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Abstract

In this paper, we address the challenge of identi-001
fying real-world events that could have caused002
observed anomalies in time-series data of pub-003
lic indicators. Previously, this was a daunting004
task in a data analysis pipeline due to the open-005
ended nature of the answer domain. However,006
with the advent of modern large language mod-007
els (LLMs), this task appears within reach. Our008
experiments on three diverse public time-series009
datasets shows that while LLMs can retrieve010
meaningful events with a single prompt, they011
often struggle with establishing the causal va-012
lidity of these events.013

To enhance causal validity, we design a set of014
carefully crafted cross-questions that check ad-015
herence to fundamental assumptions of causal016
inference in a temporal setting. The responses017
when combined through a simple feature-based018
classifier, improve the accuracy of causal event019
attributation from average of 65% to 90%. Our020
approach, including the questions, features, and021
classifier, generalizes across different datasets,022
serving as a meta-layer for temporal causal rea-023
soning on event-anomaly pairs.024

We release our code1 and three datasets, which025
include time-series data with tagged anomalies026
and corresponding real-world events.027

1 Introduction028

Enterprise data analytics systems have long been029

dependent on tedious extraction, transformation,030

and linking processes to incorporate external world031

knowledge with structured databases to enrich data032

analysis (Zaharia et al., 2021; Farhan et al., 2024).033

With the advent of LLMs that are already pre-034

trained on huge amounts of external knowledge,035

it is time to rethink how data analysis systems can036

directly harness LLMs for external knowledge that037

earlier required extensive planning and processing.038

1Code & dataset repository: https://anonymous.4open.
science/r/CauseExam. Link to dataset is provided in readme
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Figure 1: We show for two anomalies of a time series,
the extracted real-world event that CauseExam attributes
to the anomaly based on its LLM-based causal reason-
ing.

In this paper, we present one compelling sce- 039

nario where we harness LLMs to extract attributing 040

real-world events to explain observed patterns of 041

anomalies in time series data. Time series are com- 042

monplace in any data analysis system, and a large 043

part of data analysis revolves around discovering 044

surprising changes along time, and digging out rea- 045

sons to explain the changes (Sarawagi, 1999). In 046

this paper we propose to enrich the analysis by link- 047

ing to real-world events extracted from LLMs that 048

could have plausibly caused the observed anoma- 049

lies. 050

We work with two types of database systems: 051

a worldbank database of various socio-economic 052

indicators of countries, and two finance datasets of 053

stock prices of companies. In Figure 1 we show 054

a time series from financial system with marked 055

anomalies that an analyst wishes to explain, and 056

events that our system extracted by harnessing an 057

LLM. Figure 10 in Appendix shows an example 058

from worldbank system. 059

Accurate extraction of such structured events 060

from an LLM is noisy since they are prone to hallu- 061

cinations, and often confuse correlation with causa- 062

tion. We found that default LLM extractions tended 063

to favor popular events such as COVID-19 or dot- 064
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com bubble burst to attribute to all and sundry065

anomalies. Recent evaluation of the commonsense066

causal reasoning capabilities of LLMs (Kıcıman067

et al., 2023; Zhang et al., 2023; Jin et al., 2023b)068

have shown promising results on logical reason-069

ing based causal discovery given a pair of variable070

names, for example "smoking" and "cancer". Our071

scenario is more challenging for two reasons: (1)072

we need to extract candidate reasons for an ob-073

served anomaly in structured data instead of reason-074

ing on a fixed set of variables, and (2) in addition to075

the variable name, we are provided an entire time076

series of values, and the causes we attribute have077

to be temporally consistent.078

In this paper we show that the accuracy of cause-079

effect inference between an event-anomaly pair can080

be greatly enhanced with reasoning on responses081

of four cross-questions carefully designed to check082

adherence to fundamental assumptions of temporal083

causal inference. We convert LLM responses to084

these questions into numerical features each cap-085

turing the degree of adherence to the assumption086

of causal inference. Thereafter, we employ a light-087

weight Bayesian classifier to combine the features088

into binary decision variables. We propose a simple089

mechanism of harvesting labeled data for training090

the classifier from LLM using a novel counterfac-091

tual prompt to generate negative labeled examples.092

Since our features are generic, we show that the093

trained classifier generalizes across datasets.094

Contributions.095

• We present CauseExam a framework for extract-096

ing from an LLM, events that causally explain097

observed anomalies in time-series of public in-098

dicator. To the best of our knowledge, no prior099

work has proposed such a mechanism of enrich-100

ing structured data analysis systems using LLMs.101

• We enhance the accuracy of cause-effect infer-102

ence on an event-anomaly pair using a set of103

cross-examination prompts specifically designed104

to check adherence to assumptions of temporal105

causal inference.106

• We combine responses from multiple prompts us-107

ing a light-weight model that can be trained using108

noisily extracted labeled data from the LLMs. To109

extract negative examples, we propose a novel110

method of harnessing counter-factual anomalies.111

• We compare our method of calibrating correct-112

ness with other methods of checking LLM hal-113

lucinations, and show that our method, tailored114

for the task of extracting structured causal events115

provides significantly higher quality extractions. 116

Starting from an accuracy of 65% from a single 117

prompt, CauseExam’s reasoning layer boosted 118

accuracy to above 90%, significantly surpass- 119

ing the accuracy of even GPT4 reranked events. 120

Also, we show that our reasoning model transfers 121

across datasets. 122

• We release three datasets on anomalies of public 123

indicators along with real-world events. 124

2 Related Work 125

Causal reasoning with LLMs The investigation 126

of an LLM’s causal reasoning capabilities (Kıcı- 127

man et al., 2023; Zhang et al., 2023; Jin et al., 128

2023b; Liu et al., 2024; Long et al., 2024; Vel- 129

janovski and Wood-Doughty, 2024) on common- 130

sense variables is an emerging topic of interest. 131

Some studies (Jin et al., 2023a; Nie et al., 2023) at- 132

tempt to assess if LLMs can do causal reasoning in 133

accordance with a set of well-defined formal rules 134

in hypothetical worlds. In constrast, we depend 135

on causal knowledge of real world phenomenon 136

that may have been expressed in the training data 137

either explicitly (Hendrickx et al., 2010) or which 138

LLM can infer via a chain of reasoning (Kosoy 139

et al., 2022). Unlike in our case, most of these 140

focus, on variables without any temporal context. 141

Further, we are not aware of any prior work that 142

combines responses from multiple diverse prompts 143

for temporal causal reasoning. 144

Self-consistency checks in LLMs Many recent 145

work propose to enhance the accuracy of facts ex- 146

tracted from LLMs based on self-consistency and 147

cross-examination (Manakul et al., 2023; Mündler 148

et al., 2024; Pacchiardi et al., 2024; Chen and 149

Mueller, 2024). One category harness external 150

information to verify LLM responses, whereas a 151

second category relies on the LLM itself for cor- 152

rectness. Our work belongs to the second category. 153

A standard technique here is to sample multiple 154

answers and promote the answer that has maxi- 155

mum consensus (SelfCheckGPT (Manakul et al., 156

2023)). Other techniques including detecting con- 157

tradictions in generated outputs (Mündler et al., 158

2024; Pacchiardi et al., 2024), quantifying uncer- 159

tainty (Chen and Mueller, 2024) using simple cross- 160

questioning along with consistency across multiple 161

samples. Our method is also based on cross ques- 162

tioning the LLM but our questions are motivated 163

to check validity of diverse assumptions of causal 164

inference. We bypass the expensive sampling step 165
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of earlier work.166

Cause-effect for Events Liu et al. (2023) pro-167

pose to train a custom model to extract cause-effect168

relationships among events. Given the scarcity of169

labeled data, our focus is prompt-based extraction170

using LLMs. Romanou et al. (2023) contributes171

a dataset of events extracted from documents, and172

provides preliminary results on the use of LLMs to173

reason about the causal relations among the events.174

Our problem is different since we start from a struc-175

tured time series of values, and extract real-world176

events from the LLM to explain observed anoma-177

lies in the series.178

Causal discovery in time-series data For causal179

discovery among many time series, a common ap-180

proach is Granger causality that infers that a time181

series X causes another time series Y if X values182

can predict Y values (Nauta et al., 2019; Cheng183

et al., 2023). A high Granger causality does not im-184

ply that X causes Y . More general causal discov-185

ery algorithms have been extended for time series186

data (Pamfil et al., 2020). Given lack of identifiabil-187

ity based on observation data, and the major chal-188

lenge of integrating structured real-world events189

with time-series databases, the commonsense logic-190

based approach with LLMs provides a promising191

choice to standard data-driven causal reasoning.192

3 Our Approach193

In this section, we first formulate the problem we194

are trying to solve followed by an overview of our195

approach. Then, we present our cross-examination196

layer for reasoning about causality and method to197

combine different components of causality.198

3.1 Problem Formulation199

We start with a set of observed anomalies in a time200

series Y of values of a known indicator variable.201

Many different methods exist for spotting anoma-202

lies in time-series (Schmidl et al., 2022). Our203

method is agnostic to the method used, and just204

require each anomaly A to be a 4-tuple:205

1. v: denoting the name of the public indicator206

whose values along time form the time series207

where the anomaly is observed.208

2. t denoting the time when the anomaly occurred.209

3. p denoting the pattern type of the anomaly. We210

focus on two patterns — a sharp increase or a211

sharp drop in the values along time.212

4. L: optional location attribute of the time series213

Let L denote a large language model, like Ope- 214

nAI’s ChatGPT. We assume L has real-world 215

knowledge about the indicator. Our goal is to har- 216

ness the LLM to extract a real-world event that 217

could have caused an anomaly A. We impose struc- 218

ture in the extracted events by viewing them as 219

instances of event categories from a well-known 220

event ontology such as Wikidata. For each event E 221

we extract a 5-tuple comprising of 222

1. N: Event name 223

2. ts: Start time of the event 224

3. te: End time of the event 225

4. C: Category of the event. We assume event 226

categories are nodes in a given ontology. 227

5. L: Location attached with the event. 228

Thus, for each input anomaly A : (v, t, p) we 229

wish to return an event E which could have caused 230

the anomaly A. Figure 1 shows examples of two 231

anomalies and corresponding extracted events. We 232

have no supervision in the form of any labeled data 233

for this task. We next present an overview of our 234

method of performing such extractions using LLM. 235

3.2 Overview 236

Our framework comprises of three steps. Figure 2 237

presents an overview of our method. Our first step 238

is to query the LLM to extract a ranked list of 239

real-world events E1, . . . , Ek to which an observed 240

anomaly A can be attributed. We design a prompt 241

that instructs the LLM to return the events as a 242

structured tuple. The prompt used for such an ex- 243

traction from LLM is present in Figure 4, and a 244

sample response is shown in Figure 5. If the LLM 245

was perfect, we could have stopped after this first 246

step. But we observed several cases of errors in the 247

extracted events using this single prompt. While 248

in most cases the attributes of the events were fac- 249

tual, the LLM exhibited poor judgement on cause- 250

effect reasoning. The LLM tended to favor popular 251

events such as COVID-19 pandemic or dot-com 252

bubble burst to attribute to all and sundry anomalies. 253

Figure 5 shows one example. While several prior 254

work have proposed techniques to correct mistakes 255

and hallucinations in LLMs (Manakul et al., 2023; 256

Mündler et al., 2024; Pacchiardi et al., 2024; Chen 257

and Mueller, 2024), most of these are designed for 258

factuality checks, whereas our task entails a more 259

nuanced temporal causal reasoning. This led us to 260

design a separate causal reasoning layer to rerank 261

and prune the list of events returned in the first 262

step. In the second step we issue a set of carefully 263

designed cross-examination questions for testing 264
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Step 1:  Extract top k structured 
events for anomaly using LLM

v: GDP growth rate
t: 1975
p: Decrease
L: Congo, Dem. Rep.

 

N: Second Congo war
L: Congo, Dem. Rep.
ts:1998-08  te:2003-07

 

N: Global economic recession
L: World
ts:1973-10  te:1975-03 

 

N: Political instability
L: Congo, Dem. Rep.
ts:1974-01  te:1975-03 

 

Step 2:  Cross examine 
each event to get features

Step 3: Combine features 
using classifier. Rank 

and filter on probability 
of correctness.

N: Global economic recession
L: World
ts:1973-10  te:1975-03 

Input Timeseries Y

LLM Based Cross 
Examination

1. Causal 
consistency
 

2. Weak Temporal 
Consistency 

3. Cause-before 
effect

Spot anomalies

Anomaly A

Prediction

Event E1

Event E2

Event E3

Classifier C

C

C

LLM
p = 0.97

p = 0.96

p = 0.19

Q: What important 
events could have 
caused <pattern> 
in <indicator> at 
<place (optional)> 
around <time>?

C

Figure 2: Overview of CauseExam inference framework for extracting real-world events to attribute to observed
anomalies in time-series databases. The training of the classifier C is discussed in Section 3.4. Pseudocode of entire
pipeline is present in Algorithm 1 in Appendix.

diverse aspects of what constitutes a valid temporal265

causality relationship between each anomaly A and266

candidate extracted event Ej . The set of questions267

and how we converted these into a feature vector is268

presented in Section 3.3. In the third step, we com-269

bine evidences from these features to output the270

final decision. We present details in Section 3.4.271

3.3 Cross-Examination Prompts and Features272

In the causal reasoning layer, we decide if an event273

E could have caused the anomaly A in the values274

of a series Y at time t. In causal inference terminol-275

ogy, E is a Boolean random treatment variable, and276

we are reasoning on its effect on Y which is con-277

tinuous. Our reasoning is based on the following278

assumptions about causal inference:279

1. Consistency: We follow the Neyman-Rubin po-280

tential outcomes framework (Rubin, 2005) and281

assume that the effect of E on Y is consistent.282

This implies that the observed anomaly A in283

values of Y at t is the same as the potential out-284

come if E were to re-occur in a parallel world.285

2. Weak temporal consistency: If E is recurring286

e.g. financial crisis and it occurred at other287

points within the time-span of the series Y , its288

effect on Y would be mostly the same.289

3. Cause-before-effect: The time of event occur-290

rence has to be before the anomaly time t.291

In the cross-examination phase, we ask questions292

to the LLM to check in diverse ways how well293

these assumptions hold. We assume the LLM’s294

training data expresses in textual form the cause-295

effect relationship among real-world phenomenon296

after adjusting for confounders. The response to297

various questions provides a noisy peak into such 298

documents. The questions are templatized and we 299

process the response in conjunction with the time 300

series Y such that the output of this phase is a vec- 301

tor of features where each feature quantifies adher- 302

ence to one of the above assumption. Pseudocode 303

in Algorithm 1 describes the process of feature 304

creation in detail. We will later present ways to 305

combine the response across multiple questions. 306

3.3.1 Causal consistency features 307

We first check for causal consistency by asking the 308

LLM two Boolean questions with opposite effects 309

of E on Y . The first questionR(I) asks if E could 310

cause a significant increase in the value of Y at 311

t, and the second question R(D) asks the oppo- 312

site question, if E could cause a drop. The exact 313

prompt appears in Figure 6. We view the response 314

as a verbalization of the potential outcome of E on 315

Y at t, and we check consistency by matching with 316

observed anomaly in Y . If the pattern p associated 317

with the observed anomaly A is I (for "increase") 318

then a consistent response would be a "Yes" for 319

R(I) and a "No" for R(D), and equivalently for 320

the case where p is a "drop". Since LLM responses 321

are noisy, the response may not be consistent. We 322

therefore treat the responses to these questions as 323

noisy evidence of consistency or lack of it. Accord- 324

ingly, we create two features: xc, xo. The feature 325

is 1 iff response to the questionR(p) matches the 326

observed pattern p is "Yes", and second feature is 1 327

iff response to the other question is a "Yes". We call 328

this set of features Boolean Consistency features. 329

An alternative to the above questions is a prompt 330
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that probes the LLM for the exact direction and331

magnitude of change that the event will have on332

Y . We ask the LLM to output the change direction333

(increase, decrease, or no change) along with a334

score between 0 and 100 indicating the strength335

of the change. The exact prompt RM appears in336

Figure 7. Following this we obtain a set of three337

features which we call Effect Consistency features:338

1. xd that measures if the LLM response on change339

pattern matches the observed anomaly pattern p340

and takes value +1,-1,0 depending on whether341

they agree, disagree, or LLM response is no-342

change respectively.343

2. xm: This feature is the strength score chosen by344

LLM scaled to be between 0 and 1.345

3. xs: This feature is a product of the xd and xm.346

3.3.2 Weak Temporal Consistency feature347

If an event E(n, ts, te) is attributed to have caused348

an anomaly A(v, p, t), then in an ideal setting349

where there are no other confounding variables,350

all other time intervals where the event n occurred351

should also result in the same pattern p of the indi-352

cator v at other times. Since we have the value of353

the indicator as a time-series, we can test whether354

this property holds. In real-life, we cannot as-355

sume that there are no confounders, so we can356

only measure weak compliance to such require-357

ments. In order to quantify such temporal consis-358

tency we first question the LLM for the list of all359

time-intervals when the event of the same name n360

appeared. The prompt used to get this list is shown361

in Figure 8. The result is a list of time intervals:362

{(ts1, te1), . . . , (tsk, tek)}. On these intervals we363

measure the degree of consistency as the sum of364

the anomaly score in the time series at each time365

within the event interval366

xdo = sign(p)
k∑

j=1

t<tej∑
t=tsj

anomaly_score(v, t) (1)367

where the anomaly_score can be any measure of368

how different the value of series v at t is as com-369

pared to the expected value, and sign(p) = 1 if the370

pattern of anomaly p in A is increase, else -1.371

3.3.3 Cause-before effect feature372

This feature is used to find the time gap between373

the event and anomaly time. We observed that the374

LLM sometimes returned events with time-stamps375

after the anomaly time-stamps, and sometimes too376

soon before the anomaly. This feature helps down-377

score such extractions. We use the start time and378

end time of the event along with the anomaly time 379

and give this feature value in the following manner: 380

xgap =

{
δ(t ≥ ts) if t ≤ te

max(0, 1− (t−te)
5 ) else.

(2) 381

3.4 Learning to combine features 382

Each of the above features provide an indication 383

on how much the extracted event (cause) adheres 384

to the assumptions of causal inference. A baseline 385

is to then just rank order extracted events based 386

on the sum of these scores. We wanted to go a bit 387

further and also filter away bogus events that could 388

not have caused the anomaly. Let OE→A denote 389

the binary decision whether E causes A. We train 390

a light-weight classifier C : x 7→ OE→A for this 391

task. To train the model C we depend on noisily 392

labeled datasets constructed from the LLM. 393

Training data creation Given a set of anoma- 394

lies {A1, . . . , An}, for each anomaly Aj , we ex- 395

tract a ranked list of events Ej1, . . . , Ejk from 396

the LLM using the first prompt described in Sec- 397

tion 3.2. Each (Aj , Ej,r) pair forms a noisy posi- 398

tive labeled example (OE→A = 1) for our dataset. 399

To create negative examples, we use two sources. 400

First, for each anomaly Aj , we create a counter- 401

factual anomaly by inverting the pattern to create 402

a new anomaly An+j . For example, if the pat- 403

tern in anomaly Aj is "increase", pattern of An+j 404

will be "decrease". We then probe the LLM to 405

extract events En+j,1, . . . , En+j,k using prompt in 406

Figure 4 corresponding to An+j . The (Aj , En+j,r) 407

pair is treated as a negative example (OE→A = 0) 408

since the event was not obtained as the reason for 409

anomaly. Second, we randomly pair an anomaly 410

Aj with an arbitrary other event Ei,r to also serve 411

as a negative example. We provide pseudocode in 412

Algorithm 2 to describe the dataset creation and 413

training of the classifier in detail. 414

Model selection and training Since we have 415

only a small number of features (seven) and these 416

were designed to test basic assumptions of causal 417

inference, we found that simple models such as 418

Naive Bayes were adequate for combining the 419

evidence from these features. We also experi- 420

mented with several classifier architectures coupled 421

with noise tolerant noise functions such as gener- 422

alized cross entropy (Zhang and Sabuncu, 2018) 423

and found that a simple naive Bayes classifier per- 424

formed the best under this noisy feature setting. 425

Since our features are generic designed to check 426
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the satisfaction of the assumption of causal infer-427

ence, the trained models generalize easily across428

datasets as we will show in the empirical section.429

4 Experiments and Evaluation430

We present an evaluation of the efficacy of state-of-431

the-art LLMs on the causal event extraction task.432

We compare our reasoning layer CauseExam of433

checking the correctness of event extraction with434

existing methods for self-checking responses. We435

also evaluate the sensitivity of various features436

and model choices, and show the generalization437

of CauseExam across datasets.438

4.1 Datasets439

We experiment with multiple time series selected440

from three datasets.441

1. Worldbank dataset2: This contains annual val-442

ues of socio-economic indicators for several443

countries. We create a dataset of top 20 coun-444

tries by area and choose list of 5 important in-445

dicators: death rate, electric power consump-446

tion, GDP growth rate, military expenditure447

percentage of GDP and unemployment percent-448

age. Each country, indicator pair defines a time-449

series. We chose the time 1960 to 2021 and450

dropped series with more than 50% missing val-451

ues.452

2. US Stock Exchange dataset: This contains his-453

torical data for stock prices of popular compa-454

nies listed on NasdaqGS and NYSE. We aggre-455

gate them to a quarterly level for this analysis.456

We choose 5 companies each for the following457

7 major categories of companies: Technology,458

Healthcare, Finance, Consumer Goods, Com-459

munication Services, Energy and Industrials.460

3. London Stock Exchange dataset: It is similar461

to previous dataset but contains data for stock462

prices of companies listed on LSE. We choose463

two companies per category. Source for both464

stock exchange datasets is Yahoo Finance3.465

For these datasets the event types are restricted to466

be from ‘war and conflicts’, ‘economic’, ‘political467

and diplomatic’, ‘health related’ or ‘natural disas-468

ter’. We manually mark anomalies in these time469

series. Number of anomalies is 254 in Worldbank470

dataset, 137 in US SE and 58 in London SE dataset.471

We split the Worldbank and US SE data across472

train (40%), validation (20%) and test (40%). The473

2https://data.worldbank.org/
3https://finance.yahoo.com/

splits are performed along country for the world- 474

bank data, and along industry-type for the financial 475

data so there is no overlap in the time-series across 476

train and test. We use the entire London SE data 477

in the test split to show generalization of our tech- 478

nique across datasets. 479

After we get the anomalies, we move on to the 480

step of extracting events corresponding to each of 481

these anomalies. We create train and validation 482

data using data creation method described in Sec- 483

tion 3.4. Extractions ar done for k=3 and k=5 using 484

GPT 3.5 for each anomaly. 485

Labeling test data. For the anomalies and the 486

set of extracted events we ask a group of human 487

labellers to mark the events that are irrelevant to 488

the anomaly. 489

Evaluation. We evaluate different methods of re- 490

ranking and filtering the k extracted events. Ac- 491

curacy is based on whether their top-1 predicted 492

event is relevant to the anomaly as per the above 493

gold labeling of the test data. When an anomaly 494

has no relevant event, then a method that also does 495

not return any event is considered correct. 496

4.2 Baselines 497

We compare our technique against these baselines: 498

Single extraction prompt. We use the ranking 499

of events E1, . . . , Ek extracted in order from the 500

extraction prompt in Figure 4 using just GPT 3.5. 501

Single Extraction prompt reranked by GPT4. 502

We ask GPT4 to rerank events E1, . . . , Ek returned 503

by GPT 3.5. 504

SelfCheckGPT methods. We rescore each event 505

Ej using the top three methods reported in Self- 506

CheckGPT (Manakul et al., 2023). All the variants 507

first sample multiple (M = 20 in our experiments) 508

stochastic responses to the prompt in Figure 9 using 509

GPT 3.5, and measure the similarity of each can- 510

didate event Ej to sampled M events. These are 511

3 method variants used for measuring similarity: 512

prompt-based technique, NLI (natural language in- 513

ference), and unigram(max). 514

CauseExam. We report performance of Cause- 515

Exam under various choice of classifiers for train- 516

ing P (OE→A|x) models, various training data and 517

different LLMs (GPT 3.5, GPT 4 and Llama3-70b) 518

for cross-examination. Our model uses seven fea- 519

tures as described in Section 3.3. The default clas- 520

sifier is Naive Bayes but we also compare with a 521

logistic regression classifier and two-layer neural 522
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network.523

4.3 Overall Results524

In Table 1 we present an overall comparison of525

various methods. First observe that using just a sin-526

gle extraction prompt, GPT-3.5 is able to yield an527

accuracy around 60% for reasoning about anoma-528

lies in companies stock prices, and around 70%529

for various socio-economic phenomenon of the530

world. These numbers are encouraging, and show531

the promise of replacing elaborate ETL pipelines532

of data warehouses for integrating raw textual docu-533

ments, to an LLM-based conversational integration.534

Next we go over different methods of boosting535

the accuracy of initial extraction by reranking ex-536

tracted events. SelfCheckGPT methods that rerank537

based on consensus with multiple sampled extrac-538

tions, do help. The accuracy on the US SE dataset539

jumps from 62% to 72% with the best of these540

methods. When we use GPT-4 to rerank events541

generated from GPT-3.5, we get a much bigger542

boost and the Top-1 accuracy is now 87% for US543

SE and around 80% for Worldbank.544

Compared to all these methods, CauseExam pro-545

vides the largest boost with all LLMs improving546

the performance significantly. For example, Cause-547

Exam with GPT 3.5 gives an accuracy of 94% for548

US SE , 91% for London SE and 89% for World-549

bank. Other LLMs give similar gains showing that550

most of the work is done by our classifier and fea-551

ture aggregation technique. This shows the impact552

of our carefully designed cross-questions, the ex-553

tracted featurization of the response, and classifier554

to implement sound temporal causal reasoning us-555

ing LLMs as tools.556

4.4 Role of different components557

To understand the importance of each group of fea-558

tures we extracted in Section 3.3, we perform abla-559

tions where we drop one group of features at a time560

and record accuracy of the classifier for deciding561

OE→A value based on the reduced feature. Table 2562

shows the results. The first column of numbers563

are with no ablation. When we drop the Boolean564

Consistency feature of Section 3.3.1, we find a565

drop of up to 4% accuracy across both datasets.566

When we drop the Effect Consistency features of567

Section 3.3.1, the accuracy drops by as much as568

9% for the US SE dataset. This group of feature569

turned out to be the most useful among the features570

we considered. By dropping the Cause-Before Ef-571

fect feature accuracy dropped for the Worldbank572
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Figure 3: Accuracy with increasing size of training set
for k=3 averaged over 10 random splits (100% train is
1120 samples).

dataset. For the US SE dataset it did not have much 573

impact because for the initial extracted events they 574

always had a value of 1. Finally, our Weak Tempo- 575

ral Consistency feature also boosted accuracy by 576

as much as 4% for the US SE dataset. This estab- 577

lishes that our features motivated from the three 578

causal inference assumptions had non-trivial mu- 579

tual information with the class label, and they each 580

provided a different important signal for the final 581

causal decision. 582

The accuracy decreases significantly across all 583

datasets and LLMs when only random negatives 584

are used in training the classifier instead of com- 585

bination of counterfactual negatives and random 586

negatives with a drop of 5–25% across datasets and 587

LLMs. This shows the importance of our novel 588

method of generating counterfactual negatives de- 589

scribed in Section 3.4 for training of classifier. 590

4.5 Ablations on CauseExam classifier 591

In this section we show that the classifier used by 592

CauseExam is robust to changing datasets and sizes, 593

and a simple naive Bayes classifier works best for 594

noisy labeled data. First in Table 3 we show a 595

comparison of various choice of models for the bi- 596

nary classification task P (OE→A|x) and note how 597

Naive Bayes is significantly better, possibly be- 598

cause it is more robust to noisy labeled data. Next, 599

we show that a very small amount of labeled data 600

suffices in Figure 3. We find that even with 10% 601

of the total training set which is about 100 noisy 602

instances, we reach close to the peak accuracy. 603

In the above experiments, the training data was a 604

union of instances from both US SE and Worldbank 605

datasets. To establish generalization of these mod- 606

els to new datasets, we present another study where 607

we train a classifier using labeled instances from 608
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Only SelfCheckGPT (GPT3.5) GPT4 CauseExam
Dataset k Extract NLI N-Gram Prompt Re-Ranked GPT3.5 GPT4 Llama3
Worldbank 3 70.0 72.8 71.9 70.0 79.4 88.7 86.9 87.8
Worldbank 5 71.6 75.4 72.6 71.6 83.0 89.6 91.5 90.5
US SE 3 61.7 70.2 68.0 72.3 87.2 93.6 87.2 84.6
US SE 5 57.4 63.8 61.7 68.0 87.2 91.4 91.4 87.2
London SE 3 62.0 63.7 63.7 65.5 72.4 87.9 86.2 94.8
London SE 5 62.9 66.6 66.6 66.6 77.7 90.7 90.7 92.5

Table 1: Top-1 Accuracy of baselines against CauseExam . CauseExam outperforms all baselines across all datasets
for each LLM. Only Extract method uses GPT 3.5. Table 5 in the appendix reports statistical significance over
multiple runs. Samples where CauseExam beats GPT4 Re-ranked are shown in Figure 11 in Appendix.

Without Without features No Counter
Dataset LLM Ablation Boolean Effect Temporal Cause-Before factual Neg
Worldbank GPT3.5 88.7 85.9 83.1 85.9 82.2 83.1
Worldbank GPT4 86.9 86.9 86.9 87.8 79.4 76.6
Worldbank Llama3 87.8 89.7 86.9 88.7 77.5 79.4
US SE GPT3.5 93.6 89.3 85.1 89.3 93.6 89.3
US SE GPT4 87.2 87.2 87.2 85.1 87.2 63.8
US SE Llama3 84.6 84.6 82.0 87.1 82.0 76.9

Table 2: Ablations on performance of the causal decision model P (OE→A|features) for k=3. Each feature set is
important for performance and counterfactual negatives help train a more discriminating classifier.

Logi- 2 Lay- Naive
Dataset LLM stic er NN Bayes
Worldbank GPT3.5 82.2 84.1 88.7
Worldbank GPT4 82.2 79.4 86.9
Worldbank Llama3 78.5 80.3 87.8
US SE GPT3.5 85.1 89.3 93.6
US SE GPT4 85.1 82.9 87.2
US SE Llama3 76.9 84.6 84.6

Table 3: Comparison of performance across different
training-based techniques trained on combined dataset
for each LLM and k=3. Naive Bayes works best.

one dataset and deploy it on another dataset. In Ta-609

ble 4, we see that the accuracy with entire dataset610

is only slightly better than individual dataset.611

5 Conclusion612

In this paper we presented CauseExam, a novel613

framework of harnessing modern LLMs for ex-614

tracting attributing real-world events to anomalies615

observed in structured time series. We observe616

that a default single prompt set of events gener-617

ated from LLMs often lack relevance from causal618

view-point. We then designed a set of diverse cross-619

examination questions to check for adherence to620

three basic assumptions of temporal causal infer-621

Union Exchanged
Dataset LLM dataset dataset
Worldbank GPT3.5 88.7 87.8
Worldbank GPT4 86.9 85.0
Worldbank Llama3 87.8 88.7
US SE GPT3.5 93.6 93.6
US SE GPT4 87.2 87.2
US SE Llama3 84.6 84.6

Table 4: Evaluating OOD generalization by training on
US SE dataset and testing Worldbank and vice-versa.
We compare with model trained on union of 2 datasets.

ence. We convert the responses into a small set of 622

numerical features and train a light-weight classi- 623

fier with LLM extracted noisy labeled data. We 624

show that simple naive Bayes classifier provides a 625

robust decision model. We boost accuracy of the 626

single prompt extract from 65% to above 90% us- 627

ing our causal reasoning layer. Further our model 628

generalizes across datasets because of the generic 629

features we extract during the cross-examination. 630

This study shows both the promise of LLMs for 631

closer integration of structured data analysis with 632

real-world knowledge. Further, it highlights the 633

role of more nuanced reasoning for specific tasks 634

beyond what can be achieved by a language model. 635
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Limitations636

One of the limitations of this work is that informa-637

tion of the domain of time series dataset should be638

present in the training corpus of LLM. The LLMs639

used for experiments in this paper include GPT640

3.5, GPT 4 and Llama 3, all of which have been641

trained on a large corpus of general data. Thus,642

they work well on datasets which are public and643

global in nature like social indicators dataset and644

stock prices of companies dataset. These LLMs645

will not give good performance on datasets that are646

private and do not belong to the training corpus of647

these LLMs such as the internal data of a company.648

The solution to this limitation is incorporating Re-649

trieval Augmented Generation in the pipeline by650

providing sufficient documents with information651

relevant to the time series and events that can affect652

it. We treat this as an exciting direction for future653

research.654

Ethics Statement655

We construct the dataset used in our research us-656

ing publicly available data sources like Worldbank4657

and Yahoo Finance5 strictly adhering to their Terms658

of Use, and ensure that there are no privacy con-659

cerns or violations. In the annotator labellings,660

we collect no personal or identifiable information661

which can be misused.662

For extractions from the LLMs used in this paper,663

we checked some samples manually and found no664

obvious ethical concerns, like violent or offensive665

content. However, we understand that text genera-666

tion from LLMs is subject to unexpected outputs667

to a small degree and we should be careful while668

using this data.669
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A Pseudo Codes for CauseExam 802

We show the pseudocode for the CauseExam inference pipeline in Algorithm 1. The pseudocode for 803

creating training data and training the classifier is shown in Algorithm 2 804

Algorithm 1 CauseExam Inference pipeline

Required: Time Series Y , Anomaly Aj , LLM L, Classifier C
Ej1,. . . jk ← query L with Aj using prompt in Figure 4
Initialize an empty map M
for r ← 1 to k do

x← GETFEATURES(Y,Aj , Ej,r)
OE→A← C(x)
if OE→A > 0.5 then append Ej,r to M with value OE→A

end for
Sort M by values in descending order
If M is not empty then return Top event in M as prediction else return None

function GETFEATURES(Y , Aj , Ej,r)
Input: Time Series Y , Anomaly Aj , Event Ej,r

Output: Feature vector x
xc, xo, xd, xm, xs← CAUSALCONSISTENCY(Aj , Ej,r)
xdo← TEMPORALCONSISTENCY(Y,Aj , Ej,r)
Get xgap using Equation 2
x:= [xc, xo, xd, xm, xs, xdo, xgap]

end function
function CAUSALCONSISTENCY(Aj , Ej,r)

Input: Anomaly Aj , Event Ej,r

Output: Features xc, xo, xd, xm, xs
▷ Boolean Consistency Features
response(R(I))← Query L withR(I) in Figure 6 and Aj , Ej,r , "increase" as arguments
response(R(D))← Query L withR(D) in Figure 6 and Aj , Ej,r, "decrease" as arguments
If response(R(p) = "Yes" then xc = 1 else xc = 0
If response(R(p′)) = "Yes" then xo = 1 else xo = 0 ▷ p′ refers to opposite pattern of p
▷ Effect Consistency Features
res(RM )← Query L withRM in Figure 7
response(RM )change, response(RM )mag ← res(RM )
If response(RM )change = "no effect" then xd ← 0
elif response(RM )change = p(Aj) then xd ← 1
else xd ← −1
xm ← response(RM )mag/100
xd ← xd ∗ xm

end function
function TEMPORALCONSISTENCY(Y , Aj , Ej,r)

Input: Time Series Y , Anomaly Aj , Event Ej,r

Feature Output: xdo
{(ts1, te1)], . . . , (tsk, tek)} ← Query L with prompt in Figure 8 and Aj Ej,r as argument
Get xdo using Equation 1

end function
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Algorithm 2 Classifier Training Algorithm

Required: Time Series Y , Anomaly Set {A1, . . . , An}, LLM L
Initialise empty lists S+ve (positive samples), S−ve (negative samples), Eall (all events)
for j ← 1 to n do

Ej,1,. . . Ej,k ← query L with Aj using prompt in Figure 4
Create counter factual anomaly An+j by inverting change direction
En+j,1,. . . En+j,k ← query L with An+j using prompt in Figure 4
Extend Eall with Ej,1,. . . Ej,k, En+j,1,. . . En+j,k

for r ← 1 to k do
x+ve← GETFEATURES(Y,Aj , Ej,r)
Append x+ve to S+ve

x−ve← GETFEATURES(Y,An+j , En+j,r)
Append x−ve to S−ve

end for
end for
for j ← 1 to n do

Get an arbitrary event Ei,r for Aj from Eall following constraints mentioned in Appendix.
xrand← GETFEATURES(Y,Aj , Ei,r)
Append xrand to S−ve

end for
Train Binary Classifier C using S+ve and S−ve

return C

B More Experiments805

We show the consistency of CauseExam technique over 10 runs with 80% training dataset randomly806

sampled and report the mean and standard deviation of performance for different LLMs and datasets807

in Table 5. We observe that performance is consistent over splits with a very small standard deviation808

showing that our classifier is robust to fluctuations in training data.809

Cause Cause Cause
Dataset k Exam Exam Exam

GPT3.5 GPT4 Llama3
Worldbank 3 87.9 ± 0.53 86.0 ± 0.81 88.5 ± 0.63
Worldbank 5 89.6 ± 0.44 91.4 ± 0.29 91.0 ± 0.49
US SE 3 92.3 ± 1.09 87.2 ± 0.00 84.8 ± 0.81
US SE 5 91.2 ± 0.67 91.2 ± 0.67 86.3 ± 1.09
London SE 3 87.9 ± 0.81 86.2 ± 0.00 94.8 ± 0.00
London SE 5 90.7 ± 0.00 90.3 ± 0.78 92.9 ± 0.78

Table 5: Mean Top-1 Accuracy with standard deviation (mean ± std ) for the performance of CauseExam using 80
% of training dataset over 10 random splits. We see that the training is stable and performance remains consistent
across all splits.

The results of different ablations on London SE dataset are present in Table 6 and Table 7.810
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Without No No No No Cause- No Counter
Dataset LLM Ablation Boolean Effect Temporal Before factual

features features feature feature Negatives
London SE GPT 3.5 87.9 86.2 84.4 87.9 86.2 79.3
London SE GPT 4 86.2 86.2 72.4 84.4 82.7 63.7
London SE Llama 3 94.8 94.8 82.7 93.1 89.6 74.1

Table 6: Impact of ablations on performance of the causal decision model P (OE→A|features) for k=3. Each feature
set appears to be important for performance and counterfactual negative prove to help training of classifier.

Logi- 2 Naive
Dataset LLM stic Layer Bayes

NN
London SE GPT 3.5 87.9 86.2 87.9
London SE GPT 4 75.8 82.7 86.2
London SE Llama 3 93.1 91.3 94.8

Table 7: Comparison of performance across different training-based techniques trained on combined dataset for
each LLM and k=3. Naive Bayes works best.

C Prompts to the LLM 811

You are a helpful assistant for causal relationship understanding. Think about the cause-and-effect relationships

between the events and its effect on the timeseries.

According to you, what important events could have caused <pattern> in <indicator><place(optional)> around

<time>?

Return only python list of top <k> events in descending order of relevance as answer where each event is in a json

parsable dictionary form (all values should be in string format) with keys event name, location (country name or

"world" if event is global), start time in format yyyy-mm, end time in format yyyy-mm and type of event (one from

<event-type-list>).

Figure 4: Prompt to the LLM to generate the ranked list of structured events to attribute to an Anomaly characterized
by <indicator>, <pattern>, <time> at <place(optional)>. For each dataset there is a separate list of valid event-types.

• 1 : [‘dot-com bubble burst’, ‘2000-01’, ‘2002-01’]
• 2 : [‘y2k bug’, ‘1999-12’, ‘2000-01’]
• 3 : [‘microsoft releases windows 2000’, ‘2000-02’, ‘2000-03’]

Figure 5: Three extracted events to explain the anomaly: increase in stock price of Microsoft in 2000Q1. The
response is obtained using the prompt in Figure 4 with arguments <Indicator>: stock price of Microsoft Corporation,
<Pattern>:increase, <Time>: 2000Q1. It can be seen that dot com bubble burst is returned as top event corresponding
to this anomaly which is not correct.
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You are a helpful assistant for causal relationship understanding. Think about the cause-and-
effect relationships between the event and its effect on the indicator.
Event: <event name> which happened from <event start time> to <event end time> in <event
location> Effect: <pattern> in <indicator> (at <place> (optional)) around <time>

Could the event create this effect? Answer from one of the following options. Yes:
Event could cause this effect. No: Event cannot cause this effect.

Answer should be one of the options ’Yes’, ’No’. Important Note: Return just the
answer from the options and nothing else.

Figure 6: Prompt to LLM to extract Boolean consistency features

You are a helpful assistant for causal relationship understanding. Think about the cause-and-
effect relationships between the event and its effect on the indicator.
Event: <event name> which happened from <event start time> to <event end time> in <event
location>
Indicator: <indicator> <place (optional)> around <time>

Event’s effect on the Indicator is:
Increase: Event could increase the indicator. Choose this option if event has positive impact on
indicator.
Decrease: Event could decrease the indicator. Choose this option if event has negative impact
on indicator.
No effect: Event could not affect the indicator. Choose this option if event has no impact on
indicator.

Magnitude of this effect is measured using a strength score from 0 to 100. (In case
of No Effect return 0)
Score above 80: Event is related to this indicator and will definitely affect it.
Score between 50 and 80: Event is related to this indicator and might affect it.
Score between 20 and 50: Event might be related to this indicator but is less likely to affect it.
Score below 20: Event is not related to this indicator and will not affect it.

Return your answer as a python list of strings ["Effect", "Magnitude"]. Effect must
be from one of the 3 options provided. Magnitude must be a single integer score from 0 to 100.
Important Note: Return just this list as answer and nothing else.

Figure 7: Prompt to LLM to extract Effect consistency features

You are a helpful assistant for causal relationship understanding. Think about the cause-and-effect relationships

between the events and its effect on the timeseries.

According to you, what important events could have caused <pattern> in <indicator><place(optional)> around

<time>?

Return most relevant event as a json parsable dictionary form (all values should be in string format) with keys event

name, location (country name or "world" if event is global), start time in format yyyy-mm, end time in format

yyyy-mm and type of event (one from <event-type-list>).

Figure 9: Prompt to the LLM for SelfCheckGPT sample generation
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You are a helpful assistant who has good knowledge of history and important events. Use this
knowledge to answer the following question.
Event: <event name> which happened in <event loc> Related Indicator: <indicator>(at <place>
(optional)) Between <series start time> and <series end time>, return the time periods when
this event happened.

Return answer as a list of these time periods in the format:

[[<start time 1>, <end time 1>], [<start time 2>, <end time 2>], [<start time 3>, <end time 3>]...]

Some sample answers are shown below (each line is a sample answer): <examples of
answer format>
Give the best answer as per your knowledge.
Important Note: Return the final answer between the tags <Answer>answer</Answer>.

Figure 8: Prompt to LLM to extract all time periods when event occurred for weak temporal consistency features

D Additional Examples and Samples of better perfomance by CauseExam 812

D.1 Example of Time Series labelled with anomaly 813

N: Afghanistan War
ts: 2001-10   te:2014-12

N: Reagan Defence Buildup
ts: 1982-01   te: 1989-01

       1960    1965    1970    1975    1980    1985     1990    1995    2000     2005    2010    2015    2020

Figure 10: Example of time series from socio indicator system marked with two anomalies and the extracted
real-world event that CauseExam attributes to the anomaly based on its LLM-based causal reasoning. In the first
anomaly, US President Reagen significantly increased the military spending in his tenure. In the second anomaly,
Afghanistan War peak happened around 2010 which caused increase in military expenditure of USA.

D.2 Examples of responses from the LLM from the first extraction prompt 814

Samples where GPT 3.5 fails: 815

1. <Popularity Problem>Pattern:increase, Indicator: stock price of Microsoft Corporation, Place: , Time: 816

2000Q1 817

(a) Initial Event Order 818

i. 1 : [’dot-com bubble burst’, ’world’, ’2000-01’, ’2002-01’] 819

ii. 2 : [’y2k bug’, ’world’, ’1999-12’, ’2000-01’] 820

iii. 3 : [’microsoft releases windows 2000’, ’world’, ’2000-02’, ’2000-03’] 821

(b) Ground Truth Order 822

i. 1 : [’microsoft releases windows 2000’, ’world’, ’2000-02’, ’2000-03’] 823

ii. 2 : [’dot-com bubble burst’, ’world’, ’2000-01’, ’2002-01’]<IRRELEVANT> 824

iii. 3 : [’y2k bug’, ’world’, ’1999-12’, ’2000-01’]<IRRELEVANT> 825

2. <Popularity Problem> Pattern:increase, Indicator: stock price of SunPower Corporation, Place: , 826

Time: 2021Q1 827

(a) Initial Event Order 828

i. 1 : [’covid-19 pandemic’, ’world’, ’2020-12’, ’2021-03’] 829
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ii. 2 : [’us presidential election’, ’united states’, ’2020-11’, ’2021-01’]830

iii. 3 : [’renewable energy policies’, ’united states’, ’2021-01’, ’2021-03’]831

(b) Ground Truth Order832

i. 1 : [’renewable energy policies’, ’united states’, ’2021-01’, ’2021-03’]833

ii. 2 : [’us presidential election’, ’united states’, ’2020-11’, ’2021-01’]834

iii. 3 : [’covid-19 pandemic’, ’world’, ’2020-12’, ’2021-03’]<IRRELEVANT>835

3. <Popularity Problem>Pattern:increase, Indicator: stock price of NVIDIA Corporation, Place: , Time:836

2018Q3837

(a) Initial Event Order838

i. 1 : [’trade war between us and china’, ’world’, ’2018-07’, ’2018-09’]839

ii. 2 : [’strong quarterly financial results’, ’world’, ’2018-08’, ’2018-08’]840

iii. 3 : [’launch of new gaming gpus’, ’world’, ’2018-08’, ’2018-08’]841

iv. 4 : [’increased demand for ai and data center applications’, ’world’, ’2018-07’, ’2018-09’]842

v. 5 : [’positive industry outlook for semiconductor sector’, ’world’, ’2018-07’, ’2018-09’]843

(b) Ground Truth Order844

i. 1 : [’strong quarterly financial results’, ’world’, ’2018-08’, ’2018-08’]845

ii. 2 : [’launch of new gaming gpus’, ’world’, ’2018-08’, ’2018-08’]846

iii. 3 : [’increased demand for ai and data center applications’, ’world’, ’2018-07’, ’2018-09’]847

iv. 4 : [’positive industry outlook for semiconductor sector’, ’world’, ’2018-07’, ’2018-09’]848

v. 5 : [’trade war between us and china’, ’world’, ’2018-07’, ’2018-09’]<IRRELEVANT>849

4. <Time delta and popularity problem>Pattern:decrease, Indicator: GDP growth rate, Place: Congo,850

Dem. Rep., Time: 1975851

(a) Initial Event Order852

i. 1 : [’second congo war’, ’congo, dem. rep.’, ’1998-08’, ’2003-07’]853

ii. 2 : [’global economic recession’, ’world’, ’1973-10’, ’1975-03’]854

iii. 3 : [’oil crisis’, ’world’, ’1973-10’, ’1974-03’]855

iv. 4 : [’political instability’, ’congo, dem. rep.’, ’1975-01’, ’1975-12’]856

v. 5 : [’drought’, ’congo, dem. rep.’, ’1974-01’, ’1975-12’]857

(b) Ground Truth Order858

i. 1 : [’drought’, ’congo, dem. rep.’, ’1974-01’, ’1975-12’]859

ii. 2 : [’oil crisis’, ’world’, ’1973-10’, ’1974-03’]860

iii. 3 : [’second congo war’, ’congo, dem. rep.’, ’1998-08’, ’2003-07’]861

iv. 4 : [’political instability’, ’congo, dem. rep.’, ’1975-01’, ’1975-12’]862

v. 5 : [’global economic recession’, ’world’, ’1973-10’, ’1975-03’]<IRRELEVANT>863

5. <Fake event at top, consensus will help here because no time returned for this case> Pattern:increase,864

Indicator: military expenditure percentage of GDP, Place: Peru, Time: 1977865

(a) Initial Event Order866

i. 1 : [’peruvian constitutional crisis’, ’peru’, ’1977-01’, ’1978-12’]867

ii. 2 : [’world oil crisis’, ’world’, ’1973-10’, ’1974-03’]868

iii. 3 : [’shining path insurgency’, ’peru’, ’1980-01’, ’1992-12’]869

(b) Ground Truth Order870

i. 1 : [’world oil crisis’, ’world’, ’1973-10’, ’1974-03’]<IRRELEVANT>871

ii. 2 : [’peruvian constitutional crisis’, ’peru’, ’1977-01’, ’1978-12’]<IRRELEVANT>872

iii. 3 : [’shining path insurgency’, ’peru’, ’1980-01’, ’1992-12’]<IRRELEVANT>873

6. <Popularity problem>Pattern:increase, Indicator: military expenditure percentage of GDP, Place:874

China, Time: 2009875

(a) Initial Event Order876

i. 1 : [’global financial crisis’, ’world’, ’2008-09’, ’2009-12’]877

ii. 2 : [’chinese economic stimulus package’, ’china’, ’2008-11’, ’2009-12’]878

iii. 3 : [’global recession’, ’world’, ’2008-12’, ’2009-06’]879

(b) Ground Truth Order880

i. 1 : [’chinese economic stimulus package’, ’china’, ’2008-11’, ’2009-12’]881
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ii. 2 : [’global financial crisis’, ’world’, ’2008-09’, ’2009-12’]<IRRELEVANT> 882

iii. 3 : [’global recession’, ’world’, ’2008-12’, ’2009-06’]<IRRELEVANT> 883

D.3 Examples where CauseExam beats GPT 4 reranking 884

Anomaly: increase in stock price of NVIDIA Corporation around Time: 2021Q4
Initial Order:
1 : covid-19 pandemic in world from 2020-12 to 2021-12
2 : global chip shortage in world from 2020-12 to 2022-12
3 : launch of new gaming consoles in world from 2020-11 to 2021-01
GPT4: global chip shortage in world from 2020-12 to 2022-12
CauseExam: launch of new gaming consoles in world from 2020-11 to 2021-01

Anomaly: increase in military expenditure percentage of GDP at Peru around 1977
Initial Order:
1 : Peruvian economic crisis in Peru from 1980-01 to 1985-12
2 : Falklands war in world from 1982-04 to 1982-06
3 : Debt crisis in Latin America from 1982-07 to 1989-12
GPT4: Peruvian economic crisis in Peru from 1980-01 to 1985-12
CauseExam: Falklands war in world from 1982-04 to 1982-06

Figure 11: Examples where CauseExam (GPT-3.5) beats GPT-4 Re-ranking

D.4 Examples where individual features improve performance 885

Figure 12 shows the examples for each of the set of features where they individually aid the performance. 886

E Dataset Details 887

E.1 Annotator Information 888

The annotators who marked anomalies and labeled test data for this research are 5 final-year students of 889

the Undergraduate program who had good knowledge of the task. The average age of annotators was 21 890

years. They were paid for the task at par with the country’s norms. Their demographic background is not 891

disclosed to maintain anonymity. They were provided with clear instructions for both the tasks: 892

1. Anomaly Labelling: The definition of anomaly varied with different time series types. They were 893

provided with sample labelings for each type of anomaly. To maintain uniformity, all time series of a 894

particular type were given to one student. 895

2. Test Data Labelling: The annotators were shared a file with anomaly details and corresponding 896

extracted. They were shared the following textual instruction "Mark the events which could not have 897

caused this anomaly as irrelevant as per your understanding and inference. You are free to use any 898

knowledge source to aid your decision making like web search and books. 899

E.2 Dataset numbers 900

1. Dataset details 901

(a) The list of companies for US SEdataset per category: 902

i. "Technology": "Apple Inc.", "Microsoft Corporation", "Amazon.com Inc.", "Alphabet 903

Inc.", "NVIDIA Corporation" , 904

ii. "Healthcare": "Amgen Inc.", "Biogen Inc.", "Gilead Sciences Inc.", "Regeneron Pharma- 905

ceuticals Inc.", "Vertex Pharmaceuticals Incorporated" , 906

iii. "Finance": "PayPal Holdings Inc.", "The Goldman Sachs Group, Inc.", "JPMorgan Chase 907

& Co.", "American Express Company", "Square, Inc." , 908

iv. "Consumer Goods": "Tesla, Inc.", "The Coca-Cola Company", "PepsiCo, Inc.", "Nike, 909

Inc.", "Procter & Gamble Company" , 910
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Boolean consistency feature
Anomaly: Decrease in GDP growth rate at Congo, Dem. Rep. around 1975
Initial Event Order
1 : second congo war in congo, dem. rep. from 1998-08 to 2003-07
2 : global economic recession in world from 1973-10 to 1975-03
3 : political instability in congo, dem. rep. from 1974-01 to 1975-12
CauseExam prediction: global economic recession in world from 1973-10 to 1975-03
Explanation: The responses were Yes and No for this event, and for the top event of initial
order, both responses were No.

Effect consistency feature
Increase in stock price of NVIDIA Corporation around 2018Q3
Initial Order:
1 : trade war between us and china in world from 2018-07 to 2018-09
2 : strong financial performance by nvidia in world from 2018-07 to 2018-09
3 : launch of new gaming gpus by nvidia in world from 2018-07 to 2018-09
CauseExam prediction: strong financial performance by nvidia in world from 2018-07 to
2018-09
Explanation: Gave the highest score to this event whereas the top of initial got negative score

Cause-before effect feature
Decrease in electric power consumption at Congo, Dem. Rep. around 1982
Initial Event Order
1 : second congo war in congo, dem. rep. from 1998-08 to 2003-07
2 : first congo war in congo, dem. rep. from 1996-10 to 1997-05
3 : economic crisis in congo, dem. rep. from 1982-01 to 1984-12
CauseExam prediction: economic crisis in congo, dem. rep. from 1982-01 to 1984-12
Explanation: Only 1 event was in the permitted time window. Time of top event of initial order
was after the anomaly.

Weak Temporal Consistency feature
Increase in stock price of Clean Energy Fuels Corp. around 2021Q1
Initial Event Order
1 : covid-19 pandemic in world from 2020-12 to 2021-03
2 : joe biden’s inauguration united states 2021-01 2021-01
3 : renewable energy policies united states 2021-01 2021-03
CauseExam prediction: joe biden’s inauguration united states 2021-01 2021-01
Explanation: Covid-19 time was over 8 quarters, the net score came to be negative whereas for
predicted event the score was positive

Figure 12: Examples where individual features improve performance
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v. "Communication Services": "Meta Platforms, Inc.", "Netflix Inc.", "T-Mobile US, Inc.", 911

"Comcast Corporation", "Charter Communications, Inc." , 912

vi. "Energy": "Marathon Petroleum Corporation", "Clean Energy Fuels Corp.", "Plug Power 913

Inc.", "Renewable Energy Group, Inc.", "SunPower Corporation" , 914

vii. "Industrials": "Boeing Company", "Lockheed Martin Corporation", "FedEx Corporation", 915

"United Parcel Service, Inc.", "Caterpillar Inc." 916

(b) The list of companies for London SEdataset per category: 917

i. "Technology": "Rolls-Royce Holdings plc", "Informa PLC" , 918

ii. "Healthcare": "AstraZeneca PLC", "Smith & "Nephew plc" , 919

iii. "Finance": "Lloyds Banking Group plc", "Barclays PLC" , 920

iv. "Consumer Goods": "British American Tobacco plc", "Unilever PLC" , 921

v. "Communication Services": "Vodafone Group Pln", "ITV plc" , 922

vi. "Energy": "SSE plc", "BP plc" , 923

vii. "Industrials": "Babcock International Group PLC", "Melrose Industries PLC" 924

(c) Worldbank chosen 20 country list in descending order of area: "Russian Federation", "Canada", 925

"China", "United States", "Brazil", "Australia", "India", "Argentina", "Kazakhstan", "Algeria", 926

"Congo, Dem. Rep.", "Greenland", "Saudi Arabia", "Mexico", "Indonesia", "Sudan", "Libya", 927

"Iran, Islamic Rep.", "Mongolia", "Peru" 928

2. As mentioned in the paper we had 254 anomalies for the worldbank dataset, 137 anomalies for the 929

US SE dataset and 58 anomalies in London SE dataset. 930

We use GPT 3.5 (gpt-35-turbo-16k) to extract events from anomalies. After we did event extraction, 931

we had to drop a few anomalies due to parsing-related errors. After we drop these anomalies we are 932

left with: 933

(a) k=3: 54 London SE , 137 US SE , 250 worldbank 934

(b) k=5: 58 London SE , 136 US SE , 247 worldbank 935

3. For training dataset creation, we have a positive to negative ratio of 3:4 for k=3 case and 5:6 for k=5 936

case. We ensured that training data is not skewed. 937

4. Size of training dataset creation: 938

(a) k=3: 1120 samples, 480 positive, 640 negative in 100% combined dataset. 939

(b) k=5: 1738 samples, 790 positive, 948 negative in 100% combined dataset. 940

F Experimental Details and Reproducibility 941

F.1 LLM details and Reproducibility 942

We work with 3 primary LLMs GPT 3.5, GPT 4 and Llama 3 (70 billion). Azure OpenAI was used to 943

access GPT models and Ollama library in python was used to access Llama3 70b model. We set the 944

temperature to 0 while generating responses for event extraction and cross-examination. The results 945

should remain majorly reproducible barring a small fluctuation subject to variance in returned values from 946

LLMs. We provide more details in following sections for reproducing the results. 947

F.2 Weak Temporal Consistency feature’s Anomaly method 948

In this, we calculate the anomaly score using the statsmodels.tsa.seasonal.STL function. For worldbank 949

dataset we use the timeperiod as 5 years and for the financial dataset we use the time period as 6 quarters. 950

We find the trend in the data and then subtract this trend from the residue values to get the anomaly score. 951

We normalize this anomaly score by dividing with the max absolute value of anomaly scores. 952

F.3 Constraints on Random Sampling of events 953

During random sampling of the event to associate with the anomaly we ensure the following conditions to 954

avoid any misassociations: 955

1. Worldbank: We exclude all the events in the same country and the same indicator. 956

2. Financial: We exclude all the events of companies of this industry type and also the events with the 957

similar trend. Removal of events with similar trend is essential because Global events will affect the 958
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entire stock market as a whole and will create same effect across company types.959

F.4 Training details960

Naive Bayes and Logistic regression training is standard training. For training the 2 Layer NN, we use a961

model with 1 hidden layer of dimension 16. The training is done using Generalised cross entropy loss962

with noise parameter q=0.5. We choose this parameter because without gold truths we cannot estimate the963

noise in train data and so we cannot choose the most optimal q. Thus we take a middle value. Optimiser964

is Adam with lr=0.1 . We train for 100 epochs, breaking on Validation accuracy. The training time for965

each model training experiment is less than 1 minute on NVIDIA A100-SXM4 GPU.966

G Details of SelfCheckGPT Baseline967

We adapt the SelfCheckGPT methods to our case as follows:968

1. In terms of the terminology used in SelfCheckGPT paper (Manakul et al., 2023), each of the k969

extracted events corresponding to an anomaly are treated as response R ( R1, R2,...Rk ). The970

objective is to rank each of these responses based on their scores. We then stochastically sample971

N=20 events using a prompt described in Figure 9. These 20 samples make the S for the technique972

as in selfcheckGPT method.973

2. Since selfcheckGPT works on passages and sentences. We convert the structured event into a passage974

as follows:975

"Event <event name> can <pattern> <indicator><place str> around <anomaly time>. Event <event976

name> started in <event time start> and ended in <event time end>. Event <event name> happened977

in <event location>."978

This passage has 3 sentences.979

3. We use different passage-level scores to rerank each event. This score is the average of the sentence980

level scores.981

4. We compare our method against the top 3 performing methods for passage-level ranking perfor-982

mances in the Selfcheckgpt paper: prompt-based technique, NLI (natural language inference), and983

unigram(max).984
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