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Abstract—Quantum computing can potentially speed up cer-
tain tasks greatly, but its benefits for computational models must
be better defined in early literature. This work introduces a new
Quantum DNA Encoder (QDE) design that can efficiently and
effectively encode genetic data. QDE uses a simple circuit model
that can be used on a 4-qubit system and provides better class
boundaries than One-Hot Encoding (OHE) by generalizing data
encoding to a higher-dimensional embedding space. In order to
showcase how well the method works, we utilize a large collection
of gRNA within the CRISPR Cas9 system. Comparing baseline
representations, QDE outperforms OHE in two out of four
representations with a high level of statistical significance. This
study is significant in the early quantum machine intelligence
literature as the translation of quantum technology to biomedical
research. The implementation of our study is available at:
https://github.com/namnguyen0510/Quantum-DNA-Encoder.

Index Terms—Quantum Computing, Quantum Biology, DNA
Analysis, CRISPR.

I. INTRODUCTION

QUANTUM computing is an emerging discipline that
leverages the principles of quantum mechanics for com-

putational purposes. Unlike classical computers that rely on
bits representing either 0 or 1, quantum computers employ
qubits, which can exist in superposition, simultaneously em-
bodying both 0 and 1. This unique characteristic enables
quantum computers to handle and retain extensive information
and execute specific computations more effectively than their
classical counterparts. Quantum embedding, in the context of
quantum computing, refers to a technique used to represent
classical data or problems in a quantum format or quantum
state. It involves mapping classical information onto a quantum
system, such as qubits, to utilize the computational power of
quantum algorithms and quantum computers to solve the given
problem.

We find that quantum computing could enable better data
encoding of the genetic codes. Specifically, the genetic code is
spanned by the character set B = {A, T,G,C}, and structural
information is indispensable to enable learning tasks on DNA
codes. However, the dominant approaches for information re-
trieval of DNA codes on the classical computer do not contain
such information. Specifically, mathematical features [7], [8]
embeds DNA codes into scalar vector fields, thus lacking
geometric information. On the other hand, the conventional

encoding for ML models is One-Hot Encoding (OHE), which
encodes data into Euclidean vector space, given as

B → V := R4

A 7→ [1, 0, 0, 0]⊺ = e0

T 7→ [0, 1, 0, 0]⊺ = e1

G 7→ [0, 0, 1, 0]⊺ = e2

C 7→ [0, 0, 0, 1]⊺ = e3

(1)

It is agreeable in the associated literature involving DNA code
analysis that structural information matters [10], [11], so geo-
metric information beyond Euclidean must be accounted for in
the code encoding. Quantum computing could be a better data
encoding approach for the genetic code. Specifically, quantum
embedding can be generalized as transforming original data
space X on the high-dimensional Hilbert vector space H
of complex numbers through parameterized quantum unitary
transformation. Such transformation is considered as model
weights in Quantum Neural Networks literature [1], [20]–[23].

Here, we recognize that the geometric interpretation of
Pauli-based quantum gates can be used to represent the geo-
metric information within the derived quantum embeddings. In
this work, we introduce a novel ansatz design named Quantum
DNA Encoder (QDE), which enables efficient and effective
data encoding of the genetic codes. First, the model ansatz
circuit is low complexity and deployable on a 4-qubit system.
Second, the proposed QDE is a generalization of OHE, which
encodes data on higher-dimensional embedding space; thus,
a better decision boundary could be derived [15]. Finally,
we demonstrate our proposed model on a large collection of
gRNA in the CRISPR Cas9 system, including 70, 892 gRNAs
of length 20 nucleotides (nt). It is worth noting that the
demonstrated databases are considerable as large-scale studies
in the early quantum machine intelligence literature. two out
of four baseline representations from QDE outperformed those
from OHE with a high level of statistical significance.

We organize the article as follows:
• Section II starts with introducing the QDE ansatz struc-

ture (Section II-A), followed by a pipeline for genetic
dual encoding using the proposed QDE (Section II-B).

• Section II introduces the background of gRNA analysis
in CRISPR technology, followed by experimental design
(Section III-A). We report the numerical result in Sec-
tion III-B.
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|0⟩ : R(πX(α, β, γ)) CNOT
⊕

|Ψ(Λ,Θ,Ξ)⟩ |0⟩ : R(πY (α, β, γ)) . CNOT
⊕

|0⟩ : R(πZ(α, β, γ)) . . CNOT
⊕

|0⟩ : (Parameter-free)
⊕ ⊕ ⊕

CNOT

• We give a brief literature review and the conclusion in
Section IV.

II. METHODS

A. Quantum DNA Encoder (QDE)

We construct the QDE ansatz circuit by arbitrary single
qubit rotation

R(α, β, γ) = RZ(γ)RY (β)RZ(α) =

[
e−i(α+γ)/2 cos(β/2) −ei(α−γ)/2 sin(β/2)
e−i(α−γ)/2 sin(β/2) ei(α+γ)/2 cos(β/2),

]
(2)

presented as such unitary transformation over a 4-qubit system
The density matrix corresponding to the electronic wave

|Ψ(Λ,α,γ)⟩ is given as

Π = |Ψ(Λ,Θ,Ξ)⟩ ⟨Ψ(Λ,Θ,Ξ)| (3)

We physically interpreted the proposed QDE: the transfor-
mation on the first three qubits represents the transformation
of 3 dimensional space, corresponding to Ox, Oy, and Oz. In
contrast, the last parameter-free qubit represents the transfor-
mation of time. The time transformation is naturally coherent
with space transformation, established by sequential CNOT
gates. To form a strong entanglement layout [19], we entangle
the last respectively to the first, the second, and the third
qubits. We define such entanglement as the feedback of the
qubit representing time to qubits representing space.

We use a permutation of the weight set {Λ,Θ,Ξ} to
establish the coherency of space transformation while reducing
the CNOT gates needed for such entanglement layouts. We
have learned a valuable lesson from our previous work on how
entanglement affects the accuracy of classifiers. [17]. Specif-
ically, the generalized-unitary transformation on the qubit
representing space is performed as in permutation Table I and
Table II.

TABLE I
HOMOGENEOUS-DIAGONAL PERMUTATION (Π+).

qubit 1 πX α β γ
qubit 2 πY γ α β
qubit 3 πZ β γ α

We use these two permutations out of 3! = 3 × 2 × 1 = 6
permutations of {α, β, γ} because the first set of weight (Π+)
is created by shifting weights (top row to bottom row) to the

Fig. 1. The representations, or complex-valued tensors Π+ (Left) and
Π− (Right) from permutation of weight sets in Table I and Table II.

right. As a result, we have the same elements in the diagonal
(homogeneous-diagonal permutation). Similarly, the second
set of weights (Π−) is created by shifting weights (top row to
bottom row) to the left. As a result, we have the same elements
in the diagonal (homogeneous, anti-diagonal permutation).

We show the variational encoding from QDE, including
homogeneous-diagonal (Π+) and homogeneous, anti-diagonal
(Π−) matrix in Animation-S1 and S2. Of note, these matrices
have complex number entries. We show the representation, or
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TABLE II
HOMOGENEOUS, ANTI-DIAGONAL PERMUTATION (Π−).

qubit 1 πX α β γ
qubit 2 πY β γ α
qubit 3 πZ γ α β

complex-valued matrices Π+ and Π− in Figure 1. We use the
package [13] for complex-valued matrices visualization, using
Hinton diagram [12]. Specifically, every square represents
a matrix element z = a + bi, (a, b) ∈ R2, and its size
corresponds to the modulus |z| =

√
a2 + b2, similar to a

Hinton diagram. However, instead of using only black and
white to represent positive and negative values, a cyclic color
map is used to assign colors to the squares, indicating the
complex number’s phases [13].

There are three observations from Figure 1:
1) The embedding of QDE is a higher-dimensional embed-

ding than Euclidean embeddings since each entry is a
complex number z = a + bi formed by the Cartesian
product of R2. Thus, producing the same tensor types
(Π±) from classical simulations is insufficient since we
need to sample two floating points (a, b). In contrast,
directly deriving these tensors from quantum hardware
only requires sampling of three floating points (α, β, γ).

2) The embedding is similar to one-hot encoding (OHE)
in the Euclidean case as the diagonal entries have the
largest amplitude (in OHE, is 1). In the proposed tensor
Π±, the diagonal amplitude is saturated to neighboring
entries, but the diagonal entries still produce the empha-
sized signal (strongest amplitude).

3) The QDE has double space complexity compared to
OHE. Specifically, the OHE for n-bit DNA codes is of
length n×[4], while QDE needs n×[4×2] since storing a
complex number requires two floating points. Here, we
emphasize the quantum supremacy of using QDE: we
only need to sample three floating points for the QDE
blocks as shown in Equation II-A.

B. Genetic Dual Encoder

We will present the protocol to use QDE for genetic code
encryption. Here, we use encryption because we scramble the
weight set using the permutation group formed by (α, β, γ)
like cryptography techniques. We use both genetic string and
its dual partners for encryption. Specifically, given an input
genetic string g = (b1, b2, . . . , bn) of length n (ordered set)
for which bi ∈ B = {A, T,G,C}, the dual genetic string
ḡ = (b̄1, b̄2, . . . , b̄n) is constructed as the binding rule

1) A binds T , so if bi = A then b̄i = T and if bi = T then
b̄i = A.

2) G binds C, so if bi = G then b̄i = C and if bi = C
then b̄i = G.

Thus, we present the encoding pipeline as the following
mapping The final embedding is derived by applying a bi-
nary relation of the representation H . Here, we consider the
following aggregation techniques:

TABLE III
DIMENSIONALITY ANALYSIS OF EVALUATED EMBEDDINGS.

Technique Vector Space Original Shape Flattened Shape

OHE R n× [20× 4] n× 80

QDE-MA C n× [20× 4] n× 80
QDE-CD C n× [20× 8] n× 160
QDE-CW C n× [40× 4] n× 160
QDE-CO C n× [20× 20] n× 400

1) (QDE-MA) Mean Average: H̄ = 1
2

(
XΠ+

n×4 +

XΠ−

n×4

)
n×4

.

2) (QDE-CD) Depth-wise Concatenate: H⊕
D =(

XΠ+

n×4

⊕
D XΠ−

n×4

)
n×8

.

3) (QDE-CW) Breadth-wise Concatenate: H⊕
B =(

XΠ+

n×4

⊕
B XΠ−

n×4

)
2n×4

.

4) (QDE-CO) Commutator Operator: H⊗
O =(

XΠ−
(XΠ+

)⊺ −XΠ+

(XΠ−
)⊺
)
n×n

.

We tested the commutator representation H⊗
I =(

XΠ−
)⊺XΠ+ − (XΠ+

)⊺(XΠ−
)
)
4×4

; however, the derived
features are non-representative across input gRNA due to too
small embedded size (4× 4, See SuppMat-S1).

III. RESULTS

A. Case-study

We evaluate the quality of derived embedding sets using
the gRNA of the CRISPR-Cas 9 form Achilles project [2].
CRISPR stands for ”Clustered Regularly Interspaced Short
Palindromic Repeats,” which are unique DNA sequences found
in the genomes of bacteria and other organisms. Cas9, con-
versely, refers to a protein called ”CRISPR-associated protein
9” that acts as a molecular scissor in the system. The way
the CRISPR-Cas9 system works is by using a guide RNA
(gRNA) molecule specifically created to target a certain DNA
sequence.

1) Dataset: The evaluated dataset includes 70, 892 gRNA
of 20 nucleotides (nt). The targeted variable Y is the efficacy
score, which is a therapeutic score indicating how effective
the gRNA knock-off the correct genes. The range of Y is
normalized in [0, 1]. We will compare our proposed feature
sets, including mean average (QDE-MA), Depth-wise Con-
catenate (QDE-CD), Breadth-wise Concatenate (QDE-CW),
and Commutator Operator (QDE-CO) (SuppMat-S2) with the
conventionally dominant OHE.

2) Evaluation Metrics: We compare the quality of embed-
ding matrices H by measuring its relevancy [18] with the
target variable Y . Specifically, for the dataset of n gRNAs, we
flatten the embeddings into 1D vectors, resulting in embedded
matrices Hn×d, d is the dimensionality of flattened vectors.
The dimensionality analysis of each embedding is given in Ta-
ble III, associated with 20-nt gRNA inputs. Good embeddings
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Character Space Quantum Density Matrix Representations(GLp×q(C))

(g, ḡ) (Π+,Π−) ◦ (g, ḡ)
(
(Π+

4×4OHE(bi)4×1)
n
i=1, (Π

−
4×4OHE(b̄i)4×1)

n
i=1

)

H = (XΠ+

n×4,X
Π−

n×4)
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Fig. 2. The Relevancy of Compared Feature Sets toward The Efficacy Score Y ∈ [0, 1].

have higher mutual information toward the target variable Y ,
computed by

MI(X,Y ) =
∑∑

P (x, y) log

(
P (x, y)

P (x) · P (y)

)
(4)

where:
• P (x, y) represents the joint probability mass function

(PMF) of variables X and Y .
• P (x) and P (y) represent the marginal PMFs of variables

X and Y respectively.
3) Experimental Environments: All experiments used

Python 3.7.0, numpy 1.21.5, sci-kit-learn 1.0.2, and pennylane
0.22.1 on an Intel i9 processor (2.3 GHz, eight cores), 16GB
DDR4 memory. The repository for implementation is given in
https://github.com/namnguyen0510/Quantum-DNA-Encoder.

B. Effectiveness Analysis

We show the relevancy of evaluated feature sets to efficacy
score Y in Figure 2. The QDE-MA, QDE-CD, and QDE-CW
embeddings outperformed OHE with statistical significance
under level α = 0.05, showed in Table IV. Besides, the
QDE-CO is the lowest quality embeddings with the highest
dimensionality, meaning the commutative operator is inef-
fective in deriving a good representation. Thus, two out of
four representations constructed by the proposed dual QDE,
involving group actions on set H = (XΠ+

n×4,X
Π−

n×4) are
effective and outperformed the classical counterpart.

We visualize the complex-valued representations of two in-
put gRNAs, AAAAAAATCCAGCAATGCAG and AAAAA-
GACAACCTCGCCCTG in SuppFig 1 and 2, respectively.
Notably, the repetition patterns of A’s are well-represented
in lower-dimensional embeddings QDE-MA, QDE-CD, and
QDE-CW like in OHE (not shown). However, the difference

TABLE IV
STATISTICS TEST TO COMPARE THE QUALITY OF FEATURE SETS. THE

STATISTICALLY SIGNIFICANT TESTS ARE HIGHLIGHTED WITH *.

Comparison (One-sided) Test Statistic (t-stat) p-value

OHE less than QDE-MA -0.7038881 0.24136449
OHE less than QDE-CD -1.77567669 0.038564*
OHE less than QDE-CW -2.58523493 0.00516862*
OHE less than QDE-CO 2.07785468 0.97978906

QDE-MA less than OHE 0.7038881 0.75863551
QDE-MA less than QDE-CD -0.70259851 0.24166321
QDE-MA less than QDE-CW -1.39672946 0.08213645
QDE-MA less than QDE-CO 2.16677097 0.98347842

QDE-CD less than OHE 1.77567669 0.961436
QDE-CD less than QDE-MA 0.70259851 0.75833679
QDE-CD less than QDE-CW -0.85754802 0.19589678
QDE-CD less than QDE-CO 4.13259594 0.99997276

QDE-CW less than OHE 2.58523493 0.99483138
QDE-CW less than QDE-MA 1.39672946 0.91786355
QDE-CW less than QDE-CD 0.85754802 0.80410322
QDE-CW less than QDE-CO 4.91050799 0.99999898

QDE-CO less than OHE -2.07785468 0.02021094*
QDE-CO less than QDE-MA -2.16677097 0.01652158*
QDE-CO less than QDE-CD -4.13259594 2.72365221e-05*
QDE-CO less than QDE-CW -4.91050799 1.01776762e-06*

is highlighted in high-dimensional embedding QDE-CO as the
repeated patterns are located in different rows and columns
of the corresponding representation matrices (bottom-right).
The embeddings of the proposed QDE generalize OHE since
each complex diagonal entry can intake unit value like in
OHE. Besides, we also emphasize the quantum advantages
of QDE over the classical OHE in the ending observation of
Section II-A

IV. CONCLUSION

To this end, we have introduced the QDE and its imple-
mentation with a low-complexity ansatz structure on the 4-
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qubit quantum system in Equation II-A. We then proposed
four sets of representations derived from the quantum den-
sity matrices parameterized by permutations of three floating
points (α, β, γ). Besides, we also highlight the advantages of
the proposed encoding methods over the classical OHE. We
showed that QDE is a generalization of OHE on complex
number vector space, and also, simulating the same complex-
valued representations from our QDE is inefficient using
classical computing.

We demonstrate the proof of concept using a broad analysis
of gRNAs in CRISPR-Cas 9 system. We showed that the
proposed QDE is better than OHE, as two out of four derived
feature sets outperform the classical counterpart. It is early
to claim that our proposed QDE is effective in any learning
tasks regarding genetic codes. However, we see two main
contributions to our study. First, the proposed DQE is one
of the first research to translate the technical advantages of
quantum computing [16], [17] to biomedical problems [14].
Second, the proposed framework is a promising approach
complementary to current advances in Quantum Machine
Learning literature [1], [3]–[6], [9] since any ML model can
be applied on feature sets derived from the proposed DQE.
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