

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOMA: A SIMPLE MODULAR LEARNING FRAME- WORK FOR MATERIAL PROPERTY PREDICTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep learning methods for material property prediction have been widely explored to advance materials discovery. However, the prevailing pre-train paradigm often fails to address the inherent diversity and disparity of material tasks. To overcome these challenges, we introduce MoMa, a simple **Modular** framework for **Materials** that first trains specialized modules across a wide range of tasks and then adaptively composes synergistic modules tailored to each downstream scenario. Evaluation across 17 datasets demonstrates the superiority of MoMa, with a substantial 14% average improvement over the strongest baseline. Few-shot and module scaling experiments further highlight MoMa’s potential for real-world applications. Pioneering a new paradigm of modular material learning, MoMa will be open-sourced to foster broader community collaboration.

1 INTRODUCTION

Accurate and efficient material property prediction is critical for accelerating materials discovery. Key properties such as formation energy and band gap are fundamental in identifying stable and functional materials (Masood et al., 2023; Riebesell et al., 2025). While traditional approaches such as density functional theory offer high precision (Jain et al., 2016), their prohibitive computational cost limits their practicality for large-scale screening (Fiedler et al., 2022; Lan et al., 2023).

Recently, deep learning methods have been developed to expedite traditional approaches (Xie & Grossman, 2018; Griesemer et al., 2023). Pre-trained force field models, in particular, have shown remarkable success in generalizing to a wide spectrum of material property prediction tasks (Shoghi et al., 2024; Rhodes et al., 2025; Wood et al., 2025), outperforming specialized models trained from scratch. These models are typically pre-trained on the potential energy surface (PES) data of materials (Barroso-Luque et al., 2024) and then fine-tuned for the target downstream task.

Despite these advances, we identify two key challenges that undermine the effectiveness of current deep learning models for material property prediction: **diversity** and **disparity**.

First, material tasks exhibit significant diversity (Fig. 1) which challenges the generalizability of existing models. For instance, prevailing force-field models are only trained on PES-derived properties (e.g., force, energy, and stress) mostly focusing on crystalline materials (Yang et al., 2024b; Barroso-Luque et al., 2024). However, material tasks span a much wider variety of systems (e.g., crystals, organic molecules) and properties (e.g., thermal stability, electronic behavior), making it difficult for methods trained on a limited set of data to generalize across the full spectrum of tasks.

Second, the disparate nature of material tasks presents huge obstacles for jointly training a broad span of tasks in one model. Material systems vary significantly in atomic composition, bonding and structural periodicity, while their properties are governed by distinct physical laws. For example, mechanical strength in metals is primarily influenced by atomic bonding and crystal structure, whereas electronic properties like conductivity are determined by the material’s electronic structure. Consequently, training a single model across a wide range of tasks (Shoghi et al., 2024) may lead to knowledge conflicts, hindering the model’s ability to effectively adapt to downstream scenarios.

Drawing inspiration from modular deep learning (Pfeiffer et al., 2023), we propose MoMa, a **Modular** framework for **Material** property prediction. To accommodate the **diversity** challenge, MoMa trains multiple high-resource property prediction datasets into transferrable modules to sup-

Figure 1: Illustration of the diversity of material properties (top) and systems (down). Material tasks are also disparate, with different laws governing diverse properties and systems. These characteristics pose challenges for material property prediction models.

Figure 2: The modular learning scheme in MoMa trains and stores a broad spectrum of material tasks as modules, and adaptively composes them given a new material property prediction task.

port a wide-span of downstream tasks. In parallel, to address the **disparity** challenge, MoMa encapsulates each task within a specialized module during training to avoid interference. Furthermore, in adapting to each downstream task, MoMa adaptively integrates a synergistic combination of modules to mitigate knowledge conflicts and promote positive transfer. A high-level abstraction of MoMa is provided in Fig. 2.

Specifically, MoMa comprises two major stages: (1) *Module Training & Centralization*. MoMa trains dedicated modules for a diverse range of material tasks, offering two versions: a full module for superior performance and a memory-efficient adapter module. These trained modules are centralized in MoMa Hub, a repository facilitating knowledge reuse while preserving proprietary data for privacy-aware material learning. (2) *Adaptive Module Composition (AMC) & Fine-tuning*. We devise **AMC**, a *representation-driven, training-free* module composition algorithm which well respects the disparity and data scarcity of material tasks. Given a target task, AMC first estimates the performance of each module via k NN label propagation in representation space. It then infers a weighted module composition by solving a convex optimization problem over a justified proxy error. The composed module is then fine-tuned on the downstream data for improved adaptation. Together, the two stages offers a flexible and scalable solution to achieve effective modular learning for material property prediction.

Empirical results across 17 downstream tasks showcase the superiority of MoMa, outperforming all baselines in **16/17** tasks, with an average improvement of **14%** compared to the best non-modular baseline. In *few-shot* settings, which are common in materials science, MoMa achieves even larger performance gains to the conventional pre-train then fine-tune paradigm. Additionally, MoMa shows improved average improvements as we scale the number of modules in the MoMa Hub, and the **AMC-optimized weights provide valuable insights into relationships between material properties**. The trained modules in MoMa Hub will be open-sourced, and we envision MoMa becoming a pivotal platform for the modularization and distribution of materials knowledge, fostering deeper community engagement to accelerate materials discovery.

2 RELATED WORK

2.1 MATERIAL PROPERTY PREDICTION WITH DEEP LEARNING

Deep learning methods have been widely adopted for predicting material properties (De Breuck et al., 2021). The seminal CGCNN model (Xie & Grossman, 2018) represents crystalline materials with multi-edge graphs and applies graph neural networks for representation learning. Subsequent work (Choudhary & DeCost, 2021; Das et al., 2023; Yan et al., 2024; Taniai et al., 2024) has focused on improving neural network architectures to better model the inductive biases of crystals.

Another line of work develops pre-training strategies for materials (Jha et al., 2019; Magar et al., 2022; Wang et al., 2025). Recently, a series of large force field models (Merchant et al., 2023; Batatia

108 et al., 2023; Neumann et al., 2024) are trained on massive Potential Energy Surface data (Barroso-
 109 Luque et al., 2024) and achieve remarkable accuracy in material tasks (e.g. thermal stability prediction
 110 (Riebesell et al., 2025)). Notably, the JMP model (Shoghi et al., 2024), trained across multiple
 111 domains (small molecules, catalysts, etc.), performs impressively when fine-tuned on both molecular
 112 and crystalline tasks.

113 Extending beyond these methods, MoMa offers a modular strategy to centralize diverse material
 114 knowledge into modules and adaptively compose them, yielding superior downstream performance.
 115

116 2.2 MODULAR DEEP LEARNING

117 Modular deep learning (Pfeiffer et al., 2023; Xiao et al., 2024) represents a promising paradigm
 118 where parameterized modules are composed, selected, and aggregated for function specialization
 119 and reuse. Notable examples of modular networks include mixture-of-experts (Jacobs et al., 1991;
 120 Shazeer et al., 2016), adapters (Houlsby et al., 2019) and LoRA (Hu et al., 2021). Recently, we have
 121 seen increasing applications of modular methods across domains such as NLP (Pfeiffer et al., 2020;
 122 Huang et al., 2024; Tan et al., 2024) and CV (Puigcerver et al., 2020; Pham et al., 2024), where its
 123 strengths in flexibility and minimizing negative interference have been demonstrated.
 124

125 **An important aspect of modular learning is how modules are weighted prior to composition.** Pre-
 126 vious adaptive module composition approaches can be broadly grouped into (1) search-based meth-
 127 ods that iteratively optimize weights based on downstream predictive performance after composi-
 128 tion (Huang et al., 2024; Akiba et al., 2025), and (2) router-based methods that learn composi-
 129 tion weights via an additional routing network (Muqeeth et al., 2023; Lu et al., 2024). Crucially, both
 130 paradigms rely on the downstream prediction error of the composed model to guide weight allo-
 131 cation. However, this dependence is problematic in material settings: high task disparity makes the
 132 error signals (from arbitrary module mixtures) noisy and unstable for search-based methods, while
 133 data-scarcity provides insufficient supervision for router learning. Additionally, loading all material
 134 modules during router training becomes prohibitively costly as the number of module scales.
 135

136 In the context of material property prediction, modular learning remains largely under-explored. The
 137 most related work is the router-based mixture-of-experts method MoE-18 (Chang et al., 2022),
 138 which loads all available modules and learns a routing network for embedding aggregation.

139 3 PROPOSED FRAMEWORK: MOMA

140 MoMa is a simple modular framework targeting the diversity and disparity of material property
 141 prediction tasks. MoMa involves two major stages. In the first stage (Section 3.1), we train and
 142 centralize modules for a diverse range of material systems and properties into MoMa Hub. In the
 143 second stage (Section 3.2), we devise a *representation-driven, training-free* algorithm to adaptively
 144 select and compose MoMa hub modules for a target task, and then fine-tune the composed model.
 145 A visual overview of MoMa is shown in Figure 3.
 146

147 3.1 MODULE TRAINING & CENTRALIZATION

148 To better exploit the transferable knowledge of open-source material property prediction datasets,
 149 we first train distinctive modules for each high-resource material task, and subsequently centralize
 150 these modules to constitute MoMa Hub.
 151

152 **Module Training** Leveraging the power of state-of-the-art material property prediction models,
 153 we choose to employ a pre-trained backbone encoder f as the initialization for training each MoMa
 154 module. Note that MoMa is independent of the backbone model choice, which enables smooth
 155 integration with other pre-trained backbones.
 156

157 We provide two parametrizations for the MoMa modules: the **full** module and the **adapter** mod-
 158 ule. For the full module, we directly treat each fully fine-tuned model backbone as a standalone
 159 module. The adapter module, in contrast, serves as a parameter-efficient alternative where adapter
 160 layers (Houlsby et al., 2019) are inserted between each layer of the backbone. The adapters are
 161 updated and the rest of the backbone is frozen. All adapters trained for a given task are collectively
 162 treated as one module. This implementation trade-offs the downstream performance for a much

Figure 3: The MoMa framework. (a) During the Module Training & Centralization stage (Section 3.1), MoMa trains full and adapter modules for a wide spectrum of material tasks, constituting the MoMa Hub; (b) The Adaptive Module Composition (AMC) & Fine-tuning stage (Section 3.2) leverages the modules in MoMa Hub to compose a tailored module for each downstream task. The AMC algorithm comprises three steps: 1. Prediction Estimation; 2. Weight Optimization; 3. Module Composition. The composed module is further fine-tuned on the task for better adaptation.

lower GPU memory cost during training, making it especially suitable for compute-constrained settings. When training converges, all module parameters are stored into a centralized repository \mathcal{H} termed MoMa Hub, formally:

$$\mathcal{H} = \{g_1, g_2, \dots, g_N\}, \quad g_i = \begin{cases} \theta_f^i & \text{(full module)} \\ \Delta_f^i & \text{(adapter module)} \end{cases}$$

where θ_f^i and Δ_f^i denote the full and adapter module parameters for the i^{th} task and encoder f .

Module Centralization To support a wide array of downstream tasks, MoMa Hub needs to include modules trained on diverse material systems and properties. Currently, MoMa Hub encompasses 18 material property prediction tasks selected from the Matminer datasets (Ward et al., 2018) with over 10000 data points. These tasks span across a large range of material properties, including thermal properties (e.g. formation energy), electronic properties (e.g. band gap), mechanical properties (e.g. shear modulus), etc. For more details, please refer to Section C.1. Note that MoMa is designed to be task-agnostic and may readily support a larger spectrum of tasks in the future.

An important benefit of the modular design of MoMa Hub is that it preserves proprietary data, which is prevalent in the field of materials, enabling privacy-aware contribution of new modules. Therefore, MoMa could serve as an open platform for the modularization of materials knowledge.

3.2 ADAPTIVE MODULE COMPOSITION & FINE-TUNING

Given a labeled material property prediction dataset $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^M$, the goal of the second stage is to customize a task-specific model by composing modules from MoMa Hub. Due to the diversity and disparity of material tasks, blindly combining modules often leads to suboptimal performance. The composition must be *adaptive*, composing only the most synergistic modules for each task. Furthermore, given the vast and expanding scale of the Hub, the method must be *data-driven and efficient*, avoiding reliance on human expertise or prohibitively expensive exhaustive search.

However, satisfying these requirements is non-trivial for existing adaptive weighting paradigms. As discussed in Section 2.2, both search-based and router-based methods rely on downstream prediction error derived from composed module as the supervision signal. In our setting, this signal is less reliable: the high disparity of modules in inputs (e.g. crystals vs. molecules) and targets (e.g. energies vs. band gaps) induces highly heterogeneous representation spaces. Hence module mixtures yield unstable representations and uninformative error signals, resulting in a noisy optimization landscape that hampers search-based methods. Moreover, the scarcity of downstream data makes router training difficult and prone to overfitting.

Figure 4: An analytical decomposition of AMC. Blue arrows: per-module k NN prediction estimation in representation space on target task. Black arrows: convex optimization of ensemble proxy error to obtain composition weights. Orange arrows: weight-space module composition to construct the final composed module.

Figure 5: Scatter plot showing the relationship between k NN proxy MAE and post-fine-tuning MAE of standalone MoMa Hub modules on three representative tasks. Colored lines are linear fits. We observe a clear positive correlation with Pearson's $r > 0.6$.

To address these limitations, we devise the Adaptive Module Composition (AMC) algorithm. Instead of relying on prediction error supervision, AMC adopts a *representation-driven* and *training-free* strategy. Specifically, it first estimates per-module performance via k NN in the representation space, and then solves for optimal composition weights by minimizing an ensemble *proxy error* via convex optimization. This allows AMC to efficiently identify synergistic compositions without iterative search or extra trainable parameters. We now introduce AMC in detail. An analytical figure of AMC is provided in Fig. 4, with its formal formulation in Algorithm 1.

Representation-driven Prediction Estimation AMC begins by estimating the affinity of each module to the downstream task. To bypass the unstable optimization landscape of arbitrary module mixtures, we first evaluate the intrinsic representation quality of each module individually. We posit that a task-aligned module should map materials with similar properties to adjacent points in the embedding space.

Formally, for each module $g_j \in \mathcal{H}$, we encode the training data \mathcal{D} into representations $\mathcal{X}^j = \{\mathbf{x}_1^j, \dots, \mathbf{x}_M^j\}$. We then perform leave-one-out k NN label propagation (Iscen et al., 2019) to obtain a prediction \hat{y}_i^j for each instance:

$$\hat{y}_i^j = \sum_{k \in \mathcal{N}_i} \frac{f_d(\mathbf{x}_i^j, \mathbf{x}_k^j)}{Z_i^j} y_k, \quad Z_i^j = \sum_{k \in \mathcal{N}_i} f_d(\mathbf{x}_i^j, \mathbf{x}_k^j). \quad (1)$$

where \mathcal{N}_i denotes the indices of the K nearest neighbors of \mathbf{x}_i^j within \mathcal{X}^j , and f_d is the exponential cosine similarity function.

We choose k NN as the estimator because it directly probes the local geometry of the representation space without introducing learnable parameters. This strictly aligns with our training-free design principle and ensures robustness against overfitting on data-scarce tasks.

Training-free Module Weight Optimization With the module-wise performance estimates $\{\hat{y}^j\}_{j=1}^N$ from the representation space, our goal is to identify an optimal weight vector $\mathbf{w} \in \mathbb{R}^N$ (where w_j denotes the weight of module j) to compose these modules. While the ideal objective is to minimize the validation error of the fine-tuned model, searching this space directly is computationally infeasible due to combinatorial explosion. Instead, inspired by ensemble learning (Zhou et al., 2002; Zhou, 2016), we propose to use the prediction error of the weighted ensemble (prior to fine-tuning) as a *proxy error* to guide weight optimization.

270 Specifically, we formulate the composition prediction as a weighted sum of the individual module estimations. The proxy error $E_{\mathcal{D}}$ is defined as the mean squared error between the ensemble
 271 prediction and the ground truth labels on the training set:
 272

$$273 \quad 274 \quad 275 \quad E_{\mathcal{D}}(\mathbf{w}) = \frac{1}{M} \left\| \sum_{j=1}^N w_j \hat{\mathbf{y}}^j - \mathbf{y} \right\|_2^2. \quad (2)$$

276 We can further cast Eq. (2) to a constrained optimization problem:
 277

$$278 \quad 279 \quad 280 \quad \underset{\mathbf{w}}{\operatorname{argmin}} E_{\mathcal{D}}(\mathbf{w}), \quad \text{s.t.} \quad \sum_{j=1}^N w_j = 1, \quad w_j \geq 0. \quad (3)$$

281 Since the objective is convex and the constraints define a convex feasible set, the problem admits a
 282 global optimum that can be reliably obtained by standard solvers. Moreover, this weight selection is
 283 *training-free* since it introduces no additional learnable parameters and requires no gradient-based
 284 updates or hyperparameter tuning beyond the optimizer settings.

285 **Justification for Using the Proxy Error** A central premise of AMC is that the k NN-based proxy
 286 error (Eq. 2 is a reliable indicator of the final model performance. Theoretically, we provide a
 287 formal risk analysis in Section B to show that, under reasonable assumptions, minimizing this proxy
 288 error bounds the risk of the subsequently fine-tuned model. Empirically, when measured in MAE to
 289 align with downstream metrics, we observe a strong Pearson correlation (> 0.6) between the per-
 290 module proxy errors and their post-fine-tuning performance (see Fig. 5 and Section D.1 for detailed
 291 discussion). This indicates that the proxy is a reliable predictor of final performance and supports
 292 its use for weight optimization.

293 **Weight-space Module Composition** Once the optimal weight vector \mathbf{w}^* is obtained, we com-
 294 pose a single customized module $g_{\mathcal{D}}$ for the target task. Inspired by recent advances in model
 295 merging (Wortsman et al., 2022; Ilharco et al., 2022; Yu et al., 2024; Yang et al., 2024a), we merge
 296 the modules in their weight space: $g_{\mathcal{D}} = \sum_{j=1}^N w_j^* g_j$.
 297

298 The validity of this averaging is supported by linear mode connectivity (Frankle et al., 2020; Zhou
 299 et al., 2023; 2024). Since all modules originate from a common pre-trained initialization, their
 300 parameters remain structurally compatible despite task-specific divergence. This ensures that the
 301 composed module serves as a stable and well-conditioned initialization for downstream fine-tuning.

302 **Downstream Fine-tuning** Finally, to better adapt to the downstream task \mathcal{D} , the composed mod-
 303 ule $g_{\mathcal{D}}$ is appended with a task-specific head and then fine-tuned on \mathcal{D} to convergence.

306 4 EXPERIMENTS

307 In this section, we conduct comprehensive experiments to demonstrate the empirical effectiveness
 308 of MoMa. The experimental setup is outlined in Section 4.1. The main results, discussed in Sec-
 309 tion 4.2, show that MoMa **substantially outperforms** baseline methods. Additionally, we extend
 310 MoMa to **more architectures** in Section 4.3 and conduct an **in depth examination of AMC** in
 311 Section 4.4. Confronted with the data scarcity challenge common in real-world materials discov-
 312 ery settings, we evaluate MoMa’s few-shot learning ability in Section 4.5, where it achieves **even**
 313 **larger** performance gains compared to baselines. **To further highlight the flexibility and scalabil-
 314 ity of MoMa, we extend MoMa Hub to include molecular datasets and present a scaling analysis
 315 of MoMa Hub in Section 4.6.** Finally, we visualize the module weights optimized by AMC in
 316 Section 4.7, highlighting MoMa’s potential for providing **valuable insights** into material properties.

318 4.1 SETUP

319 **Datasets** To better align with real-world material property prediction settings where labels are
 320 usually scarce, we conduct experiments on 17 low-data material property prediction tasks from
 321 Matminer (Ward et al., 2018) adhering to Chang et al. (2022). This benchmark offers a com-
 322 prehensive evaluation of model capability on a wide span of properties critical for material discovery.
 323 Refer to Section C.1 for more dataset details.

324 **Table 1: Main results for 17 material property prediction tasks.** The best MAE for each task is
 325 highlighted in **bold** and the second best result is underlined. The result for each task are the average
 326 of five data splits, reported to three significant digits. For each method, the standard deviation of the
 327 test MAE across five random seeds is shown in parentheses. Additionally, the average rank and its
 328 standard deviation across the 17 datasets are provided to reflect the consistency of each method.

Datasets	CGCNN	MoE-(18)	UMA	JMP-MT	JMP-FT	MoMa (Adapter)	MoMa (Full)
Experimental Band Gap (eV)	0.471 (0.008)	0.374 (0.008)	0.355 (0.037)	0.377 (0.005)	0.358 (0.014)	0.359 (0.009)	0.305 (0.006)
Formation Enthalpy (eV/atom)	0.193 (0.015)	<u>0.0949 (0.0016)</u>	0.192 (0.020)	0.134 (0.001)	0.168 (0.007)	0.158 (0.009)	0.0839 (0.0013)
2D Dielectric Constant	2.90 (0.12)	2.29 (0.01)	2.34 (0.47)	<u>2.25 (0.06)</u>	2.35 (0.07)	2.31 (0.04)	1.89 (0.03)
2D Formation Energy (eV/atom)	0.169 (0.006)	<u>0.106 (0.005)</u>	0.120 (0.03)	0.140 (0.004)	0.125 (0.006)	0.112 (0.002)	0.0495 (0.0015)
Exfoliation Energy (meV/atom)	59.7 (1.5)	52.5 (0.8)	44.4 (11.5)	42.3 (0.5)	35.4 (2.0)	35.4 (0.9)	36.3 (0.2)
2D Band Gap (eV)	0.686 (0.034)	0.532 (0.008)	0.494 (0.061)	0.546 (0.020)	0.582 (0.018)	0.552 (0.014)	0.375 (0.006)
3D Poly Electronic	32.5 (1.1)	27.7 (0.1)	32.7 (6.0)	23.9 (0.2)	<u>23.3 (0.3)</u>	23.3 (0.2)	23.0 (0.1)
3D Band Gap (eV)	0.492 (0.008)	0.361 (0.003)	0.268 (0.016)	0.423 (0.004)	0.249 (0.001)	<u>0.245 (0.002)</u>	0.200 (0.001)
Refractive Index	0.0866 (0.0014)	0.0785 (0.0004)	0.0582 (0.0094)	0.0636 (0.0006)	0.0555 (0.0027)	<u>0.0533 (0.0023)</u>	0.0523 (0.0010)
Elastic Anisotropy	3.65 (0.11)	3.01 (0.03)	3.79 (2.48)	<u>2.53 (0.26)</u>	2.42 (0.36)	2.57 (0.61)	2.86 (0.28)
Electronic Dielectric Constant	0.168 (0.002)	0.157 (0.015)	0.116 (0.038)	0.137 (0.002)	0.108 (0.002)	<u>0.106 (0.002)</u>	0.0885 (0.0048)
Dielectric Constant	0.258 (0.008)	0.236 (0.002)	0.183 (0.034)	0.224 (0.004)	0.171 (0.002)	<u>0.168 (0.002)</u>	0.158 (0.002)
Phonons Mode Peak (cm^{-1})	0.127 (0.004)	0.0996 (0.0083)	0.0811 (0.0087)	0.0859 (0.0006)	0.0596 (0.0065)	<u>0.0568 (0.0009)</u>	0.0484 (0.0026)
Poisson Ratio	0.0326 (0.0001)	0.0292 (0.0001)	0.0225 (0.0004)	0.0297 (0.0003)	0.0221 (0.0004)	<u>0.0220 (0.0003)</u>	0.0204 (0.0002)
Poly Electronic	2.97 (0.10)	2.61 (0.13)	2.33 (0.89)	2.42 (0.03)	<u>2.11 (0.04)</u>	2.13 (0.03)	2.09 (0.03)
Poly Total	6.54 (0.24)	5.51 (0.04)	5.61 (1.49)	5.52 (0.03)	<u>4.89 (0.06)</u>	4.89 (0.04)	4.86 (0.07)
Piezoelectric Modulus	0.232 (0.004)	0.208 (0.003)	0.208 (0.027)	0.199 (0.002)	<u>0.174 (0.004)</u>	0.173 (0.003)	<u>0.174 (0.001)</u>
Average Rank	6.88 (0.33)	4.71 (1.40)	4.53 (1.42)	4.53 (1.28)	3.12 (1.54)	<u>2.59 (1.12)</u>	1.35 (0.86)

343 **Implementation Details** For the pre-trained backbone of MoMa, we employ the open-source JMP
 344 model (Shoghi et al., 2024) for representing material systems given its superior performance in
 345 property prediction tasks across both crystals and molecules. For a rigorous comparison, we present
 346 the MAE averaged across the five splits adopted from Chang et al. (2022). Each experiment is
 347 repeated with five random seeds, and the reported standard deviation is computed across the seed-
 348 level averages. Additional implementation details, including the details of module architecture, the
 349 hyper-parameters for MoMa, and the computational cost, are provided in Section C.2.

350 **Baseline Methods** We compare the performance of MoMa with five baseline methods: CGCNN
 351 (Xie & Grossman, 2018), MoE-(18) (Chang et al., 2022), UMA (Wood et al., 2025), JMP-FT,
 352 and JMP-MT (Shoghi et al., 2024). CGCNN represents a classical method without pre-training.
 353 MoE-(18) trains separate CGCNN models for the upstream tasks of MoMa, then ensembles them
 354 as one model in a mixture-of-experts approach for downstream fine-tuning. **UMA is a general-
 355 purpose atomic foundation model which achieves state-of-the-art performance in canonical bench-
 356 marks (Riebesell et al., 2023). We fine-tune the UMA-Medium model on each downstream task.**
 357 JMP-FT directly fine-tunes the JMP pre-trained checkpoint on the downstream tasks. JMP-MT
 358 trains all tasks in MoMa Hub with a multi-task pretraining scheme and then adapts to each down-
 359 stream dataset with further fine-tuning. More discussions on baselines are included in Section C.3.

361 4.2 MAIN RESULTS

363 **Performance of MoMa** As shown in Table 1, MoMa (Full) achieves the best performance with
 364 the lowest average rank of 1.35 and 14/17 best results. MoMa (Adapter) follows, with an average
 365 rank of 2.59. Together, the two variants hold **16/17** best results. They also exhibit the smallest
 366 rank deviations, indicating that MoMa consistently delivers reliable performance across tasks. No-
 367 tably, MoMa (Full) outperforms JMP-FT in 14 tasks, with an impressive average improvement of
 368 14.0%, highlighting the effectiveness of MoMa Hub modules in fostering material property predi-
 369 cation. Moreover, MoMa (Full) surpasses JMP-MT in 16 of 17 tasks with a substantial average margin
 370 of 24.8%, underscoring the advantage of MoMa’s modular design in mitigating task interference.
 371 Further analyses in this section are done with MoMa (Full) due to its superior performance.

372 **Performance of Baselines** Among the baseline methods, JMP-FT performs the best with an aver-
 373 age rank of 3.12, followed by JMP-MT and UMA with an average rank of 4.53. Though additionally
 374 trained on upstream tasks of MoMa Hub, JMP-MT still lags behind JMP-FT. We hypothesize the in-
 375 herent knowledge conflicts between disparate material tasks pose a tremendous risk to the multi-task
 376 learning approach. **For UMA, it is primarily pre-trained on force-field datasets as a DFT surrogate,
 377 so its inductive bias may transfer less well to non-PES downstream tasks as compared to JMP.**

Figure 6: (a) Results with Orb-v2; (b) Ablation study of AMC; (c) Analysis experiments of AMC. The axis represents test set MAE and **smaller area is better**.

4.3 RESULTS WITH MORE ARCHITECTURES

To verify whether MoMa offers consistent benefits in other model backbones beyond JMP, we conduct additional experiments on the GNS architecture (Sanchez-Gonzalez et al., 2020) used by the Orb-v2 model (Neumann et al., 2024), which is not equivariant and much less complex than the GemNet-based architecture (Gasteiger et al., 2022) in JMP. Specifically, we first train and construct an Orb-based MoMa Hub. Then we run AMC and downstream fine-tuning identically as in Section 3.2. The results (Orb-MoMa) are compared with directly fine-tuning the pre-trained Orb model (Orb-FT). The average test MAE are reported on 5 splits and 5 random seeds.

As shown in Fig. 6a, MoMa outperforms in 13/17 tasks and achieves a 6.1% average boost to direct fine-tuning. This indicates that the effectiveness of MoMa is consistent across GemNet-based and GNS-based architectures.

4.4 ABLATION & ANALYSIS OF ADAPTIVE MODULE COMPOSITION

Ablation Study We conduct a fine-grained ablation study of AMC with three variants : (1) *Select Average*, which retains the AMC-selected modules (nonzero weights) but averages them uniformly; (2) *All Average*, simply averages all modules in MoMa Hub, which is equivalent to applying the classical Model Soup strategy (Wortsman et al., 2022); (3) *Random Selection*, which picks a random set of modules in MoMa Hub with the same module number as AMC. A visualization of the ablation results is presented in Fig. 6b. The three variants are inferior to AMC in 13, 15 and 15 out of 17 tasks, with an average test MAE increase of 11.0%, 18.0% and 20.2%, respectively. This highlight the effectiveness of both module selection and weighted composition in AMC. The average test MAE of 5 splits are reported on one random seed (hereafter). Furthermore, we show in Section D.2 that AMC is robust to k NN configurations and solver tolerances, yielding highly stable weights and consistent post-fine-tuning MAE.

Analysis Experiments To empirically validate the benefit of AMC’s representation-driven and training-free pipeline, we replace AMC with three alternatives: (1) *LoRAHub Learning* (Huang et al., 2024), a black-box optimization approach for module composition; (2) *JMP-(18)*, where we train a routing network over the 18 JMP MoMa modules; and (3) *Softmax Weighting*, a non-optimized heuristic based on k NN proxy. As shown in Fig. 6c, AMC consistently outperforms all baselines, surpassing the three variants on 15, 17, and 12 tasks with average MAE reductions of 21.8%, 15.5%, and 13.7%, respectively. **This shows the benefit of the AMC over search-based, router-based and performance-based alternatives. See more details and discussion in Section C.5.**

Efficiency Analysis We highlight that AMC is highly efficient: it requires only a single round of forward embedding generation, followed by lightweight k NN prediction and convex optimization. For the largest dataset, AMC converges in under 30 seconds. This efficiency enables MoMa to scale to a larger number of modules in future applications. See Section D.3 for a detailed analysis.

432 4.5 PERFORMANCE IN FEW-SHOT SETTINGS
433

434 **Motivation & Setup** To better assess the performance of MoMa in real-world scenarios, where labeled material candidates are costly and often scarce (Abed et al., 2024), we construct a few-shot learning setting and compare MoMa with JMP-FT. For each downstream task, we down-sample the training data and apply AMC to compose modules from MoMa Hub, followed by fine-tuning on the sampled subset. The validation and test sets remain consistent with those in the standard setting for robust evaluation. Experiments are conducted under 10-shot and 100-shot conditions, representing few-shot and extremely few-shot scenarios.

446 **Results** The average normalized test MAEs¹ for the 17 downstream tasks of MoMa compared to JMP-FT across the full-data, 100-data, and 10-data settings are presented in Table 10. As expected, the test loss increases as the data size decreases, while MoMa consistently outperforms JMP-FT in all settings. Notably, the performance advantage of MoMa is more pronounced in the few-shot settings, with the normalized loss margin widening from 0.03 in the full-data setting to 0.11 and 0.15 in the 100-data and 10-data setting. This suggests that MoMa may offer even greater performance gains in real-world scenarios, where property labels are often limited, thereby hindering the effective fine-tuning of large pre-trained models. Complete results are shown in Section D.4.

455 4.6 SCALING ANALYSIS OF MOMA HUB MODULES
456

457 **Motivation & Setup** As MoMa is designed to be modular and extensible, a natural question is how 458 its performance evolves as the MoMa Hub grows. In this section, we study the scaling behavior of 459 MoMa to understand whether it benefits from a larger MoMa Hub. We first do a hub-scale ablation 460 to progressively expand MoMa hub from 5 to 10 and 18 modules. Then we further expand MoMa 461 Hub to include 12 QM9 modules (Ramakrishnan et al., 2014), which are trained on 12 quantum 462 chemical properties for 134,000 stable small organic molecules. AMC is performed on each MoMa 463 Hub variant, then evaluation is performed after fine-tuning on the 17 benchmark material tasks. The 464 full setup is described in Section C.6.

465 **Results** As presented in Table 3, as the MoMa hub scales, the average normalized test MAE across 466 17 tasks decreases monotonically (from 0.2040 with 5 modules to 0.1759 with 30 modules), showing 467 no sign of saturation in this regime. The complete results are provided in Table 11 (Section D.5).

468 To further analyze the effect of adding the 12 469 QM9 modules, we plot the test-MAE reduction 470 rate against the AMC proxy-error decrease in 471 Fig. 7 for datasets where QM9 modules are 472 selected. We observe that: (1) The integration of 473 QM9 modules leads to an average of 1.7% 474 decrease in test set MAE; (2) a larger reduction in 475 the AMC-optimized proxy error correlates with greater performance improvements post-fine-tuning 476 (Pearson correlation = 0.69). We highlight the task of MP Phonons prediction, which marks a 477 11.8% decrease in test set MAE after the inclusion of QM9 modules. Overall, these results support 478 our vision of MoMa as a flexible community-driven platform: as more modules are added, 479 downstream performance improves and AMC remains effective at larger scale.

481 4.7 MATERIALS INSIGHTS MINING
482

483 **Motivation** We argue that the AMC weights derived in Eq. (3) can provide valuable insights into 484 the relationships of material properties. To explore this, we interpret the weights as indicators for the 485

Table 2: **Few-shot evaluation.** The average normalized test MAEs of MoMa and JMP-FT under varying data settings. MoMa consistently outperforms JMP-FT in all settings.

	10-shot	100-shot	Full data
JMP-FT	0.7003	0.4076	0.2217
MoMa	0.5503	0.2990	0.1871

Table 3: **Scaling with hub size.** Average normalized test MAE decreases as the number of modules in MoMa Hub increases.

# Modules	5	10	18	30
Norm. MAE	0.2040	0.1910	0.1853	0.1759

¹Computed by dividing the test MAE of each task by its standard deviation.

Figure 7: Scatter plot showing the relationship between the test MAE decrease and the proxy error (Eq. (3)) decrease after adding QM9 modules. The solid line represents a linear regression fit, yielding a Pearson correlation of 0.69.

relationships between MoMa Hub modules and downstream tasks. Following Chang et al. (2022), we present a log-normalized visualization of these weights in Fig. 8.

Results We highlight several noteworthy observations. The weights assigned by AMC effectively capture physically intuitive relationships between material properties. For instance, in predicting electronic dielectric constants, MoMa assigns high weights to the band gap modules, which is reasonable given the inverse relationship between the dielectric constant and the square of the band gap (Ravichandran et al., 2016). At the same time, less-intuitive relationships also emerge. For the task of experimental band gap prediction (row 1), the formation energy module from the Materials Project (column 1) is assigned the second-highest weight. In the prediction of dielectric constant (row 9), modules related to thermoelectric and thermal properties (columns 5 and 6) are heavily weighted. However, the first-principles relationship between these tasks is indirect. We hypothesize that in addition to task relevance, other factors such as data distribution and size may also influence the weight assignments for AMC. Further investigation into these results is left to future work.

5 CONCLUSION

In this paper, we present MoMa, a simple modular learning framework for material property prediction. Motivated by the challenges of diversity and disparity in materials, MoMa first trains specialized modules across a wide spectrum of material tasks, constituting MoMa Hub. We then introduce the Adaptive Module Composition algorithm, which facilitates tailored adaptation from MoMa Hub to each downstream task by adaptively composing synergistic modules. Experimental results across 17 datasets demonstrate the superiority of MoMa, with few-shot and hub-scaling experiments further highlighting its data efficiency and scalability.

Limitations and Future Work The current scope of our study is limited to crystalline and organic materials. Future work includes expanding MoMa Hub with modules for a wider range of material data and prediction tasks, and examining how MoMa scales with hundreds or thousands of modules, which may yield deeper insights into the modularity of materials knowledge.

Broader Impact As an open-source platform for modularizing and distributing materials knowledge, MoMa enables secure sharing of modules without exposing proprietary data, efficient customization for downstream tasks, and improved prediction accuracy even in low-data scenarios. We envision MoMa fostering a new paradigm of modular material learning and driving broader community collaboration toward accelerated materials discovery.

Figure 8: Heat map of AMC weights on one data split. The x-axis represents the task names of the MoMa Hub modules, while the y-axis shows the 17 material tasks in Table 1. Darker color indicates a larger weight.

540 REFERENCES
541

542 Jehad Abed, Jiheon Kim, Muhammed Shuaibi, Brook Wander, Boris Duijf, Suhas Mahesh, Hyeon-
543 seok Lee, Vahe Gharakhanyan, Sjoerd Hoogland, Erdem Irtem, et al. Open catalyst ex-
544 periments 2024 (ocx24): Bridging experiments and computational models. *arXiv preprint*
545 *arXiv:2411.11783*, 2024.

546 Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
547 model merging recipes. *Nature Machine Intelligence*, 7(2):195–204, 2025.

548 Luis Barroso-Luque, Muhammed Shuaibi, Xiang Fu, Brandon M Wood, Misko Dzamba, Meng
549 Gao, Ammar Rizvi, C Lawrence Zitnick, and Zachary W Ulissi. Open materials 2024 (omat24)
550 inorganic materials dataset and models. *arXiv preprint arXiv:2410.12771*, 2024.

551 Ilyes Batatia, Philipp Benner, Yuan Chiang, Alin M Elena, Dávid P Kovács, Janosh Riebesell,
552 Xavier R Advincula, Mark Asta, Matthew Avaylon, William J Baldwin, et al. A foundation
553 model for atomistic materials chemistry. *arXiv preprint arXiv:2401.00096*, 2023.

554 Ivano E Castelli, David D Landis, Kristian S Thygesen, Søren Dahl, Ib Chorkendorff, Thomas F
555 Jaramillo, and Karsten W Jacobsen. New cubic perovskites for one-and two-photon water splitting
556 using the computational materials repository. *Energy & Environmental Science*, 5(10):9034–
557 9043, 2012.

558 Rees Chang, Yu-Xiong Wang, and Elif Ertekin. Towards overcoming data scarcity in materials
559 science: unifying models and datasets with a mixture of experts framework. *npj Computational*
560 *Materials*, 8(1):242, 2022.

561 Kamal Choudhary and Brian DeCost. Atomistic line graph neural network for improved materials
562 property predictions. *npj Computational Materials*, 7(1):185, 2021.

563 Kamal Choudhary, Irina Kalish, Ryan Beams, and Francesca Tavazza. High-throughput identifica-
564 tion and characterization of two-dimensional materials using density functional theory. *Scientific*
565 *reports*, 7(1):5179, 2017.

566 Kamal Choudhary, Gowoon Cheon, Evan Reed, and Francesca Tavazza. Elastic properties of bulk
567 and low-dimensional materials using van der waals density functional. *Physical Review B*, 98(1):
568 014107, 2018.

569 Kamal Choudhary, Kevin F Garrity, Andrew CE Reid, Brian DeCost, Adam J Biacchi, Angela R
570 Hight Walker, Zachary Trautt, Jason Hattrick-Simpers, A Gilad Kusne, Andrea Centrone, et al.
571 The joint automated repository for various integrated simulations (jarvis) for data-driven materials
572 design. *npj computational materials*, 6(1):173, 2020.

573 Kishalay Das, Pawan Goyal, Seung-Cheol Lee, Satadeep Bhattacharjee, and Niloy Ganguly. Crys-
574 mmnet: multimodal representation for crystal property prediction. In *Uncertainty in Artificial*
575 *Intelligence*, pp. 507–517. PMLR, 2023.

576 Pierre-Paul De Breuck, Geoffroy Hautier, and Gian-Marco Rignanese. Materials property prediction
577 for limited datasets enabled by feature selection and joint learning with modnet. *npj computa-*
578 *tional materials*, 7(1):83, 2021.

579 Maarten De Jong, Wei Chen, Thomas Angsten, Anubhav Jain, Randy Notestine, Anthony Gamst,
580 Marcel Sluiter, Chaitanya Krishna Ande, Sybrand Van Der Zwaag, Jose J Plata, et al. Charting the
581 complete elastic properties of inorganic crystalline compounds. *Scientific data*, 2(1):1–13, 2015a.

582 Maarten De Jong, Wei Chen, Henry Geerlings, Mark Asta, and Kristin Aslaug Persson. A database
583 to enable discovery and design of piezoelectric materials. *Scientific data*, 2(1):1–13, 2015b.

584 Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
585 *arXiv preprint arXiv:1810.04805*, 2018.

586 Luc Devroye, László Györfi, Adam Krzyżak, and Gábor Lugosi. On the strong universal consistency
587 of nearest neighbor regression function estimates. *The annals of Statistics*, pp. 1371–1385, 1994.

594 Steven Diamond, Eric Chu, and Stephen Boyd. CVXPY: A Python-embedded modeling language
 595 for convex optimization, version 0.2. <http://cvxpy.org/>, May 2014.
 596

597 Alexander Dunn, Qi Wang, Alex Ganose, Daniel Dopp, and Anubhav Jain. Benchmarking materials
 598 property prediction methods: the matbench test set and automatminer reference algorithm. *npj
 599 Computational Materials*, 6(1):138, 2020.

600 Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation in-
 601 variance in linear mode connectivity of neural networks. In *International Conference on Learning
 602 Representations*.

603 Lenz Fiedler, Karan Shah, Michael Bussmann, and Attila Cangi. Deep dive into machine learning
 604 density functional theory for materials science and chemistry. *Physical Review Materials*, 6(4):
 605 040301, 2022.

606 Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
 607 nectivity and the lottery ticket hypothesis. In *International Conference on Machine Learning*, pp.
 608 3259–3269. PMLR, 2020.

609 Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Günnemann, Zachary Ward
 610 Ulissi, C Lawrence Zitnick, and Abhishek Das. Gemnet-oc: Developing graph neural networks
 611 for large and diverse molecular simulation datasets. *Transactions on Machine Learning Research*,
 612 2022.

613 Sean D Griesemer, Yi Xia, and Chris Wolverton. Accelerating the prediction of stable materials
 614 with machine learning. *Nature Computational Science*, 3(11):934–945, 2023.

615 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
 616 drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
 617 In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.

618 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 619 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint
 620 arXiv:2106.09685*, 2021.

621 Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Ef-
 622 ficient cross-task generalization via dynamic lora composition. In *First Conference on Language
 623 Modeling*, 2024.

624 Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
 625 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint
 626 arXiv:2212.04089*, 2022.

627 Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label propagation for deep semi-
 628 supervised learning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 629 recognition*, pp. 5070–5079, 2019.

630 Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
 631 local experts. *Neural computation*, 3(1):79–87, 1991.

632 Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
 633 Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, et al. Commentary: The ma-
 634 terials project: A materials genome approach to accelerating materials innovation. *APL materials*,
 635 1(1), 2013.

636 Anubhav Jain, Yongwoo Shin, and Kristin A Persson. Computational predictions of energy materials
 637 using density functional theory. *Nature Reviews Materials*, 1(1):1–13, 2016.

638 Dipendra Jha, Kamal Choudhary, Francesca Tavazza, Wei-keng Liao, Alok Choudhary, Carelyn
 639 Campbell, and Ankit Agrawal. Enhancing materials property prediction by leveraging computa-
 640 tional and experimental data using deep transfer learning. *Nature communications*, 10(1):5316,
 641 2019.

648 George Kim, SV Meschel, Philip Nash, and Wei Chen. Experimental formation enthalpies for
 649 intermetallic phases and other inorganic compounds. *Scientific data*, 4(1):1–11, 2017.
 650

651 Janice Lan, Aini Palizhati, Muhammed Shuaibi, Brandon M Wood, Brook Wander, Abhishek Das,
 652 Matt Uyttendaele, C Lawrence Zitnick, and Zachary W Ulissi. Adsorbm: a leap in efficiency
 653 for adsorption energy calculations using generalizable machine learning potentials. *npj Computational Materials*, 9(1):172, 2023.
 654

655 Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging:
 656 Dynamic integration of modular expertise in model merging. *Advances in Neural Information
 657 Processing Systems*, 37:78905–78935, 2024.

658 Rishikesh Magar, Yuyang Wang, and Amir Barati Farimani. Crystal twins: self-supervised learning
 659 for crystalline material property prediction. *npj Computational Materials*, 8(1):231, 2022.
 660

661 Hassan Masood, Tharmakulasingam Sirojan, Cui Ying Toe, Priyank V Kumar, Yousof Haghshenas,
 662 Patrick HL Sit, Rose Amal, Vidhyasaharan Sethu, and Wey Yang Teoh. Enhancing prediction
 663 accuracy of physical band gaps in semiconductor materials. *Cell Reports Physical Science*, 4(9),
 664 2023.

665 Daniel McNamara and Maria-Florina Balcan. Risk bounds for transferring representations. In
 666 *International Conference on Machine Learning*, 2017.

667 Akshay Mehra et al. Understanding the transferability of representations via hypothesis transfer.
 668 *NeurIPS*, 2024.

669 Amil Merchant, Simon Batzner, Samuel S Schoenholz, Muratahan Aykol, Gowoon Cheon, and
 670 Ekin Dogus Cubuk. Scaling deep learning for materials discovery. *Nature*, 624(7990):80–85,
 671 2023.

672 Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Soft merging of experts with adaptive routing.
 673 *arXiv preprint arXiv:2306.03745*, 2023.

674 Mark Neumann, James Gin, Benjamin Rhodes, Steven Bennett, Zhiyi Li, Hitarth Choubisa, Arthur
 675 Hussey, and Jonathan Godwin. Orb: A fast, scalable neural network potential. *arXiv preprint
 676 arXiv:2410.22570*, 2024.

677 Ioannis Petousis, David Mrdjenovich, Eric Ballouz, Miao Liu, Donald Winston, Wei Chen, Tanja
 678 Graf, Thomas D Schladt, Kristin A Persson, and Fritz B Prinz. High-throughput screening of
 679 inorganic compounds for the discovery of novel dielectric and optical materials. *Scientific data*,
 680 4(1):1–12, 2017.

681 Guido Petretto, Shyam Dwaraknath, Henrique PC Miranda, Donald Winston, Matteo Giantomassi,
 682 Michiel J Van Setten, Xavier Gonze, Kristin A Persson, Geoffroy Hautier, and Gian-Marco Rig-
 683 nanese. High-throughput density-functional perturbation theory phonons for inorganic materials.
 684 *Scientific data*, 5(1):1–12, 2018.

685 Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
 686 Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers.
 687 *arXiv preprint arXiv:2007.07779*, 2020.

688 Jonas Pfeiffer, Sebastian Ruder, Ivan Vulić, and Edoardo Maria Ponti. Modular deep learning. *arXiv
 689 preprint arXiv:2302.11529*, 2023.

690 Chau Pham, Piotr Teterwak, Soren Nelson, and Bryan A Plummer. Mixturegrowth: Growing neural
 691 networks by recombining learned parameters. In *Proceedings of the IEEE/CVF Winter Conference
 692 on Applications of Computer Vision*, pp. 2800–2809, 2024.

693 Joan Puigcerver, Carlos Riquelme, Basil Mustafa, Cedric Renggli, André Susano Pinto, Sylvain
 694 Gelly, Daniel Keysers, and Neil Houlsby. Scalable transfer learning with expert models. *arXiv
 695 preprint arXiv:2009.13239*, 2020.

696 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
 697 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

702 Ram Ravichandran, Alan X Wang, and John F Wager. Solid state dielectric screening versus band
 703 gap trends and implications. *Optical materials*, 60:181–187, 2016.
 704

705 Benjamin Rhodes, Sander Vandenhante, Vaidotas Šimkus, James Gin, Jonathan Godwin, Tim
 706 Duignan, and Mark Neumann. Orb-v3: atomistic simulation at scale. *arXiv preprint*
 707 *arXiv:2504.06231*, 2025.

708 Francesco Ricci, Wei Chen, Umut Aydemir, G Jeffrey Snyder, Gian-Marco Rignanese, Anubhav
 709 Jain, and Geoffroy Hautier. An ab initio electronic transport database for inorganic materials.
 710 *Scientific data*, 4(1):1–13, 2017.

711 Janosh Riebesell, Rhys EA Goodall, Anubhav Jain, Philipp Benner, Kristin A Persson, and Al-
 712 pha A Lee. Matbench discovery—an evaluation framework for machine learning crystal stability
 713 prediction. *arXiv preprint arXiv:2308.14920*, 2023.

714 Janosh Riebesell, Rhys EA Goodall, Philipp Benner, Yuan Chiang, Bowen Deng, Gerbrand Ceder,
 715 Mark Asta, Alpha A Lee, Anubhav Jain, and Kristin A Persson. A framework to evaluate machine
 716 learning crystal stability predictions. *Nature Machine Intelligence*, 7(6):836–847, 2025.

717 Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
 718 billion organic small molecules in the chemical universe database gdb-17. *Journal of chemical*
 719 *information and modeling*, 52(11):2864–2875, 2012.

720 Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
 721 Battaglia. Learning to simulate complex physics with graph networks. In *International conference*
 722 *on machine learning*, pp. 8459–8468. PMLR, 2020.

723 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
 724 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
 725 *International Conference on Learning Representations*, 2016.

726 Nima Shoghi, Adeesh Kolluru, John R Kitchin, Zachary W Ulissi, C Lawrence Zitnick, and Bran-
 727 don M Wood. From molecules to materials: Pre-training large generalizable models for atomic
 728 property prediction. In *The Twelfth International Conference on Learning Representations*, 2024.

729 Charles J Stone. Consistent nonparametric regression. *The annals of statistics*, pp. 595–620, 1977.

730 Shaomu Tan, Di Wu, and Christof Monz. Neuron specialization: Leveraging intrinsic task modular-
 731 ity for multilingual machine translation. *arXiv preprint arXiv:2404.11201*, 2024.

732 Tatsunori Taniai, Ryo Igarashi, Yuta Suzuki, Naoya Chiba, Kotaro Saito, Yoshitaka Ushiku, and
 733 Kanta Ono. Crystalformer: infinitely connected attention for periodic structure encoding. *arXiv*
 734 *preprint arXiv:2403.11686*, 2024.

735 Amanda Wang, Ryan Kingsbury, Matthew McDermott, Matthew Horton, Anubhav Jain, Shyue Ping
 736 Ong, Shyam Dwaraknath, and Kristin A Persson. A framework for quantifying uncertainty in dft
 737 energy corrections. *Scientific reports*, 11(1):15496, 2021.

738 Han Wang, Duo Zhang, Chun Cai, Wentao Li, Yuanchang Zhou, Jinzhe Zeng, Mingyu Guo,
 739 Chengqian Zhang, Bowen Li, Hong Jiang, et al. A graph neural network for the era of large
 740 atomistic models. 2025.

741 Logan Ward, Alexander Dunn, Alireza Faghaninia, Nils ER Zimmermann, Saurabh Bajaj, Qi Wang,
 742 Joseph Montoya, Jiming Chen, Kyle Bystrom, Maxwell Dylla, et al. Matminer: An open source
 743 toolkit for materials data mining. *Computational Materials Science*, 152:60–69, 2018.

744 Brandon M Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque,
 745 Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R Kitchin, Daniel S Levine, et al. Uma: A
 746 family of universal models for atoms. *arXiv preprint arXiv:2506.23971*, 2025.

747 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 748 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
 749 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
 750 inference time. In *International conference on machine learning*, pp. 23965–23998. PMLR, 2022.

751

756 Chaojun Xiao, Zhengyan Zhang, Chenyang Song, Dazhi Jiang, Feng Yao, Xu Han, Xiaozhi Wang,
 757 Shuo Wang, Yufei Huang, Guanyu Lin, et al. Configurable foundation models: Building llms
 758 from a modular perspective. *arXiv preprint arXiv:2409.02877*, 2024.

759

760 Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
 761 interpretable prediction of material properties. *Physical review letters*, 120(14):145301, 2018.

762

763 Keqiang Yan, Cong Fu, Xiaofeng Qian, Xiaoning Qian, and Shuiwang Ji. Complete and efficient
 764 graph transformers for crystal material property prediction. *arXiv preprint arXiv:2403.11857*,
 2024.

765

766 Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
 767 Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
 768 *arXiv preprint arXiv:2408.07666*, 2024a.

769

770 Han Yang, Chenxi Hu, Yichi Zhou, Xixian Liu, Yu Shi, Jielan Li, Guanzhi Li, Zekun Chen,
 771 Shuizhou Chen, Claudio Zeni, et al. Mattersim: A deep learning atomistic model across ele-
 772 ments, temperatures and pressures. *arXiv preprint arXiv:2405.04967*, 2024b.

773

774 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Ab-
 775 sorbing abilities from homologous models as a free lunch. In *Forty-first International Conference
 776 on Machine Learning*, 2024.

777

778 Zhanpeng Zhou, Yongyi Yang, Xiaojiang Yang, Junchi Yan, and Wei Hu. Going beyond linear
 779 mode connectivity: The layerwise linear feature connectivity. *Advances in neural information
 780 processing systems*, 36:60853–60877, 2023.

781

782 Zhanpeng Zhou, Zijun Chen, Yilan Chen, Bo Zhang, and Junchi Yan. On the emergence of cross-
 783 task linearity in pretraining-finetuning paradigm. In *International Conference on Machine Learn-
 784 ing*, pp. 61854–61884. PMLR, 2024.

785

786 Zhi-Hua Zhou. Learnware: on the future of machine learning. *Frontiers Comput. Sci.*, 10(4):589–
 787 590, 2016.

788

789 Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: many could be better than
 790 all. *Artificial intelligence*, 137(1-2):239–263, 2002.

791

792 A ALGORITHM FOR ADAPTIVE MODULE COMPOSITION

793 The formal description of the Adaptive Module Composition algorithm is included in Algorithm 1.

794 Algorithm 1 Adaptive Module Composition (AMC)

795 1: **Input:** MoMa Hub $\mathcal{H} = \{g_j\}_{j=1}^N$, Downstream training set $\mathcal{D} = \{(X_i, y_i)\}_{i=1}^m$.
 796 2: **Output:** Composed module $g_{\mathcal{D}}$.
 797 3: *{1. Module Prediction Estimation}*
 798 4: **for** $j = 1 \rightarrow N$ **do**
 799 5: Generate embeddings $\mathcal{X}^j \leftarrow \{g_j(X_i) \mid (X_i, y_i) \in \mathcal{D}\}$.
 800 6: Compute prediction vector $\hat{\mathbf{Y}}^j = (\hat{y}_1^j, \dots, \hat{y}_m^j)$ via leave-one-out k -Nearest Neighbors.
 801 7: **end for**
 802 8: *{2. Module Weight Optimization}*
 803 9: Let $\mathbf{Y} = (y_1, \dots, y_m)$ be the vector of true labels from \mathcal{D} .
 804 10: Find optimal weights $\mathbf{w}^* = (w_1^*, \dots, w_N^*)$ by solving the convex optimization problem:

$$11: \mathbf{w}^* \leftarrow \arg \min_{\mathbf{w}} \left\| \sum_{j=1}^N w_j \hat{\mathbf{Y}}^j - \mathbf{Y} \right\|_2^2$$

 805 12: **subject to:** $\sum_{j=1}^N w_j = 1$ and $w_j \geq 0$ for all $j \in \{1, \dots, N\}$.
 806 13: *{3. Module Composition}*
 807 14: $g_{\mathcal{D}} \leftarrow \sum_{j=1}^N w_j^* g_j$
 808 15: **Return** $g_{\mathcal{D}}$

810 B THEORETICAL JUSTIFICATION AND ERROR ANALYSIS FOR AMC
811

812 In this section, we provide a formal analysis of the k NN-based proxy error used in AMC. Specifi-
813 cally, we show that the k NN proxy risk $R_{\text{proxy}}(w)$ serves as an upper bound for the fine-tuning risk
814 $R_{\text{FT}}(w)$ (subject to approximation errors). Consequently, minimizing the empirical approximation
815 of $R_{\text{proxy}}(w)$ tightens this bound, thereby providing theoretical justification for using the proxy risk
816 to control the risk of the subsequently fine-tuned model.

817
818 B.1 DEFINITIONS
819

820 Let θ_i denote the parameters of the i -th module and define its representation of input x as $g_i(x) :=$
821 $g(\theta_i; x)$. Given weights $w = (w_1, \dots, w_N) \in \Delta_{N-1}$, define the merged module in parameter space
822 and its representation by

$$823 \theta_w := \sum_{i=1}^N w_i \theta_i, \quad g_w(x) := g(\theta_w; x).$$

824 Let the Bayes regressors associated with each representation be
825

$$826 m_i(x) := \mathbb{E}[Y | g_i(X) = g_i(x)], \quad m_w(x) := \mathbb{E}[Y | g_w(X) = g_w(x)].$$

827 We define the following risk terms:
828

- 829 • Representation Bayes Risk: $R^*(w) := \mathbb{E}[(m_w(X) - Y)^2]$
- 830 • Fine-tuning Risk: $R_{\text{FT}}(w) := \mathbb{E}[(\hat{y}_{\text{FT}}(X; w) - Y)^2]$
- 831 • Proxy Risk using k NN: $R_{\text{proxy}}(w) := \mathbb{E}[(\hat{y}_{\text{proxy}}(X; w) - Y)^2]$
- 832 • Bayes Ensemble Risk: $R_{\text{ens}}(w) := \mathbb{E}[(m_{\text{ens}}(X; w) - Y)^2]$, where $m_{\text{ens}}(x; w) :=$
833 $\sum_{i=1}^N w_i m_i(x)$.

834 **Remark (distribution vs empirical proxy objective).** Practically AMC optimizes the empirical
835 proxy error

$$836 E_{\mathcal{D}}(w) = \frac{1}{m} \sum_{k=1}^m \left(\sum_{i=1}^N w_i \hat{y}_{i,k} - y_k \right)^2,$$

837 while analysis here is stated for the distribution-level proxy risk $R_{\text{proxy}}(w)$. Under standard gener-
838 alization results for squared-loss regression and mild capacity control on the family $\{\hat{y}_{\text{proxy}}(\cdot; w) : w \in \Delta_{N-1}\}$, the empirical proxy error $E_{\mathcal{D}}(w)$ concentrates around $R_{\text{proxy}}(w)$; hence we treat
839 $E_{\mathcal{D}}(w)$ in practice as a finite-sample approximation of $R_{\text{proxy}}(w)$.

840
841 B.2 PRELIMINARIES AND ASSUMPTIONS
842

843 We recall a standard non-parametric regression result on the consistency of k NN estimators.
844

845 **Lemma 1** (Universal k NN L_2 -Consistency (Stone, 1977; Devroye et al., 1994)). *For each upstream
846 task i , consider a training dataset of size n , and let $\hat{y}_n^{(i)}$ be the k -nearest neighbor regressor in the
847 feature space $g_i(x)$, where the number of neighbours $k = k_n$ satisfies $k_n \rightarrow \infty$, $k_n/n \rightarrow 0$.
848 Define the L_2 -estimation error*

$$849 \varepsilon_{\text{kNN}}^{(i)}(n) := \mathbb{E}[(\hat{y}_n^{(i)}(X) - m_i(X))^2].$$

850 *Then the k NN regression estimator satisfies the exact risk decomposition*

$$851 \mathbb{E}[(\hat{y}_n^{(i)}(X) - Y)^2] = \mathbb{E}[(m_i(X) - Y)^2] + \varepsilon_{\text{kNN}}^{(i)}(n),$$

852 *and moreover $\varepsilon_{\text{kNN}}^{(i)}(n) \rightarrow 0$ as $n \rightarrow \infty$.*

864 **Remark on Lemma 1.** Our implementation of AMC uses a finite- K kNN ensemble with cosine
 865 similarity in the learned representation space. This differs from the asymptotic setting of Lemma 1
 866 (which requires $k_n \rightarrow \infty$ and $k_n/n \rightarrow 0$), but it serves as a computationally efficient finite-sample
 867 approximation. Lemma 1 is used as a *conceptual* tool to justify the kNN-based proxy objective; we
 868 do not claim a full universal consistency result for our exact finite-sample variant.
 869

870 **Assumption 1 (Fine-tuning stability).** There exists $\varepsilon_{\text{opt}} \geq 0$ such that for all $w \in \Delta_{N-1}$,
 871

$$872 \quad R_{\text{FT}}(w) \leq R^*(w) + \varepsilon_{\text{opt}}. \\ 873$$

874 That is, after fine-tuning on top of g_w , the resulting predictor is within ε_{opt} of the optimal predictor
 875 defined on the same representation (McNamara & Balcan, 2017; Mehra et al., 2024).
 876

877 **Assumption 2 (Representation closeness).** There exists $\delta > 0$ and a high-probability subset
 878 $\mathcal{X}_0 \subseteq \mathcal{X}$ such that for all modules i and all $x \in \mathcal{X}_0$,
 879

$$880 \quad \|g_i(x) - g_w(x)\| \leq \delta. \\ 881$$

882 This models the empirical observation that independently fine-tuned modules from the same pre-
 883 trained model can often be aligned into a shared, approximately convex basin in parameter space,
 884 leading to similar internal representations. Recent work on mode connectivity (Frankle et al., 2020;
 885 Entezari et al.) and cross-task linearity (Zhou et al., 2024) supports this assumption, which we adopt
 886 here as a structural modeling assumption rather than a general theorem.
 887

888 **Assumption 3 (stability of latent regressor).** Let g and g' denote any two modules among $\{g_i : i \in [N]\}$ and the merged module g_w . Let their associated Bayes regressors be
 889

$$890 \quad m(x) := \mathbb{E}[Y | g(X) = g(x)], \quad m'(x) := \mathbb{E}[Y | g'(X) = g'(x)]. \\ 891$$

892 There exists $L > 0$ and a high-probability subset $\mathcal{X}_0 \subseteq \mathcal{X}$ such that if
 893

$$894 \quad \|g(x) - g'(x)\| \leq \delta \quad \forall x \in \mathcal{X}_0, \\ 895$$

896 then the regressors are close in expectation:
 897

$$898 \quad \mathbb{E}[|m(X) - m'(X)| \mathbf{1}\{X \in \mathcal{X}_0\}] \leq L \delta. \\ 899$$

900 We also assume $|Y| \leq B$ almost surely.
 901

902 **Remark on Assumption 3.** Assumption 3 formalizes a semantic smoothness condition in the
 903 learned representation: inputs that are mapped to nearby latent points (i.e., with close $g(x)$ and
 904 $g'(x)$) are required to have similar predictive behavior for Y on average. This can be viewed as a
 905 Lipschitz-type regularity assumption on the Bayes regressors in representation space, and is
 906 consistent with the common inductive bias in deep learning that well-trained encoders should support
 907 target functions which do not change abruptly under small perturbations of the latent features.
 908

909 B.3 RISK TRANSFER ANALYSIS

910 **Step 1: kNN Ensemble Approximates the Bayes Ensemble.** We compare the proxy risk to the
 911 Bayes ensemble risk:
 912

$$913 \quad \begin{aligned} |R_{\text{proxy}}(w) - R_{\text{ens}}(w)| &= \left| \mathbb{E}[(\hat{y}_{\text{proxy}} - Y)^2 - (m_{\text{ens}} - Y)^2] \right| \\ 914 &= \left| \mathbb{E}[(\hat{y}_{\text{proxy}} - m_{\text{ens}})(\hat{y}_{\text{proxy}} + m_{\text{ens}} - 2Y)] \right| \\ 915 &\leq 4B \mathbb{E}[|\hat{y}_{\text{proxy}} - m_{\text{ens}}|] \quad (\text{by bounded label in Assumption 3}) \\ 916 \end{aligned} \\ 917$$

918 Next,

$$\begin{aligned}
\mathbb{E}[|\hat{y}_{\text{proxy}} - m_{\text{ens}}|] &= \mathbb{E}\left[\left|\sum_{i=1}^N w_i \hat{y}^{(i)} - \sum_{i=1}^N w_i m_i\right|\right] \\
&\leq \sum_{i=1}^N w_i \mathbb{E}[|\hat{y}^{(i)} - m_i|] \\
&\leq \sum_{i=1}^N w_i \sqrt{\mathbb{E}[(\hat{y}^{(i)} - m_i)^2]} \\
&= \sum_{i=1}^N w_i \sqrt{\varepsilon_{\text{kNN}}^{(i)}(n)} \quad (\text{by Assumption 1}) \\
&\leq \sqrt{\sum_{i=1}^N w_i \varepsilon_{\text{kNN}}^{(i)}(n)} \quad (\text{by Jensen's inequality})
\end{aligned}$$

935 Define the weighted kNN error

$$\bar{\varepsilon}_{\text{kNN}}(n; w) := \sum_{i=1}^N w_i \varepsilon_{\text{kNN}}^{(i)}(n), \quad \epsilon_1(n; w) := 4B \sqrt{\bar{\varepsilon}_{\text{kNN}}(n; w)}.$$

940 Then we obtain

$$|R_{\text{proxy}}(w) - R_{\text{ens}}(w)| \leq \epsilon_1(n; w).$$

943 **Step 2: Bayes Ensemble Approximates the Merged Bayes Predictor.** We compare $m_{\text{ens}}(x; w)$ 944 and $m_w(x)$ using the triangle inequality,

$$\begin{aligned}
\mathbb{E}[|m_{\text{ens}}(X; w) - m_w(X)| \mathbf{1}\{X \in \mathcal{X}_0\}] &= \mathbb{E}\left[\left|\sum_{i=1}^N w_i m_i(X) - m_w(X)\right| \mathbf{1}\{X \in \mathcal{X}_0\}\right] \\
&\leq \sum_{i=1}^N w_i \mathbb{E}[|m_i(X) - m_w(X)| \mathbf{1}\{X \in \mathcal{X}_0\}] \\
&\leq L \delta \quad (\text{by Assumption 2 and 3})
\end{aligned}$$

953 Then

$$\begin{aligned}
|R_{\text{ens}}(w) - R^*(w)| &= \left| \mathbb{E}[(m_{\text{ens}}(X; w) - Y)^2 - (m_w(X) - Y)^2] \right| \\
&= \left| \mathbb{E}[(m_{\text{ens}}(X; w) - m_w(X))(m_{\text{ens}}(X; w) + m_w(X) - 2Y)] \right| \\
&\leq 4B \mathbb{E}[|m_{\text{ens}}(X; w) - m_w(X)|] \\
&\leq 4B L \delta + (\text{small error term on } \mathcal{X}_0^c).
\end{aligned}$$

961 Absorbing the small-probability contribution from \mathcal{X}_0^c into the constant, we obtain

$$|R_{\text{ens}}(w) - R^*(w)| \leq C \delta,$$

964 where $C := 4BL$.

966 B.4 MAIN TRANSFER BOUND AND GUARANTEE

968 **Proposition 1.** Under Assumptions 1–3 and Lemma 1, for any $w \in \Delta_{N-1}$,

$$R_{\text{FT}}(w) \leq R_{\text{proxy}}(w) + C \delta + \varepsilon_{\text{opt}} + \epsilon_1(n; w),$$

970 where $C = 4BL$ and $\epsilon_1(n; w) = 4B \sqrt{\bar{\varepsilon}_{\text{kNN}}(n; w)}$.

972 *Proof.* From Step 1 we have
 973

$$R_{\text{proxy}}(w) \geq R_{\text{ens}}(w) - \epsilon_1(n; w),$$

975 and from Step 2
 976

$$R_{\text{ens}}(w) \geq R^*(w) - C \delta.$$

977 Hence
 978

$$R^*(w) \leq R_{\text{proxy}}(w) + C \delta + \epsilon_1(n; w).$$

979 Combining with Assumption 1 yields
 980

$$R_{\text{FT}}(w) \leq R^*(w) + \epsilon_{\text{opt}} \leq R_{\text{proxy}}(w) + C \delta + \epsilon_{\text{opt}} + \epsilon_1(n; w).$$

982 Combining this result with the optimality of \hat{w} for the proxy objective yields the following theorem.
 983

984 **Theorem 1.** *Let $\hat{w} \in \arg \min_{w \in \Delta_{N-1}} R_{\text{proxy}}(w)$ be a minimizer of the proxy risk. Under Assumptions 1–3 and Lemma 1, the fine-tuning risk of the merged encoder with weights \hat{w} satisfies*
 985

$$R_{\text{FT}}(\hat{w}) \leq R_{\text{proxy}}(\hat{w}) + C \delta + \epsilon_{\text{opt}} + \epsilon_1(n; \hat{w}),$$

987 where $C = 4B L$ and $\epsilon_1(n; \hat{w}) = 4B \sqrt{\sum_{i=1}^N \hat{w}_i \varepsilon_{\text{kNN}}^{(i)}(n)}$.
 988

990 C EXPERIMENTAL DETAILS

992 Here we provide more experimental details regarding the datasets, baselines, and implementation.
 993

994 C.1 DATASET DETAILS

996 We primarily adopt the dataset setup proposed by Chang et al. (2022). Specifically, we select 35
 997 datasets from Matminer (Ward et al., 2018) for our study, categorizing them into 18 high-resource
 998 material datasets, with sample sizes ranging from 10,000 to 132,000 (an average of 35,000 samples),
 999 and 17 low-data datasets, with sample sizes ranging from 522 to 8,043 (an average of 2,111 samples).

1000 The high-resource datasets are utilized for training the MoMa Hub modules, as their larger data volumes
 1001 are likely to encompass a wealth of transferrable material knowledge. A detailed introduction
 1002 of these MoMa Hub datasets is included in Table 4.

1003 The low-data datasets serve as downstream tasks to evaluate the effectiveness of MoMa and its
 1004 baselines. A detailed introduction is included in Table 5. This setup mimics real-world materials
 1005 discovery scenarios, where downstream data are often scarce. Compared to the benchmark in Chang
 1006 et al. (2022), we exclude two low-data datasets with exceptionally small data sizes (fewer than 20
 1007 test samples) from our experiments, as their limited data could lead to unreliable conclusions.

1008 Following Chang et al. (2022), all datasets are split into training, validation, and test sets with a ratio
 1009 of 7:1.5:1.5. For the downstream low-data datasets, we follow the exact splitting provided by Chang
 1010 et al. (2022) to ensure a fair comparison.
 1011

1012 C.2 IMPLEMENTATION DETAILS OF MOMA

1014 **Module Architecture Details** We now introduce the architectural details of MoMa modules.
 1015 Across all our experiments in the main text, the JMP (Shoghi et al., 2024) backbone is adopted
 1016 due to its comprehensive strength across a wide range of molecular and crystal tasks. JMP is pre-
 1017 trained on ~ 120 million DFT-generated force-field data across large-scale datasets on catalyst and
 1018 small molecules. It is a 6-layer GNN model with around 160M parameters which is based on the
 1019 GemNet-OC architecture (Gasteiger et al., 2022). Note that MoMa is backbone-agnostic and we
 1020 include results with the Orb model (Neumann et al., 2024) in Section 4.3.

1021 For the full module parametrization, we exclude the output layer and treat the entire GNN backbone
 1022 as a single module. For the adapter components, we follow the standard implementation of adapter
 1023 layers (Houlsby et al., 2019). Specifically, an adapter layer is inserted between every two layers
 1024 of the JMP backbone. Each adapter consists of a downward projection to a bottleneck dimension,
 1025 followed by an upward projection back to the original dimension. We adopt BERT-style initializa-
 1026 tion (Devlin, 2018), with the bottleneck dimension set to half of the input embedding dimension.

1026 Table 4: Datasets for training MoMa Hub modules. **Num** stands for the number of samples in each
 1027 dataset.

Datasets	Num	Description
MP E_f	132752	The energy change during the formation of a compound from its elements. Data from Jain et al. (2013).
MP E_g	106113	The PBE band gaps, calculated using the Perdew-Burke-Ernzerhof (PBE) functional, represent the energy difference between the valence and conduction bands in a material. Data from Jain et al. (2013).
MP G_{VRH}	10987	VRH-average shear modulus, an approximate value obtained by averaging the shear modulus of polycrystalline materials. Data from Jain et al. (2013).
MP K_{VRH}	10987	VRH-average bulk modulus, calculated by averaging the Voigt (upper bound) and Reuss (lower bound) bulk moduli. Data from Jain et al. (2013).
n-type σ_e	37390	n-type σ_e measures the material's conductivity performance when electrons are the primary charge carriers. Data from Ricci et al. (2017).
p-type σ_e	37390	Similar to n-type σ_e , with holes as carriers. Data from Ricci et al. (2017).
n-type κ_e	37390	n-type κ_e evaluates the efficiency of n-type materials that can conduct both electricity and heat, which is crucial for understanding its performance in thermoelectric applications. Data from Ricci et al. (2017).
p-type κ_e	37390	Similar to n-type κ_e , with holes as carriers. Data from Ricci et al. (2017).
n-type S	37390	n-type S denotes the average conductivity eigenvalue, which measures thermo-electric conversion efficiency in the hole-conducting state when electrons act as the primary charge carriers. Data from Ricci et al. (2017).
p-type S	37390	Similar to n-type S , with holes as carriers. Data from Ricci et al. (2017).
n-type \bar{m}_e^*	21037	n-type \bar{m}_e^* denotes the average eigenvalue of conductivity effective mass, which measures the impact of the electron's effective mass on the electrical conductivity. Data from Ricci et al. (2017).
p-type \bar{m}_e^*	20270	Similar to n-type \bar{m}_e^* , with holes as carriers. Data from Ricci et al. (2017).
Perovskite E_f	18928	Perovskite E_f refers to the heat of formation of perovskite, the amount of heat released or absorbed when the perovskite structure is formed from its constituent elements. Data from Castelli et al. (2012).
JARVIS E_f	25923	Formation energy from the JARVIS dataset (Choudhary et al., 2020).
JARVIS dielectric constant (Opt)	19027	Dielectric constant measures the material's ability to polarize in response to an electric field in two-dimensional systems. Data from Choudhary et al. (2020).
JARVIS E_g	23455	PBE band gaps from the JARVIS dataset (Choudhary et al., 2020).
JARVIS G_{VRH}	10855	VRH-average shear modulus from the JARVIS dataset (Choudhary et al., 2020).
JARVIS K_{VRH}	11028	VRH-average bulk modulus from the JARVIS dataset (Choudhary et al., 2020).

1062
 1063
 1064 Note that the merging process for adapters is performed in a layer-wise manner. For each back-
 1065 bone layer containing adapters, we compute a weighted average of the parameters from all selected
 1066 adapter modules. A single scalar weight for each module, determined by AMC, is applied uniformly
 1067 across all adapter layers belonging to that module.

1068
 1069
 1070 **Hyper-parameters** For the training of JMP backbone, we mainly follow the hyper-parameter con-
 1071 figurations in Shoghi et al. (2024), with slight modifications to the learning rate and batch size. Dur-
 1072 ing the module training stage of MoMa, we use a batch size of 64 and a learning rate of 5e-4 for 80
 1073 epochs. During downstream fine-tuning, we adopt a batch size of 32 and a learning rate of 8e-5. We
 1074 set the training epoch as 60, with an early stopping patience of 10 epochs to prevent over-fitting. We
 1075 adopt mean pooling of embedding for all properties since it performs significantly better than sum
 1076 pooling in certain tasks (e.g. band gap prediction), which echos the findings in Shoghi et al. (2024).

1077 For the Adaptive Module Composition (AMC) algorithm, we set the number of nearest neighbors
 1078 (K in Eq. (1)) to 5. For the optimization problem formulated in Eq. (3), we utilize the CPLEX
 1079 optimizer from the cvxpy package (Diamond et al., 2014). AMC is applied separately for each
 random split of the downstream tasks to avoid data leakage.

Table 5: Downstream evaluation datasets.

Datasets	Num	Description
Experimental Band Gap (eV)	2481	The band gap of a material as measured through physical experiments. Data from Ward et al. (2018).
Formation Enthalpy (eV/atom)	1709	The energy change for forming a compound from its elements, crucial for defining Gibbs energy of formation. Data from Wang et al. (2021); Kim et al. (2017).
2D Dielectric Constant	522	The dielectric constant of 2D materials from Choudhary et al. (2017).
2D Formation Energy (eV/atom)	633	The energy change associated with the formation of 2D materials from their constituent elements. Data from Choudhary et al. (2017).
Exfoliation Energy (meV/atom)	636	The energy required to separate a single or few layers from bulk materials. Data from Choudhary et al. (2017).
2D Band Gap (eV)	522	The band gap of 2D materials from Choudhary et al. (2017).
3D Poly Electronic	8043	Poly electronic of 3D materials from Choudhary et al. (2018).
3D Band Gap (eV)	7348	The band gap of 3D materials from Choudhary et al. (2018).
Refractive Index	4764	The quantitative change of the speed of light as it passes through different media. Data from Dunn et al. (2020); Petousis et al. (2017).
Elastic Anisotropy	1181	The directional dependence of a material's elastic properties. Data from De Jong et al. (2015a).
Electronic Dielectric Constant	1296	Electronic dielectric constant refers to the dielectric response caused by electronic polarization under an applied electric field. Data from Petretto et al. (2018).
Dielectric Constant	1296	Dielectric constant of materials from Petretto et al. (2018).
Phonons Mode Peak	1265	Phonon mode peak refers to the peak in the phonon spectrum caused by specific phonon modes. Data from Petretto et al. (2018).
Poisson Ratio	1181	Poisson Ratio quantifies the ratio of transverse strain to axial strain in a material under uniaxial stress, reflecting its elastic deformation behavior. Data from De Jong et al. (2015a).
Poly Electronic	1056	The Average eigenvalue of the dielectric tensor's electronic component, where the dielectric tensor links a material's internal and external fields. Data from Petousis et al. (2017).
Poly Total	1056	The Average dielectric tensor eigenvalue. Data from Petousis et al. (2017).
Piezoelectric Modulus	941	Piezoelectric modulus measures a material's ability to convert mechanical stress into electric charge or vice versa. Data from De Jong et al. (2015b).

Computational Cost Experiments are conducted on NVIDIA A100 80 GB GPUs. During the module training stage, training time ranges from 30 to 300 GPU hours, depending on the dataset size. While this training process is computationally expensive, it is a one-time investment, as the trained models are stored in MoMa Hub as reusable material knowledge modules. Downstream fine-tuning requires significantly less compute, ranging from 2 to 8 GPU hours based on the dataset scale. The full module and adapter module require similar training time; however, the adapter module greatly reduces memory consumption during training. The time cost of AMC is discussed in Section D.3.

C.3 BASELINE DETAILS

The CGCNN baseline refers to fine-tuning the CGCNN model (Xie & Grossman, 2018) separately on 17 downstream tasks. Conversely, MoE-(18) involves training individual CGCNN models for each dataset in MoMa Hub and subsequently integrating these models using mixture-of-experts (Jacobs et al., 1991; Shazeer et al., 2016). For the baseline results of CGCNN and MoE-(18), we reproduce the results with the open-source codebase provided by Chang et al. (2022) and follow the exactly same hyper-parameters as reported in their papers.

For UMA, we fine-tune the UMA-Medium checkpoint (the largest open-sourced UMA model) on each dataset. To determine the batch size, we follow the max-atom batching strategy from the original UMA paper and set the maximum atoms per batch to 200, which ensures consistent memory

1134 usage across systems of varying sizes. All remaining hyperparameters (e.g., learning rate, number
 1135 of epochs) follow the configurations used in JMP baselines.
 1136

1137 For JMP-FT, we use the JMP (large) checkpoint from the codebase open-sourced by Shoghi et al.
 1138 (2024) and fine-tune it directly on the downstream tasks with a batch size of 64. JMP-MT adopts
 1139 a multi-task pre-training strategy, training on all 18 MoMa Hub source tasks without addressing
 1140 the conflicts between disparate material tasks. Starting from the same pre-trained checkpoint as
 1141 JMP-FT, JMP-MT employs proportional task sampling and trains for 5 epochs across all tasks with
 1142 a batch size of 16. The convergence of multi-task pre-training is indicated by a lack of further
 1143 decrease in validation error on most tasks after 5 epochs. For downstream fine-tuning, both JMP-FT
 1144 and JMP-MT adopt the same training scheme as the fine-tuning stage in MoMa.
 1145

1146 C.4 IMPLEMENTATION DETAILS OF LORAHUB LEARNING & SOFTMAX WEIGHTING

1147 In our analysis experiments (Section 3.3), we compare AMC against two alternative module com-
 1148 position strategies: *LoraHub Learning*, a black-box optimization approach, and *Softmax Weighting*,
 1149 a non-optimized performance-based heuristic.

1150 For the implementation of LoraHub Learning, we strictly follow the hyper-parameters and black-
 1151 box optimization scheme in its official repository except that we use a training-free k NN predictor to
 1152 obtain the metric in each round of optimization, which is aligned with AMC. This is because current
 1153 capabilities pre-trained models cannot enable zero-shot prediction of material tasks as in LLMs.

1154 For the implementation of Softmax Weighting, we convert the predicted MAE from the same initial
 1155 k NN evaluation into a weight for each module. The goal is to directly assign higher weights to
 1156 modules with better predicted individual performance (i.e., lower MAE). Formally, the weight w_j
 1157 for module j is calculated as:

$$1159 \quad w_j = \frac{\exp(-\text{MAE}_j/T)}{\sum_{k=1}^N \exp(-\text{MAE}_k/T)} \quad (4)$$

1160 where the temperature T is set to 1.

1161 C.5 DISCUSSION FOR AMC ANALYSIS EXPERIMENTS

1162 For the router-based JMP-(18) approach, full fine-tuning all parameters induces formidable memory
 1163 cost, and is impractical considering MoMa Hub may further scale in the future. Hence, resem-
 1164 bling Chang et al. (2022), we only unfreeze the final MLP layer as well as the router network in
 1165 downstream fine-tuning. We believe it underperforms MoMa because training a router over 18 het-
 1166 erogeneous experts with limited supervision per task is intrinsically difficult, leading to unstable
 1167 and suboptimal training of module selection. By contrast, AMC avoids router training and uses
 1168 a training-free convex weighting scheme guided by k NN-based proxy error, which is much better
 1169 suited to the data-scarce, highly disparate material setting.

1170 We conjecture that AMC outperforms LoraHub Learning for two main reasons. First, LoraHub
 1171 optimizes weights based on the composed module, where arbitrary mixtures of heterogeneous rep-
 1172 resentations yield noisy error signals and a rugged, non-convex landscape. Second, AMC decouples
 1173 weight selection from feature mixing by optimizing ensemble predictions. This formulation trans-
 1174 forms the task into a convex problem, enabling AMC to reliably converge to a global optimum
 1175 without navigating the instability inherent to search-based methods.

1176 The advantage of AMC over the Softmax Weighting highlights the importance of optimizing for
 1177 synergy. Softmax Weighting determines each module’s contribution based solely on its isolated
 1178 performance, overlooking potential synergistic interactions. In contrast, AMC explicitly optimizes
 1179 for the weight configuration that maximizes collective performance and captures such interactions.

1180 C.6 DETAILS ON MOMA HUB SCALING ANALYSIS

1181 The QM9 dataset (Ramakrishnan et al., 2014) comprises 12 quantum chemical properties (including
 1182 geometric, electronic, energetic, and thermodynamic properties) for 134,000 stable small organic
 1183 molecules composed of CHONF atoms, drawn from the GDB-17 database (Ruddigkeit et al., 2012).

1188 It is widely served as a comprehensive benchmarking dataset for prediction methods of the structure-
 1189 property relationships in small organic molecules.
 1190

1191 In the continual learning experiments, we expand the MoMa hub by including modules trained on
 1192 the QM9 dataset. For module training, we adopt the same training scheme as the original MoMa
 1193 modules, with the exception of using sum pooling instead of mean pooling, as it has been empirically
 1194 shown to perform better (Shoghi et al., 2024).
 1195

1196 D MORE EXPERIMENTAL RESULTS

1199 D.1 CORRELATION ANALYSIS BETWEEN KNN-BASED PROXY AND POST-FINE-TUNING 1200 PERFORMANCE

1202 We empirically examine whether the kNN-based proxy error used in AMC is a reliable indicator of
 1203 post-fine-tuning performance. We consider three representative targets—Refractive Index, Phonons
 1204 Mode Peak, and Exfoliation Energy—covering optical, vibrational, and energetic material proper-
 1205 ties. For each task, we use all 18 modules in the MoMa hub and record (i) the per-module proxy
 1206 MAE computed during the kNN step of AMC, and (ii) the test MAE obtained by fine-tuning each
 1207 module individually on the same target. We then compute the Spearman and Pearson correlations
 1208 between the proxy MAE and the post-fine-tuning MAE over the 18 modules. Across all three tar-
 1209 gets, we observe consistently strong positive correlations (Spearman > 0.8 , Pearson > 0.6 , with
 1210 p-values < 0.01 for Pearson and < 0.0001 for Spearman). Concretely, the Pearson correlations
 1211 are 0.603, 0.628, and 0.699 for Phonons Mode Peak, Refractive Index, and Exfoliation Energy, re-
 1212 spectively; the corresponding Spearman correlations are 0.851, 0.825, and 0.816. As visualized in
 1213 Fig. 5, modules that achieve lower proxy error systematically attain lower post-fine-tuning MAE,
 1214 providing direct empirical support that the kNN-based proxy is a reliable signal for guiding weight
 1215 optimization in AMC.
 1216

1217 D.2 SENSITIVITY ANALYSIS OF KNN PROXY AND OPTIMIZER

1219 We perform an additional sensitivity analysis of the kNN components in AMC. Specifically, we vary
 1220 the number of neighbors k , switch the distance metric from cosine similarity to MAE, and modify
 1221 the normalization of similarity scores from a weighted average to a uniform average over the kNN
 1222 set. We study robustness by (i) computing the average pairwise correlation of the resulting module
 1223 weight vectors across variants, and (ii) comparing the final post-fine-tuning MAE across variants.

1224 Table 6 shows that the learned composition weights are highly robust under different kNN config-
 1225urations. Over the 17 datasets, the average pairwise Pearson and Spearman correlations of the weight
 1226 vectors are typically above 0.7. This indicates that changing k , the distance metric, or the normal-
 1227 ization scheme perturbs the proxy predictor but AMC consistently recovers a very similar relative
 1228 weighting over modules, i.e., the inferred relationships between modules remain stable.

1229 Table 7 reports the resulting post-fine-tuning MAEs for each kNN variant. This analysis is con-
 1230 ducted on a single train/validation split and a single random seed per dataset. Even under this
 1231 stringent setting, MAE remains reasonably stable for most tasks across the five kNN configura-
 1232 tions. The main exception is the *Elastic Anisotropy* dataset, where we observe larger variation between
 1233 variants; in our main experiments we already noted substantial fluctuations across random seeds for
 1234 this target. Elastic anisotropy is a derived mechanical metric that depends on the full elastic response
 1235 of the material, and we find in practice that the corresponding mapping from structure to target is
 1236 more challenging and sensitive to initialization, which can amplify small differences in the proxy
 1237 into larger differences in final MAE.

1238 Finally, we also varied the CPLEX optimizer tolerances (optimality and MIP gap) from the default
 1239 10^{-6} to 10^{-3} and 10^{-9} . These changes had no effect on the optimized weights, which is consistent
 1240 with our formulation: our optimization problem is a small and strongly convex MIQP over con-
 1241 tinuous variables, and the solver consistently reaches the global optimum under all tested settings.

1242	Dataset	Avg. Pearson Corr. of Weights	Avg. Spearman Corr. of Weights
1243	Experimental Band Gap	0.9776	0.7553
1244	Formation Enthalpy	0.9972	0.8300
1245	2D Dielectric Constant	0.9752	0.7545
1246	2D Formation Energy	0.9935	0.7495
1247	Exfoliation Energy	0.6139	0.8193
1248	2D Band Gap	0.9594	0.5308
1249	3D Poly Electronic	0.7660	0.7711
1250	3D Band Gap	0.9865	0.9267
1251	Refractive Index	0.8591	0.8249
1252	Elastic Anisotropy	0.9781	0.8910
1253	Electronic Dielectric Constant	0.9761	0.7768
1254	Dielectric Constant	0.9731	0.7486
1255	Phonons Mode Peak	0.9349	0.8936
1256	Poisson Ratio	0.8570	0.8511
1257	Poly Electronic	0.8876	0.8222
1258	Poly Total	0.9309	0.7178
	Piezoelectric Modulus	0.7319	0.7972

1259 Table 6: **Stability of AMC weights under different kNN variants.** Average pairwise Pearson
 1260 and Spearman correlations between module weight vectors obtained from varying k , the distance
 1261 metric, and the similarity normalization. Across most datasets, both correlations are typically above
 1262 0.7, indicating that AMC recovers highly consistent relative weight patterns over modules despite
 1263 changes in the kNN setup.

1265	Dataset	weighted_cos_K3	weighted_cos_K5	weighted_cos_K10	weighted_mae_K5	uniform_cos_K5
1266	Experimental Band Gap	0.2139	0.2284	0.2439	0.2356	0.2314
1267	Formation Enthalpy	0.0142	0.0156	0.0181	0.0123	0.0164
1268	2D Dielectric Constant	0.3152	0.3096	0.3137	0.3251	0.3120
1269	2D Formation Energy	0.0292	0.0339	0.0401	0.0261	0.0384
1270	Exfoliation Energy	0.6078	0.6395	0.7421	0.7084	0.6753
1271	2D Band Gap	0.1529	0.1468	0.1574	0.1414	0.1485
1272	3D Poly Electronic	0.5243	0.5093	0.5138	0.5207	0.5038
1273	3D Band Gap	0.0262	0.0295	0.0301	0.0237	0.0303
1274	Refractive Index	0.2503	0.2560	0.2624	0.2626	0.2576
1275	Elastic Anisotropy	0.0811	0.1108	0.1856	0.3819	0.5717
1276	Electronic Dielectric Constant	0.3564	0.3532	0.3585	0.3393	0.3560
1277	Dielectric Constant	0.5257	0.5359	0.5595	0.5604	0.5442
	Phonons Mode Peak	0.1062	0.1310	0.1869	0.1446	0.1414
	Poisson Ratio	0.3116	0.3345	0.3802	0.3546	0.3455
	Poly Electronic	0.7307	0.7684	0.8036	0.7265	0.7691
	Poly Total	0.5606	0.5848	0.5969	0.5850	0.5837
	Piezoelectric Modulus	0.5843	0.5940	0.6093	0.5971	0.6002

1278 Table 7: **Sensitivity of post-fine-tuning MAE to kNN design choices.** Test MAE for different
 1279 kNN configurations in AMC: varying k (3/5/10), distance metric (cosine vs. MAE), and normaliza-
 1280 tion (weighted vs. uniform) across 17 datasets. For most tasks, MAE differences between variants
 1281 are modest, showing that downstream performance is relatively stable with respect to kNN design
 1282 choices.

1285 D.3 EFFICIENCY ANALYSIS OF AMC

1287 **Time Cost** For the prediction estimation stage, we further divide it into the embedding generation
 1288 and kNN prediction step. While these steps should be conducted separately for each module and
 1289 each downstream dataset, the process can be parallelized and the runtime mainly depends on the size
 1290 of the downstream dataset. As shown in Table 8, the maximum total time is below 30 seconds. For
 1291 the weight optimization stage, we report the minimum and maximum time required for convergence
 1292 of each downstream task (Eq. (3)). As shown in Table 9, the time cost is negligible and remains
 1293 roughly constant as the number of modules scales.

1294 **Memory Cost** During embedding generation, only one module is loaded into GPU at a time,
 1295 requiring approximately 1.8 GB of memory. The generated embeddings are stored on CPU, with the

1296

Table 8: Module prediction estimation time

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

	Min time (s)	Max time (s)		Module #	Min time (s)	Max time (s)
Embedding generation	7.29	24.06		3	0.07	0.08
KNN prediction	0.05	4.02		9	0.12	0.15
Total time	7.34	28.08		18	0.14	0.25

Table 9: Weight optimization time

Table 10: Test set MAE and average test loss of JMP-FT and MoMa under the full-data, 100-data, and 10-data settings. Results are averaged over five random data splits on one random seed. Results are preserved to the third significant digit.

Datasets	JMP-FT	MoMa	JMP-FT (100)	MoMa (100)	JMP-FT (10)	MoMa (10)
Experimental Band Gap	0.380	0.305	0.660	0.469	1.12	1.245
Formation Enthalpy	0.156	0.0821	0.273	0.101	0.514	0.143
2D Dielectric Constant	2.45	1.90	3.19	2.35	7.74	3.31
2D Formation Energy	0.135	0.0470	0.366	0.113	0.842	0.214
2D Exfoliation Energy	38.9	36.1	54.4	56.1	118	87.3
2D Band Gap	0.611	0.366	0.890	0.517	1.23	1.05
3D Poly Electronic	23.7	23.0	33.6	24.8	54.0	48.9
3D Band Gap	0.249	0.201	1.71	0.686	2.10	1.47
Dielectric Constant	0.0552	0.0535	0.134	0.102	0.289	0.231
Elastic Anisotropy	2.11	2.85	4.85	3.79	4.02	5.26
Electronic Dielectric Constant	0.108	0.0903	0.260	0.178	0.568	0.500
Total Dielectric Constant	0.172	0.155	0.361	0.287	0.543	0.527
Phonons Mode Peak	0.0710	0.0521	0.221	0.199	0.493	0.485
Poisson Ratio	0.0221	0.0203	0.0345	0.0317	0.0466	0.057
Poly Electronic	2.10	2.13	3.24	2.88	6.08	5.10
Total Poly	4.83	4.76	6.54	6.32	11.2	10.1
Piezoelectric Modulus	0.169	0.175	0.248	0.258	0.303	0.290
Average Normalized Test MAE	0.222	0.187	0.408	0.299	0.700	0.550

1323 largest set requiring about 5.5 MB. Overall, AMC is lightweight in memory usage and scales well
1324 with the number of modules.

D.4 COMPLETE FEW-SHOT LEARNING RESULTS

1328 We present the complete results of the few-shot learning experiments in Table 10. MoMa con-
1329 sistently shows performance improvements across all settings, with the margin of normalized test
1330 loss increasing as dataset size shrinks. These results highlight MoMa’s strong potential to retain a
1331 performance advantage in few-shot scenarios, which are prevalent in material property prediction
1332 tasks.

D.5 COMPLETE RESULTS FOR SCALING ANALYSIS OF MoMA

1335 We present the complete results for the scaling analysis of MoMa in Table 11. We report test set
1336 MAE for hub sizes of 5, 10, 18 (full MoMa hub), and 30 modules (by adding QM9 modules). The
1337 last row reports the normalized average over all tasks.

E POTENTIAL SOCIETAL IMPACT

1341 MoMa is visioned to be an open-source platform for the sharing of materials knowledge as modules.
1342 Potential positive societal impacts include the acceleration of the discovery of new materials with
1343 desirable properties, which benefit industries such as energy, electronics, and manufacturing. How-
1344 ever, there are risks associated with the mal-intended use of material knowledge to develop harmful
1345 or unsafe materials. To mitigate these risks, it is crucial to ensure that the application of this work
1346 adheres to ethical guidelines. Although we do not foresee significant negative consequences in the
1347 near future, we recognize the importance of responsible usage and oversight in the application of
1348 these technologies.

1349

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364

1365 Table 11: **Test set MAE of MoMa under different hub sizes: 5 modules, 10 modules, full MoMa hub**
 1366 **(18 modules), and 30 modules (with QM9).** Results are preserved to the fourth decimal digit.

Number of MoMa Modules	5	10	18 (MoMa)	30 (+QM9)
Experimental Band Gap	0.3478	0.3324	0.2975	0.2960
Formation Enthalpy	0.0799	0.0814	0.0789	0.0819
2D Dielectric Constant	2.2075	1.9482	1.9406	1.8879
2D Formation Energy	0.0513	0.0510	0.0438	0.0470
2D Exfoliation Energy	38.6231	36.6587	34.5769	35.1542
2D Band Gap	0.4624	0.4256	0.3649	0.3605
3D Poly Electronic	23.3909	23.0813	22.7205	23.3679
3D Band Gap	0.3035	0.2555	0.2270	0.2053
Dielectric Constant	0.0549	0.0529	0.0511	0.0529
Elastic Anisotropy	1.9967	2.4103	2.5340	2.6408
Electronic Dielectric Constant	0.1046	0.0878	0.0909	0.0892
Total Dielectric Constant	0.1762	0.1554	0.1571	0.1561
Phonons Mode Peak	0.0528	0.0505	0.0512	0.0460
Poisson Ratio	0.0240	0.0207	0.0206	0.0206
Poly Electronic	2.0588	2.0215	2.0445	1.9837
Total Poly	4.9129	4.9148	4.8804	4.7358
Piezoelectric Modulus	0.1805	0.1713	0.1721	0.1743
Average Normalized Test MAE	0.2040	0.1910	0.1853	0.1759

1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403