for Mip-NeRF360 scenes under 1.6K resolution and full resolution. The full marks
the results obtained in full resolution. The dagger †marks the results obtained in our own experiments
(60K iterations).

Method Scenes bicycle garden flowers stump treehill room counter kitchen bonsai
Resolution-Wide 4946 5187 5025 4978 5068 3114 3115 3115 3118

Pixels-full 3.15B 3.22B 2.87B 2.05B 2.37B 2.00B 1.55B 1.80B 1.89B

3D-GS† 7.03M 6.92M 4.11M 5.34M 4.17M 1.80M 1.27M 1.95M 1.05M
Ours 31.67M 62.94M 20.53M 15.32M 22.75M 22.41M 22.83M 28.31M 23.43M

3D-GS†-full 5.04M 7.39M 3.11M 3.30M 2.61M 1.70M 1.20M 1.91M 0.97M
Ours-full 31.67M 62.94M 20.53M 15.32M 22.75M 22.41M 22.83M 28.31M 23.43M

Table 11: SSIM scores for Mip-NeRF360 scenes under 1.6K resolution and full resolution. The full
marks the results obtained in full resolution. The dagger †marks the results obtained in our own
experiments (60K iterations).

Method Scenes bicycle garden flowers stump treehill room counter kitchen bonsai

3D-GS 0.771 0.868 0.605 0.775 0.638 0.914 0.905 0.922 0.938
3D-GS† 0.770 0.866 0.623 0.771 0.641 0.931 0.919 0.933 0.950

Mip-NeRF360 0.685 0.813 0.583 0.744 0.632 0.913 0.894 0.920 0.941
iNPG 0.491 0.649 0.450 0.574 0.518 0.855 0.798 0.818 0.890

Plenoxel 0.496 0.606 0.431 0.523 0.509 0.841 0.759 0.648 0.814
Ours 0.776 0.870 0.624 0.777 0.650 0.935 0.927 0.941 0.958

3D-GS†-full 0.732 0.817 0.604 0.795 0.696 0.922 0.917 0.926 0.941
Ours-full 0.751 0.827 0.635 0.800 0.703 0.927 0.925 0.932 0.947

Table 12: PSNR scores for Mip-NeRF360 scenes under 1.6K resolution and full resolution. The
full marks the results obtained in full resolution. The dagger †marks the results obtained in our own
experiments (60K iterations).

Method Scenes bicycle garden flowers stump treehill room counter kitchen bonsai

3D-GS 25.25 27.41 21.52 26.55 22.49 30.63 28.70 30.32 31.98
3D-GS† 25.33 27.58 21.85 26.74 22.46 31.93 29.54 31.52 33.10

Mip-NeRF360 24.37 26.98 21.73 26.40 22.87 31.63 29.55 32.23 33.46
iNPG 22.19 24.60 20.34 23.63 22.36 29.27 26.44 28.55 30.34

Plenoxel 21.91 23.49 20.09 20.66 22.24 27.59 23.62 23.42 24.67
Ours 25.41 27.74 21.94 26.86 22.67 32.86 29.91 32.49 34.09

3D-GS†-full 24.47 26.67 20.78 26.23 22.34 31.57 29.33 31.72 32.92
Ours-full 24.86 27.06 21.58 26.58 22.42 31.65 29.90 32.23 33.76

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 13: LPIPS scores for Mip-NeRF360 scenes under 1.6K resolution and full resolution. The
full marks the results obtained in full resolution. The dagger †marks the results obtained in our own
experiments (60K iterations).

Method Scenes bicycle garden flowers stump treehill room counter kitchen bonsai

3D-GS 0.205 0.103 0.336 0.210 0.317 0.220 0.204 0.129 0.205
3D-GS† 0.200 0.107 0.320 0.223 0.317 0.186 0.172 0.112 0.168

Mip-NeRF360 0.301 0.170 0.344 0.261 0.339 0.211 0.204 0.127 0.176
iNPG 0.487 0.312 0.481 0.450 0.489 0.301 0.342 0.254 0.227

Plenoxel 0.506 0.386 0.521 0.503 0.540 0.418 0.441 0.447 0.398
Ours 0.181 0.100 0.316 0.218 0.287 0.160 0.139 0.099 0.134

3D-GS†-full 0.375 0.268 0.438 0.386 0.447 0.277 0.261 0.188 0.263
Ours-full 0.290 0.195 0.379 0.334 0.362 0.233 0.212 0.163 0.223

21


	Introduction
	Related Work
	Approach
	3D Gaussian Splatting
	Distributed Training of 3DGS
	Distributed Training with Sub-models
	The Complete Training Pipeline
	Primitive Initialization


	Experiments
	Experimental Results
	Exploration study

	Training Billion-Scale 3DGS
	Conclusion and Limitation
	Appendix
	More Visualizations
	Equivalence Derivation
	Implementation Details of Training Billion-Scale 3DGS
	More Experimental Results


