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Abstract

Automatic detection and segmentation of cells and nuclei in microscopy images is
important for many biological applications. The development of automated meth-
ods for nuclear segmentation and classification enables the quantitative analysis of
tens of thousands of nuclei within a whole-slide microscopy image. In situations
of crowded cells, some existing methods can be prone to segmentation errors, such
as falsely merging bordering cells or suppressing valid cell instances due to the
poor approximation with bounding boxes. For this challenge that contains more
than one modality and are diverse in cell shape and color, we use a unet-based
method to tackle this problem. The modified Unet can generate probability maps
and distance maps in one forward step. We then utilize the probability maps and
distance maps to obtain the final cell instance segmentation results.

1 Introduction

Many biological tasks rely on the accurate detection and segmentation of cells and nuclei from
microscopy images. Examples include high-content screens of variations in cell phenotypes, or the
identification of developmental lineages of dividing cells. In many cases, the goal is to obtain an
instance segmentation, which is the assignment of a cell instance identity to every pixel of the image.
To that end, a prevalent bottom-up approach is to first classify every pixel into semantic classes (such
as cell or background) and then group pixels of the same class into individual instances. The first step
is typically done with learned classifiers, such as random forests or neural networks. Pixel grouping
can for example be done by finding connected components. While this approach often gives good
results, it is problematic for images of very crowded cell nuclei, since only a few mis-classified pixels
can cause bordering but distinct cell instances to be fused.

An baseline method is to first segment the cell, and then transform the binary masks into instance
maps via specific post-processing. An alternative top-down approach is to first localize individual
cell instances with a rough shape representation and then refine the shape in an additional step.

To alleviate the aforementioned problems, we use StarDist [1], a cell detection method that predicts a
shape representation which is flexible enough such that - without refinement - the accuracy of the
localization can compete with that of instance segmentation methods.
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2 Method

The pipeline of the method is shown as Fig. The approach is similar to object detection methods that
directly predict shapes for each object of interest. Unlike most of them, we do not use axis-aligned
bounding boxes as the shape representation. Instead, the model predicts a star-convex polygon for
every pixel. The stardist model generates two outputs: probability map for cell region, and distance
maps. At post-processing, a module named non-maximum suppression (NMS) is used to obtain the
final instance results.

2.1 Preprocessing

We perform normalization for all images, including training and validation images.

2.2 Stardist

While we could simply classify each pixel as either object or background based on binary masks,
we instead define its object probability di,j as the (normalized) Euclidean distance to the nearest
background pixel. Only use the object probability information as supervision is not enough to train a
robust model for instance segmentation. For instance labels, there is some additional information
we can obtain, such as centroid, outline and distance maps. We can utilize these different types of
information as supervision to train a network. For every pixel belonging to an object, the Euclidean
distances rki.j to the object boundary can be computed by simply following each radial direction k
until a pixel with a different object identity is encountered.

Figure 1: Unet-based Stardist architecture. The model generates two outputs, and utilize both of them
to obtain the instance results.

We aims to use CPS [2] as our strategy to use the unlabelled cases, however, we have no time to
implement the combination between the stardist and CPS.

Loss function. we use the summation between Dice loss and cross entropy loss because compound
loss functions have been proved to be robust in various medical image segmentation tasks [3]. For
distance maps and corresponding ground truth, we use MAE loss.

2.3 Post-processing

Non-maximum suppression. We perform common, greedy non-maximum suppression (NMS) to
only retain those polygons in a certain region with the highest object probabilities. We only consider
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polygons associated with pixels above an object probability threshold as candidates, and compute
their intersections with a standard polygon clipping method.

3 Experiments

3.1 Implementation details

Please include all the implementation details in this subsection. The following items are minimal
requirements.

3.1.1 Environment settings

The development environments and requirements are presented in Table 1.

Table 1: Development environments and requirements.

System Ubuntu 20.04.5 LTS
CPU i7-6850K CPU @ 3.60GHz 3.60 GHz
RAM 64GB; 2.67MT/s
GPU One NVIDIA 2080Ti 11G
CUDA version 11.4
Programming language Python 3.8
Deep learning framework Tensorflow-gpu 2.7.0
Specific dependencies None
Code Will be available soon

3.1.2 Training protocols

Data augmentation

Patch sampling strategy during training (e.g., random sample 512× 512 patches) and inference (slide
window with a patch size 512 × 512). We also use random flip, random intensity change (with
intensity parameter of 0.3) and random Gaussian noise. In these data augmentations, the random
intensity change has the best performance.

We randomly split the 1000 labelled images into 900, 100 for training and validation, respectively.
We select the best model in the validation set and use it to generate tuning set results.

Table 2: Training protocols. If the method includes more than one model, please present this table for
each model seperately.

Network initialization “kaiming" normal initialization
Batch size 10
Patch size 512×512
Total epochs 600
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.001
ReduceLROnPlateau,patience: 30, factor: 0.5
Training time 10 hours
Loss function Dice and CE loss, MAE loss
Number of model parameters 2.89M1

Number of flops 48.84G2

4 Results and discussion

In this challenge, we did not exploit the unlabelled data.
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The method performs well in the cell images that have regular shape, while badly in the irregular cell
images.

The possible reason for the failed cell images is that the hypothesis of stardist localizes cell nuclei via
star-convex polygons. It will not localize well in those cell images with irregular shape.

For whole-slide image, we use slide-window reference. As the model only produce the instance label
for each patch, we rearrange the instance number for the whole-slide image after sticking the patch
into the original image.

4.1 Quantitative results on tuning set

In tuning set, there are 101 images in total. We get the f1 score of 0.6551 as our result.

We did not use the unlabelled data.

4.2 Qualitative results on validation set

good

poor

Figure 2: The first row shows three good examples. The second row shows three poor examples.

Qualitative results on validation set is shown in Fig. 2. Fig. 2 shows three good examples and
three poor examples, respectively. It can be seen that stardist can distinguish very crowded cells.
However, the stardist model does not have the generalization ability for irregular cells, leading to
poor performance of some cases.

4.3 Results on final testing set

This is a placeholder. We will send you testing results after the challenge.

4.4 Limitation and future work

The stardist model functions well in the cell images with regular shape, while it can performs badly
in the cell images with irregular shape.
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5 Conclusion

We demonstrated that star-convex polygons are a good shape representation to accurately localize
cell nuclei even under challenging conditions. The stardist model is especially appealing for images
of very crowded cells. However, it has one main defect: can not segment irregular cells.
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