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Abstract

In this paper, we address the challenge of identi-
fying real-world events that could have caused
observed anomalies in time-series data of pub-
lic indicators. Previously, this was a daunting
task in a data analysis pipeline due to the open-
ended nature of the answer domain. However,
with the advent of modern large language mod-
els (LLMs), this task appears within reach. Our
experiments on three diverse public time-series
datasets shows that while LLMs can retrieve
meaningful events with a single prompt, they
often struggle with establishing the causal va-
lidity of these events.

To enhance causal validity, we design a set of
carefully crafted cross-questions that check ad-
herence to fundamental assumptions of causal
inference in a temporal setting. The responses
when combined through a simple feature-based
classifier, improve the accuracy of causal event
attributation from average of 65% to 90%. Our
approach, including the questions, features, and
classifier, generalizes across different datasets,
serving as a meta-layer for temporal causal rea-
soning on event-anomaly pairs.

We release our code! and three datasets, which
include time-series data with tagged anomalies
and corresponding real-world events.

1 Introduction

Enterprise data analytics systems have long been
dependent on tedious extraction, transformation,
and linking processes to incorporate external world
knowledge with structured databases to enrich data
analysis (Zaharia et al., 2021; Farhan et al., 2024).
With the advent of LLMs that are already pre-
trained on huge amounts of external knowledge,
it is time to rethink how data analysis systems can
directly harness LLLMs for external knowledge that
earlier required extensive planning and processing.

!Code & dataset repository: https://anonymous.4open.
science/r/CauseExam. Link to dataset is provided in readme
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Figure 1: We show for two anomalies of a time series,
the extracted real-world event that CauseExam attributes
to the anomaly based on its LLM-based causal reason-
ing.

In this paper, we present one compelling sce-
nario where we harness LLMs to extract attributing
real-world events to explain observed patterns of
anomalies in time series data. Time series are com-
monplace in any data analysis system, and a large
part of data analysis revolves around discovering
surprising changes along time, and digging out rea-
sons to explain the changes (Sarawagi, 1999). In
this paper we propose to enrich the analysis by link-
ing to real-world events extracted from LLMs that
could have plausibly caused the observed anoma-
lies.

We work with two types of database systems:
a worldbank database of various socio-economic
indicators of countries, and two finance datasets of
stock prices of companies. In Figure 1 we show
a time series from financial system with marked
anomalies that an analyst wishes to explain, and
events that our system extracted by harnessing an
LLM. Figure 10 in Appendix shows an example
from worldbank system.

Accurate extraction of such structured events
from an LLM is noisy since they are prone to hallu-
cinations, and often confuse correlation with causa-
tion. We found that default LLM extractions tended
to favor popular events such as COVID-19 or dot-
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com bubble burst to attribute to all and sundry
anomalies. Recent evaluation of the commonsense
causal reasoning capabilities of LLMs (Kiciman
et al., 2023; Zhang et al., 2023; Jin et al., 2023b)
have shown promising results on logical reason-
ing based causal discovery given a pair of variable
names, for example "smoking" and "cancer". Our
scenario is more challenging for two reasons: (1)
we need to extract candidate reasons for an ob-
served anomaly in structured data instead of reason-
ing on a fixed set of variables, and (2) in addition to
the variable name, we are provided an entire time
series of values, and the causes we attribute have
to be temporally consistent.

In this paper we show that the accuracy of cause-
effect inference between an event-anomaly pair can
be greatly enhanced with reasoning on responses
of four cross-questions carefully designed to check
adherence to fundamental assumptions of temporal
causal inference. We convert LLM responses to
these questions into numerical features each cap-
turing the degree of adherence to the assumption
of causal inference. Thereafter, we employ a light-
weight Bayesian classifier to combine the features
into binary decision variables. We propose a simple
mechanism of harvesting labeled data for training
the classifier from LLM using a novel counterfac-
tual prompt to generate negative labeled examples.
Since our features are generic, we show that the
trained classifier generalizes across datasets.

Contributions.

* We present CauseExam a framework for extract-
ing from an LLM, events that causally explain
observed anomalies in time-series of public in-
dicator. To the best of our knowledge, no prior
work has proposed such a mechanism of enrich-
ing structured data analysis systems using LLMs.

* We enhance the accuracy of cause-effect infer-
ence on an event-anomaly pair using a set of
cross-examination prompts specifically designed
to check adherence to assumptions of temporal
causal inference.

* We combine responses from multiple prompts us-
ing a light-weight model that can be trained using
noisily extracted labeled data from the LLMs. To
extract negative examples, we propose a novel
method of harnessing counter-factual anomalies.

* We compare our method of calibrating correct-
ness with other methods of checking LLLM hal-
lucinations, and show that our method, tailored
for the task of extracting structured causal events

provides significantly higher quality extractions.
Starting from an accuracy of 65% from a single
prompt, CauseExam’s reasoning layer boosted
accuracy to above 90%, significantly surpass-
ing the accuracy of even GPT4 reranked events.
Also, we show that our reasoning model transfers
across datasets.

* We release three datasets on anomalies of public
indicators along with real-world events.

2 Related Work

Causal reasoning with LLMs The investigation
of an LLM’s causal reasoning capabilities (Kici-
man et al., 2023; Zhang et al., 2023; Jin et al.,
2023b; Liu et al., 2024; Long et al., 2024; Vel-
janovski and Wood-Doughty, 2024) on common-
sense variables is an emerging topic of interest.
Some studies (Jin et al., 2023a; Nie et al., 2023) at-
tempt to assess if LLMs can do causal reasoning in
accordance with a set of well-defined formal rules
in hypothetical worlds. In constrast, we depend
on causal knowledge of real world phenomenon
that may have been expressed in the training data
either explicitly (Hendrickx et al., 2010) or which
LLM can infer via a chain of reasoning (Kosoy
et al., 2022). Unlike in our case, most of these
focus, on variables without any temporal context.
Further, we are not aware of any prior work that
combines responses from multiple diverse prompts
for temporal causal reasoning.

Self-consistency checks in LLMs Many recent
work propose to enhance the accuracy of facts ex-
tracted from LLMs based on self-consistency and
cross-examination (Manakul et al., 2023; Miindler
et al., 2024; Pacchiardi et al., 2024; Chen and
Mueller, 2024). One category harness external
information to verify LLM responses, whereas a
second category relies on the LLM itself for cor-
rectness. Our work belongs to the second category.
A standard technique here is to sample multiple
answers and promote the answer that has maxi-
mum consensus (SelfCheckGPT (Manakul et al.,
2023)). Other techniques including detecting con-
tradictions in generated outputs (Miindler et al.,
2024; Pacchiardi et al., 2024), quantifying uncer-
tainty (Chen and Mueller, 2024) using simple cross-
questioning along with consistency across multiple
samples. Our method is also based on cross ques-
tioning the LLM but our questions are motivated
to check validity of diverse assumptions of causal
inference. We bypass the expensive sampling step



of earlier work.

Cause-effect for Events Liu et al. (2023) pro-
pose to train a custom model to extract cause-effect
relationships among events. Given the scarcity of
labeled data, our focus is prompt-based extraction
using LLLMs. Romanou et al. (2023) contributes
a dataset of events extracted from documents, and
provides preliminary results on the use of LLMs to
reason about the causal relations among the events.
Our problem is different since we start from a struc-
tured time series of values, and extract real-world
events from the LLM to explain observed anoma-
lies in the series.

Causal discovery in time-series data For causal
discovery among many time series, a common ap-
proach is Granger causality that infers that a time
series X causes another time series Y if X values
can predict Y values (Nauta et al., 2019; Cheng
etal., 2023). A high Granger causality does not im-
ply that X causes Y. More general causal discov-
ery algorithms have been extended for time series
data (Pamfil et al., 2020). Given lack of identifiabil-
ity based on observation data, and the major chal-
lenge of integrating structured real-world events
with time-series databases, the commonsense logic-
based approach with LLMs provides a promising
choice to standard data-driven causal reasoning.

3 Our Approach

In this section, we first formulate the problem we
are trying to solve followed by an overview of our
approach. Then, we present our cross-examination
layer for reasoning about causality and method to
combine different components of causality.

3.1 Problem Formulation

We start with a set of observed anomalies in a time
series Y of values of a known indicator variable.
Many different methods exist for spotting anoma-
lies in time-series (Schmidl et al., 2022). Our
method is agnostic to the method used, and just
require each anomaly A to be a 4-tuple:

1. v: denoting the name of the public indicator
whose values along time form the time series
where the anomaly is observed.

2. t denoting the time when the anomaly occurred.

3. p denoting the pattern type of the anomaly. We
focus on two patterns — a sharp increase or a
sharp drop in the values along time.

4. L: optional location attribute of the time series

Let £ denote a large language model, like Ope-

nAI's ChatGPT. We assume £ has real-world

knowledge about the indicator. Our goal is to har-

ness the LLLM to extract a real-world event that

could have caused an anomaly A. We impose struc-

ture in the extracted events by viewing them as

instances of event categories from a well-known

event ontology such as Wikidata. For each event F/

we extract a 5-tuple comprising of

1. N: Event name

2. ts: Start time of the event

3. t.: End time of the event

4. C: Category of the event. We assume event
categories are nodes in a given ontology.

5. L: Location attached with the event.

Thus, for each input anomaly A : (v,t,p) we

wish to return an event E which could have caused

the anomaly A. Figure 1 shows examples of two

anomalies and corresponding extracted events. We

have no supervision in the form of any labeled data

for this task. We next present an overview of our

method of performing such extractions using LLM.

3.2 Overview

Our framework comprises of three steps. Figure 2
presents an overview of our method. Our first step
is to query the LLM to extract a ranked list of
real-world events F'i, . .., E; to which an observed
anomaly A can be attributed. We design a prompt
that instructs the LLM to return the events as a
structured tuple. The prompt used for such an ex-
traction from LLM is present in Figure 4, and a
sample response is shown in Figure 5. If the LLM
was perfect, we could have stopped after this first
step. But we observed several cases of errors in the
extracted events using this single prompt. While
in most cases the attributes of the events were fac-
tual, the LLM exhibited poor judgement on cause-
effect reasoning. The LLM tended to favor popular
events such as COVID-19 pandemic or dot-com
bubble burst to attribute to all and sundry anomalies.
Figure 5 shows one example. While several prior
work have proposed techniques to correct mistakes
and hallucinations in LLMs (Manakul et al., 2023;
Miindler et al., 2024; Pacchiardi et al., 2024; Chen
and Mueller, 2024), most of these are designed for
factuality checks, whereas our task entails a more
nuanced temporal causal reasoning. This led us to
design a separate causal reasoning layer to rerank
and prune the list of events returned in the first
step. In the second step we issue a set of carefully
designed cross-examination questions for testing
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Figure 2: Overview of CauseExam inference framework for extracting real-world events to attribute to observed
anomalies in time-series databases. The training of the classifier C is discussed in Section 3.4. Pseudocode of entire

pipeline is present in Algorithm 1 in Appendix.

diverse aspects of what constitutes a valid temporal
causality relationship between each anomaly A and
candidate extracted event E/;. The set of questions
and how we converted these into a feature vector is
presented in Section 3.3. In the third step, we com-
bine evidences from these features to output the
final decision. We present details in Section 3.4.

3.3 Cross-Examination Prompts and Features

In the causal reasoning layer, we decide if an event
FE could have caused the anomaly A in the values
of aseries Y at time ¢. In causal inference terminol-
ogy, I is a Boolean random treatment variable, and
we are reasoning on its effect on Y which is con-
tinuous. Our reasoning is based on the following
assumptions about causal inference:

1. Consistency: We follow the Neyman-Rubin po-
tential outcomes framework (Rubin, 2005) and
assume that the effect of £ on Y is consistent.
This implies that the observed anomaly A in
values of Y at ¢ is the same as the potential out-
come if F/ were to re-occur in a parallel world.

2. Weak temporal consistency: If E is recurring
e.g. financial crisis and it occurred at other
points within the time-span of the series Y, its
effect on Y would be mostly the same.

3. Cause-before-effect: The time of event occur-
rence has to be before the anomaly time ¢.

In the cross-examination phase, we ask questions

to the LLM to check in diverse ways how well

these assumptions hold. We assume the LLM’s

training data expresses in textual form the cause-

effect relationship among real-world phenomenon
after adjusting for confounders. The response to

various questions provides a noisy peak into such
documents. The questions are templatized and we
process the response in conjunction with the time
series Y such that the output of this phase is a vec-
tor of features where each feature quantifies adher-
ence to one of the above assumption. Pseudocode
in Algorithm 1 describes the process of feature
creation in detail. We will later present ways to
combine the response across multiple questions.

3.3.1 Causal consistency features

We first check for causal consistency by asking the
LLM two Boolean questions with opposite effects
of E onY. The first question R(I) asks if £ could
cause a significant increase in the value of Y at
t, and the second question R(D) asks the oppo-
site question, if F could cause a drop. The exact
prompt appears in Figure 6. We view the response
as a verbalization of the potential outcome of E on
Y at ¢, and we check consistency by matching with
observed anomaly in Y. If the pattern p associated
with the observed anomaly A is I (for "increase"

then a consistent response would be a "Yes" for
R(I) and a "No" for R(D), and equivalently for
the case where p is a "drop". Since LLM responses
are noisy, the response may not be consistent. We
therefore treat the responses to these questions as
noisy evidence of consistency or lack of it. Accord-
ingly, we create two features: z., x,. The feature
is 1 iff response to the question R (p) matches the
observed pattern p is "Yes", and second feature is 1
iff response to the other question is a "Yes". We call
this set of features Boolean Consistency features.

An alternative to the above questions is a prompt



that probes the LLM for the exact direction and
magnitude of change that the event will have on
Y. We ask the LLM to output the change direction
(increase, decrease, or no change) along with a
score between 0 and 100 indicating the strength
of the change. The exact prompt R s appears in
Figure 7. Following this we obtain a set of three
features which we call Effect Consistency features:
1. z4 that measures if the LLM response on change
pattern matches the observed anomaly pattern p
and takes value +1,-1,0 depending on whether
they agree, disagree, or LLM response is no-
change respectively.
2. ., This feature is the strength score chosen by
LLM scaled to be between 0 and 1.
3. z4: This feature is a product of the 4 and x,,.

3.3.2 Weak Temporal Consistency feature

If an event E(n, ts,t.) is attributed to have caused
an anomaly A(v,p,t), then in an ideal setting
where there are no other confounding variables,
all other time intervals where the event n occurred
should also result in the same pattern p of the indi-
cator v at other times. Since we have the value of
the indicator as a time-series, we can test whether
this property holds. In real-life, we cannot as-
sume that there are no confounders, so we can
only measure weak compliance to such require-
ments. In order to quantify such temporal consis-
tency we first question the LLM for the list of all
time-intervals when the event of the same name n
appeared. The prompt used to get this list is shown
in Figure 8. The result is a list of time intervals:
{(ts1,te1), .-, (tskstek)}. On these intervals we
measure the degree of consistency as the sum of
the anomaly score in the time series at each time
within the event interval

ko t<tej

Tdo = sign(p) Z Z anomaly_score(v,t) (1)

j:l t:tsj

where the anomaly_score can be any measure of
how different the value of series v at ¢ is as com-
pared to the expected value, and sign(p) = 1 if the
pattern of anomaly p in A is increase, else -1.

3.3.3 Cause-before effect feature

This feature is used to find the time gap between
the event and anomaly time. We observed that the
LLM sometimes returned events with time-stamps
after the anomaly time-stamps, and sometimes too
soon before the anomaly. This feature helps down-
score such extractions. We use the start time and

end time of the event along with the anomaly time
and give this feature value in the following manner:
ift <te

5(t > t5)
Tgap = { (t—te) (2)

max(0,1 — *=5*) else.

3.4 Learning to combine features

Each of the above features provide an indication
on how much the extracted event (cause) adheres
to the assumptions of causal inference. A baseline
is to then just rank order extracted events based
on the sum of these scores. We wanted to go a bit
further and also filter away bogus events that could
not have caused the anomaly. Let Og_, 4 denote
the binary decision whether ' causes A. We train
a light-weight classifier C' : x — Opg_, 4 for this
task. To train the model C' we depend on noisily
labeled datasets constructed from the LLM.

Training data creation Given a set of anoma-
lies {A1,..., Ay}, for each anomaly A;, we ex-
tract a ranked list of events Fji,..., E;; from
the LLM using the first prompt described in Sec-
tion 3.2. Each (A;, E;,) pair forms a noisy posi-
tive labeled example (Op_, 4 = 1) for our dataset.
To create negative examples, we use two sources.
First, for each anomaly A;, we create a counter-
factual anomaly by inverting the pattern to create
a new anomaly A, ;. For example, if the pat-
tern in anomaly A; is "increase", pattern of A, ;
will be "decrease". We then probe the LLM to
extract events I,y j 1, ..., FEy ;) using prompt in
Figure 4 corresponding to A,, ;. The (A;, E,4j,)
pair is treated as a negative example (Og_, 4 = 0)
since the event was not obtained as the reason for
anomaly. Second, we randomly pair an anomaly
A; with an arbitrary other event I ,. to also serve
as a negative example. We provide pseudocode in
Algorithm 2 to describe the dataset creation and
training of the classifier in detail.

Model selection and training Since we have
only a small number of features (seven) and these
were designed to test basic assumptions of causal
inference, we found that simple models such as
Naive Bayes were adequate for combining the
evidence from these features. We also experi-
mented with several classifier architectures coupled
with noise tolerant noise functions such as gener-
alized cross entropy (Zhang and Sabuncu, 2018)
and found that a simple naive Bayes classifier per-
formed the best under this noisy feature setting.
Since our features are generic designed to check



the satisfaction of the assumption of causal infer-
ence, the trained models generalize easily across
datasets as we will show in the empirical section.

4 Experiments and Evaluation

We present an evaluation of the efficacy of state-of-
the-art LLMs on the causal event extraction task.
We compare our reasoning layer CauseExam of
checking the correctness of event extraction with
existing methods for self-checking responses. We
also evaluate the sensitivity of various features
and model choices, and show the generalization
of CauseExam across datasets.

4.1 Datasets

We experiment with multiple time series selected

from three datasets.

1. Worldbank dataset?: This contains annual val-
ues of socio-economic indicators for several
countries. We create a dataset of top 20 coun-
tries by area and choose list of 5 important in-
dicators: death rate, electric power consump-
tion, GDP growth rate, military expenditure
percentage of GDP and unemployment percent-
age. Each country, indicator pair defines a time-
series. We chose the time 1960 to 2021 and
dropped series with more than 50% missing val-
ues.

2. US Stock Exchange dataset: This contains his-
torical data for stock prices of popular compa-
nies listed on NasdaqGS and NYSE. We aggre-
gate them to a quarterly level for this analysis.
We choose 5 companies each for the following
7 major categories of companies: Technology,
Healthcare, Finance, Consumer Goods, Com-
munication Services, Energy and Industrials.

3. London Stock Exchange dataset: It is similar
to previous dataset but contains data for stock
prices of companies listed on LSE. We choose
two companies per category. Source for both
stock exchange datasets is Yahoo Finance?.

For these datasets the event types are restricted to

be from ‘war and conflicts’, ‘economic’, ‘political

and diplomatic’, ‘health related’ or ‘natural disas-
ter’. We manually mark anomalies in these time
series. Number of anomalies is 254 in Worldbank
dataset, 137 in US SE and 58 in London SE dataset.

We split the Worldbank and US SE data across
train (40%), validation (20%) and test (40%). The

2https ://data.worldbank.org/
3https://finance.yahoo.com/

splits are performed along country for the world-
bank data, and along industry-type for the financial
data so there is no overlap in the time-series across
train and test. We use the entire London SE data
in the test split to show generalization of our tech-
nique across datasets.

After we get the anomalies, we move on to the
step of extracting events corresponding to each of
these anomalies. We create train and validation
data using data creation method described in Sec-
tion 3.4. Extractions ar done for k=3 and k=5 using
GPT 3.5 for each anomaly.

Labeling test data. For the anomalies and the
set of extracted events we ask a group of human
labellers to mark the events that are irrelevant to
the anomaly.

Evaluation. We evaluate different methods of re-
ranking and filtering the %k extracted events. Ac-
curacy is based on whether their top-1 predicted
event is relevant to the anomaly as per the above
gold labeling of the test data. When an anomaly
has no relevant event, then a method that also does
not return any event is considered correct.

4.2 Baselines

We compare our technique against these baselines:

Single extraction prompt. We use the ranking
of events F1, ..., E} extracted in order from the
extraction prompt in Figure 4 using just GPT 3.5.

Single Extraction prompt reranked by GPT4.
We ask GPT4 to rerank events F', . .., F; returned
by GPT 3.5.

SelfCheckGPT methods. We rescore each event
E; using the top three methods reported in Self-
CheckGPT (Manakul et al., 2023). All the variants
first sample multiple (M = 20 in our experiments)
stochastic responses to the prompt in Figure 9 using
GPT 3.5, and measure the similarity of each can-
didate event £; to sampled M events. These are
3 method variants used for measuring similarity:
prompt-based technique, NLI (natural language in-
ference), and unigram(max).

CauseExam. We report performance of Cause-
Exam under various choice of classifiers for train-
ing P(Og_, 4|x) models, various training data and
different LLMs (GPT 3.5, GPT 4 and Llama3-70b)
for cross-examination. Our model uses seven fea-
tures as described in Section 3.3. The default clas-
sifier is Naive Bayes but we also compare with a
logistic regression classifier and two-layer neural
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network.

4.3 Overall Results

In Table 1 we present an overall comparison of
various methods. First observe that using just a sin-
gle extraction prompt, GPT-3.5 is able to yield an
accuracy around 60% for reasoning about anoma-
lies in companies stock prices, and around 70%
for various socio-economic phenomenon of the
world. These numbers are encouraging, and show
the promise of replacing elaborate ETL pipelines
of data warehouses for integrating raw textual docu-
ments, to an LLM-based conversational integration.

Next we go over different methods of boosting
the accuracy of initial extraction by reranking ex-
tracted events. SelfCheckGPT methods that rerank
based on consensus with multiple sampled extrac-
tions, do help. The accuracy on the US SE dataset
jumps from 62% to 72% with the best of these
methods. When we use GPT-4 to rerank events
generated from GPT-3.5, we get a much bigger
boost and the Top-1 accuracy is now 87% for US
SE and around 80% for Worldbank.

Compared to all these methods, CauseExam pro-
vides the largest boost with all LLMs improving
the performance significantly. For example, Cause-
Exam with GPT 3.5 gives an accuracy of 94% for
US SE , 91% for London SE and 89% for World-
bank. Other LLMs give similar gains showing that
most of the work is done by our classifier and fea-
ture aggregation technique. This shows the impact
of our carefully designed cross-questions, the ex-
tracted featurization of the response, and classifier
to implement sound temporal causal reasoning us-
ing LLMs as tools.

4.4 Role of different components

To understand the importance of each group of fea-
tures we extracted in Section 3.3, we perform abla-
tions where we drop one group of features at a time
and record accuracy of the classifier for deciding
Og_, 4 value based on the reduced feature. Table 2
shows the results. The first column of numbers
are with no ablation. When we drop the Boolean
Consistency feature of Section 3.3.1, we find a
drop of up to 4% accuracy across both datasets.
When we drop the Effect Consistency features of
Section 3.3.1, the accuracy drops by as much as
9% for the US SE dataset. This group of feature
turned out to be the most useful among the features
we considered. By dropping the Cause-Before Ef-
fect feature accuracy dropped for the Worldbank

Comparison across different size of train data

Performance

—e— Financial
—<— Worldbank

0 20 40 60 80 100
Size of train (in % of entire train dataset)

Figure 3: Accuracy with increasing size of training set
for k=3 averaged over 10 random splits (100% train is
1120 samples).

dataset. For the US SE dataset it did not have much
impact because for the initial extracted events they
always had a value of 1. Finally, our Weak Tempo-
ral Consistency feature also boosted accuracy by
as much as 4% for the US SE dataset. This estab-
lishes that our features motivated from the three
causal inference assumptions had non-trivial mu-
tual information with the class label, and they each
provided a different important signal for the final
causal decision.

The accuracy decreases significantly across all
datasets and LLMs when only random negatives
are used in training the classifier instead of com-
bination of counterfactual negatives and random
negatives with a drop of 5-25% across datasets and
LLMs. This shows the importance of our novel
method of generating counterfactual negatives de-
scribed in Section 3.4 for training of classifier.

4.5 Ablations on CauseExam classifier

In this section we show that the classifier used by
CauseExam is robust to changing datasets and sizes,
and a simple naive Bayes classifier works best for
noisy labeled data. First in Table 3 we show a
comparison of various choice of models for the bi-
nary classification task P(Og_, 4|x) and note how
Naive Bayes is significantly better, possibly be-
cause it is more robust to noisy labeled data. Next,
we show that a very small amount of labeled data
suffices in Figure 3. We find that even with 10%
of the total training set which is about 100 noisy
instances, we reach close to the peak accuracy.

In the above experiments, the training data was a
union of instances from both US SE and Worldbank
datasets. To establish generalization of these mod-
els to new datasets, we present another study where
we train a classifier using labeled instances from



Only | SelfCheckGPT (GPT3.5) GPT4 CauseExam
Dataset k | Extract | NLI | N-Gram | Prompt | Re-Ranked | GPT3.5 | GPT4 | Llama3
Worldbank | 3 | 70.0 | 72.8 71.9 70.0 79.4 88.7 86.9 87.8
Worldbank | 5| 71.6 | 754 72.6 71.6 83.0 89.6 91.5 90.5
US SE 3| 61.7 | 702 68.0 72.3 87.2 93.6 87.2 84.6
US SE 5| 574 | 638 61.7 68.0 87.2 91.4 91.4 87.2
London SE | 3| 62.0 | 63.7 63.7 65.5 72.4 87.9 86.2 94.8
London SE | 5| 629 | 66.6 66.6 66.6 77.7 90.7 90.7 92.5

Table 1: Top-1 Accuracy of baselines against CauseExam . CauseExam outperforms all baselines across all datasets
for each LLM. Only Extract method uses GPT 3.5. Table 5 in the appendix reports statistical significance over
multiple runs. Samples where CauseExam beats GPT4 Re-ranked are shown in Figure 11 in Appendix.

Without Without features No Counter
Dataset LLM | Ablation | Boolean | Effect | Temporal | Cause-Before | factual Neg
Worldbank | GPT3.5 88.7 85.9 83.1 85.9 82.2 83.1
Worldbank | GPT4 86.9 86.9 86.9 87.8 79.4 76.6
Worldbank | Llama3 87.8 89.7 86.9 88.7 717.5 79.4
US SE GPT3.5 93.6 89.3 85.1 89.3 93.6 89.3
US SE GPT4 87.2 87.2 87.2 85.1 87.2 63.8
US SE Llama3 84.6 84.6 82.0 87.1 82.0 76.9

Table 2: Ablations on performance of the causal decision model P(Op_, 4|features) for k=3. Each feature set is
important for performance and counterfactual negatives help train a more discriminating classifier.

Logi- | 2 Lay- | Naive Union | Exchanged
Dataset LLM stic | er NN | Bayes Dataset LLM | dataset dataset
Worldbank | GPT3.5 | 82.2 84.1 88.7 Worldbank | GPT3.5 | 88.7 87.8
Worldbank | GPT4 | 822 | 794 86.9 Worldbank | GPT4 86.9 85.0
Worldbank | Llama3 | 78.5 80.3 87.8 Worldbank | Llama3 | 87.8 88.7
US SE GPT3.5 | 85.1 89.3 93.6 US SE GPT3.5 | 93.6 93.6
US SE GPT4 | 85.1 82.9 87.2 US SE GPT4 87.2 87.2
US SE Llama3 | 76.9 84.6 84.6 US SE Llama3 | 84.6 84.6

Table 3: Comparison of performance across different
training-based techniques trained on combined dataset
for each LLM and k=3. Naive Bayes works best.

one dataset and deploy it on another dataset. In Ta-
ble 4, we see that the accuracy with entire dataset
is only slightly better than individual dataset.

5 Conclusion

In this paper we presented CauseExam, a novel
framework of harnessing modern LLMs for ex-
tracting attributing real-world events to anomalies
observed in structured time series. We observe
that a default single prompt set of events gener-
ated from LLMs often lack relevance from causal
view-point. We then designed a set of diverse cross-
examination questions to check for adherence to
three basic assumptions of temporal causal infer-

Table 4: Evaluating OOD generalization by training on
US SE dataset and testing Worldbank and vice-versa.
We compare with model trained on union of 2 datasets.

ence. We convert the responses into a small set of
numerical features and train a light-weight classi-
fier with LLM extracted noisy labeled data. We
show that simple naive Bayes classifier provides a
robust decision model. We boost accuracy of the
single prompt extract from 65% to above 90% us-
ing our causal reasoning layer. Further our model
generalizes across datasets because of the generic
features we extract during the cross-examination.
This study shows both the promise of LLMs for
closer integration of structured data analysis with
real-world knowledge. Further, it highlights the
role of more nuanced reasoning for specific tasks
beyond what can be achieved by a language model.



Limitations

One of the limitations of this work is that informa-
tion of the domain of time series dataset should be
present in the training corpus of LLM. The LLMs
used for experiments in this paper include GPT
3.5, GPT 4 and Llama 3, all of which have been
trained on a large corpus of general data. Thus,
they work well on datasets which are public and
global in nature like social indicators dataset and
stock prices of companies dataset. These LLMs
will not give good performance on datasets that are
private and do not belong to the training corpus of
these LLMs such as the internal data of a company.
The solution to this limitation is incorporating Re-
trieval Augmented Generation in the pipeline by
providing sufficient documents with information
relevant to the time series and events that can affect
it. We treat this as an exciting direction for future
research.

Ethics Statement

We construct the dataset used in our research us-
ing publicly available data sources like Worldbank*
and Yahoo Finance” strictly adhering to their Terms
of Use, and ensure that there are no privacy con-
cerns or violations. In the annotator labellings,
we collect no personal or identifiable information
which can be misused.

For extractions from the LLMs used in this paper,
we checked some samples manually and found no
obvious ethical concerns, like violent or offensive
content. However, we understand that text genera-
tion from LLMs is subject to unexpected outputs
to a small degree and we should be careful while
using this data.
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A Pseudo Codes for CauseExam

We show the pseudocode for the CauseExam inference pipeline in Algorithm 1. The pseudocode for
creating training data and training the classifier is shown in Algorithm 2

Algorithm 1 CauseExam Inference pipeline

Required: Time Series Y, Anomaly A;, LLM L, Classifier C'
Ej1,. .. ji < query £ with A; using prompt in Figure 4
Initialize an empty map M
for r <+ 1to k do
x < GETFEATURES(Y, A;, E; ;)
Op_a < C(x)
if O, 4 > 0.5 then append E; . to M with value Og_, 4
end for
Sort M by values in descending order
If M is not empty then return Top event in M as prediction else return None

function GETFEATURES(Y, A;, E; ;)
Input: Time Series Y, Anomaly A;, Event E; .
QOutput: Feature vector x
Te, Lo Ty T, Ls < CAUSALCONSISTENCY (A, Ej ;)
Zdo < TEMPORALCONSISTENCY (Y, A;, Ej ;)
Get 44y using Equation 2
X:= [Ze, Tor Tds Tims Tsy Tdos xgap]
end function
function CAUSALCONSISTENCY(A;, F; ;)
Input: Anomaly A;, Event I;,.
Output: Features x., o, T4, Tm, Ts
> Boolean Consistency Features
response(R(I)) < Query £ with R(I) in Figure 6 and A;, E; . , "increase" as arguments
response(R(D)) < Query £ with R(D) in Figure 6 and A, E;,, "decrease" as arguments
If response(R(p) = "Yes" then 2. = 1 else . = 0
If response(R(p’)) = "Yes" then z, = 1 else z, = 0 > p' refers to opposite pattern of p
> Effect Consistency Features
res(Rar) < Query £ with Ry in Figure 7
response(Rur)changes 7€5ponse(Rar)mag < 1€5(Rar)
If response(RM)change = "no effect" then x4, <+ 0
elif response(Rar)change = P(A;) then 24 < 1
else x4 +— —1
Ty < response(Rar)mag/100
Tg — Tg* Ty
end function
function TEMPORALCONSISTENCY(Y', 4;, Ej ;)
Input: Time Series Y, Anomaly A;, Event F; ,
Feature Output: x4,
{(ts1,te1)]s .-, (tsks ter)} < Query £ with prompt in Figure 8 and A; E; . as argument
Get x4, using Equation 1
end function
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Algorithm 2 Classifier Training Algorithm

Required: Time Series Y, Anomaly Set {A1,..., 4,}, LLM L
Initialise empty lists S, (positive samples), S_,. (negative samples), F; (all events)
for j < 1tondo
Ej1,... Ej ) < query £ with A; using prompt in Figure 4
Create counter factual anomaly A, ; by inverting change direction
Enijt, .. Engjr < query £ with A, ; using prompt in Figure 4
Extend E,; with Ej,17' .. Ej,lw En—l—j,la- ..
for r +— 1to k do
Xtve < GETFEATURES(Y, A, E; )
Append X e t0 Sype
X_ye < GETFEATURES(Y, Aptj, Enyjr)
Append X_,e t0 S_ye
end for
end for
for j < 1ton do
Get an arbitrary event F; . for A; from E,; following constraints mentioned in Appendix.
Xrand < GETFEATURES(Y, A;, E; ;)
Append Xrand O S—Ue
end for
Train Binary Classifier C' using S, and S_,
return C

EnJrj,k:

B More Experiments

We show the consistency of CauseExam technique over 10 runs with 80% training dataset randomly
sampled and report the mean and standard deviation of performance for different LLMs and datasets
in Table 5. We observe that performance is consistent over splits with a very small standard deviation
showing that our classifier is robust to fluctuations in training data.

Cause Cause Cause

Dataset k Exam Exam Exam

GPT3.5 GPT4 Llama3
Worldbank | 3 | 87.9 £0.53 | 86.0 £0.81 | 88.5 & 0.63
Worldbank | 5 | 89.6 £0.44 | 91.4+£0.29 | 91.0 & 0.49
US SE 319234+1.09 | 87.24+0.00 | 84.8 +0.81
US SE 519124067 | 91.2+0.67 | 86.3 +£1.09
London SE | 3 | 87.9 £ 0.81 | 86.2 + 0.00 | 94.8 4+ 0.00
London SE | 5 | 90.7 £ 0.00 | 90.3 +0.78 | 92.9 £ 0.78

Table 5: Mean Top-1 Accuracy with standard deviation (mean =+ std ) for the performance of CauseExam using 80
% of training dataset over 10 random splits. We see that the training is stable and performance remains consistent
across all splits.

The results of different ablations on London SE dataset are present in Table 6 and Table 7.
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Without No No No No Cause- | No Counter
Dataset LLM | Ablation | Boolean | Effect | Temporal Before factual
features | features | feature feature Negatives
London SE | GPT 3.5 87.9 86.2 84.4 87.9 86.2 79.3
London SE | GPT 4 86.2 86.2 72.4 84.4 82.7 63.7
London SE | Llama 3 94.8 94.8 82.7 93.1 89.6 74.1

Table 6: Impact of ablations on performance of the causal decision model P(Og_, 4 |features) for k=3. Each feature
set appears to be important for performance and counterfactual negative prove to help training of classifier.

Logi- 2 Naive
Dataset LLM stic | Layer | Bayes
NN
London SE | GPT 3.5 | 87.9 | 86.2 | 879
London SE | GPT4 | 75.8 | 82.7 | 86.2
London SE | Llama3 | 93.1 | 91.3 | 94.8

Table 7: Comparison of performance across different training-based techniques trained on combined dataset for
each LLM and k=3. Naive Bayes works best.

Prompts to the LLM

You are a helpful assistant for causal relationship understanding. Think about the cause-and-effect relationships
between the events and its effect on the timeseries.

According to you, what important events could have caused <pattern> in <indicator><place(optional)> around
<time>?

Return only python list of top <k> events in descending order of relevance as answer where each event is in a json
parsable dictionary form (all values should be in string format) with keys event name, location (country name or

"world" if event is global), start time in format yyyy-mm, end time in format yyyy-mm and type of event (one from

<event-type-list>).

Figure 4: Prompt to the LLM to generate the ranked list of structured events to attribute to an Anomaly characterized
by <indicator>, <pattern>, <time> at <place(optional)>. For each dataset there is a separate list of valid event-types.

[‘dot-com bubble burst’, 2000-01°, ‘2002-01"]
[‘y2k bug’, ‘1999-12°, 2000-01°]

o 1:
e 2:
¢ 3 : [‘microsoft releases windows 2000’, ‘2000-02°, ‘2000-03’]

Figure 5: Three extracted events to explain the anomaly: increase in stock price of Microsoft in 2000Q1. The
response is obtained using the prompt in Figure 4 with arguments <Indicator>: stock price of Microsoft Corporation,
<Pattern>:increase, <Time>: 2000Q1. It can be seen that dot com bubble burst is returned as top event corresponding
to this anomaly which is not correct.

13



You are a helpful assistant for causal relationship understanding. Think about the cause-and-
effect relationships between the event and its effect on the indicator.

Event: <event name> which happened from <event start time> to <event end time> in <event
location> Effect: <pattern> in <indicator> (at <place> (optional)) around <time>

Could the event create this effect? Answer from one of the following options. Yes:
Event could cause this effect. No: Event cannot cause this effect.

Answer should be one of the options ’Yes’, 'No’. Important Note: Return just the
answer from the options and nothing else.

Figure 6: Prompt to LLM to extract Boolean consistency features

You are a helpful assistant for causal relationship understanding. Think about the cause-and-
effect relationships between the event and its effect on the indicator.

Event: <event name> which happened from <event start time> to <event end time> in <event
location>

Indicator: <indicator> <place (optional)> around <time>

Event’s effect on the Indicator is:

Increase: Event could increase the indicator. Choose this option if event has positive impact on
indicator.

Decrease: Event could decrease the indicator. Choose this option if event has negative impact
on indicator.

No effect: Event could not affect the indicator. Choose this option if event has no impact on
indicator.

Magnitude of this effect is measured using a strength score from 0 to 100. (In case
of No Effect return 0)

Score above 80: Event is related to this indicator and will definitely affect it.

Score between 50 and 80: Event is related to this indicator and might affect it.

Score between 20 and 50: Event might be related to this indicator but is less likely to affect it.
Score below 20: Event is not related to this indicator and will not affect it.

Return your answer as a python list of strings ["Effect”, "Magnitude"]. Effect must
be from one of the 3 options provided. Magnitude must be a single integer score from 0 to 100.
Important Note: Return just this list as answer and nothing else.

Figure 7: Prompt to LLM to extract Effect consistency features

You are a helpful assistant for causal relationship understanding. Think about the cause-and-effect relationships
between the events and its effect on the timeseries.

According to you, what important events could have caused <pattern> in <indicator><place(optional)> around
<time>?

Return most relevant event as a json parsable dictionary form (all values should be in string format) with keys event
name, location (country name or "world" if event is global), start time in format yyyy-mm, end time in format

yyyy-mm and type of event (one from <event-type-list>).

Figure 9: Prompt to the LLM for SelfCheckGPT sample generation
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You are a helpful assistant who has good knowledge of history and important events. Use this
knowledge to answer the following question.

Event: <event name> which happened in <event loc> Related Indicator: <indicator>(at <place>
(optional)) Between <series start time> and <series end time>, return the time periods when
this event happened.

Return answer as a list of these time periods in the format:

[[<start time 1>, <end time 1>], [<start time 2>, <end time 2>], [<start time 3>, <end time 3>]...]
Some sample answers are shown below (each line is a sample answer): <examples of
answer format>

Give the best answer as per your knowledge.
Important Note: Return the final answer between the tags <Answer>answer</Answer>.

Figure 8: Prompt to LLM to extract all time periods when event occurred for weak temporal consistency features

D Additional Examples and Samples of better perfomance by CauseExam

D.1 Example of Time Series labelled with anomaly

United States military expenditure percentage of GDP with marked anomalies

A / * Increase Anomalies
9 / .
\ | e Decrease Anomalies
\ /
8
\/ \ N: Afghanistan War
\ tst 2001-10 te:2014-12

o

3

Ss \\ /1\/\
5 \/

4 N: Reagan Defence Buildup =
ts: 1982-01 te: 1989-01 /\ ¥/\

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
Time

w

Figure 10: Example of time series from socio indicator system marked with two anomalies and the extracted
real-world event that CauseExam attributes to the anomaly based on its LLM-based causal reasoning. In the first
anomaly, US President Reagen significantly increased the military spending in his tenure. In the second anomaly,
Afghanistan War peak happened around 2010 which caused increase in military expenditure of USA.

D.2 Examples of responses from the LL.M from the first extraction prompt

Samples where GPT 3.5 fails:
1. <Popularity Problem>Pattern:increase, Indicator: stock price of Microsoft Corporation, Place: , Time:
2000Q1
(a) Initial Event Order
i. 1 : [’dot-com bubble burst’, *world’, >2000-01°, *2002-01"]
ii. 2: ['y2k bug’, *world’, *1999-12°, *2000-01"]
iii. 3 : [’microsoft releases windows 2000, *world’, 2000-02’, 2000-03’]
(b) Ground Truth Order
i. 1 : [’microsoft releases windows 2000’, world’, *2000-02’, *2000-03’]
1i. 2 : [’dot-com bubble burst’, *world’, >2000-01", *2002-01’ [<IRRELEVANT>
iii. 3: ['y2k bug’, *world’, ’1999-12°, °2000-01" ]<IRRELEVANT>
2. <Popularity Problem> Pattern:increase, Indicator: stock price of SunPower Corporation, Place: ,
Time: 2021Q1
(a) Initial Event Order
i. 1: [’covid-19 pandemic’, world’, *2020-12’, °2021-03’]
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ii. 2: ['us presidential election’, "united states’, *2020-11", *2021-01"]
iii. 3 : [‘renewable energy policies’, united states’, 2021-01°, *2021-03’]
(b) Ground Truth Order
i. 1: ['renewable energy policies’, ’united states’, *2021-01", °2021-03’]
ii. 2: ['us presidential election’, "united states’, *2020-11", 2021-01"]
iii. 3 : [’covid-19 pandemic’, world’, *2020-12°, °2021-03’ ]<IRRELEVANT>
3. <Popularity Problem>Pattern:increase, Indicator: stock price of NVIDIA Corporation, Place: , Time:
2018Q3
(a) Initial Event Order
i. 1 : ['trade war between us and china’, *world’, *2018-07’, *2018-09’]
ii. 2 : [’strong quarterly financial results’, world’, *2018-08, *2018-08’]
iii. 3 : ['launch of new gaming gpus’, *world’, *2018-08", *2018-08’]
iv. 4 : [’increased demand for ai and data center applications’, *world’, *2018-07", *2018-09’]
v. 5: ['positive industry outlook for semiconductor sector’, *world’, *2018-07", *2018-09’]
(b) Ground Truth Order
i. 1: [’strong quarterly financial results’, *world’, *2018-08’, *2018-08’]
ii. 2 : [’launch of new gaming gpus’, world’, *2018-08’, *2018-08’]
iii. 3 : [’increased demand for ai and data center applications’, *world’, *2018-07", *2018-09’]
iv. 4 : [’positive industry outlook for semiconductor sector’, *world’, *2018-07", 2018-09’]
v. 5: [’trade war between us and china’, *world’, *2018-07, °2018-09’ ]<IRRELEVANT>
4. <Time delta and popularity problem>Pattern:decrease, Indicator: GDP growth rate, Place: Congo,
Dem. Rep., Time: 1975
(a) Initial Event Order
i. 1: [’second congo war’, ’congo, dem. rep.’, >1998-08", *2003-07’]
ii. 2 : [’global economic recession’, *world’, *1973-10’, *1975-03’]
iii. 3 : [oil crisis’, *world’, >1973-10°, 1974-03’]
iv. 4 : [’political instability’, ’congo, dem. rep.’, *1975-01°, °1975-12’]
v. 5: [’drought’, ’congo, dem. rep.’, *1974-01", *1975-12]
(b) Ground Truth Order
i. 1: [’drought’, ’congo, dem. rep.”, *1974-01", °1975-12’]
ii. 2: [Coil crisis’, *world’, 1973-10°, *1974-03’]
iii. 3 : [’second congo war’, congo, dem. rep.’, *1998-08’, *2003-07’]
iv. 4 : [’political instability’, ’congo, dem. rep.’, *1975-01", °1975-12’]
v. 5: ['global economic recession’, world’, *1973-10’, °1975-03’]<IRRELEVANT>
5. <Fake event at top, consensus will help here because no time returned for this case> Pattern:increase,
Indicator: military expenditure percentage of GDP, Place: Peru, Time: 1977
(a) Initial Event Order
i. 1 : [’peruvian constitutional crisis’, *peru’, *1977-01°, *1978-12’]
ii. 2 : [’world oil crisis’, world’, 1973-10°, 1974-03’]
iii. 3 : [’shining path insurgency’, *peru’, *1980-01°, 1992-12’]
(b) Ground Truth Order
i. 1: ["world oil crisis’, world’, 1973-10’, *1974-03’ |[<IRRELEVANT>
ii. 2 : [’peruvian constitutional crisis’, "peru’, *1977-01°, °1978-12’]<IRRELEVANT>
iii. 3 : [’shining path insurgency’, 'peru’, 1980-01’, °1992-12’ |<IRRELEVANT>
6. <Popularity problem>Pattern:increase, Indicator: military expenditure percentage of GDP, Place:
China, Time: 2009
(a) Initial Event Order
i. 1: [’global financial crisis’, world’, *2008-09’, *2009-12’]
ii. 2 : [’chinese economic stimulus package’, *china’, *2008-11", °2009-12’]
iii. 3 : ['global recession’, *world’, 2008-12", *2009-06’]
(b) Ground Truth Order
i. 1: [’chinese economic stimulus package’, *china’, *2008-11", °2009-12’]
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ii. 2 : [’global financial crisis’, *world’, *2008-09’, *2009-12’ [<IRRELEVANT>
iii. 3 : [’global recession’, *world’, *2008-12", *2009-06’ |<IRRELEVANT>

D.3 Examples where CauseExam beats GPT 4 reranking

Anomaly: increase in stock price of NVIDIA Corporation around Time: 2021Q4
Initial Order:

1 : covid-19 pandemic in world from 2020-12 to 2021-12

2 : global chip shortage in world from 2020-12 to 2022-12

3 : launch of new gaming consoles in world from 2020-11 to 2021-01

GPT4: global chip shortage in world from 2020-12 to 2022-12

CauseExam: launch of new gaming consoles in world from 2020-11 to 2021-01

Anomaly: increase in military expenditure percentage of GDP at Peru around 1977
Initial Order:

1 : Peruvian economic crisis in Peru from 1980-01 to 1985-12

2 : Falklands war in world from 1982-04 to 1982-06

3 : Debt crisis in Latin America from 1982-07 to 1989-12

GPT4: Peruvian economic crisis in Peru from 1980-01 to 1985-12

CauseExam: Falklands war in world from 1982-04 to 1982-06

Figure 11: Examples where CauseExam (GPT-3.5) beats GPT-4 Re-ranking

D.4 Examples where individual features improve performance

Figure 12 shows the examples for each of the set of features where they individually aid the performance.

E Dataset Details

E.1 Annotator Information

The annotators who marked anomalies and labeled test data for this research are 5 final-year students of
the Undergraduate program who had good knowledge of the task. The average age of annotators was 21
years. They were paid for the task at par with the country’s norms. Their demographic background is not
disclosed to maintain anonymity. They were provided with clear instructions for both the tasks:

1. Anomaly Labelling: The definition of anomaly varied with different time series types. They were
provided with sample labelings for each type of anomaly. To maintain uniformity, all time series of a
particular type were given to one student.

2. Test Data Labelling: The annotators were shared a file with anomaly details and corresponding
extracted. They were shared the following textual instruction "Mark the events which could not have
caused this anomaly as irrelevant as per your understanding and inference. You are free to use any
knowledge source to aid your decision making like web search and books.

E.2 Dataset numbers

1. Dataset details
(a) The list of companies for US SEdataset per category:
1. "Technology": "Apple Inc.", "Microsoft Corporation”, "Amazon.com Inc.", "Alphabet
Inc.", "NVIDIA Corporation" ,
ii. "Healthcare": "Amgen Inc.", "Biogen Inc.", "Gilead Sciences Inc.", "Regeneron Pharma-
ceuticals Inc.", "Vertex Pharmaceuticals Incorporated" ,
iii. "Finance": "PayPal Holdings Inc.", "The Goldman Sachs Group, Inc.", "JPMorgan Chase
& Co.", "American Express Company", "Square, Inc." ,
iv. "Consumer Goods": "Tesla, Inc.", "The Coca-Cola Company", "PepsiCo, Inc.", "Nike,

Inc.", "Procter & Gamble Company" ,
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Boolean consistency feature

Anomaly: Decrease in GDP growth rate at Congo, Dem. Rep. around 1975

Initial Event Order

1 : second congo war in congo, dem. rep. from 1998-08 to 2003-07

2 : global economic recession in world from 1973-10 to 1975-03

3 : political instability in congo, dem. rep. from 1974-01 to 1975-12

CauseExam prediction: global economic recession in world from 1973-10 to 1975-03
Explanation: The responses were Yes and No for this event, and for the top event of initial
order, both responses were No.

Effect consistency feature

Increase in stock price of NVIDIA Corporation around 2018Q3

Initial Order:

1 : trade war between us and china in world from 2018-07 to 2018-09

2 : strong financial performance by nvidia in world from 2018-07 to 2018-09

3 : launch of new gaming gpus by nvidia in world from 2018-07 to 2018-09

CauseExam prediction: strong financial performance by nvidia in world from 2018-07 to
2018-09

Explanation: Gave the highest score to this event whereas the top of initial got negative score

Cause-before effect feature

Decrease in electric power consumption at Congo, Dem. Rep. around 1982

Initial Event Order

1 : second congo war in congo, dem. rep. from 1998-08 to 2003-07

2 : first congo war in congo, dem. rep. from 1996-10 to 1997-05

3 : economic crisis in congo, dem. rep. from 1982-01 to 1984-12

CauseExam prediction: economic crisis in congo, dem. rep. from 1982-01 to 1984-12
Explanation: Only 1 event was in the permitted time window. Time of top event of initial order
was after the anomaly.

Weak Temporal Consistency feature

Increase in stock price of Clean Energy Fuels Corp. around 2021Q1

Initial Event Order

1 : covid-19 pandemic in world from 2020-12 to 2021-03

2 : joe biden’s inauguration united states 2021-01 2021-01

3 : renewable energy policies united states 2021-01 2021-03

CauseExam prediction: joe biden’s inauguration united states 2021-01 2021-01

Explanation: Covid-19 time was over 8 quarters, the net score came to be negative whereas for
predicted event the score was positive

Figure 12: Examples where individual features improve performance
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v. "Communication Services": "Meta Platforms, Inc.", "Netflix Inc.", "T-Mobile US, Inc.",
"Comcast Corporation", "Charter Communications, Inc." ,
vi. "Energy": "Marathon Petroleum Corporation”, "Clean Energy Fuels Corp.", "Plug Power
Inc.", "Renewable Energy Group, Inc.", "SunPower Corporation" ,
vii. "Industrials": "Boeing Company", "Lockheed Martin Corporation", "FedEx Corporation",
"United Parcel Service, Inc.", "Caterpillar Inc."
(b) The list of companies for London SEdataset per category:
i. "Technology": "Rolls-Royce Holdings plc", "Informa PLC",
ii. "Healthcare": "AstraZeneca PLC", "Smith & "Nephew plc",
iii. "Finance": "Lloyds Banking Group plc", "Barclays PLC" ,
iv. "Consumer Goods": "British American Tobacco plc", "Unilever PLC" ,
v. "Communication Services": "Vodafone Group PIn", "ITV plc" ,
vi. "Energy": "SSE plc", "BP plc",
vii. "Industrials": "Babcock International Group PLC", "Melrose Industries PLC"

(c) Worldbank chosen 20 country list in descending order of area: "Russian Federation", "Canada",
"China", "United States", "Brazil", "Australia", "India", "Argentina", "Kazakhstan", "Algeria",
"Congo, Dem. Rep.", "Greenland", "Saudi Arabia", "Mexico", "Indonesia", "Sudan", "Libya",
"Iran, Islamic Rep.", "Mongolia", "Peru"

2. As mentioned in the paper we had 254 anomalies for the worldbank dataset, 137 anomalies for the
US SE dataset and 58 anomalies in London SE dataset.
We use GPT 3.5 (gpt-35-turbo-16k) to extract events from anomalies. After we did event extraction,
we had to drop a few anomalies due to parsing-related errors. After we drop these anomalies we are
left with:

(a) k=3: 54 London SE , 137 US SE , 250 worldbank

(b) k=5: 58 London SE , 136 US SE , 247 worldbank

3. For training dataset creation, we have a positive to negative ratio of 3:4 for k=3 case and 5:6 for k=5
case. We ensured that training data is not skewed.
4. Size of training dataset creation:
(a) k=3: 1120 samples, 480 positive, 640 negative in 100% combined dataset.
(b) k=5: 1738 samples, 790 positive, 948 negative in 100% combined dataset.

F Experimental Details and Reproducibility

F.1 LLM details and Reproducibility

We work with 3 primary LLMs GPT 3.5, GPT 4 and Llama 3 (70 billion). Azure OpenAl was used to
access GPT models and Ollama library in python was used to access Llama3 70b model. We set the
temperature to 0 while generating responses for event extraction and cross-examination. The results
should remain majorly reproducible barring a small fluctuation subject to variance in returned values from
LLMs. We provide more details in following sections for reproducing the results.

F.2 Weak Temporal Consistency feature’s Anomaly method

In this, we calculate the anomaly score using the statsmodels.tsa.seasonal. STL function. For worldbank
dataset we use the timeperiod as 5 years and for the financial dataset we use the time period as 6 quarters.
We find the trend in the data and then subtract this trend from the residue values to get the anomaly score.
We normalize this anomaly score by dividing with the max absolute value of anomaly scores.

F.3 Constraints on Random Sampling of events

During random sampling of the event to associate with the anomaly we ensure the following conditions to
avoid any misassociations:
1. Worldbank: We exclude all the events in the same country and the same indicator.
2. Financial: We exclude all the events of companies of this industry type and also the events with the
similar trend. Removal of events with similar trend is essential because Global events will affect the
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entire stock market as a whole and will create same effect across company types.

F.4 Training details

Naive Bayes and Logistic regression training is standard training. For training the 2 Layer NN, we use a
model with 1 hidden layer of dimension 16. The training is done using Generalised cross entropy loss
with noise parameter q=0.5. We choose this parameter because without gold truths we cannot estimate the
noise in train data and so we cannot choose the most optimal q. Thus we take a middle value. Optimiser
is Adam with Ir=0.1 . We train for 100 epochs, breaking on Validation accuracy. The training time for
each model training experiment is less than 1 minute on NVIDIA A100-SXM4 GPU.

G Details of SelfCheckGPT Baseline

We adapt the SelfCheckGPT methods to our case as follows:

1. In terms of the terminology used in SelfCheckGPT paper (Manakul et al., 2023), each of the k
extracted events corresponding to an anomaly are treated as response R ( Ry, Rg,...R; ). The
objective is to rank each of these responses based on their scores. We then stochastically sample
N=20 events using a prompt described in Figure 9. These 20 samples make the S for the technique
as in selfcheckGPT method.

2. Since selfcheckGPT works on passages and sentences. We convert the structured event into a passage
as follows:

"Event <event name> can <pattern> <indicator><place str> around <anomaly time>. Event <event
name> started in <event time start> and ended in <event time end>. Event <event name> happened
in <event location>."

This passage has 3 sentences.

3. We use different passage-level scores to rerank each event. This score is the average of the sentence
level scores.

4. We compare our method against the top 3 performing methods for passage-level ranking perfor-
mances in the Selfcheckgpt paper: prompt-based technique, NLI (natural language inference), and
unigram(max).
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