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ABSTRACT

Deep learning methods for material property prediction have been widely explored
to advance materials discovery. However, the prevailing pre-train paradigm often
fails to address the inherent diversity and disparity of material tasks. To over-
come these challenges, we introduce MoMa, a simple Modular framework for
Materials that first trains specialized modules across a wide range of tasks and
then adaptively composes synergistic modules tailored to each downstream sce-
nario. Evaluation across 17 datasets demonstrates the superiority of MoMa, with
a substantial 14% average improvement over the strongest baseline. Few-shot and
continual learning experiments further highlight MoMa’s potential for real-world
applications. Pioneering a new paradigm of modular material learning, MoMa
will be open-sourced to foster broader community collaboration.

1 INTRODUCTION

Accurate and efficient material property prediction is critical for accelerating materials discovery.
Key properties such as formation energy and band gap are fundamental in identifying stable and
functional materials (Masood et al., 2023; Riebesell et al., 2025). While traditional approaches such
as density functional theory offer high precision (Jain et al., 2016), their prohibitive computational
cost limits their practicality for large-scale screening (Fiedler et al., 2022; Lan et al., 2023).

Recently, deep learning methods have been developed to expedite traditional approaches (Xie &
Grossman, 2018; Griesemer et al., 2023). Pre-trained force field models, in particular, have shown
remarkable success in generalizing to a wide spectrum of material property prediction tasks (Yang
et al., 2024b; Shoghi et al., 2024; Rhodes et al., 2025), outperforming specialized models trained
from scratch. These models are typically pre-trained on the potential energy surface (PES) data of
materials (Barroso-Luque et al., 2024) and then fine-tuned for the target downstream task.

Despite these advances, we identify two key challenges that undermine the effectiveness of current
deep learning models for material property prediction: diversity and disparity.

First, material tasks exhibit significant diversity (Fig. 1) which challenges the generalizability of
existing models. For instance, prevailing force-field models are only trained on PES-derived prop-
erties (e.g., force, energy, and stress) mostly focusing on crystalline materials (Yang et al., 2024b;
Barroso-Luque et al., 2024). However, material tasks span a much wider variety of systems (e.g.,
crystals, organic molecules) and properties (e.g., thermal stability, electronic behavior), making it
difficult for methods trained on a limited set of data to generalize across the full spectrum of tasks.

Second, the disparate nature of material tasks presents huge obstacles for jointly training a broad
span of tasks in one model. Material systems vary significantly in atomic composition, bonding
and structural periodicity, while their properties are governed by distinct physical laws. For exam-
ple, mechanical strength in metals is primarily influenced by atomic bonding and crystal structure,
whereas electronic properties like conductivity are determined by the material’s electronic structure.
Consequently, training a single model across a wide range of tasks (Shoghi et al., 2024) may lead to
knowledge conflicts, hindering the model’s ability to effectively adapt to downstream scenarios.

Drawing inspiration from modular deep learning (Pfeiffer et al., 2023), we propose MoMa, a
Modular framework for Material property prediction. To accommodate the diversity challenge,
MoMa trains multiple high-resource property prediction datasets into transferrable modules to sup-
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Figure 1: Illustration of the diversity of material prop-
erties (top) and systems (down). Material tasks are also
disparate, with different laws governing diverse proper-
ties and systems. These characteristics pose challenges
for material property prediction models.
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Figure 2: The modular learning scheme
in MoMa trains and stores a broad spec-
trum of material tasks as modules, and
adaptively composes them given a new
material property prediction task.

port a wide-span of downstream tasks. In parallel, to address the disparity challenge, MoMa en-
capsulates each task within a specialized module during training to avoid interference. In adapting
MoMa’s modules to downstream tasks, we devise a novel composition strategy with high selectivity
and efficiency to integrate the most synergistic modules to mitigate knowledge conflicts.

Specifically, MoMa comprises two major stages: (1) Module Training & Centralization. MoMa
trains dedicated modules for a broad range of material tasks, offering two versions: a full module for
superior performance and a memory-efficient adapter module. These trained modules are centralized
in MoMa Hub, a repository designed to facilitate knowledge reuse while preserving proprietary data
for privacy-aware material learning. (2) Adaptive Module Composition (AMC) & Fine-tuning. We
devise AMC, a tailored algorithm that adaptively composes synergetic modules from MoMa Hub.
AMC first estimates the performance of each module on the target task in a training-free manner,
enabling efficient evaluation across a wide range of modules. Based on these predictions, AMC then
optimizes a weighted combination of modules to explicitly minimize the target task loss, capturing
relevant knowledge while mitigating interference. The resulting composed module is then fine-tuned
for improved adaptation to the downstream task. Together, the two stages deliver a modular solution
that enables MoMa to account for the diversity and disparity of material knowledge.

Empirical results across 17 downstream tasks showcase the superiority of MoMa, outperforming
all baselines in 16/17 tasks, with an average improvement of 14% compared to the second-best
baseline. In few-shot settings, which are common in materials science, MoMa achieves even larger
performance gains to the conventional pre-train then fine-tune paradigm. Additionally, we show that
MoMa can expand its capability in continual learning settings by incorporating molecular tasks into
MoMa Hub. The trained modules in MoMa Hub will be open-sourced, and we envision MoMa be-
coming a pivotal platform for the modularization and distribution of materials knowledge, fostering
deeper community engagement to accelerate materials discovery.

2 PROPOSED FRAMEWORK: MOMA

MoMa is a simple modular framework targeting the diversity and disparity of material property
prediction tasks. A high-level abstraction of MoMa is provided in Fig. 2. Its modular solution allows
for the flexible and scalable integration of diverse material knowledge modules, and the effective and
tailored adaptation to material property prediction tasks. We now elaborate our proposed framework.

2.1 OVERVIEW

MoMa involves two major stages: (1) training and centralizing modules into MoMa Hub; (2) adap-
tively composing these modules to support downstream material tasks. A visual overview of MoMa
is provided in Figure 3.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Full / Adapter Training

...

...
MoMa Hub

(a) Module Training & Centralization (b) Adaptive Module Composition & Fine-tuning
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Hub

... 2. Weight Optimization

4. Fine-tuning

1. Prediction Estimation 3. Module Composition

...

w

Figure 3: The MoMa framework. (a) During the Module Training & Centralization stage (Sec-
tion 2.2), MoMa trains full and adapter modules for a wide spectrum of material tasks, constituting
the MoMa Hub; (b) The Adaptive Module Composition (AMC) & Fine-tuning stage (Section 2.3)
leverages the modules in MoMa Hub to compose a tailored module for each downstream task. The
AMC algorithm comprises three steps: 1. module prediction estimation (with kNN); 2. module
weight optimization; 3. module composition. The composed module is further fine-tuned on the
task for better adaptation.

In the first stage (Section 2.2), we encompass a wide range of material properties and systems into
MoMa Hub. This accommodates the diversity of material tasks and addresses the task disparity by
training specialized modules for each.

In the second stage (Section 2.3), we devise the Adaptive Module Composition algorithm. Given the
downstream material task, the algorithm heuristically optimizes the optimal combination of module
weights for MoMa Hub and composes a customized module based on the weights, which is sub-
sequently fine-tuned on the task for better adaptation. Respecting the diverse and disparate nature
of material tasks, our adaptive approach automatically discovers synergistic modules and excludes
conflicting combinations by the data-driven assignment of module weights.

2.2 MODULE TRAINING & CENTRALIZATION

To better exploit the transferrable knowledge of open-source material property prediction datasets,
we first train distinctive modules for each high-resource material task, and subsequently centralize
these modules to constitute MoMa Hub.

Module Training Leveraging the power of state-of-the-art material property prediction models,
we choose to employ a pre-trained backbone encoder f as the initialization for training each MoMa
module. Note that MoMa is independent of the backbone model choice, which enables smooth
integration with other pre-trained backbones.

We provide two parametrizations for the MoMa modules: the full module and the adapter mod-
ule. For the full module, we directly treat each fully fine-tuned model backbone as a standalone
module. The adapter module, in contrast, serves as a parameter-efficient alternative where adapter
layers (Houlsby et al., 2019) are inserted between each layer of the backbone. The adapters are
updated and the rest of the backbone is frozen. All adapters trained for a given task are collectively
treated as one module. This implementation trade-offs the downstream performance for a much
lower GPU memory cost during training, making it especially suitable for compute-constrained set-
tings. When training converges, all module parameters are stored into a centralized repository H
termed MoMa Hub, formally:

H = {g1, g2, . . . , gN}, gi =

{
θif (full module)
∆i

f (adapter module)

where θif and ∆i
f denote the full and adapter module parameters for the ith task and encoder f .
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Module Centralization To support a wide array of downstream tasks, MoMa Hub needs to in-
clude modules trained on diverse material systems and properties. Currently, MoMa Hub encom-
passes 18 material property prediction tasks selected from the Matminer datasets (Ward et al., 2018)
with over 10000 data points. These tasks span across a large range of material properties, includ-
ing thermal properties (e.g. formation energy), electronic properties (e.g. band gap), mechanical
properties (e.g. shear modulus), etc. For more details, please refer to Section B.1. To showcase the
effect of scaling data diversity, we present the continual learning results in Section 3.5 after further
incorporating molecular property prediction tasks into MoMa Hub. Note that MoMa is designed to
be task-agnostic and may readily support a larger spectrum of tasks in the future.

An important benefit of the modular design of MoMa Hub is that it preserves proprietary data,
which is prevalent in the field of materials, enabling privacy-aware contribution of new modules.
Therefore, MoMa could serve as an open platform for the modularization of materials knowledge.

2.3 ADAPTIVE MODULE COMPOSITION & FINE-TUNING

Given a labeled material property prediction dataset D with m instances: D =
{(x1, y1), (x2, y2), . . . , (xm, ym)}, the second stage of MoMa customizes a task-specific model us-
ing the modules in MoMa Hub. We highlight the key desiderata in our setting:

• Selective: Material tasks are inherently disparate. Hence only the most relevant modules shall be
selected to minimize interference and promote positive transfer to downstream tasks.

• Data-driven: As the diversity of tasks in MoMa Hub expands, it is impossible to rely solely on
human expertise for module selection. A data-driven approach is required to mine the implicit
relationships between the MoMa Hub modules and downstream tasks.

• Efficient: Enumerating all combinations of modules is impractical. Efficient algorithms shall be
developed to return the optimal module composition with a reasonable amount of computation.

Unfortunately, to our best knowledge, none of the prevailing module composition methods fully
satisfy the requirements outlined above in our setting. They either depend on human heuristics for
module composition (Ilharco et al., 2022; Yu et al., 2024), or rely on assumptions on tasks (Yang
et al., 2023; Zhu et al., 2025) or network structures (Ostapenko et al., 2024; Huang et al., 2024)
not satisfiable in material property prediction settings, as further evidenced through a representative
comparison in Section 3.3.

To address these limitations, we devise the Adaptive Module Composition (AMC) algorithm. AMC
is a fast heuristic algorithm that first estimates the prediction of each module on the downstream
task, then optimizes the module weights, and finally composes the selected modules to form the
task-specific module. We now introduce AMC in detail, with its formal formulation in Algorithm 1.

Module Prediction Estimation We begin by estimating the predictive performance of each mod-
ule in MoMa Hub H on the downstream task D. More accurate predictions indicate stronger rele-
vance to the task and intuitively warrant higher weights in the composition.

For each module gj in H, we first take it to encode each input materials in the train set of task
D into a set of representation X j = {xj

1,x
j
2, . . . ,x

j
m} in which xj

i = gj(xi). Then we obtain
the estimated prediction of gj on D using a leave-one-out label propagation approach (Iscen et al.,
2019). Specifically, we iteratively select one sample xj

i from X j and get the predicted label ŷij by
calculating the weighted sum of its K nearest neighbors’ labels within X j :

ŷ j
i =

K∑
k=1

fd

(
x j
i , x

j
k

)
Z j
i

yk, Z j
i =

K∑
k=1

fd

(
x j
i , x

j
k

)
. (1)

where xj
k denotes the k-th nearest neighbors of xj

i . The distance function fd is the exponential of
cosine similarity between each embedding pair.

While other predictors are viable, we choose kNN due to its good trade-off in efficiency and accu-
racy. Also, its training-free nature enhances its flexibility in real-world scenarios, where the down-
stream data may be subject to updates.
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Module Weight Optimization After estimating each module’s prediction, we now have to select
the optimal combination of modules tailored for the downstream task D. To achieve this, the most
straightforward approach is to compare the prediction error obtained after fine-tuning each combi-
nation of modules. However, this is infeasible due to the combinatorial explosion. Therefore, we
reformulate the task as an optimization problem, using the prediction error before fine-tuning as a
proxy metric (later referred to as proxy error). By optimizing the proxy error, we could obtain the
optimal combination of weights.

Specifically, inspired by ensemble learning (Zhou et al., 2002; Zhou, 2016), we assign a weight wj

for each module gj and calculate the output of the ensemble:
∑NT

j=1 wj ŷi
j . We then estimate the

proxy error on the train set of D for this weighted ensemble:

ED =
1

m

m∑
i=1

(

N∑
j=1

wj ŷ
j
i − yi)

2 (2)

To minimize the proxy error ED, we then utilize the open source cvxpy package (Diamond et al.,
2014) to optimize the module weights. The objective is:

argmin
wj

ED, s.t.
N∑
j=1

wj = 1, wj ≥ 0 (3)

Module Composition After the optimization converges, we can use the learned weights to com-
pose a single customized module for the specific task. Inspired by the recent success of model
merging (Wortsman et al., 2022; Ilharco et al., 2022; Yu et al., 2024; Yang et al., 2024a), we adopt a
simple yet surprisingly effective method by weighted averaging the parameters of the selected mod-
ules: gD =

∑N
j=1 w

∗
j gj , where w∗

j represents the optimized weight for the j-th module in Eq. (3).
Here, the weights underscore the relevance of each selected module to the downstream task.

While alternative composition methods, such as mixture-of-experts (Jacobs et al., 1991), are feasi-
ble, they incur high memory overhead as MoMa Hub expands, limiting their practical deployment
under computational constraints. By contrast, our weighted-average composition uses fewer re-
sources while effectively integrating knowledge from all modules. In the full-module setting, every
module shares the same architecture and pre-trained backbone with identical initializations, provid-
ing a grounded foundation for successful knowledge composition (Zhou et al., 2024).

Downstream Fine-tuning To better adapt to the downstream task D, the composed module gD is
appended with a task-specific head and then fine-tuned on D to convergence.

3 EXPERIMENTS

In this section, we conduct comprehensive experiments to demonstrate the empirical effectiveness
of MoMa. The experimental setup is outlined in Section 3.1. The main results, discussed in Sec-
tion 3.2, show that MoMa substantially outperforms baseline methods. Additionally, we conduct
a thorough ablation study on the AMC algorithm as detailed in Section 3.3. Confronted with the
data scarcity challenge common in real-world materials discovery settings, we evaluate MoMa’s
few-shot learning ability in Section 3.4, where it achieves even larger performance gains compared
to baselines. To further highlight the flexibility and scalability of MoMa, we extend MoMa Hub
to include molecular datasets and present the continual learning results in Section 3.5. Finally, we
visualize the module weights optimized by AMC in Section 3.6, highlighting MoMa’s potential for
providing valuable insights into material properties.

3.1 SETUP

Datasets To better align with real-world material property prediction settings where labels are
usually scarce, we conduct experiments on 17 low-data material property prediction tasks from
Matminer (Ward et al., 2018) adhering to Chang et al. (2022). This benchmark offers a compre-
hensive evaluation of model capability on a wide span of properties critical for material discovery.
Refer to Section B.1 for more dataset details.
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Table 1: Main results for 17 material property prediction tasks. The best MAE for each task is
highlighted in bold and the second best result is underlined. The result for each task are the average
of five data splits, reported to three significant digits. For each method, the standard deviation of the
test MAE across five random seeds is shown in parentheses. Additionally, the average rank and its
standard deviation across the 17 datasets are provided to reflect the consistency of each method.

Datasets CGCNN MoE-(18) JMP-MT JMP-FT MoMa (Adapter) MoMa (Full)
Experimental Band Gap (eV) 0.471 (0.008) 0.374 (0.008) 0.377 (0.005) 0.358 (0.014) 0.359 (0.009) 0.305 (0.006)

Formation Enthalpy (eV/atom) 0.193 (0.015) 0.0949 (0.0016) 0.134 (0.001) 0.168 (0.007) 0.158 (0.009) 0.0839 (0.0013)

2D Dielectric Constant 2.90 (0.12) 2.29 (0.01) 2.25 (0.06) 2.35 (0.07) 2.31 (0.04) 1.89 (0.03)

2D Formation Energy (eV/atom) 0.169 (0.006) 0.106 (0.005) 0.140 (0.004) 0.125 (0.006) 0.112 (0.002) 0.0495 (0.0015)

Exfoliation Energy (meV/atom) 59.7 (1.5) 52.5 (0.8) 42.3 (0.5) 35.4 (2.0) 35.4 (0.9) 36.3 (0.2)

2D Band Gap (eV) 0.686 (0.034) 0.532 (0.008) 0.546 (0.020) 0.582 (0.018) 0.552 (0.014) 0.375 (0.006)

3D Poly Electronic 32.5 (1.1) 27.7 (0.1) 23.9 (0.2) 23.3 (0.3) 23.3 (0.2) 23.0 (0.1)

3D Band Gap (eV) 0.492 (0.008) 0.361 (0.003) 0.423 (0.004) 0.249 (0.001) 0.245 (0.002) 0.200 (0.001)

Refractive Index 0.0866 (0.0014) 0.0785 (0.0004) 0.0636 (0.0006) 0.0555 (0.0027) 0.0533 (0.0023) 0.0523 (0.0010)

Elastic Anisotropy 3.65 (0.11) 3.01 (0.03) 2.53 (0.26) 2.42 (0.36) 2.57 (0.61) 2.86 (0.28)

Electronic Dielectric Constant 0.168 (0.002) 0.157 (0.015) 0.137 (0.002) 0.108 (0.002) 0.106 (0.002) 0.0885 (0.0048)

Dielectric Constant 0.258 (0.008) 0.236 (0.002) 0.224 (0.004) 0.171 (0.002) 0.168 (0.002) 0.158 (0.002)

Phonons Mode Peak (cm−1) 0.127 (0.004) 0.0996 (0.0083) 0.0859 (0.0006) 0.0596 (0.0065) 0.0568 (0.0009) 0.0484 (0.0026)

Poisson Ratio 0.0326 (0.0001) 0.0292 (0.0001) 0.0297 (0.0003) 0.0221 (0.0004) 0.0220 (0.0003) 0.0204 (0.0002)

Poly Electronic 2.97 (0.10) 2.61 (0.13) 2.42 (0.03) 2.11 (0.04) 2.13 (0.03) 2.09 (0.03)

Poly Total 6.54 (0.24) 5.51 (0.04) 5.52 (0.03) 4.89 (0.06) 4.89 (0.04) 4.86 (0.07)

Piezoelectric Modulus 0.232 (0.004) 0.208 (0.003) 0.199 (0.002) 0.174 (0.004) 0.173 (0.003) 0.174 (0.001)

Average Rank 6.00 (0.00) 4.12 (1.17) 3.94 (0.97) 2.88 (1.27) 2.47 (0.94) 1.35 (0.86)

Implementation Details For the pre-trained backbone of MoMa, we employ the open-source JMP
model (Shoghi et al., 2024) for representing material systems given its superior performance in
property prediction tasks across both crystals and molecules. For a rigorous comparison, we present
the MAE averaged across the five splits adopted from Chang et al. (2022). Each experiment is
repeated with five random seeds, and the reported standard deviation is computed across the seed-
level averages. Additional implementation details, including the details of module architecture, the
hyper-parameters for MoMa, and the computational cost, are provided in Section B.2.

Baseline Methods We compare the performance of MoMa with four baseline methods: CGCNN
(Xie & Grossman, 2018), MoE-(18) (Chang et al., 2022), JMP-FT, and JMP-MT (Shoghi et al.,
2024). CGCNN represents a classical method without pre-training. MoE-(18) trains separate
CGCNN models for the upstream tasks of MoMa, then ensembles them as one model in a mixture-
of-experts approach for downstream fine-tuning. JMP-FT directly fine-tunes the JMP pre-trained
checkpoint on the downstream tasks. JMP-MT trains all tasks in MoMa Hub with a multi-task
pretraining scheme and then adapts to each downstream dataset with further fine-tuning. More dis-
cussions on baselines are included in Section B.3.

3.2 MAIN RESULTS

Performance of MoMa As shown in Table 1, MoMa (Full) achieves the best performance with
the lowest average rank of 1.35 and 14/17 best results. MoMa (Adapter) follows, with an average
rank of 2.47. Together, the two variants hold 16/17 best results. They also exhibit the smallest
rank deviations, indicating that MoMa consistently delivers reliable performance across tasks. No-
tably, MoMa (Full) outperforms JMP-FT in 14 tasks, with an impressive average improvement of
14.0%, highlighting the effectiveness of MoMa Hub modules in fostering material property predic-
tion. Moreover, MoMa (Full) surpasses JMP-MT in 16 of 17 tasks with a substantial average margin
of 24.8%, underscoring the advantage of MoMa’s modular design in mitigating task interference.
Further analyses in this section are done with MoMa (Full) due to its superior performance.

Performance of Baselines Among the baseline methods, JMP-FT performs the best with an aver-
age rank of 2.88, followed by JMP-MT with an average rank of 3.94. Though additionally trained on
upstream tasks of MoMa Hub, JMP-MT still lags behind JMP-FT. We hypothesize that the inherent
knowledge conflicts between the disparate material tasks pose a tremendous risk to the multi-task
learning approach. We also observe that methods utilizing the JMP encoder outperform those based
on CGCNN encoders, demonstrating the good transferability of large force field models to material
tasks. We include results with more architectures and baselines in Section C.1 and Section C.2.
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3.3 ABLATION & ANALYSIS OF ADAPTIVE MODULE COMPOSITION
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Figure 4: Ablation study of AMC. The axis repre-
sents test set MAE and smaller area is better.

Ablation Study We conduct a fine-grained
ablation study of AMC with three variants :
(1) Select Average, which retains the AMC-
selected modules (nonzero weights) but aver-
ages them uniformly; (2) All Average, which
averages all modules in MoMa Hub; (3) Ran-
dom Selection, which picks a random set of
modules in MoMa Hub with the same module
number as AMC. A visualization of the ablation
results is presented in Fig. 4. The three vari-
ants are inferior to AMC in 13, 15 and 15 out
of 17 tasks, with an average test MAE increase
of 11.0%, 18.0% and 20.2%, respectively. This
highlight the effectiveness of both module se-
lection and weighted composition in AMC.

Analysis Experiments AMC employs white-
box optimization of module weights guided by
the proxy error (Eq. (3)). To further analyze the
importance of this scheme, we replace AMC
with LoraHub Learning (Huang et al., 2024), a
black-box optimization approach for module composition, and Softmax Weighting, a non-optimized
heuristic based on kNN predicted performance. The two variants under-performs AMC in 15 and
12 out of 17 tasks, with 15.5% and 13.7% average increase in test MAE. This shows the benefit of
the optimization scheme in AMC over both black-box search and performance-based heuristics. See
more implementation details in Section B.4 and complete results and discussion in Section C.3.

Efficiency Analysis We highlight that AMC is highly efficient: it requires only a single round of
forward embedding generation, followed by lightweight kNN prediction and convex optimization.
For the largest dataset, AMC converges in under 30 seconds. This efficiency enables MoMa to scale
to a larger number of modules in future applications. See Section C.4 for a detailed analysis.

3.4 PERFORMANCE IN FEW-SHOT SETTINGS

Table 2: Few-shot evaluation. The average
normalized test MAEs of MoMa and JMP-FT
under varying data settings. MoMa consistently
outperforms JMP-FT in all settings.

10-shot 100-shot Full data

JMP-FT 0.2217 0.4076 0.7003
MoMa 0.1871 0.2990 0.5503

Motivation & Setup To better assess the per-
formance of MoMa in real-world scenarios,
where labeled material candidates are costly and
often scarce (Abed et al., 2024), we construct
a few-shot learning setting and compare MoMa
with JMP-FT. For each downstream task, we
down-sample the training data and apply AMC
to compose modules from MoMa Hub, followed
by fine-tuning on the sampled subset. The valida-
tion and test sets remain consistent with those in
the standard setting for robust evaluation. Experiments are conducted under 10-shot and 100-shot
conditions, representing few-shot and extremely few-shot scenarios.

Results The average normalized test MAEs1 for the 17 downstream tasks of MoMa compared to
JMP-FT across the full-data, 100-data, and 10-data settings are presented in Table 7. As expected,
the test loss increases as the data size decreases, while MoMa consistently outperforms JMP-FT
in all settings. Notably, the performance advantage of MoMa is more pronounced in the few-shot
settings, with the normalized loss margin widening from 0.03 in the full-data setting to 0.11 and 0.15
in the 100-data and 10-data setting. This suggests that MoMa may offer even greater performance
gains in real-world scenarios, where property labels are often limited, thereby hindering the effective
fine-tuning of large pre-trained models. Complete results are shown in Section C.5.

1Computed by dividing the test MAE of each task by its standard deviation.
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Figure 5: Scatter plot showing the relationship
between the test MAE decrease and the proxy
error (Eq. (3)) decrease after adding QM9 mod-
ules. The solid line represents a linear regres-
sion fit, yielding a Spearman correlation of 0.69.
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3.5 CONTINUAL LEARNING EXPERIMENTS

Motivation & Setup Continual learning refers to the ability of an intelligent system to progres-
sively improve by integrating new knowledge (Wang et al., 2024). We investigate this capability of
MoMa by incorporating new modules into MoMa Hub. Due to its modular nature, it is expected
that MoMa will exhibit enhanced performance in tasks closely aligned with the new modules, while
maintaining its performance when these additions are less relevant. We expand MoMa Hub to in-
clude 12 QM9 modules (Ramakrishnan et al., 2014) and evaluate on the 17 benchmark material
tasks. QM9 comprises 12 quantum chemical properties (including geometric, electronic, energetic,
and thermodynamic properties) for 134,000 stable small organic molecules, and is widely used as a
benchmark for predicting structure–property relationships in small molecules.

Results We present the scatter plot of the reduction rate of test MAE w.r.t. the proxy error decrease
in Fig. 5 across datasets where QM9 modules are selected. We observe that: (1) The integration
of QM9 modules leads to an average of 1.7% decrease in test set MAE; (2) a larger reduction in
the AMC-optimized proxy error correlates with greater performance improvements post-fine-tuning
(with a Pearson correlation of 0.69). We highlight the task of MP Phonons prediction, which marks
a significant 11.8% decrease in test set MAE following the expansion of MoMa Hub.

3.6 MATERIALS INSIGHTS MINING

Motivation We argue that the AMC weights derived in Eq. (3) can provide valuable insights into
the relationships of material properties. To explore this, we interpret the weights as indicators for the
relationships between MoMa Hub modules and downstream tasks. Following Chang et al. (2022),
we present a log-normalized visualization of these weights in Fig. 6.

Results We highlight several noteworthy observations. The weights assigned by AMC effectively
capture physically intuitive relationships between material properties. For instance, in predicting
electronic dielectric constants, MoMa assigns high weights to the band gap modules, which is rea-
sonable given the inverse relationship between the dielectric constant and the square of the band
gap (Ravichandran et al., 2016). At the same time, less-intuitive relationships also emerge. For the
task of experimental band gap prediction (row 1), the formation energy module from the Materials
Project (column 1) is assigned the second-highest weight. In the prediction of dielectric constant
(row 9), modules related to thermoelectric and thermal properties (columns 5 and 6) are heavily
weighted. However, the first-principles relationship between these tasks is indirect. We hypothesize
that in addition to task relevance, other factors such as data distribution and size may also influence
the weight assignments for AMC. Further investigation into these results is left to future work.
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4 RELATED WORK

4.1 MATERIAL PROPERTY PREDICTION WITH DEEP LEARNING

Deep learning methods have been widely adopted for predicting material properties (De Breuck
et al., 2021). The seminal CGCNN model (Xie & Grossman, 2018) represents crystalline materials
with multi-edge graphs and applies graph neural networks for representation learning. Subsequent
work (Choudhary & DeCost, 2021; Das et al., 2023; Yan et al., 2024; Taniai et al., 2024) has focused
on improving neural network architectures to better model the inductive biases of crystals.

Another line of work develops pre-training strategies for materials (Jha et al., 2019; Magar et al.,
2022; Wang et al., 2024; Song et al., 2024; Wang et al., 2025). Recently, a series of large force field
models (Merchant et al., 2023; Batatia et al., 2023; Neumann et al., 2024; Wood et al., 2025) are
trained on massive Potential Energy Surface data (Barroso-Luque et al., 2024) and achieve remark-
able accuracy in material tasks (e.g. thermal stability prediction (Riebesell et al., 2025)). Notably,
the JMP model (Shoghi et al., 2024), trained across multiple domains (small molecules, catalysts,
etc.), performs impressively when fine-tuned on both molecular and crystalline tasks.

Extending beyond these methods, MoMa offers a modular strategy to centralize diverse material
knowledge into modules and adaptively compose them, yielding superior downstream performance.

4.2 MODULAR DEEP LEARNING

Modular deep learning (Pfeiffer et al., 2023; Xiao et al., 2024) represents a promising paradigm
where parameterized modules (Jacobs et al., 1991; Houlsby et al., 2019; Hu et al., 2021) are com-
posed, selected, and aggregated for function specialization and reuse. Notable examples of modular
networks include mixture-of-experts (Jacobs et al., 1991; Shazeer et al., 2016), adapters (Houlsby
et al., 2019) and LoRA (Hu et al., 2021). Recently, we have seen an increasing number of successful
applications of modular methods across domains such as NLP (Pfeiffer et al., 2020; Huang et al.,
2024; Tan et al., 2024) and CV (Puigcerver et al., 2020; Pham et al., 2024), where its strengths in
flexibility and minimizing negative interference have been demonstrated.

However, for material property prediction, modular learning remains largely under-explored. The
most related work is the mixture-of-experts framework MoE-(18) (Chang et al., 2022), which loads
all pre-trained modules indiscriminately for each task and learns a routing network for embedding
aggregation. In contrast, MoMa adaptively composes a subset of relevant modules with AMC into
one tailored module, which is (1) explicitly selective for better mitigation of conflicting knowledge
and (2) more efficient that allows for further scaling to include even more modules.

5 CONCLUSION

In this paper, we present MoMa, a simple modular learning framework for material property predic-
tion. Motivated by the challenges of diversity and disparity in materials, MoMa first trains special-
ized modules across a wide spectrum of material tasks, constituting MoMa Hub. We then introduce
the Adaptive Module Composition algorithm, which facilitates tailored adaptation from MoMa Hub
to each downstream task by adaptively composing synergistic modules. Experimental results across
17 datasets demonstrate the superiority of MoMa, with few-shot and continual learning experiments
further highlighting its data efficiency and scalability.

Limitations and Future Work The current scope of our study is limited to crystalline and organic
materials. Future work includes expanding MoMa Hub with modules for a wider range of material
data and prediction tasks, and examining how MoMa scales with hundreds or thousands of modules,
which may yield deeper insights into the modularity of materials knowledge.

Broader Impact As an open-source platform for modularizing and distributing materials knowl-
edge, MoMa enables secure sharing of modules without exposing proprietary data, efficient cus-
tomization for downstream tasks, and improved prediction accuracy even in low-data scenarios. We
envision MoMa fostering a new paradigm of modular material learning and driving broader com-
munity collaboration toward accelerated materials discovery.
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A ALGORITHM FOR ADAPTIVE MODULE COMPOSITION

The formal description of the Adaptive Module Composition algorithm is included in Algorithm 1.

Algorithm 1 Adaptive Module Composition (AMC)

1: Input: MoMa HubH = {gj}Nj=1, Downstream training set D = {(Xi, yi)}mi=1.
2: Output: Composed module gD.
3: {1. Module Prediction Estimation}
4: for j = 1→ N do
5: Generate embeddings X j ← {gj(Xi) | (Xi, yi) ∈ D}.
6: Compute prediction vector Ŷj = (ŷj1, . . . , ŷ

j
m) via leave-one-out k-Nearest Neighbors.

7: end for
8: {2. Module Weight Optimization}
9: Let Y = (y1, . . . , ym) be the vector of true labels from D.

10: Find optimal weights w∗ = (w∗
1 , . . . , w

∗
N ) by solving the convex optimization problem:

11: w∗ ← argminw

∥∥∥∑N
j=1 wjŶ

j −Y
∥∥∥2
2

12: subject to:
∑N

j=1 wj = 1 and wj ≥ 0 for all j ∈ {1, . . . , N}.
13: {3. Module Composition}
14: gD ←

∑N
j=1 w

∗
j gj

15: Return gD

B EXPERIMENTAL DETAILS

Here we provide more experimental details regarding the datasets, baselines, and implementation.

B.1 DATASET DETAILS

We primarily adopt the dataset setup proposed by Chang et al. (2022). Specifically, we select 35
datasets from Matminer (Ward et al., 2018) for our study, categorizing them into 18 high-resource
material datasets, with sample sizes ranging from 10,000 to 132,000 (an average of 35,000 samples),
and 17 low-data datasets, with sample sizes ranging from 522 to 8,043 (an average of 2,111 samples).

The high-resource datasets are utilized for training the MoMa Hub modules, as their larger data vol-
umes are likely to encompass a wealth of transferrable material knowledge. A detailed introduction
of these MoMa Hub datasets is included in Table 3.

The low-data datasets serve as downstream tasks to evaluate the effectiveness of MoMa and its
baselines. A detailed introduction is included in Table 4. This setup mimics real-world materials
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Table 3: Datasets for training MoMa Hub modules. Num stands for the number of samples in each
dataset.

Datasets Num Description

MP Ef 132752 The energy change during the formation of a compound from its elements.
Data from Jain et al. (2013).

MP Eg 106113 The PBE band gaps, calculated using the Perdew-Burke-Ernzerhof (PBE) func-
tional, represent the energy difference between the valence and conduction
bands in a material. Data from Jain et al. (2013).

MP GV RH 10987 VRH-average shear modulus, an approximate value obtained by averaging the
shear modulus of polycrystalline materials. Data from Jain et al. (2013).

MP KV RH 10987 VRH-average bulk modulus, calculated by averaging the Voigt (upper bound)
and Reuss (lower bound) bulk moduli. Data from Jain et al. (2013).

n-type σe 37390 n-type σe measures the material’s conductivity performance when electrons are
the primary charge carriers. Data from Ricci et al. (2017).

p-type σe 37390 Similar to n-type σe, with holes as carriers. Data from Ricci et al. (2017).

n-type κe 37390 n-type κe evaluates the efficiency of n-type materials that can conduct both
electricity and heat, which is crucial for understanding its performance in ther-
moelectric applications. Data from Ricci et al. (2017).

p-type κe 37390 Similar to n-type κe, with holes as carriers. Data from Ricci et al. (2017).

n-type S 37390 n-type S denotes the average conductivity eigenvalue, which measures thermo-
electric conversion efficiency in the hole-conducting state when electrons act
as the primary charge carriers. Data from Ricci et al. (2017).

p-type S 37390 Similar to n-type S, with holes as carriers. Data from Ricci et al. (2017).

n-type m∗
e 21037 n-type m∗

e denotes the average eigenvalue of conductivity effective mass,
which measures the impact of the electron’s effective mass on the electrical
conductivity. Data from Ricci et al. (2017).

p-type m∗
e 20270 Similar to n-type m∗

e , with holes as carriers. Data from Ricci et al. (2017).

Perovskite Ef 18928 Perovskite Ef refers to the heat of formation of perovskite, the amount of heat
released or absorbed when the perovskite structure is formed from its con-
stituent elements. Data from Castelli et al. (2012).

JARVIS Ef 25923 Formation energy from the JARVIS dataset (Choudhary et al., 2020).

JARVIS dielectric constant (Opt) 19027 Dielectric constant measures the material’s ability to polarize in response to an
electric field in two-dimensional systems. Data from Choudhary et al. (2020).

JARVIS Eg 23455 PBE band gaps from the JARVIS dataset (Choudhary et al., 2020).

JARVIS GV RH 10855 VRH-average shear modulus from the JARVIS dataset (Choudhary et al.,
2020).

JARVIS KV RH 11028 VRH-average bulk modulus from the JARVIS dataset (Choudhary et al., 2020).

discovery scenarios, where downstream data are often scarce. Compared to the benchmark in Chang
et al. (2022), we exclude two low-data datasets with exceptionally small data sizes (fewer than 20
test samples) from our experiments, as their limited data could lead to unreliable conclusions.

Following Chang et al. (2022), all datasets are split into training, validation, and test sets with a ratio
of 7:1.5:1.5. For the downstream low-data datasets, we follow the exact splitting provided by Chang
et al. (2022) to ensure a fair comparison.

B.2 IMPLEMENTATION DETAILS OF MOMA

Module Architecture Details We now introduce the architectural details of MoMa modules.
Across all our experiments in the main text, the JMP (Shoghi et al., 2024) backbone is adopted
due to its comprehensive strength across a wide range of molecular and crystal tasks. JMP is pre-
trained on ∼ 120 million DFT-generated force-field data across large-scale datasets on catalyst and
small molecules. It is a 6-layer GNN model with around 160M parameters which is based on the
GemNet-OC architecture (Gasteiger et al., 2022). Note that MoMa is backbone-agnostic and we
include results with the Orb model (Neumann et al., 2024) in Section C.1.

For the full module parametrization, we exclude the output layer and treat the entire GNN backbone
as a single module. For the adapter components, we follow the standard implementation of adapter
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Table 4: Downstream evaluation datasets.

Datasets Num Description

Experimental Band Gap (eV) 2481 The band gap of a material as measured through physical experiments. Data
from Ward et al. (2018).

Formation Enthalpy (eV/atom) 1709 The energy change for forming a compound from its elements, crucial for
defining Gibbs energy of formation. Data from Wang et al. (2021); Kim et al.
(2017).

2D Dielectric Constant 522 The dielectric constant of 2D materials from Choudhary et al. (2017).

2D Formation Energy (eV/atom) 633 The energy change associated with the formation of 2D materials from their
constituent elements. Data from Choudhary et al. (2017).

Exfoliation Energy (meV/atom) 636 The energy required to separate a single or few layers from bulk materials.
Data from Choudhary et al. (2017).

2D Band Gap (eV) 522 The band gap of 2D materials from Choudhary et al. (2017).

3D Poly Electronic 8043 Poly electronic of 3D materials from Choudhary et al. (2018).

3D Band Gap (eV) 7348 The band gap of 3D materials from Choudhary et al. (2018).

Refractive Index 4764 The quantitative change of the speed of light as it passes through different
media. Data from Dunn et al. (2020); Petousis et al. (2017).

Elastic Anisotropy 1181 The directional dependence of a material’s elastic properties. Data from
De Jong et al. (2015a).

Electronic Dielectric Constant 1296 Electronic dielectric constant refers to the dielectric response caused by elec-
tronic polarization under an applied electric field. Data from Petretto et al.
(2018).

Dielectric Constant 1296 Dielectric constant of materials from Petretto et al. (2018).

Phonons Mode Peak 1265 Phonon mode peak refers to the peak in the phonon spectrum caused by specific
phonon modes. Data from Petretto et al. (2018).

Poisson Ratio 1181 Poisson Ratio quantifies the ratio of transverse strain to axial strain in a material
under uniaxial stress, reflecting its elastic deformation behavior. Data from
De Jong et al. (2015a).

Poly Electronic 1056 The Average eigenvalue of the dielectric tensor’s electronic component, where
the dielectric tensor links a material’s internal and external fields. Data from
Petousis et al. (2017).

Poly Total 1056 The Average dielectric tensor eigenvalue. Data from Petousis et al. (2017).

Piezoelectric Modulus 941 Piezoelectric modulus measures a material’s ability to convert mechanical
stress into electric charge or vice versa. Data from De Jong et al. (2015b).

layers (Houlsby et al., 2019). Specifically, an adapter layer is inserted between every two layers
of the JMP backbone. Each adapter consists of a downward projection to a bottleneck dimension,
followed by an upward projection back to the original dimension. We adopt BERT-style initializa-
tion (Devlin, 2018), with the bottleneck dimension set to half of the input embedding dimension.
Note that the merging process for adapters is performed in a layer-wise manner. For each back-
bone layer containing adapters, we compute a weighted average of the parameters from all selected
adapter modules. A single scalar weight for each module, determined by AMC, is applied uniformly
across all adapter layers belonging to that module.

Hyper-parameters For the training of JMP backbone, we mainly follow the hyper-parameter con-
figurations in Shoghi et al. (2024), with slight modifications to the learning rate and batch size. Dur-
ing the module training stage of MoMa, we use a batch size of 64 and a learning rate of 5e-4 for 80
epochs. During downstream fine-tuning, we adopt a batch size of 32 and a learning rate of 8e-5. We
set the training epoch as 60, with an early stopping patience of 10 epochs to prevent over-fitting. We
adopt mean pooling of embedding for all properties since it performs significantly better than sum
pooling in certain tasks (e.g. band gap prediction), which echos the findings in Shoghi et al. (2024).

For the Adaptive Module Composition (AMC) algorithm, we set the number of nearest neighbors
(K in Eq. (1)) to 5. For the optimization problem formulated in Eq. (3), we utilize the CPLEX
optimizer from the cvxpy package (Diamond et al., 2014). AMC is applied separately for each
random split of the downstream tasks to avoid data leakage.
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Computational Cost Experiments are conducted on NVIDIA A100 80 GB GPUs. During the
module training stage, training time ranges from 30 to 300 GPU hours, depending on the dataset
size. While this training process is computationally expensive, it is a one-time investment, as the
trained models are stored in MoMa Hub as reusable material knowledge modules. Downstream
fine-tuning requires significantly less compute, ranging from 2 to 8 GPU hours based on the dataset
scale. The full module and adapter module require similar training time; however, the adapter
module greatly reduces memory consumption during training. The time cost of AMC is discussed
in Section C.4.

B.3 BASELINE DETAILS

The CGCNN baseline refers to fine-tuning the CGCNN model (Xie & Grossman, 2018) separately
on 17 downstream tasks. Conversely, MoE-(18) involves training individual CGCNN models for
each dataset in MoMa Hub and subsequently integrating these models using mixture-of-experts (Ja-
cobs et al., 1991; Shazeer et al., 2016). For the baseline results of CGCNN and MoE-(18), we
reproduce the results with the open-source codebase provided by Chang et al. (2022) and follow the
exactly same hyper-parameters as reported in their papers.

For JMP-FT, we use the JMP (large) checkpoint from the codebase open-sourced by Shoghi et al.
(2024) and fine-tune it directly on the downstream tasks with a batch size of 64. JMP-MT adopts
a multi-task pre-training strategy, training on all 18 MoMa Hub source tasks without addressing
the conflicts between disparate material tasks. Starting from the same pre-trained checkpoint as
JMP-FT, JMP-MT employs proportional task sampling and trains for 5 epochs across all tasks with
a batch size of 16. The convergence of multi-task pre-training is indicated by a lack of further
decrease in validation error on most tasks after 5 epochs. For downstream fine-tuning, both JMP-FT
and JMP-MT adopt the same training scheme as the fine-tuning stage in MoMa.

B.4 IMPLEMENTATION DETAILS OF LORAHUB LEARNING & SOFTMAX WEIGHTING

In our analysis experiments (Section 3.3), we compare AMC against two alternative module com-
position strategies: LoraHub Learning, a black-box optimization approach, and Softmax weighting,
a non-optimized performance-based heuristic.

For the implementation of LoraHub Learning, we strictly follow the hyper-parameters and black-
box optimization scheme in its official repository except that we use a training-free kNN predictor to
obtain the metric in each round of optimization, which is aligned with AMC. This is because current
capabilities pre-trained models cannot enable zero-shot prediction of material tasks as in LLMs.

For the implementation of Softmax weighting, we convert the predicted MAE from the same initial
kNN evaluation into a weight for each module. The goal is to directly assign higher weights to
modules with better predicted individual performance (i.e., lower MAE). Formally, the weight wj

for module j is calculated as:

wj =
exp(−MAEj/T )∑N
k=1 exp(−MAEk/T )

(4)

where the temperature T is set to 1.

C MORE EXPERIMENTAL RESULTS

C.1 RESULTS WITH MORE ARCHITECTURES

To verify whether MoMa offers consistent benefits in other model backbones beyond JMP, we con-
duct additional experiments on the architecture used by the Orb model (Neumann et al., 2024). Note
that Orb is based on the GNS architecture (Sanchez-Gonzalez et al., 2020) which is not equivariant
and much less complex than the GemNet-based architecture (Gasteiger et al., 2022) in JMP. Specif-
ically, we load the pre-trained checkpoint from the Orb repository, and fine-tune on the datasets
in Table 3 to construct an Orb-based MoMa Hub. Then we run AMC and downstream adaptation
identically as in Section 2.3. The results (Orb-MoMa) are compared with directly fine-tuning the
pre-trained Orb model (Orb-FT).
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As shown in Fig. 8, MoMa outperforms in 14/17 tasks and achieves a 8.2% average boost to direct
fine-tuning. This indicates that the effectiveness of MoMa is consistent across GemNet-based and
GNS-based architectures.

C.2 RESULTS ON MORE BASELINES

We implement an additional baseline that adopt a mixture-of-experts scheme with the JMP back-
bone, termed JMP-(18), where each expert is a full JMP module in MoMa Hub. Full fine-tuning all
parameters induces formidable memory cost, and is impractical considering MoMa Hub may further
scale in the future. Hence, resembling Chang et al. (2022), we only unfreeze the final MLP layer as
well as the router network in downstream fine-tuning.

The results comparing MoMa (Full) and JMP-(18) on all 17 benchmark datasets are shown in Fig. 9.
Results are reported on one random seed. We see that MoMa beats JMP-(18) on all datasets, with
a substantial 21.8% test MAE decrease, which shows the effectiveness of MoMa’s adaptive module
selection scheme.

C.3 COMPLETE RESULTS & DISCUSSION FOR AMC ANALYSIS EXPERIMENTS
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Figure 7: Analysis results for AMC. The axis
shows test set MAE and smaller area is better.

The complete results for the analysis experi-
ments is shown in Fig. 7. LoraHub Learning
and Softmax Weighting fall short of AMC in
15 and 12 out of 17 tasks, exhibiting average
increases of 15.5% and 13.7% in test MAE.

We conjecture that AMC outperforms LoraHub
Learning for two main reasons. First, AMC
directly minimizes the proxy loss with white-
box optimization, whereas LoraHub relies on
black-box search. The availability of gradient
information enables AMC to reliably converge
to an optimal set of weights. Second, the JMP
backbone network is complex and constitute a
rugged optimization landscape, making it hard
for black-box methods to navigate effectively.

The advantage of AMC over the Softmax
Weighting highlights the importance of opti-
mizing for synergy. Softmax Weighting deter-
mines each module’s contribution based solely
on its isolated performance, overlooking poten-
tial synergistic interactions. In contrast, AMC explicitly optimizes for the weight configuration that
maximizes collective performance and captures such interactions.

C.4 EFFICIENCY ANALYSIS OF AMC

Time Cost For the prediction estimation stage, we further divide it into the embedding generation
and kNN prediction step. While these steps should be conducted separately for each module and
each downstream dataset, the process can be parallelized and the runtime mainly depends on the size
of the downstream dataset. As shown in Table 5, the maximum total time is below 30 seconds. For
the weight optimization stage, we report the minimum and maximum time required for convergence
of each downstream task (Eq. (3)). As shown in Table 6, the time cost is negligible and remains
roughly constant as the number of modules scales.

Memory Cost During embedding generation, only one module is loaded into GPU at a time,
requiring approximately 1.8 GB of memory. The generated embeddings are stored on CPU, with the
largest set requiring about 5.5 MB. Overall, AMC is lightweight in memory usage and scales well
with the number of modules.
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Figure 8: Orb-based MoMa results (purple)
compared with the Orb-FT baseline (orange).
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Figure 9: The comparison of MoMa (purple)
with JMP-(18) (orange).

Table 5: Module prediction estimation time

Min time (s) Max time (s)

Embedding generation 7.29 24.06
KNN prediction 0.05 4.02

Total time 7.34 28.08

Table 6: Weight optimization time

Module # Min time (s) Max time (s)

3 0.07 0.08
9 0.12 0.15
18 0.14 0.25

Table 7: Test set MAE and average test loss of JMP-FT and MoMa under the full-data, 100-data,
and 10-data settings. Results are averaged over five random data splits on one random seed. Results
are preserved to the third significant digit.

Datasets JMP-FT MoMa JMP-FT (100) MoMa (100) JMP-FT (10) MoMa (10)
Experimental Band Gap 0.380 0.305 0.660 0.469 1.12 1.245
Formation Enthalpy 0.156 0.0821 0.273 0.101 0.514 0.143
2D Dielectric Constant 2.45 1.90 3.19 2.35 7.74 3.31
2D Formation Energy 0.135 0.0470 0.366 0.113 0.842 0.214
2D Exfoliation Energy 38.9 36.1 54.4 56.1 118 87.3
2D Band Gap 0.611 0.366 0.890 0.517 1.23 1.05
3D Poly Electronic 23.7 23.0 33.6 24.8 54.0 48.9
3D Band Gap 0.249 0.201 1.71 0.686 2.10 1.47
Dielectric Constant 0.0552 0.0535 0.134 0.102 0.289 0.231
Elastic Anisotropy 2.11 2.85 4.85 3.79 4.02 5.26
Electronic Dielectric Constant 0.108 0.0903 0.260 0.178 0.568 0.500
Total Dielectric Constant 0.172 0.155 0.361 0.287 0.543 0.527
Phonons Mode Peak 0.0710 0.0521 0.221 0.199 0.493 0.485
Poisson Ratio 0.0221 0.0203 0.0345 0.0317 0.0466 0.057
Poly Electronic 2.10 2.13 3.24 2.88 6.08 5.10
Total Poly 4.83 4.76 6.54 6.32 11.2 10.1
Piezoelectric Modulus 0.169 0.175 0.248 0.258 0.303 0.290

Average Normalized Test Loss 0.222 0.187 0.408 0.299 0.700 0.550

C.5 COMPLETE FEW-SHOT LEARNING RESULTS

We present the complete results of the few-shot learning experiments in Table 7. MoMa consis-
tently shows performance improvements across all settings, with the margin of normalized test loss
increasing as dataset size shrinks. These results highlight MoMa’s strong potential to retain a per-
formance advantage in few-shot scenarios, which are prevalent in material property prediction tasks.
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D POTENTIAL SOCIETAL IMPACT

MoMa is visioned to be an open-source platform for the sharing of materials knowledge as modules.
Potential positive societal impacts include the acceleration of the discovery of new materials with
desirable properties, which benefit industries such as energy, electronics, and manufacturing. How-
ever, there are risks associated with the mal-intended use of material knowledge to develop harmful
or unsafe materials. To mitigate these risks, it is crucial to ensure that the application of this work
adheres to ethical guidelines. Although we do not foresee significant negative consequences in the
near future, we recognize the importance of responsible usage and oversight in the application of
these technologies.
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