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ABSTRACT

Deep learning methods for material property prediction have been widely explored
to advance materials discovery. However, the prevailing pre-train paradigm often
fails to address the inherent diversity and disparity of material tasks. To over-
come these challenges, we introduce MoMa, a simple Modular framework for
Materials that first trains specialized modules across a wide range of tasks and
then adaptively composes synergistic modules tailored to each downstream sce-
nario. Evaluation across 17 datasets demonstrates the superiority of MoMa, with
a substantial 14% average improvement over the strongest baseline. Few-shot and
module scaling experiments further highlight MoMa’s potential for real-world ap-
plications. Pioneering a new paradigm of modular material learning, MoMa will
be open-sourced to foster broader community collaboration.

1 INTRODUCTION

Accurate and efficient material property prediction is critical for accelerating materials discovery.
Key properties such as formation energy and band gap are fundamental in identifying stable and
functional materials (Masood et al., 2023; Riebesell et al., 2025). While traditional approaches such
as density functional theory offer high precision (Jain et al., 2016), their prohibitive computational
cost limits their practicality for large-scale screening (Fiedler et al., 2022; Lan et al., 2023).

Recently, deep learning methods have been developed to expedite traditional approaches (Xie &
Grossman, 2018; Griesemer et al., 2023). Pre-trained force field models, in particular, have shown
remarkable success in generalizing to a wide spectrum of material property prediction tasks (Shoghi
et al., 2024; Rhodes et al., 2025; Wood et al., 2025), outperforming specialized models trained
from scratch. These models are typically pre-trained on the potential energy surface (PES) data of
materials (Barroso-Luque et al., 2024) and then fine-tuned for the target downstream task.

Despite these advances, we identify two key challenges that undermine the effectiveness of current
deep learning models for material property prediction: diversity and disparity.

First, material tasks exhibit significant diversity (Fig. 1) which challenges the generalizability of
existing models. For instance, prevailing force-field models are only trained on PES-derived prop-
erties (e.g., force, energy, and stress) mostly focusing on crystalline materials (Yang et al., 2024b;
Barroso-Luque et al., 2024). However, material tasks span a much wider variety of systems (e.g.,
crystals, organic molecules) and properties (e.g., thermal stability, electronic behavior), making it
difficult for methods trained on a limited set of data to generalize across the full spectrum of tasks.

Second, the disparate nature of material tasks presents huge obstacles for jointly training a broad
span of tasks in one model. Material systems vary significantly in atomic composition, bonding
and structural periodicity, while their properties are governed by distinct physical laws. For exam-
ple, mechanical strength in metals is primarily influenced by atomic bonding and crystal structure,
whereas electronic properties like conductivity are determined by the material’s electronic structure.
Consequently, training a single model across a wide range of tasks (Shoghi et al., 2024) may lead to
knowledge conflicts, hindering the model’s ability to effectively adapt to downstream scenarios.

Drawing inspiration from modular deep learning (Pfeiffer et al., 2023), we propose MoMa, a
Modular framework for Material property prediction. To accommodate the diversity challenge,
MoMa trains multiple high-resource property prediction datasets into transferrable modules to sup-
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Figure 1: Illustration of the diversity of material prop-
erties (top) and systems (down). Material tasks are also
disparate, with different laws governing diverse proper-
ties and systems. These characteristics pose challenges
for material property prediction models.
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Figure 2: The modular learning scheme
in MoMa trains and stores a broad spec-
trum of material tasks as modules, and
adaptively composes them given a new
material property prediction task.

port a wide-span of downstream tasks. In parallel, to address the disparity challenge, MoMa encap-
sulates each task within a specialized module during training to avoid interference. Furthermore,
in adapting to each downstream task, MoMa adaptively integrates a synergistic combination of
modules to mitigate knowledge conflicts and promote positive transfer. A high-level abstraction
of MoMa is provided in Fig. 2.

Specifically, MoMa comprises two major stages: (1) Module Training & Centralization. MoMa
trains dedicated modules for a diverse range of material tasks, offering two versions: a full mod-
ule for superior performance and a memory-efficient adapter module. These trained modules are
centralized in MoMa Hub, a repository facilitating knowledge reuse while preserving proprietary
data for privacy-aware material learning. (2) Adaptive Module Composition (AMC) & Fine-tuning.
We devise AMC, a representation-driven, training-free module composition algorithm which well
respects the disparity and data scarcity of material tasks. Given a target task, AMC first estimates
the performance of each module via kNN label propagation in representation space. It then infers
a weighted module composition by solving a convex optimization problem over a justified proxy
error. The composed module is then fine-tuned on the downstream data for improved adaptation.
Together, the two stages offers a flexible and scalable solution to achieve effective modular learning
for material property prediction.

Empirical results across 17 downstream tasks showcase the superiority of MoMa, outperforming all
baselines in 16/17 tasks, with an average improvement of 14% compared to the best non-modular
baseline. In few-shot settings, which are common in materials science, MoMa achieves even larger
performance gains to the conventional pre-train then fine-tune paradigm. Additionally, MoMa shows
improved average improvements as we scale the number of modules in the MoMa Hub, and the
AMC-optimized weights provide valuable insights into relationships between material properties.
The trained modules in MoMa Hub will be open-sourced, and we envision MoMa becoming a
pivotal platform for the modularization and distribution of materials knowledge, fostering deeper
community engagement to accelerate materials discovery.

2 RELATED WORK

2.1 MATERIAL PROPERTY PREDICTION WITH DEEP LEARNING

Deep learning methods have been widely adopted for predicting material properties (De Breuck
et al., 2021). The seminal CGCNN model (Xie & Grossman, 2018) represents crystalline materials
with multi-edge graphs and applies graph neural networks for representation learning. Subsequent
work (Choudhary & DeCost, 2021; Das et al., 2023; Yan et al., 2024; Taniai et al., 2024) has focused
on improving neural network architectures to better model the inductive biases of crystals.

Another line of work develops pre-training strategies for materials (Jha et al., 2019; Magar et al.,
2022; Wang et al., 2025). Recently, a series of large force field models (Merchant et al., 2023; Batatia
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et al., 2023; Neumann et al., 2024) are trained on massive Potential Energy Surface data (Barroso-
Luque et al., 2024) and achieve remarkable accuracy in material tasks (e.g. thermal stability predic-
tion (Riebesell et al., 2025)). Notably, the JMP model (Shoghi et al., 2024), trained across multiple
domains (small molecules, catalysts, etc.), performs impressively when fine-tuned on both molecular
and crystalline tasks.

Extending beyond these methods, MoMa offers a modular strategy to centralize diverse material
knowledge into modules and adaptively compose them, yielding superior downstream performance.

2.2 MODULAR DEEP LEARNING

Modular deep learning (Pfeiffer et al., 2023; Xiao et al., 2024) represents a promising paradigm
where parameterized modules are composed, selected, and aggregated for function specialization
and reuse. Notable examples of modular networks include mixture-of-experts (Jacobs et al., 1991;
Shazeer et al., 2016), adapters (Houlsby et al., 2019) and LoRA (Hu et al., 2021). Recently, we have
seen increasing applications of modular methods across domains such as NLP (Pfeiffer et al., 2020;
Huang et al., 2024; Tan et al., 2024) and CV (Puigcerver et al., 2020; Pham et al., 2024), where its
strengths in flexibility and minimizing negative interference have been demonstrated.

An important aspect of modular learning is how modules are weighted prior to composition. Pre-
vious adaptive module composition approaches can be broadly grouped into (1) search-based meth-
ods that iteratively optimize weights based on downstream predictive performance after composi-
tion (Huang et al., 2024; Akiba et al., 2025), and (2) router-based methods that learn composition
weights via an additional routing network (Muqeeth et al., 2023; Lu et al., 2024). Crucially, both
paradigms rely on the downstream prediction error of the composed model to guide weight alloca-
tion. However, this dependence is problematic in material settings: high task disparity makes the
error signals (from arbitrary module mixtures) noisy and unstable for search-based methods, while
data-scarcity provides insufficient supervision for router learning. Additionally, loading all material
modules during router training becomes prohibitively costly as the number of module scales.

In the context of material property prediction, modular learning remains largely under-explored. The
most related work is the router-based mixture-of-experts method MoE-(18) (Chang et al., 2022),
which loads all available modules and learns a routing network for embedding aggregation.

3 PROPOSED FRAMEWORK: MOMA

MoMa is a simple modular framework targeting the diversity and disparity of material property
prediction tasks. MoMa involves two major stages. In the first stage (Section 3.1), we train and
centralize modules for a diverse range of material systems and properties into MoMa Hub. In the
second stage (Section 3.2), we devise a representation-driven, training-free algorithm to adaptively
select and compose MoMa hub modules for a target task, and then fine-tune the composed model.
A visual overview of MoMa is shown in Figure 3.

3.1 MODULE TRAINING & CENTRALIZATION

To better exploit the transferrable knowledge of open-source material property prediction datasets,
we first train distinctive modules for each high-resource material task, and subsequently centralize
these modules to constitute MoMa Hub.

Module Training Leveraging the power of state-of-the-art material property prediction models,
we choose to employ a pre-trained backbone encoder f as the initialization for training each MoMa
module. Note that MoMa is independent of the backbone model choice, which enables smooth
integration with other pre-trained backbones.

We provide two parametrizations for the MoMa modules: the full module and the adapter mod-
ule. For the full module, we directly treat each fully fine-tuned model backbone as a standalone
module. The adapter module, in contrast, serves as a parameter-efficient alternative where adapter
layers (Houlsby et al., 2019) are inserted between each layer of the backbone. The adapters are
updated and the rest of the backbone is frozen. All adapters trained for a given task are collectively
treated as one module. This implementation trade-offs the downstream performance for a much

3
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Full / Adapter Training

...

...
MoMa Hub

(a) Module Training & Centralization (b) Adaptive Module Composition & Fine-tuning

MoMa
Hub

... 2. Weight Optimization

4. Fine-tuning

1. Prediction Estimation 3. Module Composition

...

w

Figure 3: The MoMa framework. (a) During the Module Training & Centralization stage (Sec-
tion 3.1), MoMa trains full and adapter modules for a wide spectrum of material tasks, constituting
the MoMa Hub; (b) The Adaptive Module Composition (AMC) & Fine-tuning stage (Section 3.2)
leverages the modules in MoMa Hub to compose a tailored module for each downstream task. The
AMC algorithm comprises three steps: 1. Prediction Estimation; 2. Weight Optimization; 3. Mod-
ule Composition. The composed module is further fine-tuned on the task for better adaptation.

lower GPU memory cost during training, making it especially suitable for compute-constrained set-
tings. When training converges, all module parameters are stored into a centralized repository H
termed MoMa Hub, formally:

H = {g1, g2, . . . , gN}, gi =

{
θif (full module)
∆i

f (adapter module)

where θif and ∆i
f denote the full and adapter module parameters for the ith task and encoder f .

Module Centralization To support a wide array of downstream tasks, MoMa Hub needs to in-
clude modules trained on diverse material systems and properties. Currently, MoMa Hub encom-
passes 18 material property prediction tasks selected from the Matminer datasets (Ward et al., 2018)
with over 10000 data points. These tasks span across a large range of material properties, including
thermal properties (e.g. formation energy), electronic properties (e.g. band gap), mechanical prop-
erties (e.g. shear modulus), etc. For more details, please refer to Section C.1. Note that MoMa is
designed to be task-agnostic and may readily support a larger spectrum of tasks in the future.

An important benefit of the modular design of MoMa Hub is that it preserves proprietary data,
which is prevalent in the field of materials, enabling privacy-aware contribution of new modules.
Therefore, MoMa could serve as an open platform for the modularization of materials knowledge.

3.2 ADAPTIVE MODULE COMPOSITION & FINE-TUNING

Given a labeled material property prediction datasetD = {(xi, yi)}Mi=1, the goal of the second stage
is to customize a task-specific model by composing modules from MoMa Hub. Due to the diversity
and disparity of material tasks, blindly combining modules often leads to suboptimal performance.
The composition must be adaptive, composing only the most synergistic modules for each task.
Furthermore, given the vast and expanding scale of the Hub, the method must be data-driven and
efficient, avoiding reliance on human expertise or prohibitively expensive exhaustive search.

However, satisfying these requirements is non-trivial for existing adaptive weighting paradigms. As
discussed in Section 2.2, both search-based and router-based methods rely on downstream predic-
tion error derived from composed module as the supervision signal. In our setting, this signal is
less reliable: the high disparity of modules in inputs (e.g. crystals vs. molecules) and targets (e.g.
energies vs. band gaps) induces highly heterogeneous representation spaces. Hence module mix-
tures yield unstable representations and uninformative error signals, resulting in a noisy optimization
landscape that hampers search-based methods. Moreover, the scarcity of downstream data makes
router training difficult and prone to overfitting.
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Figure 4: An analytical decomposition of AMC.
Blue arrows: per-module kNN prediction esti-
mation in representation space on target task.
Black arrows: convex optimization of ensem-
ble proxy error to obtain composition weights.
Orange arrows: weight-space module composi-
tion to construct the final composed module.
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Figure 5: Scatter plot showing the relationship
between kNN proxy MAE and post–fine-tuning
MAE of standalone MoMa Hub modules on
three representative tasks. Colored lines are lin-
ear fits. We observe a clear positive correlation
with Pearson’s r > 0.6.

To address these limitations, we devise the Adaptive Module Composition (AMC) algorithm. In-
stead of relying on prediction error supervision, AMC adopts a representation-driven and training-
free strategy. Specifically, it first estimates per-module performance via kNN in the representation
space, and then solves for optimal composition weights by minimizing an ensemble proxy error via
convex optimization. This allows AMC to efficiently identify synergistic compositions without iter-
ative search or extra trainable parameters. We now introduce AMC in detail. An analytical figure of
AMC is provided in Fig. 4, with its formal formulation in Algorithm 1.

Representation-driven Prediction Estimation AMC begins by estimating the affinity of each
module to the downstream task. To bypass the unstable optimization landscape of arbitrary module
mixtures, we first evaluate the intrinsic representation quality of each module individually. We posit
that a task-aligned module should map materials with similar properties to adjacent points in the
embedding space.

Formally, for each module gj ∈ H, we encode the training data D into representations X j =

{xj
1, . . . ,x

j
M}. We then perform leave-one-out kNN label propagation (Iscen et al., 2019) to obtain

a prediction ŷ j
i for each instance:

ŷ j
i =

∑
k∈Ni

fd

(
x j
i , x

j
k

)
Z j
i

yk, Z j
i =

∑
k∈Ni

fd

(
x j
i , x

j
k

)
. (1)

whereNi denotes the indices of the K nearest neighbors of xj
i within X j , and fd is the exponential

cosine similarity function.

We choose kNN as the estimator because it directly probes the local geometry of the representation
space without introducing learnable parameters. This strictly aligns with our training-free design
principle and ensures robustness against overfitting on data-scarce tasks.

Training-free Module Weight Optimization With the module-wise performance estimates
{ŷj}Nj=1 from the representation space, our goal is to identify an optimal weight vector w ∈ RN

(where wj denotes the weight of module j) to compose these modules. While the ideal objective
is to minimize the validation error of the fine-tuned model, searching this space directly is compu-
tationally infeasible due to combinatorial explosion. Instead, inspired by ensemble learning (Zhou
et al., 2002; Zhou, 2016), we propose to use the prediction error of the weighted ensemble (prior to
fine-tuning) as a proxy error to guide weight optimization.
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Specifically, we formulate the composition prediction as a weighted sum of the individual mod-
ule estimations. The proxy error ED is defined as the mean squared error between the ensemble
prediction and the ground truth labels on the training set:

ED(w) =
1

M

∥∥∥ N∑
j=1

wjŷ
j − y

∥∥∥2
2
. (2)

We can further cast Eq. (2) to a constrained optimization problem:

argmin
w

ED(w), s.t.
N∑
j=1

wj = 1, wj ≥ 0. (3)

Since the objective is convex and the constraints define a convex feasible set, the problem admits a
global optimum that can be reliably obtained by standard solvers. Moreover, this weight selection is
training-free since it introduces no additional learnable parameters and requires no gradient-based
updates or hyperparameter tuning beyond the optimizer settings.

Justification for Using the Proxy Error A central premise of AMC is that the kNN-based proxy
error (Eq. 2 is a reliable indicator of the final model performance. Theoretically, we provide a
formal risk analysis in Section B to show that, under reasonable assumptions, minimizing this proxy
error bounds the risk of the subsequently fine-tuned model. Empirically, when measured in MAE to
align with downstream metrics, we observe a strong Pearson correlation (> 0.6) between the per-
module proxy errors and their post-fine-tuning performance (see Fig. 5 and Section D.1 for detailed
discussion). This indicates that the proxy is a reliable predictor of final performance and supports
its use for weight optimization.

Weight-space Module Composition Once the optimal weight vector w∗ is obtained, we com-
pose a single customized module gD for the target task. Inspired by recent advances in model
merging (Wortsman et al., 2022; Ilharco et al., 2022; Yu et al., 2024; Yang et al., 2024a), we merge
the modules in their weight space: gD =

∑N
j=1 w

∗
j gj .

The validity of this averaging is supported by linear mode connectivity (Frankle et al., 2020; Zhou
et al., 2023; 2024). Since all modules originate from a common pre-trained initialization, their
parameters remain structurally compatible despite task-specific divergence. This ensures that the
composed module serves as a stable and well-conditioned initialization for downstream fine-tuning.

Downstream Fine-tuning Finally, to better adapt to the downstream task D, the composed mod-
ule gD is appended with a task-specific head and then fine-tuned on D to convergence.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to demonstrate the empirical effectiveness
of MoMa. The experimental setup is outlined in Section 4.1. The main results, discussed in Sec-
tion 4.2, show that MoMa substantially outperforms baseline methods. Additionally, we extend
MoMa to more architectures in Section 4.3 and conduct an in depth examination of AMC in
Section 4.4. Confronted with the data scarcity challenge common in real-world materials discov-
ery settings, we evaluate MoMa’s few-shot learning ability in Section 4.5, where it achieves even
larger performance gains compared to baselines. To further highlight the flexibility and scalabil-
ity of MoMa, we extend MoMa Hub to include molecular datasets and present a scaling analysis
of MoMa Hub in Section 4.6. Finally, we visualize the module weights optimized by AMC in
Section 4.7, highlighting MoMa’s potential for providing valuable insights into material properties.

4.1 SETUP

Datasets To better align with real-world material property prediction settings where labels are
usually scarce, we conduct experiments on 17 low-data material property prediction tasks from
Matminer (Ward et al., 2018) adhering to Chang et al. (2022). This benchmark offers a compre-
hensive evaluation of model capability on a wide span of properties critical for material discovery.
Refer to Section C.1 for more dataset details.
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Table 1: Main results for 17 material property prediction tasks. The best MAE for each task is
highlighted in bold and the second best result is underlined. The result for each task are the average
of five data splits, reported to three significant digits. For each method, the standard deviation of the
test MAE across five random seeds is shown in parentheses. Additionally, the average rank and its
standard deviation across the 17 datasets are provided to reflect the consistency of each method.

Datasets CGCNN MoE-(18) UMA JMP-MT JMP-FT MoMa (Adapter) MoMa (Full)
Experimental Band Gap (eV) 0.471 (0.008) 0.374 (0.008) 0.355 (0.037) 0.377 (0.005) 0.358 (0.014) 0.359 (0.009) 0.305 (0.006)

Formation Enthalpy (eV/atom) 0.193 (0.015) 0.0949 (0.0016) 0.192 (0.020) 0.134 (0.001) 0.168 (0.007) 0.158 (0.009) 0.0839 (0.0013)

2D Dielectric Constant 2.90 (0.12) 2.29 (0.01) 2.34 (0.47) 2.25 (0.06) 2.35 (0.07) 2.31 (0.04) 1.89 (0.03)

2D Formation Energy (eV/atom) 0.169 (0.006) 0.106 (0.005) 0.120 (0.03) 0.140 (0.004) 0.125 (0.006) 0.112 (0.002) 0.0495 (0.0015)

Exfoliation Energy (meV/atom) 59.7 (1.5) 52.5 (0.8) 44.4 (11.5) 42.3 (0.5) 35.4 (2.0) 35.4 (0.9) 36.3 (0.2)

2D Band Gap (eV) 0.686 (0.034) 0.532 (0.008) 0.494 (0.061) 0.546 (0.020) 0.582 (0.018) 0.552 (0.014) 0.375 (0.006)

3D Poly Electronic 32.5 (1.1) 27.7 (0.1) 32.7 (6.0) 23.9 (0.2) 23.3 (0.3) 23.3 (0.2) 23.0 (0.1)

3D Band Gap (eV) 0.492 (0.008) 0.361 (0.003) 0.268 (0.016) 0.423 (0.004) 0.249 (0.001) 0.245 (0.002) 0.200 (0.001)

Refractive Index 0.0866 (0.0014) 0.0785 (0.0004) 0.0582 (0.0094) 0.0636 (0.0006) 0.0555 (0.0027) 0.0533 (0.0023) 0.0523 (0.0010)

Elastic Anisotropy 3.65 (0.11) 3.01 (0.03) 3.79 (2.48) 2.53 (0.26) 2.42 (0.36) 2.57 (0.61) 2.86 (0.28)

Electronic Dielectric Constant 0.168 (0.002) 0.157 (0.015) 0.116 (0.038) 0.137 (0.002) 0.108 (0.002) 0.106 (0.002) 0.0885 (0.0048)

Dielectric Constant 0.258 (0.008) 0.236 (0.002) 0.183 (0.034) 0.224 (0.004) 0.171 (0.002) 0.168 (0.002) 0.158 (0.002)

Phonons Mode Peak (cm−1) 0.127 (0.004) 0.0996 (0.0083) 0.0811 (0.0087) 0.0859 (0.0006) 0.0596 (0.0065) 0.0568 (0.0009) 0.0484 (0.0026)

Poisson Ratio 0.0326 (0.0001) 0.0292 (0.0001) 0.0225 (0.0014) 0.0297 (0.0003) 0.0221 (0.0004) 0.0220 (0.0003) 0.0204 (0.0002)

Poly Electronic 2.97 (0.10) 2.61 (0.13) 2.33 (0.89) 2.42 (0.03) 2.11 (0.04) 2.13 (0.03) 2.09 (0.03)

Poly Total 6.54 (0.24) 5.51 (0.04) 5.61 (1.49) 5.52 (0.03) 4.89 (0.06) 4.89 (0.04) 4.86 (0.07)

Piezoelectric Modulus 0.232 (0.004) 0.208 (0.003) 0.208 (0.027) 0.199 (0.002) 0.174 (0.004) 0.173 (0.003) 0.174 (0.001)

Average Rank 6.88 (0.33) 4.71 (1.40) 4.53 (1.42) 4.53 (1.28) 3.12 (1.54) 2.59 (1.12) 1.35 (0.86)

Implementation Details For the pre-trained backbone of MoMa, we employ the open-source JMP
model (Shoghi et al., 2024) for representing material systems given its superior performance in
property prediction tasks across both crystals and molecules. For a rigorous comparison, we present
the MAE averaged across the five splits adopted from Chang et al. (2022). Each experiment is
repeated with five random seeds, and the reported standard deviation is computed across the seed-
level averages. Additional implementation details, including the details of module architecture, the
hyper-parameters for MoMa, and the computational cost, are provided in Section C.2.

Baseline Methods We compare the performance of MoMa with five baseline methods: CGCNN
(Xie & Grossman, 2018), MoE-(18) (Chang et al., 2022), UMA (Wood et al., 2025), JMP-FT,
and JMP-MT (Shoghi et al., 2024). CGCNN represents a classical method without pre-training.
MoE-(18) trains separate CGCNN models for the upstream tasks of MoMa, then ensembles them
as one model in a mixture-of-experts approach for downstream fine-tuning. UMA is a general-
purpose atomic foundation model which achieves state-of-the-art performance in canonical bench-
marks (Riebesell et al., 2023). We fine-tune the UMA-Medium model on each downstream task.
JMP-FT directly fine-tunes the JMP pre-trained checkpoint on the downstream tasks. JMP-MT
trains all tasks in MoMa Hub with a multi-task pretraining scheme and then adapts to each down-
stream dataset with further fine-tuning. More discussions on baselines are included in Section C.3.

4.2 MAIN RESULTS

Performance of MoMa As shown in Table 1, MoMa (Full) achieves the best performance with
the lowest average rank of 1.35 and 14/17 best results. MoMa (Adapter) follows, with an average
rank of 2.59. Together, the two variants hold 16/17 best results. They also exhibit the smallest
rank deviations, indicating that MoMa consistently delivers reliable performance across tasks. No-
tably, MoMa (Full) outperforms JMP-FT in 14 tasks, with an impressive average improvement of
14.0%, highlighting the effectiveness of MoMa Hub modules in fostering material property predic-
tion. Moreover, MoMa (Full) surpasses JMP-MT in 16 of 17 tasks with a substantial average margin
of 24.8%, underscoring the advantage of MoMa’s modular design in mitigating task interference.
Further analyses in this section are done with MoMa (Full) due to its superior performance.

Performance of Baselines Among the baseline methods, JMP-FT performs the best with an aver-
age rank of 3.12, followed by JMP-MT and UMA with an average rank of 4.53. Though additionally
trained on upstream tasks of MoMa Hub, JMP-MT still lags behind JMP-FT. We hypothesize the in-
herent knowledge conflicts between disparate material tasks pose a tremendous risk to the multi-task
learning approach. For UMA, it is primarily pre-trained on force-field datasets as a DFT surrogate,
so its inductive bias may transfer less well to non-PES downstream tasks as compared to JMP.
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Figure 6: (a) Results with Orb-v2; (b) Ablation study of AMC; (c) Analysis experiments of AMC.
The axis represents test set MAE and smaller area is better.

4.3 RESULTS WITH MORE ARCHITECTURES

To verify whether MoMa offers consistent benefits in other model backbones beyond JMP, we con-
duct additional experiments on the GNS architecture (Sanchez-Gonzalez et al., 2020) used by the
Orb-v2 model (Neumann et al., 2024), which is not equivariant and much less complex than the
GemNet-based architecture (Gasteiger et al., 2022) in JMP. Specifically, we first train and construct
an Orb-based MoMa Hub. Then we run AMC and downstream fine-tuning identically as in Sec-
tion 3.2. The results (Orb-MoMa) are compared with directly fine-tuning the pre-trained Orb model
(Orb-FT). The average test MAE are reported on 5 splits and 5 random seeds.

As shown in Fig. 6a, MoMa outperforms in 13/17 tasks and achieves a 6.1% average boost to direct
fine-tuning. This indicates that the effectiveness of MoMa is consistent across GemNet-based and
GNS-based architectures.

4.4 ABLATION & ANALYSIS OF ADAPTIVE MODULE COMPOSITION

Ablation Study We conduct a fine-grained ablation study of AMC with three variants : (1) Select
Average, which retains the AMC-selected modules (nonzero weights) but averages them uniformly;
(2) All Average, simply averages all modules in MoMa Hub, which is equivalent to applying the
classical Model Soup strategy (Wortsman et al., 2022); (3) Random Selection, which picks a random
set of modules in MoMa Hub with the same module number as AMC. A visualization of the ablation
results is presented in Fig. 6b. The three variants are inferior to AMC in 13, 15 and 15 out of 17
tasks, with an average test MAE increase of 11.0%, 18.0% and 20.2%, respectively. This highlight
the effectiveness of both module selection and weighted composition in AMC. The average test
MAE of 5 splits are reported on one random seed (hereafter). Furthermore, we show in Section D.2
that AMC is robust to kNN configurations and solver tolerances, yielding highly stable weights and
consistent post–fine-tuning MAE.

Analysis Experiments To empirically validate the benefit of AMC’s representation-driven and
training-free pipeline, we replace AMC with three alternatives: (1) LoRAHub Learning (Huang
et al., 2024), a black-box optimization approach for module composition; (2) JMP-(18), where
we train a routing network over the 18 JMP MoMa modules; and (3) Softmax Weighting, a non-
optimized heuristic based on kNN proxy. As shown in Fig. 6c, AMC consistently outperforms all
baselines, surpassing the three variants on 15, 17, and 12 tasks with average MAE reductions of
21.8%, 15.5%, and 13.7%, respectively. This shows the benefit of the AMC over search-based,
router-based and performance-based alternatives. See more details and discussion in Section C.5.

Efficiency Analysis We highlight that AMC is highly efficient: it requires only a single round of
forward embedding generation, followed by lightweight kNN prediction and convex optimization.
For the largest dataset, AMC converges in under 30 seconds. This efficiency enables MoMa to scale
to a larger number of modules in future applications. See Section D.3 for a detailed analysis.
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4.5 PERFORMANCE IN FEW-SHOT SETTINGS

Table 2: Few-shot evaluation. The average
normalized test MAEs of MoMa and JMP-FT
under varying data settings. MoMa consistently
outperforms JMP-FT in all settings.

10-shot 100-shot Full data

JMP-FT 0.7003 0.4076 0.2217
MoMa 0.5503 0.2990 0.1871

Motivation & Setup To better assess the per-
formance of MoMa in real-world scenarios,
where labeled material candidates are costly and
often scarce (Abed et al., 2024), we construct
a few-shot learning setting and compare MoMa
with JMP-FT. For each downstream task, we
down-sample the training data and apply AMC
to compose modules from MoMa Hub, followed
by fine-tuning on the sampled subset. The valida-
tion and test sets remain consistent with those in
the standard setting for robust evaluation. Experiments are conducted under 10-shot and 100-shot
conditions, representing few-shot and extremely few-shot scenarios.

Results The average normalized test MAEs1 for the 17 downstream tasks of MoMa compared to
JMP-FT across the full-data, 100-data, and 10-data settings are presented in Table 10. As expected,
the test loss increases as the data size decreases, while MoMa consistently outperforms JMP-FT
in all settings. Notably, the performance advantage of MoMa is more pronounced in the few-shot
settings, with the normalized loss margin widening from 0.03 in the full-data setting to 0.11 and 0.15
in the 100-data and 10-data setting. This suggests that MoMa may offer even greater performance
gains in real-world scenarios, where property labels are often limited, thereby hindering the effective
fine-tuning of large pre-trained models. Complete results are shown in Section D.4.

4.6 SCALING ANALYSIS OF MOMA HUB MODULES

Motivation & Setup As MoMa is designed to be modular and extensible, a natural question is how
its performance evolves as the MoMa Hub grows. In this section, we study the scaling behavior of
MoMa to understand whether it benefits from a larger MoMa Hub. We first do a hub-scale ablation
to progressively expand MoMa hub from 5 to 10 and 18 modules. Then we further expand MoMa
Hub to include 12 QM9 modules (Ramakrishnan et al., 2014), which are trained on 12 quantum
chemical properties for 134,000 stable small organic molecules. AMC is performed on each MoMa
Hub variant, then evaluation is performed after fine-tuning on the 17 benchmark material tasks. The
full setup is described in Section C.6.

Results As presented in Table 3, as the MoMa hub scales, the average normalized test MAE across
17 tasks decreases monotonically (from 0.2040 with 5 modules to 0.1759 with 30 modules), showing
no sign of saturation in this regime. The complete results are provided in Table 11 (Section D.5).

Table 3: Scaling with hub size. Average nor-
malized test MAE decreases as the number of
modules in MoMa Hub increases.

# Modules 5 10 18 30

Norm. MAE 0.2040 0.1910 0.1853 0.1759

To further analyze the effect of adding the 12
QM9 modules, we plot the test-MAE reduction
rate against the AMC proxy-error decrease in
Fig. 7 for datasets where QM9 modules are se-
lected. We observe that: (1) The integration of
QM9 modules leads to an average of 1.7% de-
crease in test set MAE; (2) a larger reduction in
the AMC-optimized proxy error correlates with greater performance improvements post-fine-tuning
(Pearson correlation = 0.69). We highlight the task of MP Phonons prediction, which marks a
11.8% decrease in test set MAE after the inclusion of QM9 modules. Overall, these results sup-
port our vision of MoMa as a flexible community-driven platform: as more modules are added,
downstream performance improves and AMC remains effective at larger scale.

4.7 MATERIALS INSIGHTS MINING

Motivation We argue that the AMC weights derived in Eq. (3) can provide valuable insights into
the relationships of material properties. To explore this, we interpret the weights as indicators for the

1Computed by dividing the test MAE of each task by its standard deviation.
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relationships between MoMa Hub modules and downstream tasks. Following Chang et al. (2022),
we present a log-normalized visualization of these weights in Fig. 8.

Results We highlight several noteworthy observations. The weights assigned by AMC effectively
capture physically intuitive relationships between material properties. For instance, in predicting
electronic dielectric constants, MoMa assigns high weights to the band gap modules, which is rea-
sonable given the inverse relationship between the dielectric constant and the square of the band
gap (Ravichandran et al., 2016). At the same time, less-intuitive relationships also emerge. For the
task of experimental band gap prediction (row 1), the formation energy module from the Materials
Project (column 1) is assigned the second-highest weight. In the prediction of dielectric constant
(row 9), modules related to thermoelectric and thermal properties (columns 5 and 6) are heavily
weighted. However, the first-principles relationship between these tasks is indirect. We hypothesize
that in addition to task relevance, other factors such as data distribution and size may also influence
the weight assignments for AMC. Further investigation into these results is left to future work.

5 CONCLUSION

In this paper, we present MoMa, a simple modular learning framework for material property predic-
tion. Motivated by the challenges of diversity and disparity in materials, MoMa first trains special-
ized modules across a wide spectrum of material tasks, constituting MoMa Hub. We then introduce
the Adaptive Module Composition algorithm, which facilitates tailored adaptation from MoMa Hub
to each downstream task by adaptively composing synergistic modules. Experimental results across
17 datasets demonstrate the superiority of MoMa, with few-shot and hub-scaling experiments further
highlighting its data efficiency and scalability.

Limitations and Future Work The current scope of our study is limited to crystalline and organic
materials. Future work includes expanding MoMa Hub with modules for a wider range of material
data and prediction tasks, and examining how MoMa scales with hundreds or thousands of modules,
which may yield deeper insights into the modularity of materials knowledge.

Broader Impact As an open-source platform for modularizing and distributing materials knowl-
edge, MoMa enables secure sharing of modules without exposing proprietary data, efficient cus-
tomization for downstream tasks, and improved prediction accuracy even in low-data scenarios. We
envision MoMa fostering a new paradigm of modular material learning and driving broader com-
munity collaboration toward accelerated materials discovery.
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A ALGORITHM FOR ADAPTIVE MODULE COMPOSITION

The formal description of the Adaptive Module Composition algorithm is included in Algorithm 1.

Algorithm 1 Adaptive Module Composition (AMC)

1: Input: MoMa HubH = {gj}Nj=1, Downstream training set D = {(Xi, yi)}mi=1.
2: Output: Composed module gD.
3: {1. Module Prediction Estimation}
4: for j = 1→ N do
5: Generate embeddings X j ← {gj(Xi) | (Xi, yi) ∈ D}.
6: Compute prediction vector Ŷj = (ŷj1, . . . , ŷ

j
m) via leave-one-out k-Nearest Neighbors.

7: end for
8: {2. Module Weight Optimization}
9: Let Y = (y1, . . . , ym) be the vector of true labels from D.

10: Find optimal weights w∗ = (w∗
1 , . . . , w

∗
N ) by solving the convex optimization problem:

11: w∗ ← argminw

∥∥∥∑N
j=1 wjŶ

j −Y
∥∥∥2
2

12: subject to:
∑N

j=1 wj = 1 and wj ≥ 0 for all j ∈ {1, . . . , N}.
13: {3. Module Composition}
14: gD ←

∑N
j=1 w

∗
j gj

15: Return gD
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B THEORETICAL JUSTIFICATION AND ERROR ANALYSIS FOR AMC

In this section, we provide a formal analysis of the kNN-based proxy error used in AMC. Specifi-
cally, we show that the kNN proxy risk Rproxy(w) serves as an upper bound for the fine-tuning risk
RFT (w) (subject to approximation errors). Consequently, minimizing the empirical approximation
of Rproxy(w) tightens this bound, thereby providing theoretical justification for using the proxy risk
to control the risk of the subsequently fine-tuned model.

B.1 DEFINITIONS

Let θi denote the parameters of the i-th module and define its representation of input x as gi(x) :=
g(θi;x). Given weights w = (w1, . . . , wN ) ∈ ∆N−1, define the merged module in parameter space
and its representation by

θw :=

N∑
i=1

wi θi, gw(x) := g(θw;x).

Let the Bayes regressors associated with each representation be

mi(x) := E[Y | gi(X) = gi(x) ], mw(x) := E[Y | gw(X) = gw(x) ].

We define the following risk terms:

• Representation Bayes Risk: R∗(w) := E
[
(mw(X)− Y )2

]
• Fine-tuning Risk: RFT(w) := E

[
(ŷFT(X;w)− Y )2

]
• Proxy Risk using kNN: Rproxy(w) := E

[
(ŷproxy(X;w)− Y )2

]
• Bayes Ensemble Risk: Rens(w) := E

[
(mens(X;w) − Y )2

]
, where mens(x;w) :=∑N

i=1 wi mi(x).

Remark (distribution vs empirical proxy objective). Practically AMC optimizes the empirical
proxy error

ED(w) =
1

m

m∑
k=1

( N∑
i=1

wi ŷi,k − yk

)2

,

while analysis here is stated for the distribution-level proxy risk Rproxy(w). Under standard gener-
alization results for squared-loss regression and mild capacity control on the family {ŷproxy(·;w) :
w ∈ ∆N−1}, the empirical proxy error ED(w) concentrates around Rproxy(w); hence we treat
ED(w) in practice as a finite-sample approximation of Rproxy(w).

B.2 PRELIMINARIES AND ASSUMPTIONS

We recall a standard non-parametric regression result on the consistency of kNN estimators.

Lemma 1 (Universal kNN L2-Consistency (Stone, 1977; Devroye et al., 1994)). For each upstream
task i, consider a training dataset of size n, and let ŷ(i)n be the k-nearest neighbor regressor in the
feature space gi(x), where the number of neighbours k = kn satisfies kn → ∞, kn/n → 0.
Define the L2-estimation error

ε
(i)
kNN(n) := E

[
(ŷ(i)n (X)−mi(X))2

]
.

Then the kNN regression estimator satisfies the exact risk decomposition

E
[
(ŷ(i)n (X)− Y )2

]
= E

[
(mi(X)− Y )2

]
+ ε

(i)
kNN(n),

and moreover ε(i)kNN(n) → 0 as n→∞.
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Remark on Lemma 1. Our implementation of AMC uses a finite-K kNN ensemble with cosine
similarity in the learned representation space. This differs from the asymptotic setting of Lemma 1
(which requires kn → ∞ and kn/n → 0), but it serves as a computationally efficient finite-sample
approximation. Lemma 1 is used as a conceptual tool to justify the kNN-based proxy objective; we
do not claim a full universal consistency result for our exact finite-sample variant.

Assumption 1 (Fine-tuning stability). There exists εopt ≥ 0 such that for all w ∈ ∆N−1,

RFT(w) ≤ R∗(w) + εopt.

That is, after fine-tuning on top of gw, the resulting predictor is within εopt of the optimal predictor
defined on the same representation (McNamara & Balcan, 2017; Mehra et al., 2024).

Assumption 2 (Representation closeness). There exists δ > 0 and a high-probability subset
X0 ⊆ X such that for all modules i and all x ∈ X0,

∥gi(x)− gw(x)∥ ≤ δ.

This models the empirical observation that independently fine-tuned modules from the same pre-
trained model can often be aligned into a shared, approximately convex basin in parameter space,
leading to similar internal representations. Recent work on mode connectivity (Frankle et al., 2020;
Entezari et al.) and cross-task linearity (Zhou et al., 2024) supports this assumption, which we adopt
here as a structural modeling assumption rather than a general theorem.

Assumption 3 (stability of latent regressor). Let g and g′ denote any two modules among {gi :
i ∈ [N ]} and the merged module gw. Let their associated Bayes regressors be

m(x) := E[Y | g(X) = g(x) ], m′(x) := E[Y | g′(X) = g′(x) ].

There exists L > 0 and a high-probability subset X0 ⊆ X such that if

∥g(x)− g′(x)∥ ≤ δ ∀x ∈ X0,

then the regressors are close in expectation:

E
[
|m(X)−m′(X)|1{X ∈ X0}

]
≤ Lδ.

We also assume |Y | ≤ B almost surely.

Remark on Assumption 3. Assumption 3 formalizes a semantic smoothness condition in the
learned representation: inputs that are mapped to nearby latent points (i.e., with close g(x) and
g′(x)) are required to have similar predictive behavior for Y on average. This can be viewed as a
Lipschitz-type regularity assumption on the Bayes regressors in representation space, and is con-
sistent with the common inductive bias in deep learning that well-trained encoders should support
target functions which do not change abruptly under small perturbations of the latent features.

B.3 RISK TRANSFER ANALYSIS

Step 1: kNN Ensemble Approximates the Bayes Ensemble. We compare the proxy risk to the
Bayes ensemble risk:∣∣Rproxy(w)−Rens(w)

∣∣ = ∣∣E[(ŷproxy − Y )2 − (mens − Y )2
]∣∣

=
∣∣E[(ŷproxy −mens)(ŷproxy +mens − 2Y )

]∣∣
≤ 4B E

[
|ŷproxy −mens|

]
(by bounded label in Assumption 3)
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Next,

E
[
|ŷproxy −mens|

]
= E

[ ∣∣∣ N∑
i=1

wiŷ
(i) −

N∑
i=1

wimi

∣∣∣]
≤

N∑
i=1

wi E
[
|ŷ(i) −mi|

]
≤

N∑
i=1

wi

√
E
[
(ŷ(i) −mi)2

]
=

N∑
i=1

wi

√
ε
(i)
kNN(n) (by Assumption 1)

≤

√√√√ N∑
i=1

wi ε
(i)
kNN(n) (by Jensen’s inequality)

Define the weighted kNN error

ε̄kNN(n;w) :=

N∑
i=1

wi ε
(i)
kNN(n), ϵ1(n;w) := 4B

√
ε̄kNN(n;w) .

Then we obtain ∣∣Rproxy(w)−Rens(w)
∣∣ ≤ ϵ1(n;w).

Step 2: Bayes Ensemble Approximates the Merged Bayes Predictor. We compare mens(x;w)
and mw(x) using the triangle inequality,

E
[ ∣∣mens(X;w)−mw(X)

∣∣1{X ∈ X0}
]
= E

[ ∣∣∣ N∑
i=1

wimi(X)−mw(X)
∣∣∣1{X ∈ X0}

]

≤
N∑
i=1

wi E[ |mi(X)−mw(X)|1{X ∈ X0}]

≤ Lδ (by Assumption2 and 3)

Then ∣∣Rens(w)−R∗(w)
∣∣ = ∣∣∣E[(mens(X;w)− Y )2 − (mw(X)− Y )2

]∣∣∣
=

∣∣∣E[(mens(X;w)−mw(X))(mens(X;w) +mw(X)− 2Y )
]∣∣∣

≤ 4B E
[ ∣∣mens(X;w)−mw(X)

∣∣]
≤ 4B Lδ + (small error term on X c

0 ).

Absorbing the small-probability contribution from X c
0 into the constant, we obtain∣∣Rens(w)−R∗(w)
∣∣ ≤ C δ,

where C := 4BL.

B.4 MAIN TRANSFER BOUND AND GUARANTEE

Proposition 1. Under Assumptions 1–3 and Lemma 1, for any w ∈ ∆N−1,

RFT(w) ≤ Rproxy(w) + C δ + εopt + ϵ1(n;w),

where C = 4BL and ϵ1(n;w) = 4B
√

ε̄kNN(n;w) .
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Proof. From Step 1 we have

Rproxy(w) ≥ Rens(w)− ϵ1(n;w),

and from Step 2
Rens(w) ≥ R∗(w)− C δ.

Hence
R∗(w) ≤ Rproxy(w) + C δ + ϵ1(n;w).

Combining with Assumption 1 yields

RFT(w) ≤ R∗(w) + εopt ≤ Rproxy(w) + C δ + εopt + ϵ1(n;w).

Combining this result with the optimality of ŵ for the proxy objective yields the following theorem.
Theorem 1. Let ŵ ∈ argminw∈∆N−1

Rproxy(w) be a minimizer of the proxy risk. Under Assump-
tions 1–3 and Lemma 1, the fine-tuning risk of the merged encoder with weights ŵ satisfies

RFT(ŵ) ≤ Rproxy(ŵ) + C δ + εopt + ϵ1
(
n; ŵ

)
,

where C = 4B L and ϵ1(n; ŵ) = 4B

√∑N
i=1 ŵi ε

(i)
kNN(n) .

C EXPERIMENTAL DETAILS

Here we provide more experimental details regarding the datasets, baselines, and implementation.

C.1 DATASET DETAILS

We primarily adopt the dataset setup proposed by Chang et al. (2022). Specifically, we select 35
datasets from Matminer (Ward et al., 2018) for our study, categorizing them into 18 high-resource
material datasets, with sample sizes ranging from 10,000 to 132,000 (an average of 35,000 samples),
and 17 low-data datasets, with sample sizes ranging from 522 to 8,043 (an average of 2,111 samples).

The high-resource datasets are utilized for training the MoMa Hub modules, as their larger data vol-
umes are likely to encompass a wealth of transferrable material knowledge. A detailed introduction
of these MoMa Hub datasets is included in Table 4.

The low-data datasets serve as downstream tasks to evaluate the effectiveness of MoMa and its
baselines. A detailed introduction is included in Table 5. This setup mimics real-world materials
discovery scenarios, where downstream data are often scarce. Compared to the benchmark in Chang
et al. (2022), we exclude two low-data datasets with exceptionally small data sizes (fewer than 20
test samples) from our experiments, as their limited data could lead to unreliable conclusions.

Following Chang et al. (2022), all datasets are split into training, validation, and test sets with a ratio
of 7:1.5:1.5. For the downstream low-data datasets, we follow the exact splitting provided by Chang
et al. (2022) to ensure a fair comparison.

C.2 IMPLEMENTATION DETAILS OF MOMA

Module Architecture Details We now introduce the architectural details of MoMa modules.
Across all our experiments in the main text, the JMP (Shoghi et al., 2024) backbone is adopted
due to its comprehensive strength across a wide range of molecular and crystal tasks. JMP is pre-
trained on ∼ 120 million DFT-generated force-field data across large-scale datasets on catalyst and
small molecules. It is a 6-layer GNN model with around 160M parameters which is based on the
GemNet-OC architecture (Gasteiger et al., 2022). Note that MoMa is backbone-agnostic and we
include results with the Orb model (Neumann et al., 2024) in Section 4.3.

For the full module parametrization, we exclude the output layer and treat the entire GNN backbone
as a single module. For the adapter components, we follow the standard implementation of adapter
layers (Houlsby et al., 2019). Specifically, an adapter layer is inserted between every two layers
of the JMP backbone. Each adapter consists of a downward projection to a bottleneck dimension,
followed by an upward projection back to the original dimension. We adopt BERT-style initializa-
tion (Devlin, 2018), with the bottleneck dimension set to half of the input embedding dimension.
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Table 4: Datasets for training MoMa Hub modules. Num stands for the number of samples in each
dataset.

Datasets Num Description

MP Ef 132752 The energy change during the formation of a compound from its elements.
Data from Jain et al. (2013).

MP Eg 106113 The PBE band gaps, calculated using the Perdew-Burke-Ernzerhof (PBE) func-
tional, represent the energy difference between the valence and conduction
bands in a material. Data from Jain et al. (2013).

MP GV RH 10987 VRH-average shear modulus, an approximate value obtained by averaging the
shear modulus of polycrystalline materials. Data from Jain et al. (2013).

MP KV RH 10987 VRH-average bulk modulus, calculated by averaging the Voigt (upper bound)
and Reuss (lower bound) bulk moduli. Data from Jain et al. (2013).

n-type σe 37390 n-type σe measures the material’s conductivity performance when electrons are
the primary charge carriers. Data from Ricci et al. (2017).

p-type σe 37390 Similar to n-type σe, with holes as carriers. Data from Ricci et al. (2017).

n-type κe 37390 n-type κe evaluates the efficiency of n-type materials that can conduct both
electricity and heat, which is crucial for understanding its performance in ther-
moelectric applications. Data from Ricci et al. (2017).

p-type κe 37390 Similar to n-type κe, with holes as carriers. Data from Ricci et al. (2017).

n-type S 37390 n-type S denotes the average conductivity eigenvalue, which measures thermo-
electric conversion efficiency in the hole-conducting state when electrons act
as the primary charge carriers. Data from Ricci et al. (2017).

p-type S 37390 Similar to n-type S, with holes as carriers. Data from Ricci et al. (2017).

n-type m∗
e 21037 n-type m∗

e denotes the average eigenvalue of conductivity effective mass,
which measures the impact of the electron’s effective mass on the electrical
conductivity. Data from Ricci et al. (2017).

p-type m∗
e 20270 Similar to n-type m∗

e , with holes as carriers. Data from Ricci et al. (2017).

Perovskite Ef 18928 Perovskite Ef refers to the heat of formation of perovskite, the amount of heat
released or absorbed when the perovskite structure is formed from its con-
stituent elements. Data from Castelli et al. (2012).

JARVIS Ef 25923 Formation energy from the JARVIS dataset (Choudhary et al., 2020).

JARVIS dielectric constant (Opt) 19027 Dielectric constant measures the material’s ability to polarize in response to an
electric field in two-dimensional systems. Data from Choudhary et al. (2020).

JARVIS Eg 23455 PBE band gaps from the JARVIS dataset (Choudhary et al., 2020).

JARVIS GV RH 10855 VRH-average shear modulus from the JARVIS dataset (Choudhary et al.,
2020).

JARVIS KV RH 11028 VRH-average bulk modulus from the JARVIS dataset (Choudhary et al., 2020).

Note that the merging process for adapters is performed in a layer-wise manner. For each back-
bone layer containing adapters, we compute a weighted average of the parameters from all selected
adapter modules. A single scalar weight for each module, determined by AMC, is applied uniformly
across all adapter layers belonging to that module.

Hyper-parameters For the training of JMP backbone, we mainly follow the hyper-parameter con-
figurations in Shoghi et al. (2024), with slight modifications to the learning rate and batch size. Dur-
ing the module training stage of MoMa, we use a batch size of 64 and a learning rate of 5e-4 for 80
epochs. During downstream fine-tuning, we adopt a batch size of 32 and a learning rate of 8e-5. We
set the training epoch as 60, with an early stopping patience of 10 epochs to prevent over-fitting. We
adopt mean pooling of embedding for all properties since it performs significantly better than sum
pooling in certain tasks (e.g. band gap prediction), which echos the findings in Shoghi et al. (2024).

For the Adaptive Module Composition (AMC) algorithm, we set the number of nearest neighbors
(K in Eq. (1)) to 5. For the optimization problem formulated in Eq. (3), we utilize the CPLEX
optimizer from the cvxpy package (Diamond et al., 2014). AMC is applied separately for each
random split of the downstream tasks to avoid data leakage.
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Table 5: Downstream evaluation datasets.

Datasets Num Description

Experimental Band Gap (eV) 2481 The band gap of a material as measured through physical experiments. Data
from Ward et al. (2018).

Formation Enthalpy (eV/atom) 1709 The energy change for forming a compound from its elements, crucial for
defining Gibbs energy of formation. Data from Wang et al. (2021); Kim et al.
(2017).

2D Dielectric Constant 522 The dielectric constant of 2D materials from Choudhary et al. (2017).

2D Formation Energy (eV/atom) 633 The energy change associated with the formation of 2D materials from their
constituent elements. Data from Choudhary et al. (2017).

Exfoliation Energy (meV/atom) 636 The energy required to separate a single or few layers from bulk materials.
Data from Choudhary et al. (2017).

2D Band Gap (eV) 522 The band gap of 2D materials from Choudhary et al. (2017).

3D Poly Electronic 8043 Poly electronic of 3D materials from Choudhary et al. (2018).

3D Band Gap (eV) 7348 The band gap of 3D materials from Choudhary et al. (2018).

Refractive Index 4764 The quantitative change of the speed of light as it passes through different
media. Data from Dunn et al. (2020); Petousis et al. (2017).

Elastic Anisotropy 1181 The directional dependence of a material’s elastic properties. Data from
De Jong et al. (2015a).

Electronic Dielectric Constant 1296 Electronic dielectric constant refers to the dielectric response caused by elec-
tronic polarization under an applied electric field. Data from Petretto et al.
(2018).

Dielectric Constant 1296 Dielectric constant of materials from Petretto et al. (2018).

Phonons Mode Peak 1265 Phonon mode peak refers to the peak in the phonon spectrum caused by specific
phonon modes. Data from Petretto et al. (2018).

Poisson Ratio 1181 Poisson Ratio quantifies the ratio of transverse strain to axial strain in a material
under uniaxial stress, reflecting its elastic deformation behavior. Data from
De Jong et al. (2015a).

Poly Electronic 1056 The Average eigenvalue of the dielectric tensor’s electronic component, where
the dielectric tensor links a material’s internal and external fields. Data from
Petousis et al. (2017).

Poly Total 1056 The Average dielectric tensor eigenvalue. Data from Petousis et al. (2017).

Piezoelectric Modulus 941 Piezoelectric modulus measures a material’s ability to convert mechanical
stress into electric charge or vice versa. Data from De Jong et al. (2015b).

Computational Cost Experiments are conducted on NVIDIA A100 80 GB GPUs. During the
module training stage, training time ranges from 30 to 300 GPU hours, depending on the dataset
size. While this training process is computationally expensive, it is a one-time investment, as the
trained models are stored in MoMa Hub as reusable material knowledge modules. Downstream
fine-tuning requires significantly less compute, ranging from 2 to 8 GPU hours based on the dataset
scale. The full module and adapter module require similar training time; however, the adapter
module greatly reduces memory consumption during training. The time cost of AMC is discussed
in Section D.3.

C.3 BASELINE DETAILS

The CGCNN baseline refers to fine-tuning the CGCNN model (Xie & Grossman, 2018) separately
on 17 downstream tasks. Conversely, MoE-(18) involves training individual CGCNN models for
each dataset in MoMa Hub and subsequently integrating these models using mixture-of-experts (Ja-
cobs et al., 1991; Shazeer et al., 2016). For the baseline results of CGCNN and MoE-(18), we
reproduce the results with the open-source codebase provided by Chang et al. (2022) and follow the
exactly same hyper-parameters as reported in their papers.

For UMA, we fine-tune the UMA-Medium checkpoint (the largest open-sourced UMA model) on
each dataset. To determine the batch size, we follow the max-atom batching strategy from the
original UMA paper and set the maximum atoms per batch to 200, which ensures consistent memory
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usage across systems of varying sizes. All remaining hyperparameters (e.g., learning rate, number
of epochs) follow the configurations used in JMP baselines.

For JMP-FT, we use the JMP (large) checkpoint from the codebase open-sourced by Shoghi et al.
(2024) and fine-tune it directly on the downstream tasks with a batch size of 64. JMP-MT adopts
a multi-task pre-training strategy, training on all 18 MoMa Hub source tasks without addressing
the conflicts between disparate material tasks. Starting from the same pre-trained checkpoint as
JMP-FT, JMP-MT employs proportional task sampling and trains for 5 epochs across all tasks with
a batch size of 16. The convergence of multi-task pre-training is indicated by a lack of further
decrease in validation error on most tasks after 5 epochs. For downstream fine-tuning, both JMP-FT
and JMP-MT adopt the same training scheme as the fine-tuning stage in MoMa.

C.4 IMPLEMENTATION DETAILS OF LORAHUB LEARNING & SOFTMAX WEIGHTING

In our analysis experiments (Section 3.3), we compare AMC against two alternative module com-
position strategies: LoraHub Learning, a black-box optimization approach, and Softmax Weighting,
a non-optimized performance-based heuristic.

For the implementation of LoraHub Learning, we strictly follow the hyper-parameters and black-
box optimization scheme in its official repository except that we use a training-free kNN predictor to
obtain the metric in each round of optimization, which is aligned with AMC. This is because current
capabilities pre-trained models cannot enable zero-shot prediction of material tasks as in LLMs.

For the implementation of Softmax Weighting, we convert the predicted MAE from the same initial
kNN evaluation into a weight for each module. The goal is to directly assign higher weights to
modules with better predicted individual performance (i.e., lower MAE). Formally, the weight wj

for module j is calculated as:

wj =
exp(−MAEj/T )∑N
k=1 exp(−MAEk/T )

(4)

where the temperature T is set to 1.

C.5 DISCUSSION FOR AMC ANALYSIS EXPERIMENTS

For the router-based JMP-(18) approach, full fine-tuning all parameters induces formidable memory
cost, and is impractical considering MoMa Hub may further scale in the future. Hence, resem-
bling Chang et al. (2022), we only unfreeze the final MLP layer as well as the router network in
downstream fine-tuning. We believe it underperforms MoMa because training a router over 18 het-
erogeneous experts with limited supervision per task is intrinsically difficult, leading to unstable
and suboptimal training of module selection. By contrast, AMC avoids router training and uses
a training-free convex weighting scheme guided by kNN-based proxy error, which is much better
suited to the data-scarce, highly disparate material setting.

We conjecture that AMC outperforms LoraHub Learning for two main reasons. First, LoraHub
optimizes weights based on the composed module, where arbitrary mixtures of heterogeneous rep-
resentations yield noisy error signals and a rugged, non-convex landscape. Second, AMC decouples
weight selection from feature mixing by optimizing ensemble predictions. This formulation trans-
forms the task into a convex problem, enabling AMC to reliably converge to a global optimum
without navigating the instability inherent to search-based methods.

The advantage of AMC over the Softmax Weighting highlights the importance of optimizing for
synergy. Softmax Weighting determines each module’s contribution based solely on its isolated
performance, overlooking potential synergistic interactions. In contrast, AMC explicitly optimizes
for the weight configuration that maximizes collective performance and captures such interactions.

C.6 DETAILS ON MOMA HUB SCALING ANALYSIS

The QM9 dataset (Ramakrishnan et al., 2014) comprises 12 quantum chemical properties (including
geometric, electronic, energetic, and thermodynamic properties) for 134,000 stable small organic
molecules composed of CHONF atoms, drawn from the GDB-17 database (Ruddigkeit et al., 2012).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

It is widely served as a comprehensive benchmarking dataset for prediction methods of the structure-
property relationships in small organic molecules.

In the continual learning experiments, we expand the MoMa hub by including modules trained on
the QM9 dataset. For module training, we adopt the same training scheme as the original MoMa
modules, with the exception of using sum pooling instead of mean pooling, as it has been empirically
shown to perform better (Shoghi et al., 2024).

D MORE EXPERIMENTAL RESULTS

D.1 CORRELATION ANALYSIS BETWEEN KNN-BASED PROXY AND POST-FINE-TUNING
PERFORMANCE

We empirically examine whether the kNN-based proxy error used in AMC is a reliable indicator of
post–fine-tuning performance. We consider three representative targets—Refractive Index, Phonons
Mode Peak, and Exfoliation Energy—covering optical, vibrational, and energetic material proper-
ties. For each task, we use all 18 modules in the MoMa hub and record (i) the per-module proxy
MAE computed during the kNN step of AMC, and (ii) the test MAE obtained by fine-tuning each
module individually on the same target. We then compute the Spearman and Pearson correlations
between the proxy MAE and the post–fine-tuning MAE over the 18 modules. Across all three tar-
gets, we observe consistently strong positive correlations (Spearman > 0.8, Pearson > 0.6, with
p-values < 0.01 for Pearson and < 0.0001 for Spearman). Concretely, the Pearson correlations
are 0.603, 0.628, and 0.699 for Phonons Mode Peak, Refractive Index, and Exfoliation Energy, re-
spectively; the corresponding Spearman correlations are 0.851, 0.825, and 0.816. As visualized in
Fig. 5, modules that achieve lower proxy error systematically attain lower post–fine-tuning MAE,
providing direct empirical support that the kNN-based proxy is a reliable signal for guiding weight
optimization in AMC.

D.2 SENSITIVITY ANALYSIS OF KNN PROXY AND OPTIMIZER

We perform an additional sensitivity analysis of the kNN components in AMC. Specifically, we vary
the number of neighbors k, switch the distance metric from cosine similarity to MAE, and modify
the normalization of similarity scores from a weighted average to a uniform average over the kNN
set. We study robustness by (i) computing the average pairwise correlation of the resulting module
weight vectors across variants, and (ii) comparing the final post–fine-tuning MAE across variants.

Table 6 shows that the learned composition weights are highly robust under different kNN configu-
rations. Over the 17 datasets, the average pairwise Pearson and Spearman correlations of the weight
vectors are typically above 0.7. This indicates that changing k, the distance metric, or the normal-
ization scheme perturbs the proxy predictor but AMC consistently recovers a very similar relative
weighting over modules, i.e., the inferred relationships between modules remain stable.

Table 7 reports the resulting post–fine-tuning MAEs for each kNN variant. This analysis is con-
ducted on a single train/validation split and a single random seed per dataset. Even under this
stringent setting, MAE remains reasonably stable for most tasks across the five kNN configurations.
The main exception is the Elastic Anisotropy dataset, where we observe larger variation between
variants; in our main experiments we already noted substantial fluctuations across random seeds for
this target. Elastic anisotropy is a derived mechanical metric that depends on the full elastic response
of the material, and we find in practice that the corresponding mapping from structure to target is
more challenging and sensitive to initialization, which can amplify small differences in the proxy
into larger differences in final MAE.

Finally, we also varied the CPLEX optimizer tolerances (optimality and MIP gap) from the default
10−6 to 10−3 and 10−9. These changes had no effect on the optimized weights, which is consistent
with our formulation: our optimization problem is a small and strongly convex MIQP over con-
tinuous variables, and the solver consistently reaches the global optimum under all tested settings.
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Dataset Avg. Pearson Corr. of Weights Avg. Spearman Corr. of Weights
Experimental Band Gap 0.9776 0.7553
Formation Enthalpy 0.9972 0.8300
2D Dielectric Constant 0.9752 0.7545
2D Formation Energy 0.9935 0.7495
Exfoliation Energy 0.6139 0.8193
2D Band Gap 0.9594 0.5308
3D Poly Electronic 0.7660 0.7711
3D Band Gap 0.9865 0.9267
Refractive Index 0.8591 0.8249
Elastic Anisotropy 0.9781 0.8910
Electronic Dielectric Constant 0.9761 0.7768
Dielectric Constant 0.9731 0.7486
Phonons Mode Peak 0.9349 0.8936
Poisson Ratio 0.8570 0.8511
Poly Electronic 0.8876 0.8222
Poly Total 0.9309 0.7178
Piezoelectric Modulus 0.7319 0.7972

Table 6: Stability of AMC weights under different kNN variants. Average pairwise Pearson
and Spearman correlations between module weight vectors obtained from varying k, the distance
metric, and the similarity normalization. Across most datasets, both correlations are typically above
0.7, indicating that AMC recovers highly consistent relative weight patterns over modules despite
changes in the kNN setup.

Dataset weighted cos K3 weighted cos K5 weighted cos K10 weighted mae K5 uniform cos K5
Experimental Band Gap 0.2139 0.2284 0.2439 0.2356 0.2314
Formation Enthalpy 0.0142 0.0156 0.0181 0.0123 0.0164
2D Dielectric Constant 0.3152 0.3096 0.3137 0.3251 0.3120
2D Formation Energy 0.0292 0.0339 0.0401 0.0261 0.0384
Exfoliation Energy 0.6078 0.6395 0.7421 0.7084 0.6753
2D Band Gap 0.1529 0.1468 0.1574 0.1414 0.1485
3D Poly Electronic 0.5243 0.5093 0.5138 0.5207 0.5038
3D Band Gap 0.0262 0.0295 0.0301 0.0237 0.0303
Refractive Index 0.2503 0.2560 0.2624 0.2626 0.2576
Elastic Anisotropy 0.0811 0.1108 0.1856 0.3819 0.5717
Electronic Dielectric Constant 0.3564 0.3532 0.3585 0.3393 0.3560
Dielectric Constant 0.5257 0.5359 0.5595 0.5604 0.5442
Phonons Mode Peak 0.1062 0.1310 0.1869 0.1446 0.1414
Poisson Ratio 0.3116 0.3345 0.3802 0.3546 0.3455
Poly Electronic 0.7307 0.7684 0.8036 0.7265 0.7691
Poly Total 0.5606 0.5848 0.5969 0.5850 0.5837
Piezoelectric Modulus 0.5843 0.5940 0.6093 0.5971 0.6002

Table 7: Sensitivity of post–fine-tuning MAE to kNN design choices. Test MAE for different
kNN configurations in AMC: varying k (3/5/10), distance metric (cosine vs. MAE), and normaliza-
tion (weighted vs. uniform) across 17 datasets. For most tasks, MAE differences between variants
are modest, showing that downstream performance is relatively stable with respect to kNN design
choices.

D.3 EFFICIENCY ANALYSIS OF AMC

Time Cost For the prediction estimation stage, we further divide it into the embedding generation
and kNN prediction step. While these steps should be conducted separately for each module and
each downstream dataset, the process can be parallelized and the runtime mainly depends on the size
of the downstream dataset. As shown in Table 8, the maximum total time is below 30 seconds. For
the weight optimization stage, we report the minimum and maximum time required for convergence
of each downstream task (Eq. (3)). As shown in Table 9, the time cost is negligible and remains
roughly constant as the number of modules scales.

Memory Cost During embedding generation, only one module is loaded into GPU at a time,
requiring approximately 1.8 GB of memory. The generated embeddings are stored on CPU, with the
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Table 8: Module prediction estimation time

Min time (s) Max time (s)

Embedding generation 7.29 24.06
KNN prediction 0.05 4.02

Total time 7.34 28.08

Table 9: Weight optimization time

Module # Min time (s) Max time (s)

3 0.07 0.08
9 0.12 0.15
18 0.14 0.25

Table 10: Test set MAE and average test loss of JMP-FT and MoMa under the full-data, 100-data,
and 10-data settings. Results are averaged over five random data splits on one random seed. Results
are preserved to the third significant digit.

Datasets JMP-FT MoMa JMP-FT (100) MoMa (100) JMP-FT (10) MoMa (10)
Experimental Band Gap 0.380 0.305 0.660 0.469 1.12 1.245
Formation Enthalpy 0.156 0.0821 0.273 0.101 0.514 0.143
2D Dielectric Constant 2.45 1.90 3.19 2.35 7.74 3.31
2D Formation Energy 0.135 0.0470 0.366 0.113 0.842 0.214
2D Exfoliation Energy 38.9 36.1 54.4 56.1 118 87.3
2D Band Gap 0.611 0.366 0.890 0.517 1.23 1.05
3D Poly Electronic 23.7 23.0 33.6 24.8 54.0 48.9
3D Band Gap 0.249 0.201 1.71 0.686 2.10 1.47
Dielectric Constant 0.0552 0.0535 0.134 0.102 0.289 0.231
Elastic Anisotropy 2.11 2.85 4.85 3.79 4.02 5.26
Electronic Dielectric Constant 0.108 0.0903 0.260 0.178 0.568 0.500
Total Dielectric Constant 0.172 0.155 0.361 0.287 0.543 0.527
Phonons Mode Peak 0.0710 0.0521 0.221 0.199 0.493 0.485
Poisson Ratio 0.0221 0.0203 0.0345 0.0317 0.0466 0.057
Poly Electronic 2.10 2.13 3.24 2.88 6.08 5.10
Total Poly 4.83 4.76 6.54 6.32 11.2 10.1
Piezoelectric Modulus 0.169 0.175 0.248 0.258 0.303 0.290

Average Normalized Test MAE 0.222 0.187 0.408 0.299 0.700 0.550

largest set requiring about 5.5 MB. Overall, AMC is lightweight in memory usage and scales well
with the number of modules.

D.4 COMPLETE FEW-SHOT LEARNING RESULTS

We present the complete results of the few-shot learning experiments in Table 10. MoMa con-
sistently shows performance improvements across all settings, with the margin of normalized test
loss increasing as dataset size shrinks. These results highlight MoMa’s strong potential to retain a
performance advantage in few-shot scenarios, which are prevalent in material property prediction
tasks.

D.5 COMPLETE RESULTS FOR SCALING ANALYSIS OF MOMA

We present the complete results for the scaling analysis of MoMa in Table 11. We report test set
MAE for hub sizes of 5, 10, 18 (full MoMa hub), and 30 modules (by adding QM9 modules). The
last row reports the normalized average over all tasks.

E POTENTIAL SOCIETAL IMPACT

MoMa is visioned to be an open-source platform for the sharing of materials knowledge as modules.
Potential positive societal impacts include the acceleration of the discovery of new materials with
desirable properties, which benefit industries such as energy, electronics, and manufacturing. How-
ever, there are risks associated with the mal-intended use of material knowledge to develop harmful
or unsafe materials. To mitigate these risks, it is crucial to ensure that the application of this work
adheres to ethical guidelines. Although we do not foresee significant negative consequences in the
near future, we recognize the importance of responsible usage and oversight in the application of
these technologies.
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Table 11: Test set MAE of MoMa under different hub sizes: 5 modules, 10 modules, full MoMa hub
(18 modules), and 30 modules (with QM9). Results are preserved to the fourth decimal digit.

Number of MoMa Modules 5 10 18 (MoMa) 30 (+QM9)

Experimental Band Gap 0.3478 0.3324 0.2975 0.2960
Formation Enthalpy 0.0799 0.0814 0.0789 0.0819
2D Dielectric Constant 2.2075 1.9482 1.9406 1.8879
2D Formation Energy 0.0513 0.0510 0.0438 0.0470
2D Exfoliation Energy 38.6231 36.6587 34.5769 35.1542
2D Band Gap 0.4624 0.4256 0.3649 0.3605
3D Poly Electronic 23.3909 23.0813 22.7205 23.3679
3D Band Gap 0.3035 0.2555 0.2270 0.2053
Dielectric Constant 0.0549 0.0529 0.0511 0.0529
Elastic Anisotropy 1.9967 2.4103 2.5340 2.6408
Electronic Dielectric Constant 0.1046 0.0878 0.0909 0.0892
Total Dielectric Constant 0.1762 0.1554 0.1571 0.1561
Phonons Mode Peak 0.0528 0.0505 0.0512 0.0460
Poisson Ratio 0.0240 0.0207 0.0206 0.0206
Poly Electronic 2.0588 2.0215 2.0445 1.9837
Total Poly 4.9129 4.9148 4.8804 4.7358
Piezoelectric Modulus 0.1805 0.1713 0.1721 0.1743

Average Normalized Test MAE 0.2040 0.1910 0.1853 0.1759
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