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ABSTRACT

Large language models exhibit emergent misalignment behaviors during test-time
generation, necessitating dynamic control mechanisms for safe deployment. In-
spired by sparse interpretable representations, sparse autoencoders (SAEs) can dis-
entangle monosemantic features from superpositioned dense activations, offering a
natural interface for controlling language model behavior through interpretable fea-
ture manipulation. This work introduces Control Reinforcement Learning (CRL),
a framework that trains policy networks to dynamically select task-relevant SAE
features through reward-based feedback. CRL enables interpretable performance
tracking by isolating feature contributions at each generation step, revealing which
features drive improvements across diverse benchmarks including question answer-
ing, bias mitigation, and reasoning tasks. To balance exploration and exploitation,
the framework employs Adaptive Feature Masking (AFM) to encourage diverse yet
effective feature discovery while maintaining interpretability. Through token-wise
feature analysis, CRL provides mechanistic insights into model behavior while
achieving modest performance improvements on Gemma-2 2B at task-optimal
layers: MMLU (+3.29%), GSM8K (+1.14%), BBQ bias mitigation (+3.55%), and
HarmBench safety (+5.61%). Results demonstrate that interpretable steering can
serve as both a performance enhancement and analysis tool, establishing a practical
pathway for controllable AI systems. 1

1 INTRODUCTION

Large language models exhibit emergent misalignment behaviors during test-time generation, where
models may deviate from intended objectives despite extensive training (Betley et al., 2025; Casade-
munt et al., 2025). Fine-tuning approaches often introduce unintended side effects or unexpected
behavioral changes (Qi et al., 2024), while existing reinforcement learning methods fail to account
for per-token contributions, thus limiting interpretability. Recent work in mechanistic interpretabil-
ity has shown that sparse autoencoders (SAEs) can extract monosemantic features from neural
activations (Bricken et al., 2023), decomposing each token’s residual stream into an interpretable
feature dictionary. SAE-extracted features enable interpretable steering without modifying base
parameters (Durmus et al., 2024). However, static steering approaches cannot address the dynamic
nature of misalignment that emerges token-by-token during generation, necessitating adaptive control
mechanisms.

However, existing SAE-based steering approaches face significant limitations: (1) contrastive
datasets (Soo et al., 2025) or large activation storage (Zhao et al., 2025) are required to identify steer-
ing directions, and (2) they rely on context tokens to select features and coefficients. Consequently,
current applications have been restricted to specific domains such as bias mitigation and jailbreaking
prevention (Durmus et al., 2024; O’Brien et al., 2025). Moreover, SAE feature selection in these
applications does not directly capture language models’ generation capabilities.

To address these limitations, this work introduces Control Reinforcement Learning (CRL), a
dynamic steering framework that applies reinforcement learning-based control for token-wise feature

1Code, trained models, and all interactive steering demos will be released upon acceptance.
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Figure 1: Overview of the Control Reinforcement Learning (CRL) framework, showing the interaction
between policy network, critic network, and SAE feature steering mechanism.

selection. This enables token-level control by applying interpretable feedback actions at each genera-
tion step, learning to rapidly identify task-relevant features that drive performance. Our contributions
are: (1) extending interpretable steering to general benchmarks with performance improvements
comparable to fine-tuning, (2) developing CRL for token-wise control, and (3) introducing Adaptive
Feature Masking (AFM) for diverse feature discovery.

2 RELATED WORK

Sparse Autoencoders address the superposition hypothesis (Elhage et al., 2022) by learning to
decompose neural activations into interpretable, sparse features (Huben et al., 2023; Bricken et al.,
2023). Given an activation vector x ∈ Rd, an SAE learns an encoder fenc : Rd → Rddict and decoder
fdec : Rddict → Rd where ddict ≫ d, such that:

z = fenc(x) = Activation(Wencx+ benc) (1)
x̂ = fdec(z) = Wdecz+ bdec (2)

The training objective uses reconstruction loss and sparsity regularization: L = ∥x− x̂∥2 + λ∥z∥1.

Activation Engineering techniques work by making targeted perturbations to a model’s activations
(Rawte et al., 2023; Turner et al., 2023; Hernandez et al., 2024; Rimsky et al., 2024). In Activation
Engineering, steering vectors (Subramani et al., 2022; Konen et al., 2024) enable control over the
language model’s behavior, offering more direct behavioral control compared to prompt engineering.
In this context, SAE features not only enhance interpretability but can also serve as steering vectors in
clamp or addition operations (Chalnev et al., 2024). Selecting a suitable coefficient for the generated
steering vector is crucial for keeping the language model within its optimal "sweet spot" without
disruption (Durmus et al., 2024). Typically, quantile-based adjustments or handcrafted coefficients
are common methods for regulating a feature’s coefficient (Choi et al., 2024).

SAE-based Control methods demonstrate that SAE features can serve as steering mechanisms for
language model control. However, current approaches face significant limitations: they require either
contrastive datasets for feature selection or extensive activation storage for coefficient optimization.
More critically, existing methods lack adaptive feedback mechanisms that can adjust steering strategies
based on generation quality, limiting their effectiveness across diverse tasks.

Reinforcement Learning for LLM has been explored in various contexts (Yu et al., 2017; DeepSeek-
AI, 2025), primarily focusing on high-level policy optimization. Recent work has applied RL to
interpretable model steering (Ferrao, 2024), but with limited action spaces. LLMs operate with
dual sequences: token positions (Text Stream) and layer information flow (Residual Stream), both
conceptualizable as Markov processes. This suggests potential for RL-based SAE control that
automatically identifies optimal feature manipulations to maximize task-specific rewards

2
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3 METHOD

3.1 PROBLEM FORMULATION: CRL AS AN MDP OVER SAE FEATURES

We approximate the control of transformer representations as a Markov Decision Process (MDP)
in which sparse autoencoder (SAE) features are manipulated to optimize task-specific rewards.
The underlying problem depends on the full history of residual stream activations and is naturally
formulated as a Partially Observable MDP (POMDP) (Zhong & Zhang, 2023; Lim et al., 2023).
We adopt the MDP formulation, treating the current residual stream activation as the state for
reinforcement learning (Yu et al., 2017; Gui et al., 2019; Xu & Jin, 2024).

Let x ∈ Rd denote the residual stream activations at layer ℓ for a target token position, where d is the
hidden dimension of the transformer model. Given a pre-trained SAE with encoder Wenc ∈ Rd×ddict

and decoder Wdec ∈ Rddict×d, the sparse feature activations are computed as zt = Act(xtWenc +
benc), where Act(·) denotes a generic pointwise activation used in the SAE encoder and z ∈ Rddict

represents the sparse feature activations with dictionary size ddict.

The MDP is defined by the tuple (S,A,P,R) where:

• State Space S: The observation is s = x ∈ Rd, the residual stream activation at layer ℓ for the
current token position.

• Action Space A: Actions are binary vectors a ∈ {0, 1}ddict where selected features (via argmax or
top-k) are set to 1, reducing the exploration challenge in high-dimensional feature spaces.

• Transition Function P: Deterministic transition governed by the transformer’s forward pass with
steering applied.

• Reward Function R: Task-specific rewards r based on final output quality evaluation.

Although the full problem is a POMDP, we empirically find that treating the current residual stream
as a sufficient statistic is effective, making the MDP formulation a practical approximation.

3.2 CRL-TOKEN: TOKEN-LEVEL INTERPRETABLE STEERING VIA SAE FEATURES

At each generation step t, CRL-Token performs token-level interventions by observing the current
token’s residual stream activation at layer ℓ and applying perturbations:

x̃t = xt + atWdec, (3)

where at ∈ {0, 1}ddict is a sparse binary selection vector, and x̃t is the steered activation. By the
Markov property, the policy depends only on the current residual stream activation:

πθ(at | x1:t) = πθ(at | xt),

where t denotes the token generation step, starting from the first generated token after the input
context.

3.2.1 POLICY NETWORK FOR FEATURE SELECTION

The policy network πθ : Rd → Rddict maps residual stream observations to SAE feature selection
logits. We implement this as an MLP:

µ = πθ(s) (4)
a = TopK(µ, k) (5)

The policy first computes feature selection logits, then selects the top-k features. In this study, we set
k = 1, effectively making it equivalent to ArgMax selection. We employ a softmax parameterization
for the policy, converting logits µ = πθ(s) into probabilities pj =

exp(µj)∑ddict
i=1 exp(µi)

. This parame-

terization ensures differentiability and enables PPO to optimize the expected advantage using the
log-probability of the selected feature: log πθ(a|s) = log pargmax(a). By decoupling probability learn-
ing from coefficient determination, the model can learn which features to select without prematurely
collapsing to a single feature.

3
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3.3 CRITIC NETWORK FOR VALUE ESTIMATION

The critic Vϕ : Rd → R estimates the state value function:

Vϕ(s) = Eπθ
[r | s], (6)

and is implemented as a multilayer perceptron (MLP).

3.4 OPTIMIZATION WITH PPO AND TASK-SPECIFIC REWARDS

We train both the policy and critic using Proximal Policy Optimization (PPO). For feature selection
via argmax/top-k, the PPO objectives are:

Lpolicy(θ) = E
[
min

(
rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At

)]
, (7)

Lcritic(ϕ) = E
[
(Vϕ(s)− r)2

]
. (8)

Here, πθ(a|s) is computed from the softmax probabilities described above, rt(θ) =
πθ(a|s)
πθold (a|s)

is the
probability ratio for the selected feature, and At = r − Vϕ(s) is the advantage estimate.

The reward r is task-specific. For multiple-choice tasks, we use binary rewards following DeepSeek-
Math (Shao et al., 2024): r(ŷ, y∗) = 1 if ŷ = y∗, and 0 otherwise. For reasoning and safety tasks,
we use task-specific correctness and refusal metrics, with details provided in Appendix A.

3.5 EXPERIMENTAL SETUP

We evaluate CRL using Gemma-2 2B-IT (Team, 2024a) with Gemma Scope SAEs (Lieberum et al.,
2024) across diverse benchmarks including knowledge (MMLU (Hendrycks et al., 2021)), reasoning
(GSM8K (Cobbe et al., 2021)), bias (BBQ (Parrish et al., 2022)), and safety (HarmBench (Mazeika
et al., 2024), XSTest (Röttger et al., 2024)) tasks. The framework is trained using PPO with
task-specific rewards to optimize feature selection for improved performance while maintaining
interpretability. Complete experimental details are provided in Appendix A.

4 RESULTS

4.1 PERFORMANCE ACROSS BENCHMARKS

Our Control Reinforcement Learning (CRL) approach demonstrates consistent but modest per-
formance improvements across benchmarks. The results show gains over baseline models, with
improvements in safety and bias mitigation tasks. CRL-Token adaptively selects SAE features for
steering based on each token’s residual stream activation, enabling dynamic token-level control during
generation. This approach provides inherent interpretability by revealing each token’s dedicated
features, which we analyze in detail in Section 5.3. Table 1 reports the main results for the Gemma 2
2B model using the standard single-layer CRL-Token configuration, where one intervention layer is
selected for steering.

Multi-layer variant. For completeness, we also experimented with CRL-Layer, a variant that
coordinates steering across multiple layers using a shared policy network. Under this exploratory
setting, HarmBench and XSTest scores reach 87.14% and 89.84%, respectively. However, such
multi-layer manipulation introduces considerable complexity in coordinating layer interactions and
reduces interpretability by distributing steering effects across multiple layers, making it difficult
to attribute specific improvements to individual features. Therefore, it is reported as an additional
analysis in Appendix A rather than as the main configuration.

4.2 STEERING COEFFICIENT ANALYSIS

To isolate the effects of coefficient changes, we conducted systematic coefficient analysis across
different steering magnitudes. Based on experimental results shown in Figure 2 for MMLU tasks
(extended analysis in Appendix 14), we found that optimal coefficients vary with network depth,
consistent with our analysis summarized in two key findings:
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Table 1: Performance results for Gemma 2 2B model across different tasks using single-layer CRL-
Token. The table shows task type, intervention layer, baseline accuracy (Before), CRL accuracy
(After), and improvement in percentage points.

Task Type Layer Before After Improvement
MMLU Multi-choice QA 24 51.90 55.19 3.29
MMLU-Pro Multi-choice QA 25 30.30 30.44 0.14
BBQ Ambig Bias QA (ambiguous) 5 60.16 63.71 3.55
BBQ Disambig Bias QA (disambiguated) 5 84.01 84.95 0.94
SimpleQA Short-form QA 8 3.63 3.76 0.13
GSM8k Math reasoning 24 54.74 55.88 1.14
HarmBench Adversarial safety 21 44.64 50.25 5.61
XSTest Over-refusal 12 86.35 86.98 0.63

• Layer-specific effectiveness: Certain layers demonstrate higher utility, with optimal intervention
points varying across task conditions.

• Coefficient scaling: Large coefficients perform poorly in earlier layers, suggesting that aggressive
steering during early processing stages disrupts fundamental model capabilities.

Across coefficients ranging from 10 to 100 for CRL-Token steering (Figure 2), later layers outperform
earlier layers. Interestingly, large coefficients in early layers yield poor performance, while this
phenomenon becomes mixed in later layers. This aligns with prior observations that residual stream
norms increase across layers (StefanHex & TurnTrout, 2023), meaning identical coefficient values
produce different effects at each layer. The observed performance inversions indicate that each layer
differs in the optimal coefficient range called "sweet spot" (Durmus et al., 2024), necessitating the
dynamic approach we employ through averaging observed coefficients. Layer-wise analysis across

Figure 2: MMLU performance across different layers for Gemma 2 2B model, showing optimal
intervention points.

all coefficient manipulations also reveals an additional pattern. Independent of coefficient values, the
overall trend follows layer-specific patterns, indicating that performance depends on layer-specific
features. Beyond performance differences, the varying optimal layers indicate that different tasks
require distinct feature activations at different network depths, suggesting task-specific intervention
strategies.

Further analysis of MMLU layer patterns (Figure 14) illustrates the difference between unconstrained
and constrained decoding patterns. The varying optimal layers indicate that hallucination mitigation
and factual question answering require distinct feature activations. This pattern demonstrates that
identical coefficient values produce different effects at each layer due to residual stream norm
variations. BBQ benchmark results from coefficient experiments exhibit similar tendencies to MMLU.
Larger coefficients perform poorly in earlier layers while showing mixed performance in later layers.
As shown in Figure 15 (in Appendix A), BBQ ambiguous and disambiguous tasks display distinct
layer patterns for optimal performance, implying that different bias contexts require distinct feature
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activations for mitigation. The coefficient 18 analysis for BBQ tasks (Figure 16) confirms that
ambiguous and disambiguous contexts require different optimal intervention layers. This suggests
that bias mitigation strategies must be adapted to the specific type of ambiguity present in the input.
The layer-wise analysis shows similar patterns across tasks: later layers generally provide more
effective intervention points, while early layers show degraded performance with large coefficients.
This pattern holds across different coefficient values and task types, supporting the residual stream
norm hypothesis discussed in the main text. Additional layer-wise coefficient analysis is provided in
Appendix A.

4.3 CRITIC NETWORK ANALYSIS

The critic network provides valuable insights into CRL’s learning dynamics across different task
types. We analyze critic behavior patterns for both single-token and multi-token generation tasks.

4.3.1 SINGLE-TOKEN TASKS

For single-token tasks (MMLU, BBQ), critic values show clear distributions between correct/incorrect
samples. MMLU exhibits critic bottlenecks where corrected and misguided samples remain nearly
indistinguishable, while BBQ demonstrates effective policy-critic coordination with clear sample
distinction. Detailed single-token critic analysis is provided in Section 5.1.

4.3.2 MULTI-TOKEN TASKS

For multi-token tasks like GSM8K, the critic network’s value function exhibits climbing patterns
along token sequences, indicating effective learning of policy feature selection. As illustrated in
Figure 3, critic value patterns are categorized into four distinct groups. Correct cases display higher
gradients with divergence beginning around 200 tokens, while steering-induced cases show different
trends with corrected answers exhibiting value increases at the 400-token point. This indicates that
CRL-Token’s interventions become more effective in later generation stages. Additional multi-token
critic analysis including HarmBench and XSTest patterns is provided in Appendix A.4.

Figure 3: Critic network value trajectories for GSM8k task. Colors indicate: blue (corrected), yellow
(misguided), green (unchanged correct), red (unchanged incorrect).

5 DISCUSSION

5.1 CRITIC BOTTLENECKS IN SINGLE-TOKEN DECISIONS

The critic networks exhibit distinctive learning dynamics across different tasks, revealing task-
dependent bottlenecks in either policy mechanisms or critic functionality. For single-token tasks
(MMLU, BBQ), critic values show clear distributions between correct/incorrect samples, while multi-
token tasks (HarmBench, XSTest) exhibit different patterns reflecting reward estimation complexity.
As shown in Figure 4, the critic value distributions illustrate these patterns, with distinct clustering
between correct and incorrect sample categories. For MMLU, corrected and misguided samples

6
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remain nearly indistinguishable, indicating a critic bottleneck. Conversely, for BBQ, corrected and
misguided samples become clearly distinguishable, with corrected samples achieving higher values,
suggesting effective policy-critic coordination.

Figure 4: Critic value distributions for single-token tasks. Top: MMLU, Bottom: BBQ. Colors: green
= corrected, yellow = misguided, blue = unchanged-correct, red = unchanged-incorrect.

5.2 TRAJECTORY-BASED CRITIC DIAGNOSTICS FOR MULTI-TOKEN TASKS

The critic value distribution extends analysis to examine critic trends throughout token generation,
with critic values predicted from each token’s residual stream. As shown in the GSM8K critic analysis
(Figure 3 in Results section), multi-token tasks exhibit distinctive trajectory patterns throughout
generation. For HarmBench, the critic successfully distinguishes between correct and incorrect
samples, whereas XSTest exhibits inverted estimation patterns. However, while HarmBench shows
clear gaps at sequence boundaries with minimal gradient differences, XSTest demonstrates estimation
errors in gap measurements but maintains clear superiority for correct samples in slope analysis.

This discrepancy stems from XSTest’s task characteristics, which require distinguishing benign
requests with higher context dependency, making reward estimation more challenging. Similar to the
MMLU case, this indicates a critic bottleneck, while HarmBench achieves accurate estimation but
shows limited critic improvement through policy feature selection, suggesting a policy bottleneck.
Detailed analysis of HarmBench and XSTest critic patterns is provided in Appendix A.4.

5.3 FEATURE STEERING AS EVIDENCE OF SEMANTIC COHERENCE

Analysis of learned feature selections reveals semantically meaningful patterns aligned with task
requirements. The policy network identifies features corresponding to relevant cognitive processes:
reasoning, fact retrieval, and safety considerations.

Efficacious steering demonstrates semantic coherence across three corrected examples. Figure 5
shows Feature 10961, described as terms related to statistical methods and implementation details,
consistently activating on "number" and "in" tokens across diverse mathematical contexts. Figure 6
demonstrates Feature 2317, described as phrases indicating comparisons or relationships between
entities, activating on equality tokens, showing semantic coherence despite varying problem structures.
Figure 17 illustrates Feature 7708, described as mathematical operations and expressions in various

7
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forms, activating on quantitative units like "babies" and "packs", demonstrating lexical generalization
beyond surface forms.

Figure 5: GSM8K corrected case 1: Contextually appropriate feature steering activates relevant
numerical tokens, strengthening the reasoning trajectory.

Figure 6: GSM8K corrected case 2: Semantically coherent feature activations align with equality
tokens, guiding the model toward correct computation.

However, failure cases arise from two primary mechanisms. Figure 7 shows Feature 15434, described
as complex relationships involving socio-legal and psychological themes, activating on "girls’" token,
demonstrating how semantically reasonable features prove unsuitable for mathematical reasoning
tasks. Figure 8 reveals token-feature misalignment where features like 1222, described as sentences
expressing emotional vulnerability and complex interpersonal dynamics, and 4069, described as
mathematical notation and geometric properties related to circles and angles, show poor semantic
alignment with activated tokens "the" and "score". Figure 18 demonstrates feature interference
causing the model to abandon correct solution paths through inappropriate feature activation.

Figure 7: GSM8K misguided case 1: Selection of task-irrelevant features interferes with mathematical
reasoning and diverts the solution process.

5.4 FEATURE BEHAVIOR AND FAILURE ANALYSIS

Our experiments reveal insights into SAE feature controllability. While corrected cases demonstrate
clear semantic coherence between feature activations and their documented descriptions (as shown in
GSM8K examples), misguided cases reveal limitations where features exhibit behavior unrelated
to their semantic interpretations. This discrepancy primarily arises in failure modes, where gaps
between feature activation patterns and downstream steering effects become apparent. The observed
divergence in misguided cases suggests that while SAE features maintain interpretability for suc-
cessful interventions, failure modes may involve more complex feature interactions. Co-activating
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Figure 8: GSM8K misguided case 2: Token–feature misalignment produces semantically incoherent
activations, degrading reasoning performance.

features can produce steering behaviors that differ from their individual documented descriptions.
Our results suggest that feature interactions may be more complex than simple linear combinations,
as isolated feature activation can produce unexpected steering effects. The limited effectiveness in
steering complex reasoning tasks indicates that such cognitive functions may require coordinated
interventions across multiple components.

Bottleneck Analysis. Our analysis reveals two primary bottlenecks limiting CRL performance: critic
network precision and policy’s critic value utility. For tasks like MMLU and XSTest, critic bottlenecks
manifest as estimation errors where corrected/misguided samples remain nearly indistinguishable,
while HarmBench shows policy bottlenecks with accurate critic estimation but limited improvement
through feature selection. Conversely, BBQ demonstrates effective policy-critic coordination with
clear distinction between sample categories. This suggests that while MMLU policy primarily
addresses hallucination issues, BBQ policy effectively tackles bias-related cases within ambiguous
scenarios. This task-dependent bottleneck pattern suggests different optimization strategies for
different task types. Detailed critic analysis for HarmBench and XSTest is provided in Appendix A.4.

Failure Mode Analysis. Failure cases arise from two primary mechanisms: (1) semantically
reasonable features prove unsuitable for specific task requirements, and (2) token-feature relationships
lack semantic alignment. These observations suggest potential improvements through conditional
steering approaches that suppress interventions when feature-token alignments are semantically
inappropriate.

Practical Implications. CRL demonstrates the potential for model adaptation through task-specific
rewards in controlled settings. The observed feature interactions highlight the need for careful
evaluation when deploying such steering methods. Detailed feature analysis and safety considerations
are provided in Appendix B.

6 CONCLUSION AND LIMITATIONS

We presented Control Reinforcement Learning (CRL), a framework that trains policy networks
for token-level feature steering based on task rewards. CRL improves performance across diverse
benchmarks—including question answering, bias mitigation, safety, and reasoning—while providing
interpretable control through sparse autoencoder (SAE) feature manipulation. Analysis of critic value
trajectories and feature selections shows how CRL identifies task-relevant directions and reveals
task-dependent bottlenecks, highlighting its role as both a control method and an interpretability tool.

Our results also expose challenges in SAE-based steering. Non-monosemantic features can cause
unintended behavioral changes, limiting reliable control. Two main failure modes emerge: semanti-
cally reasonable features that do not meet task requirements, and token-feature relationships with
weak semantic alignment. These findings suggest that SAE-learned directions operate in non-linear
interaction spaces rather than simple linear superposition. In addition, steering effects do not transfer
well to models after supervised fine-tuning, limiting use in continuously updated systems.

Overall, CRL provides a practical pathway for representation-level control while pointing to open
problems in interpretability and alignment. Future work should develop more monosemantic decom-
position methods, improve critic-policy coordination across tasks, and design monitoring tools to
detect and prevent unintended effects.
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ETHICS STATEMENT

This work introduces Control Reinforcement Learning (CRL), a framework for interpretable token-
level steering of large language models (LLMs) through Sparse Autoencoder (SAE) features. We
have carefully considered the broader impacts of this research in line with the ICLR Code of Ethics.

Contribute to society and human well-being. CRL is designed to provide interpretable control
over model behavior, improving reasoning performance and supporting safer and fairer deployment
of LLMs. We explicitly evaluate on safety and bias benchmarks to demonstrate potential societal
benefits in alignment and robustness.

Uphold high standards of scientific excellence. All benchmarks, datasets, and methods used in
this study will be publicly available upon acceptance. We provide algorithmic details, evaluation
procedures, and ablations to ensure transparency. No human subjects or private data are used.

Avoid harm. While CRL improves refusal behavior and mitigates biases in some cases, we identify
failure modes such as misguided feature selection and semantic misalignment that can degrade
performance. We also acknowledge the dual-use potential of steering methods: although CRL aims
to enhance model alignment, feature manipulation could be misused to induce harmful behaviors.

Be fair and take action to avoid discrimination. We evaluate CRL on social bias benchmarks (e.g.,
BBQ) and show reductions in measured bias. Nonetheless, residual biases inherited from pretrained
models remain, highlighting the need for continued auditing and fairness assessment.

Respect privacy and confidentiality. This work does not involve human participants, personal data,
or confidential information. All datasets are used under their respective licenses.

Overall, CRL advances the development of interpretable and responsible control methods for LLMs.
However, we emphasize the importance of further safeguards, auditing, and ethical deployment
practices to mitigate risks.

REPRODUCIBILITY STATEMENT

We have taken extensive steps to ensure reproducibility of our results. All benchmarks used in this
study (MMLU, MMLU-PRO, BBQ, GSM8K, HARMBENCH, XSTEST, SIMPLEQA) are publicly
available, with dataset splits and evaluation metrics detailed in Appendix A.3. Algorithmic details
of CRL, including the Markov Decision Process formulation, PPO training procedure, and reward
signal design, are described in Section 3, with pseudocode for token-level steering provided in
Algorithm 1. Hyperparameters for training, coefficient analysis, and baselines are documented in
Appendix A.2–A.3. Experiments are conducted with the Gemma-2-2B-IT model and pre-trained
Gemma Scope SAE (16K features), with details in Appendix A.4. Results are averaged over multiple
validation samples, and robustness is assessed through coefficient ablations (Appendix A.11), feature
diversity analysis (Appendix A.10), and task-wise comparisons of CRL-Token and CRL-Layer
(Appendix A.5). All resources will be released publicly upon acceptance. These resources enable
independent reproduction and extension of our work.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

Models and SAEs. We conduct experiments using Gemma-2 2B-IT (Team, 2024a) with pre-trained
SAEs from Gemma Scope (Lieberum et al., 2024) (16K features) across layers 1-26, and LLaMA-3.1
8B (Team, 2024b) with LLaMA Scope SAEs (He et al., 2024) (32K features). Both SAE families
employ JumpReLU activation (Rajamanoharan et al., 2024) and were the only releases providing
SAEs across all transformer layers at the time of writing. SAEs are transferable across fine-tuned
models with low reconstruction loss. Training Protocol. Training uses PPO with batch size 8,
evaluating on 500 validation samples every 100 training steps. Selection tasks use 1 token generation,
while HarmBench/XSTest use 32 tokens and GSM8K uses 1024 tokens. For datasets with fewer than
4000 samples, we repeat training data to reach 4000 samples.

Evaluation Benchmarks. We evaluate CRL across five categories: Knowledge: MMLU (Hendrycks
et al., 2021), MMLU-Pro (Wang et al., 2024). Reasoning: GSM8K (Cobbe et al., 2021). Bias:
BBQ (Parrish et al., 2022). Factuality: SimpleQA (Wei et al., 2024). Safety: HarmBench (Mazeika
et al., 2024), XSTest (Röttger et al., 2024).

A.2 CRL-LAYER: LAYER-WISE STEERING MECHANISM

For layer-wise steering, we extend the framework to operate across multiple transformer layers
simultaneously using a single token position. The shared Markov Decision Process operates on
layer-specific variables where all components are parameterized with layer index ℓ.

Let x(ℓ) ∈ Rd denote the residual stream activation at layer ℓ for a single target token position. Given
layer-specific SAE components with encoder W(ℓ)

enc ∈ Rd×ddict and decoder W(ℓ)
dec ∈ Rddict×d, the

steering mechanism applies perturbations across all layers:

x̃(ℓ) = x(ℓ) + a(ℓ)W
(ℓ)
dec (9)

where a(ℓ) ∈ {0, 1}ddict is the layer-specific action vector. The shared MDP coordinates decisions
across layers through a joint policy:

πθ(a
(1:L)|x(1:L)) =

L∏
ℓ=1

π
(ℓ)
θ (a(ℓ)|x(ℓ)) (10)

where L is the total number of layers and each layer-specific policy π
(ℓ)
θ shares parameters while

adapting to layer-specific representations.

CRL-Layer Results.

CRL-Layer’s primary practical advantage lies in sharing policy and critic networks across layers.
This approach significantly reduces computational resources compared to extending CRL-Token to
multiple layers without cross-layer compatibility. Although representation spaces for each layer’s
residual stream differ, residual connections enforce shared vector spaces, and existing layer-wise
reuse approaches (Ye et al., 2021; Elhoushi et al., 2024; Raposo et al., 2024) support network sharing
across layers.

Table 2: Performance comparison between CRL variants across different benchmarks on Gemma 2
2B model. Results show accuracy (%).

Method MMLU MMLU-Pro BBQ Ambig BBQ Disambig XSTest HarmBench

Baseline 52.23 30.30 59.10 75.42 86.35 44.64
CRL-Layer 55.00 29.18 62.93 75.68 86.98 71.43
CRL-Token 55.55 30.44 61.88 76.73 86.98 50.25

Table 2 presents a comparison between CRL-Layer, and CRL-Token across multiple benchmarks.
CRL-Layer achieves improvements over baseline across most tasks except MMLU-Pro, though it
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generally underperforms CRL-Token on complex tasks, with the exception of refusal tasks. This
pattern reveals that while layer-wise sharing provides clear computational advantages, it introduces
limitations for complex tasks requiring layer-specific weights. Notably, CRL-Layer achieves the
highest performance on HarmBench, outperforming both CRL-Token, suggesting that layer-shared
refusal patterns benefit from cross-layer feature consistency.

A.3 LLAMA RESULTS

We extend our evaluation to LLaMA-3.1 8B model with LLaMA Scope SAEs to demonstrate the
generalizability of our approach across different model architectures.

Table 3: Performance results for LLaMA-3.1 8B model across different tasks using CRL-Token
approach. MMLU and MMLU-Pro use 0-shot evaluation, BBQ tasks use 1-shot evaluation, SimpleQA
uses 0-shot evaluation, XSTest and HarmBench use refusal rate evaluation.

Task Type Layer Before After Improvement

MMLU knowledge 20 61.41 62.33 +0.92
MMLU-Pro knowledge 26 32.13 33.16 +1.03
BBQ Ambig bias 7 83.97 85.04 +1.07
BBQ Disambig bias 30 90.07 90.16 +0.09
SimpleQA factuality 25 0.43 0.96 +0.53
XSTest safety 23 61.27 59.37 -1.90
HarmBench safety 5 0.71 6.07 +5.36

Table 3 demonstrates that CRL-Token generalizes across different model families, with mixed results
across tasks. While most tasks show improvements (knowledge, bias, factuality), XSTest exhibits
a decline (-1.90), suggesting task-specific sensitivity to the steering approach. HarmBench shows
improvement (+5.36), consistent with the Gemma-2 2B results, demonstrating safety steering across
architectures. The mixed results confirm that our approach transfers across different model architec-
tures while highlighting the importance of task-specific optimization, maintaining the interpretable
feature-based control mechanism.

A.4 CRITIC VALUE ANALYSIS

Multi-token Generation Task Analysis.

The four sample categories (correct/incorrect, corrected/misguided) are analyzed for HarmBench and
XSTest tasks to understand critic behavior patterns in multi-token generation scenarios.

Figure 9: Critic network learning curve for HarmBench task, demonstrating convergence patterns for
safety tasks.

Our analysis focuses on linear regression gradient slopes and the visible gaps between sample
categories. Empirically, we observed that critic value gaps between correct and incorrect samples
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become more pronounced in later layers. We observe two distinct patterns in critic trajectories
analogous to those in single-token generation tasks. These patterns reflect either errors in critic
value estimation (manifesting as bias gaps) or limitations in the policy’s critic value utility (affecting
gradient dynamics).

Figure 10: Critic network learning curve for XSTest task, demonstrating convergence patterns for
safety tasks.

For HarmBench (Figure 9), the critic successfully distinguishes between correct and incorrect samples,
whereas XSTest (Figure 10) exhibits inverted estimation patterns. However, while HarmBench shows
clear gaps at sequence boundaries with minimal gradient differences, XSTest demonstrates estimation
errors in gap measurements but maintains clear superiority for correct samples in slope analysis
across both correct/incorrect and corrected/misguided categories.

A.5 TASK-WISE ANALYSIS

A.6 HALLUCINATION MITIGATION ANALYSIS

Figure 11: MMLU hallucination answers
comparison between baseline and CRL-Token
steering, demonstrating effective elimination
of invalid responses outside the provided op-
tions (A, B, C, D).

For single-token generation tasks, particularly
MMLU without constrained decoding, a substan-
tial portion of performance improvement stems from
hallucination mitigation. CRL-Token steering effec-
tively eliminates responses that fall outside the pro-
vided answer options (A, B, C, D).

The baseline model frequently generates invalid re-
sponses such as "*" or whitespace instead of selecting
from the given options. This behavior significantly
impacts performance metrics, as these responses are
automatically marked incorrect regardless of the un-
derlying reasoning quality. Our CRL-Token approach
addresses this issue by learning to constrain outputs to
valid answer choices while maintaining the model’s
reasoning capabilities.

The analysis reveals that a portion of performance
gains in MMLU tasks can be attributed to this hallu-
cination mitigation effect, with the remainder coming
from improved feature selection and reasoning en-
hancement. This finding highlights the importance

of output format consistency in evaluation benchmarks and demonstrates CRL’s effectiveness in
learning task-specific constraints.
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A.7 FEATURE SELECTION EVALUATION

We analyze the policy network’s feature selection patterns to understand which SAE features con-
tribute most to performance improvements. For each feature i, we compute:

A.7.1 IMPACT SCORE

ni =
∑
t

1{i ∈ St}, N =
∑
j

nj , (11)

pi =
ni

N
, (12)

ci =
∑
t

1{i ∈ St}1{improvedt}, mi =
∑
t

1{i ∈ St}1{degradedt}, (13)

Impacti =
(ci +mi) · log(ni + ε)

ni · log(ni + ε)
=

ci +mi

ni
, (ε > 0) (14)

where St is the set of selected features at step t (e.g., top-k), and improvedt/degradedt denote whether
steering improved/degraded the outcome versus baseline.

A.7.2 FEATURE DIVERSITY

Additionally, we compute feature diversity to understand the policy’s exploration behavior:

Feature Diversity = −
ddict∑
i=1

pi log pi (15)

where pi is the probability of selecting feature i. Higher entropy indicates more diverse feature usage
across the SAE dictionary. Together, these metrics quantify how diverse the trained policy’s feature
selection is and how much the selected features actually influence behavior change.

A.8 FEATURE DIVERSITY AND IMPACT SCORE

Figure 12: Top activated features for MMLU (left) and BBQ Disambig (center) and GSM8K (right)
tasks, revealing semantic patterns in feature selection for reasoning and bias mitigation.

Feature diversity remains consistent across different hyperparameters within the same task, though it
decreases with increased policy layer depth. As shown in Figure 12, tasks requiring longer token
generation horizons (GSM8K: 6.695) or higher complexity (MMLU-Pro: 5.476) demonstrate elevated
feature diversity compared to shorter response tasks (HarmBench: 2.938), with XSTest (4.757)
showing intermediate diversity levels. Impact scores exhibit an inverse relationship with feature
diversity: tasks with lower diversity show higher concentrated impact scores (HarmBench: 0.808),
while high-diversity tasks demonstrate more distributed feature contributions (XSTest: 0.357, MMLU-
Pro: 0.625). This pattern suggests that complex reasoning tasks require broader feature engagement,
whereas focused tasks benefit from concentrated feature activation. Figure 13 demonstrates that
activation frequency exhibits rank-dependent decay with task-specific distribution patterns reflecting
underlying diversity characteristics.
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Figure 13: Feature usage hierarchy in Gemma 2 2B MMLU task, demonstrating that the policy
selectively identifies specific features rather than random selection.

A.9 ADDITIONAL LAYER-WISE COEFFICIENT ANALYSIS

This section provides layer-wise coefficient analysis across all tasks and coefficient ranges, extending
the main text analysis.

Figure 14: Extended MMLU layer analysis with coefficient 18, showing unconstrained (left) and
constrained (right) decoding patterns.

The coefficient 18 analysis for BBQ tasks (Figure 16) confirms that ambiguous and disambiguous
contexts require different optimal intervention layers. This suggests that bias mitigation strategies
must be adapted to the specific type of ambiguity present in the input. The layer-wise analysis shows
similar patterns across tasks: later layers generally provide more effective intervention points, while
early layers show degraded performance with large coefficients. This pattern holds across different
coefficient values and task types, supporting the residual stream norm hypothesis discussed in the
main text.
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Figure 15: BBQ layer analysis for ambiguous (left) and disambiguous (right) tasks across different
coefficient values.

Figure 16: BBQ layer analysis with coefficient 18 for ambiguous (left) and disambiguous (right)
tasks.

B FEATURE ANALYSIS DETAILS

B.1 ADDITIONAL CORRECTED EXAMPLE

Figure 17: GSM8K corrected example 3: Lexical generalization demonstrates effective feature
steering.

B.2 CORRECTED FEATURES FOR GSM8K TASK

The following features demonstrate positive steering effects, correcting model outputs from incorrect
to correct responses:

• 4504 diagrams and schematic representations related to workflows, communication systems,
and protocols (correct/incorrect: 321/170, corrected/misguided: 15/4)

• 406 specific mentions of individuals, organizations, and their respective roles or activities
(correct/incorrect: 116/113, corrected/misguided: 12/4)
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• 1440 instances of the word "vice" and related terms (correct/incorrect: 161/119, cor-
rected/misguided: 11/4)

• 14204 indicators of group dynamics and power relations (correct/incorrect: 248/179, cor-
rected/misguided: 16/6)

• 10961 terms related to statistical methods and implementation details (correct/incorrect:
223/182, corrected/misguided: 20/8)

• 2699 significant concepts related to problems and solutions within a defined framework
(correct/incorrect: 234/187, corrected/misguided: 17/7)

• 2317 phrases indicating comparisons or relationships between two entities or elements
(correct/incorrect: 120/86, corrected/misguided: 12/5)

• 2720 mathematical expressions and equations related to functions and inequalities (cor-
rect/incorrect: 151/150, corrected/misguided: 11/5)

• 347 phrases and concepts related to accountability and compliance (correct/incorrect:
148/129, corrected/misguided: 15/7)

• 7708 mathematical operations and expressions in various forms (correct/incorrect: 188/217,
corrected/misguided: 19/9)

B.3 ADDITIONAL MISGUIDED EXAMPLE

Figure 18: GSM8K misguided example 3: Feature interference causes abandonment of correct
solution path.

B.4 MISGUIDED FEATURES FOR GSM8K TASK

Conversely, these features demonstrate negative steering effects, inadvertently changing correct
responses to incorrect ones:

• 7999 mathematical expressions or equations (correct/incorrect: 40/42, corrected/misguided:
1/10)

• 4069 mathematical notation and geometric properties related to circles and angles (cor-
rect/incorrect: 121/100, corrected/misguided: 7/16)

• 13752 elements related to job creation and economic context (correct/incorrect: 109/78,
corrected/misguided: 5/10)

• 10968 specific coding or mathematical terms and phrases related to programming or data
analysis (correct/incorrect: 99/112, corrected/misguided: 8/16)

• 16295 significant terms and phrases related to scientific studies, particularly in the context of
law, medicine, and research methodologies (correct/incorrect: 99/93, corrected/misguided:
6/11)

• 12174 references to understanding and problem-solving processes (correct/incorrect:
180/157, corrected/misguided: 10/17)

• 15434 complex relationships involving socio-legal and psychological themes (cor-
rect/incorrect: 113/125, corrected/misguided: 8/13)

• 1222 sentences expressing emotional vulnerability and complex interpersonal dynamics
(correct/incorrect: 74/61, corrected/misguided: 7/11)

• 7834 indicative symbols and formatting used in programming or mathematical expressions
(correct/incorrect: 97/101, corrected/misguided: 9/14)

• 3415 patterns of conditional phrases and expressions of uncertainty (correct/incorrect:
92/108, corrected/misguided: 8/12)
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