
ABC: Adversarial Behavioral Cloning for Offline
Mode-Seeking Imitation Learning

Eddy Hudson1 Ishan Durugkar1 Garrett Warnell1,2 Peter Stone1,3
1UT Austin 2Army Research Laboratory 3Sony AI

{eddy,ishand,pstone}@cs.utexas.edu
garrett.a.warnell.civ@army.mil

Abstract

Given a dataset of expert agent interactions with an environment of interest, a
viable method to extract an effective agent policy is to estimate the maximum
likelihood policy indicated by this data. This approach is commonly referred to
as behavioral cloning (BC). In this work, we describe a key disadvantage of BC
that arises due to the maximum likelihood objective function; namely that BC
is mean-seeking with respect to the state-conditional expert action distribution
when the learner’s policy is represented with a Gaussian. To address this issue, we
introduce a modified version of BC, Adversarial Behavioral Cloning (ABC), that
exhibits mode-seeking behavior by incorporating elements of GAN (generative
adversarial network) training. We evaluate ABC on toy domains and a domain
based on Hopper from the DeepMind Control suite, and show that it outperforms
standard BC by being mode-seeking in nature.

1 Introduction

While imitation learning (IL) is a powerful paradigm for skill learning, popular approaches such as
Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) and Inverse Reinforcement
Learning (Abbeel & Ng, 2004) require large amounts of data. Improvements to adversarial imitation
learning (AIL) methods have made positive strides towards addressing this issue by leveraging
advances in the sample complexity of RL algorithms and bringing them to bear in IL (Kostrikov
et al., 2019; Hudson et al., 2021). Nevertheless, the problem of sample complexity in IL persists.
Behavioral cloning (BC) is an exception as it is the rare IL algorithm that is also offline in nature.
Aside from not requiring any additional interactions with the environment, BC is also a relatively
straightforward algorithm. Given a dataset of state-action pairs that encapsulates interactions with an
environment by a demonstrator, the problem of offline IL is reduced to a supervised learning problem,
where a model is typically trained using maximum likelihood methods to predict the action taken by
the demonstrator given an input state.

Unfortunately, the maximum likelihood objective function that is traditionally used in supervised
learning leads to a shortcoming in BC when a Gaussian is used to model the state-conditional action
distribution in the dataset, as is commonly the case for continuous control tasks. In such a scenario,
the imitator will learn a Gaussian policy with a mean that coincides with the mean of this distribution.
In many instances, predicting the mean will suffice. However, there are cases where predicting the
mode would be preferable. Consider, for instance, a quadcopter that is faced with a tall tree that it
can avoid by going around on either the left or right side of the tree, and assume the expert dataset
contains demonstrations of both avoidance behaviors (Ke et al., 2020). A naive application of BC
as described above would result in the quadcopter colliding with the tree as averaging the actions
leading to the left and right side would result in an action that leads straight to the tree. Or consider
the case of a continuous control problem where the dataset has been corrupted by the inclusion of

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022



random actions from the uniform distribution. Adding the random actions shifts the mean while not
affecting the mode, so predicting the mode would be advantageous.

Towards addressing these issues, we introduce a novel variant of BC called Adversarial Behavioral
Cloning (ABC). ABC replaces the typical BC objective with a learned loss function as in generative
adversarial networks (GANs) (Goodfellow et al., 2014). Using a bandit problem, we illustrate how
ABC is mode-seeking while BC is mean seeking. We further evaluate ABC on a 2D navigation
domain and in a problem setting based on Hopper from the DeepMind control suite.

2 Adversarial Behavior Cloning (ABC)

Our primary contribution in this work is an offline IL algorithm called Adversarial Behavioral Cloning
(ABC) (Algorithm 1). ABC can be considered a hybrid of conditional GANs (Mirza & Osindero,
2014) and DDPG (Lillicrap et al., 2016). Based on the demonstration dataset, a discriminator is
learned in the min-max style of GANs. This discriminator models the state-conditional action
distribution in the dataset. We then train the policy by backpropagating through the discriminator
(Line 6).

Algorithm 1 Adversarial Behavioral Cloning (ABC)

1: Initialize parametric policy π, parametric discriminator D(s, a)
2: Obtain expert demonstration data τE = {(s∗t , a∗t ), (s∗t+1, a

∗
t+1), . . . , (s

∗
t+n, a

∗
t+n)}

3: Initialize replay buffer R = {(s∗i , a′)} with NR samples, where i ∈ [0, n], a′ ∈ U(−1, 1) and U
denotes the uniform distribution.

4: Train D to distinguish between τE and R
5: for N iterations do
6: Optimize π by maximizing Ei∈[0,n][D(s∗i , π(s

∗
i ))]

7: Every ND iterations, add samples {(s∗i , π(s∗i ))} to R, and then train D to distinguish
between τE and R

8: end for

To illustrate how ABC works, and to show how it improves over BC, we devised a bandit problem
where the agent is rewarded for picking an action value close to -1 or 1 (see the appendix for the
precise definition of the reward function). The demonstration dataset is generated by sampling from
a symmetric bimodal Gaussian (Figure 1a). In Line 3 of the algorithm, we seed the replay buffer
(R) with samples from U(−2, 2) instead. Due to the simplicity of the problem, we find that setting
N = 1 suffices to achieve optimal performance (i.e., there is no need to add new samples to the replay
buffer). As shown in Figure 1, ABC successfully reaches one of the modes in the distribution, while
BC fails to learn one of the optimal action values by attempting to predict the mean in Figure 1a.

3 Experiments

We performed experiments in two domains: a 2D navigation domain and a locomotion domain.
Both are based on example domains found in the DeepMind Control Suite (Tassa et al., 2018). The
goal of our experiments in the 2D navigation domain is to show that ABC can successfully learn a
meaningful policy when the expert’s state-conditional action distribution contains multiple modes.
Our experiments in the locomotion domain, on the other hand, serve to show that there can be
instances where even when the distribution contains a single mode, it is advantageous to gravitate
towards the mode.

3.1 2D navigation with a multimodal demonstration dataset

The 2d navigation domain is based on the point-mass domain from the Deepmind Control Suite. We
designed it to be a testable representation of the quadcopter example discussed earlier. The agent
in this task starts from the bottom left corner of the state space, and has to find its way to the top
left corner or bottom right corner (see Figure 2a). At every timestep, the agent receives a reward
as specified by the heatmap in Figure 2b. The episode terminates as soon as the agent comes into
contact with the black square in the heatmap, thus forcing the agent to decide right at the beginning

2



−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Action

0

25

50

75

100

125

(a) Demonstration dataset. This was drawn from a
bimodal Gaussian with modes at -1 and 1.

−2 −1 0 1 2
Action

−3

−2

−1

0

1

(b) Logit of the discriminator after executing
line 5 of the algorithm.

−2 −1 0 1 2
Action

−3

−2

−1

0

1

Iteration 0

−2 −1 0 1 2
Action

−3

−2

−1

0

1

Iteration 46

−2 −1 0 1 2
Action

−3

−2

−1

0

1

Iteration 199

(c) Backpropagating through the discriminator to predict one of the modes (Line 7 of the
algorithm). The policy is denoted by a red line.

Figure 1: The bandit problem illustrating how ABC works. While ABC is able to predict a mode of
the distribution (1a), BC predicts the mean (-0.07), thus failing to achieve optimal reward.

which of the two targets it wishes to pursue. Unless the episode gets prematurely terminated in this
manner, it stretches for a total of 1000 timesteps.

We produce a demonstration dataset for the top left target containing 1000 trajectories. In each of
these 1000 trajectories, the agent begins from the bottom left corner and efficiently finds its way to
the top left corner. We also produce a similar dataset for the bottom right corner. Combining these
two datasets, we produce a third dataset with 2000 trajectories that contains data pertaining to both
targets. As shown in Table 1, ABC successfully achieves a high reward in all three datasets. However,
BC fails to obtain a meaningful reward in the combined dataset, when the state-conditional action
distribution becomes multimodal due to there being two possible targets in the dataset.

(a) The domain is based on the point mass
agent from the DeepMind control suite.

�1.00

�0.75

�0.50

�0.25

0.00

0.25

0.50

0.75

1.00

(b) Heatmap showing reward distribution in the
state space. The episode ends if the agent enters
the black square in the center. The agent starts
each episode from a point in the green square.

Figure 2: The 2D navigation domain

3



BC ABC
Top left (717) 758 778

Bottom right (708) 779 751
Combined 0.22 758

Table 1: Results in the 2D navigation domain. The left-most column contains the average reward of
the trajectories in the dataset. BC and ABC results are the average of the last 10 points in the training
curve. These results show that unlike ABC, BC fails when the state-conditional action distribution in
the dataset is not unimodal.

3.2 Locomotion with corrupted data

Our experiments in this section were conducted in the Hopper domain from the DeepMind Control
Suite (see Figure 3a), where the task is to move as quickly as possible (maximum reward 1000).
We trained an expert agent using Soft Actor Critic (Haarnoja et al., 2018) and generated a dataset
with 200 trajectories using the resulting expert policy, which obtained an average reward of 639.
We also initialized a random policy and constructed a second dataset by using it to generate 100
trajectories which obtained an average reward of 0.39. Finally, we created a third, more difficult
dataset by combining the two datasets described above. Let sd be the state where the random policy
diverges from the expert policy. Since the random policy only contributes actions from the uniform
distribution to sd, the mode of the action at sd in this third dataset is unchanged compared to the
mode in the first (expert) dataset. However, the mean is changed. Thus, a mean-seeking algorithm
would fail to learn a good policy using this new dataset, while a mode-seeking algorithm would be
unfazed by the change. As expected, ABC performs well in the task with the more difficult dataset,
while BC fails to obtain meaningful reward (Figure 3b).

(a) The domain is based on the Hopper
agent from the DeepMind control suite.

BC ABC
Expert dataset 631 (±4) 622 (±5)

Expert+Random dataset 10 (±19) 527 (±52)

(b) Average reward. BC and ABC results are the average
over 5 independent trials; standard deviations are shown in
parentheses. BC fails on the inclusion of data from the random
policy, while ABC does not.

Figure 3: The locomotion task with corrupted data

4 Conclusion

In this work, we identify a key disadvantage of BC that causes it to fall short when the demonstration
dataset has state-conditional action distributions where it is more desirable to learn the mode instead
of the mean. We address this shortcoming by proposing a novel variation of BC that we term
Adversarial Behavioral Cloning (ABC). We evaluate ABC on multiple domains designed to exhibit
the particular strengths of ABC, and show that BC indeed falls short.

An interesting future direction would be to evaluate ABC on more complicated variants of the 2D
navigation problem (by perhaps replacing the point mass with the Ant agent from the DeepMind
control suite). We are also interested in theoretically analyzing the objective optimized by the learned
loss function, and understand how it relates to the reverse-KL, which is a mode-seeking loss function.

4



5 Acknowledgements

This work has taken place in the Learning Agents Research Group (LARG) at the Artificial Intel-
ligence Laboratory, The University of Texas at Austin. LARG research is supported in part by the
National Science Foundation (CPS-1739964, IIS-1724157, FAIN-2019844), the Office of Naval
Research (N00014-18-2243), Army Research Office (W911NF-19-2-0333), DARPA, General Motors,
Bosch, and Good Systems, a research grand challenge at the University of Texas at Austin. The views
and conclusions contained in this document are those of the authors alone. Peter Stone serves as
the Executive Director of Sony AI America and receives financial compensation for this work. The
terms of this arrangement have been reviewed and approved by the University of Texas at Austin in
accordance with its policy on objectivity in research.

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse reinforcement learning. In Proceedings

of the twenty-first international conference on Machine learning, pp. 1, 2004.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. Generative adversarial nets. In Advances in neural information processing systems, pp.
2672–2680, 2014.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018.

Ho, J. and Ermon, S. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

Hudson, E., Warnell, G., and Stone, P. Rail: A modular framework for reinforcement-learning-based
adversarial imitation learning. In Autonomous Robots and Multirobot Systems Workshop at the
20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2021),
May 2021.

Ke, L., Choudhury, S., Barnes, M., Sun, W., Lee, G., and Srinivasa, S. Imitation learning as f-
divergence minimization. In International Workshop on the Algorithmic Foundations of Robotics,
pp. 313–329. Springer, 2020.

Kostrikov, I., Agrawal, K. K., Dwibedi, D., Levine, S., and Tompson, J. Discriminator-actor-critic:
Addressing sample inefficiency and reward bias in adversarial imitation learning. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=
Hk4fpoA5Km.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wierstra,
D. Continuous control with deep reinforcement learning. In ICLR (Poster), 2016. URL http:
//arxiv.org/abs/1509.02971.

Mirza, M. and Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,
2014.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L., Budden, D., Abdolmaleki, A.,
Merel, J., Lefrancq, A., et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

A Appendix

A.1 Reward function for the bandit

The reward function for the bandit is as follows:

5

https://openreview.net/forum?id=Hk4fpoA5Km
https://openreview.net/forum?id=Hk4fpoA5Km
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971


Mr = 4−
[
5(a− 1)

]2
Ml = 4−

[
5(a+ 1)

]2
R =

1

1 + e−Mr
+

1

1 + e−Ml

Where a is the action, and R is the reward.

6


	Introduction
	Adversarial Behavior Cloning (ABC)
	Experiments
	2D navigation with a multimodal demonstration dataset
	Locomotion with corrupted data

	Conclusion
	Acknowledgements
	Appendix
	Reward function for the bandit


