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Abstract

Although the performance of Temporal Action Segmentation (TAS) has been
improved in recent years, achieving promising results often comes with a high
computational cost due to dense inputs, complex model structures, and resource-
intensive post-processing requirements. To improve the efficiency while keeping
the high performance, we present a novel perspective centered on per-segment
classification. By harnessing the capabilities of Transformers, we tokenize each
video segment as an instance token, endowed with intrinsic instance segmentation.
To realize efficient action segmentation, we introduce BaFormer, a boundary-
aware Transformer network. It employs instance queries for instance segmentation
and a global query for class-agnostic boundary prediction, yielding continuous
segment proposals. During inference, BaFormer employs a simple yet effective
voting strategy to classify boundary-wise segments based on instance segmenta-
tion. Remarkably, as a single-stage approach, BaFormer significantly reduces the
computational costs, utilizing only ∼6% of the running time compared to the
state-of-the-art method DiffAct, while producing better or comparable accuracy
over several popular benchmarks. The code for this project is publicly available at
https://github.com/peiyao-w/BaFormer.

1 Introduction

Temporal Action Segmentation (TAS) [28, 43, 30, 29, 21, 32], a notable endeavor in the study of
untrimmed videos, aims to allocate an action label to each frame, enabling the detailed analysis
of complex activities by identifying specific actions within long-form videos. It has extensive
applications in surveillance [11, 12], sports analytics [20], and human-computer interaction [38].
Despite its critical importance, existing TAS models often grapple with high computational costs and
lengthy inference times, limiting their applicability in real-time and resource-constrained scenarios.

The inefficiency of TAS arises from two primary factors:1) Long-form Input: Untrimmed videos
in TAS often include tens of thousands of frames containing multiple action segments that ideally
should be sparse in terms of action semantics. However, most approaches [15, 32, 21, 43] maintain
frame-wise processing throughout the model to preserve dense information, aiming to enhance frame-
wise prediction accuracy yet at the cost of efficiency. Conversely, the straightforward downsampling
method [28] fails to achieve the desired accuracy for dense predictions. 2) Heavy Model Structure:
The adoption of multi-stage refinement models and various time-consuming post-processing tech-
niques further contribute to the slow runtime of TAS models. For instance, although a previous
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Figure 1: Accuray vs. inference time on 50Salads. The bubble
size represents the FLOPs in inference. Under different backbones,
BaFormer enjoys the benefit of boundary-aware query voting with
less running time and improved accuracy.
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Figure 2: An efficient pipeline
developed by our proposed
BaFormer.

method [3] employs a single-stage model with transcripts to mitigate the heavy model structure, the
algorithms used during post-processing remain time-intensive, as shown in Fig. 1.

Our objective is to transform the long-form video into a sparse representation, thereby reducing
the temporal dimension processed by the model. Additionally, we aim to employ a single-stage
model coupled with an appropriate post-processing method to minimize the running time.
Benefiting from the query-based model, which allows information to be compressed into a limited
number of queries, segments can be effectively represented as queries. By enabling each query to
predict the corresponding class, start, and end, action segmentation can be seamlessly reframed as an
action detection task. However, this significant compression of the long-form input adversely impacts
the accuracy of dense predictions, as noted in [3]. To address the limitation, we draw inspiration
from recent advances in mask classification-based image segmentation, particularly MaskFormer
[10]. In TAS, rather than predicting frame-wise results directly, we propose using a set of queries to
represent segments by decoupling their binary masks and their classes. The decoupling approach
effectively conveys sparse information through limited queries, while preserving dense information
via binary masks. Furthermore, the continuous nature of features in the temporal dimension introduces
discontinuities in learning frame-wise masks. To address the issue of discontinuity, we introduce
an additional query to learn boundaries, capturing global information with minimal computational
overhead. The additional query should also facilitate efficient post-processing.

Our solution, depicted in Figure 2, involves a parallel boundary-wise segment proposal generation
to yield compact and continuous segment proposals. By classifying these segment proposals via
multiple query voting, our method, named BaFormer (Boundary-aware Transformer), realizes
efficient TAS with high performance. Experiments conducted on three popular TAS datasets validate
the effectiveness of our method. Specifically, on the 50Salads dataset: compared with the baseline
ASFormer, our approach improves accuracy by 3.9%, F1@50 by 7.9%, and edit score by 4.6%.
Compared to the state-of-the-art performer DiffAct [32], our approach delivers competitive results
while requiring only 10% of the FLOPs and 6% running time. Moreover, our query-based voting
mechanism significantly reduces inference time to 24% of that required by the single-stage model
UVAST [3]. The contributions of our work are threefold:

1. A query-based Transformer is introduced to convert TAS from dense per-frame classification
into a sparse per-query alternative, substantially reducing computational overhead.

2. The simple yet effective boundary-aware query voting ensures accurate and coherent action
segmentation.

3. Experimental evidence demonstrates our model’s superiority in efficiency over existing
state-of-the-art TAS methods, without sacrificing effectiveness.

2 Related Work

Temporal Action Segmentation. In temporal action segmentation, many methods [15, 30, 7, 1, 41,
21, 45, 6, 44, 32, 3] have been developed to address the challenge of over-segmentation. Notably,
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MSTCN [15], ASFormer [45], and DiffAct [32] utilize repeating modules and multi-loss supervision
to enhance long-range dependency capture and refine preliminary predictions. In addition, several
methods [7, 1, 41, 21, 6, 44, 18] incorporate post-processing techniques that integrate priors, such
as boundaries [43] and transcripts [3], to further refine per-frame predictions. Additionally, other
methods[43, 21, 6] opt for a parallel approach to frame-wise prediction and constraint learning
within end-to-end models. For instance, BCN [43] and ASRF [21] introduce boundary prediction
as an auxiliary branch to enhance results, while UARL [6] leverages certainty learning to exploit
transitional expressions. Despite these innovative efforts improving the performance, the reliance
on multistage networks as the backbone structure leads to increased computation costs. Building
on recent advancements, UVAST [3] introduces a query-based network [40] to predict transcripts,
transitioning from a multi-stage to a single-stage network for frame-wise prediction, which results
in a reduction of FLOPs compared to earlier methods. However, post-processing with the Viterbi
algorithm [26, 36] incurs significant time during inference, detracting from its suitability for real-time
applications.

Query-based model for Image Detection and Segmentation. Benefiting from Transformer archi-
tectures, query-based models have recently revolutionized object detection [4, 34, 13, 37, 33, 46, 8],
which utilizes a Transformer network to predict bounding boxes and their corresponding classes.
This architecture can be readily adapted for image segmentation as well. MaskFormer [10] and
Mask2Former [9] offer a direct application, that predicts mask classifications and their corresponding
binary masks, transforming the task from pixel-wise dense prediction to mask classification. In recent
advancements, SAM (Segment Anything Model) [24] emerges as a powerful solution for segmenting
generic objects. Integrating query-based architectures has paved the way for more effective and
versatile segmentation solutions.

Our method is different from previous TAS ones with the use of the query-based model. UVAST [3],
yields a query-based transcript used for the potentially heavy post-processing, is mostly related to ours.
By contrast, our approach BaFormer utilizes the query-based module in conjunction with a single-
stage frame-wise module to decouple frame-wise results into query masks and classifications like
that in image segmentation via mask classification, which is the first for TAS. The decoupling allows
our method to facilitate efficient inference via query-based majority voting, leveraging boundary
information.

3 BaFormer

The overview of BaFormer is shown in Fig. 3, consisting of a frame-wise encoder-decoder, a
Transformer decoder, output heads, and inference processing. The input is a video V ∈ RT×3×H×W

comprising T frames of resolution H ×W , and the final output is frame-wise segment results.

• In the frame-wise encoder-decoder module, the frame encoder first extracts video feature
maps Fe ∈ RT×C0 from the input video V, which are then fed to frame decoder with L
layers followed by a linear layer, resulting in Fd ∈ RT×C . Additionally, we collect output
features from L frame decoder layers as F = {fl ∈ RT×C}Ll=1.

• Next, the Transformer decoder, comprising L layers, processes M trainable instance queries
Q0 ∈ RM×C . It takes features F and masksM = {Pm

l ∈ RM×T }L−1
l=0 as inputs. Pm

l =

φm(Ql,Fd) corresponds to the mask prediction probability estimated by the mask prediction
head φm. Ql is instance query embedding of the lth Transformer layer. As shown in Fig. 4(a),
the lth layer utilizes Ql−1,Pm

l−1, fl to generate Ql.

• In the output heads, each instance query embedding Ql is processed alongside frame
embeddings Fd by three distinct heads, which calculate the probabilities for query class
(Pc

l ), masks (Pm
l ), and boundaries (Pb

l ), respectively. Fig. 3 specifically illustrates the
processing of the final layer’s embeddings by the output heads.

• Finally, during inference, the predictions are aggregate from the final Transformer layer,
including query class probability Pc

L, masks prediction Pm
L , and boundary predictions Pb

L.
And aboundary-aware query voting is employed to finalize the results.
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Figure 3: Overview of BaFormer architecture. It predicts query classes and masks, along with
boundaries from output heads. Although each layer in the Transformer decoder holds three heads, we
illustrate the three heads in the last layer for simplicity.

3.1 Frame-wise Encoder-Decoder

The frame-wise encoder-decoder module is designed to preserve dense information essential for
model’s functionality. Following previous research [15, 45, 32], we employ the I3D [5] encoder
with frozen parameters to transfer video input V ∈ RT×3×H×W into video features Fe ∈ RT×C0 ,
setting C0 to 2048. Subsequently, we select the ASFormer encoder [45], equipped with L layers, as
the frame-wise decoder. This decoder processes Fe to yield frame-wise embeddings Fd ∈ RT×C ,
enriching the model with dense information crucial for query masks and boundary predictions.

3.2 Transformer Decoder

The Transformer decoder aims to compress video sequences into sparse representations via queries to
improve model efficiency. It stacks L Transformer layers {Ωl}Ll=1, as illustrated in Fig. 4(a). The
output of the lth layer Ql ∈ RM×C can be generated according to:

Ql = Ωl(Ql−1,Pm
l−1, fl), l = 1, 2, ..., L (1)

where fl ∈ RT×C represents the frame-wise features from the lth frame decoder layer, and Pm
l−1 =

φm(Ql−1,Fd) ∈ RM×T is the output of mask prediction head φm with input Ql−1 and Fd. The
detailed computation of φm will be specified in the output heads section.

The final output of the Transformer decoder, QL, is then directed to the output heads for the ultimate
prediction. Additionally, the intermediate outputs Ql (for l < L) are also fed into output heads,
serving for auxiliary outputs, which are further discussed in output heads and loss sections.

The specific structure of each Transformer layer Ωl is illustrated in Fig. 4(b). Each layer consists of
three sub-layers with normalization and residual connection: (1) a Mask-Attention (MA) layer, (2) a
Self-Attention (SA) layer, and (3) a Feed-Forward Fetwork (FFN). The SA and FFN are the same
as those in the vanilla Transformer [40]. The MA layer is a variant from Mask2Former [9], where
the thresholding of mask prediction is changed from hard into soft, which suits action segmentation
within a temporally continuous feature space. Specifically, in the lth Transformer layer, mask-attention
layer in Fig. 4(b) can be formulated as:

Q̂l = Linear(Ql−1), K̂l = Linear(fl), V̂l = Linear(fl),

Xl = Linear
(

softmax
(Pm

l−1√
C
⊙ Q̂lK̂

T

l

)
V̂l

)
+ Ql−1,

(2)

where ⊙ is the Hadamard product. The mask Pm
l−1 is a probability matrix, with each element within

the interval [0, 1]. This structure enables the queries to concentrate more effectively on the principal
information of the frame sequence.

3.3 Output Heads

The output heads are designed to generate key elements required by the inference module, including
query classes, query masks, and class-agnostic boundaries. Given {Ql}Ll=1, there will be L groups
of output heads. Each Ql is processed through the lth group of output heads to yield prediction. For
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notation conciseness, we omit the subscripts of the inputs Ql, the output heads, and the predictions in
this section.

Each group of output heads comprises three learnable modules: a classification head φc, a mask
prediction head φm, and a boundary prediction head φb. They will produce query class probability
Pc ∈ RM×(K+1), query masks Pm ∈ RM×T , and boundary probability Pb ∈ RT , respectively. They
can be formulated as:

Pc = φc(Q) = softmax(Linear(Q)), Pm = φc(Q,Fd) = sigmoid(MLP(Q)Fd⊺). (3)

The Multi-Layer Perceptron (MLP) consists of three hidden layers. According to the M queries,
we can denote output as Pc = {pc

i}Mi=1, Pm = {pm
i }Mi=1. The predicted class-mask pair (pc

i ,pm
i )

corresponds to output of the ith query.

Before the instance query embeddings Q are fed into the boundary head, they are aggregated across
the query dimension into a global query by another MLP with three layers, followed by a linear
layer, resulting in Q′ = Linear(MLP(Q)⊺)⊺ ∈ RC . The global query encompasses comprehensive
video information, thereby facilitating a global boundary prediction. Then the boundary head can be
formulated as:

Pb = φb(Q′,Fd) = sigmoid(Q
′
Fd⊺). (4)

Moreover, outputs of previous Transformer decoder layers Ql(l < L) are also fed into outputs heads
through Equations (3) and (4) to obtain auxiliary outputs Pc

l ,Pm
l , and Pb

l , serving as intermediate
supervision.

3.4 Matching Strategies and Loss Function

Training the model requires ground truth supervision for query classes, masks, and global boundaries.
For boundary detection, we represent ground-truth boundaries as yb ∈ RT , a heatmap generated by
applying a Gaussian distribution to the binary boundary mask. For query class and mask ground
truths, we define ground-truth segments as class-mask pairs {(yci , ymi )}Ni=1, where yci ∈ R indicates
the action class, ym

i ∈ RT is the corresponding binary mask, and N represents the total number of
such segments in the video.

The predicted outputs for classes and masks, denoted as Pc and Pm, are organized into class-mask
pairs {(pc

i ,pm
i )}Mi=1. pc

i ∈ RK+1 and pm
i ∈ RT represent the ith query’s class and mask probability

prediction, respectively, and K is the number of action class in the dataset.

Before loss computation, a crucial step is to match ground-truth data with query predictions. Depend-
ing on the ground-truth segment type, we apply different matching strategies, as shown in Fig. 5:
(1) Ordered Class Matching: instance queries are sequentially aligned with the class order, ensuring
a direct match. (2) Transcript Matching: instance queries are sequentially aligned with transcript
ground truths by action order, with any excess query predictions aligned to a no-action label. (3)
Instance Matching: instance queries are matched with instance ground truths by Hungarian matching
algorithm [27], with extra query predictions assigned to a no-action label. The first two strategies
employ fixed matching based on query order, whereas the third strategy utilizes dynamic matching,
requiring the matching cost from query class matching and mask matching. We define the cost when
matching a pair of mask a ∈ RT and b ∈ RT as:

Lmask(a,b) = λfocalLfocal(a,b) + λdiceLdice(a,b), (5)

where the λfocal and λdice are the loss weight of focal loss [31] and dice loss [35]. Defined as pc
(i,j),

the probability value in the ith query class prediction pc
i is indexed by the jth class. So the cost
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between the ith query prediction (pc
i ,pm

i )and the jth ground truth (ycj , ymj ) in Hungarian matching is:

Costij = − log pc
(i,yc

j )
+ Lmask(pm

i , ymj ). (6)

Experimental results reveal that instance matching outperforms others. Training losses for ordered
class and transcript matching detailed in the supplemental material. When utilizing instance matching,
the training loss for a video is defined as follows:

L = −
M∑
i=1

log pc
(i,yc

σ(i)
) +

N∑
j=1

Lmask(pm
δ(j), ymj )−

T∑
t=1

ybt log p
b
t , (7)

where σ(i) is the optimal ground truth index aligned with the ith query prediction, δ(j) denotes the
optimal prediction index corresponding to the jth ground truth, ybt is the tth element of yb, and pbt is
the tth element of Pb.

3.5 Inference

During inference, a set of M pairs of query class-mask probability {(pc
i ,pm

i )}Mi=1 are obtained, along
with a boundary probability vector Pb ∈ RT , from the Lth output heads. We apply a dedicated
algorithm outlined in Algorithm 1 to derive the ultimate segmentation outcomes. Initially, boundary
prediction produces class-agnostic segment proposals. In each segment, each query mask within the
segment is summed up and we identify the majority-contributing query for the segment. Ultimately,
the class of this predominant query is assigned as the class for the segment. The algorithm is based
on the observation that for each segment proposal span, all the queries may be activated in the mask
prediction but the query corresponding to the correct category always dominates.

Algorithm 1: Boundary-aware Query Voting
Input: Probability of query class–mask pairs: {(pc

i , pm
i )}Mi=1, where

pc
i ∈ RK+1, pm

i ∈ RT ; Boundary probability: Pb = {pbt}Tt=1, where
pbt ∈ R is the boundary probability in the tth frame.
Output: Frame-wise segmentation: S ∈ RT .

1 Initialize S ∈ RT with all zeros
2 C← {clsi|clsi = argmax(pc

i [: K])}Mi=1

3 B = {bi}Nb
i=1 ← sort

(
{1, T}

⋃
{t|(pbt > pbt−1)&(pbt > pbt+1), 1 < t < T}

)
4 for i = 1, 2, ..., Nb − 1 do
5 for j = 1, 2, ...,M do
6 wij =

∑
pm
j [bi : bi+1]

7 end
8 k = argmaxj({wij}Mj=1)

9 S[bi : bi+1] = clsk
10 end

4 Experiments

4.1 Setup

Dataset and Evaluation Metric. We use three challenging datasets, GTEA [16], 50Salads [39]
and Breakfast [25], where 50Salads presents the longest videos while GTEA includes the shortest
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Match #Q FLOP
(G)

Time
(s)

Para
(M)

F1
@{10, 25, 50} Edit Acc.

Ordered Class 19 3.74 0.136 1.49 88.1 87.0 83.5 82.7 87.9
Transcript 26 4.23 0.144 1.63 56.3 55.1 48.2 54.5 59.8
Instance† 26 4.23 0.144 1.63 85.3 84.6 79.9 79.8 86.1
Instance 100 4.45 0.139 1.63 89.3 88.4 83.9 84.2 89.5

∆Instance−Ordered-class +0.71 +0.003 +0.14 +1.2 +1.4 +0.4 +1.5 +1.6
∆Instance−Transcript +0.22 -0.005 +0.14 +33.0 +33.3 +35.7 +29.7 +29.7

Table 1: Comparative analysis of matching strategies
on 50Salads. (#Q: number of queries.)

Query FLOP
(G)

Time
(s)

Para
(M)

F1
@{10, 25, 50} Edit Acc.

ASFormer 6.66 0.359 1.13 85.1 83.4 76.0 79.6 85.6

Class Token 4.54 0.139 1.63 85.7 84.5 78.9 79.7 86.3
Average Pooling 4.54 0.139 1.63 89.3 88.4 83.9 84.2 89.5
∆(Average Pooling

−Class Token)
0 0 0 +3.6 +3.9 +5.0 +4.5 +3.2

Table 2: Performance of different global
queries on 50Salads.

ones, while Breakfast encompasses 1712 videos, which is the largest dataset. We conduct 4-fold
cross-validation for GTEA and Breakfast and 5-fold cross-validation for 50Salads, consistent with
previous research [21, 30, 43, 45, 15, 3, 42]. We assess accuracy for all frames as our key evaluation
metric and report the segmental Edit score, and F1 scores for various Intersection over Union (IoU)
thresholds (10%, 25%, 50%) denoted as F1@{10, 25, 50}.

Implementation Details. For the frame encoder, we use the pre-trained I3D [5] with fixed parameters,
to obtain the frame-wise features with a dimension of 2048. The frame decoder allows any architecture
designed for dense prediction tasks. In our paper, we utilize the ASFormer encoder [45], replicating
its configuration with 11 layers and an output dimension C of 64. For the Transformer decoder, the
initialization starts with 90 queries for GTEA and 100 queries for 50Salads and Breakfast datasets,
subsequently employing 10-layer Transformer decoders. Each decoder layer comprises three attention
heads and a hidden dimension of 128. In the output heads, for mask and boundary prediction, we
employ MLP layers with a hidden dimension of 64. As for Hungarian matching, λfocal = 5.0 and
λdice = 1.0. During training, we adopt Adam optimizer [23] with the step learning rate schedule
in [19]. Initial learning rates are set to 5× 10−4 for GTEA and 50salads datasets, while 1× 10−3 for
Breakfast dataset, incorporating a decay factor of 0.5. The training is with 300 epochs utilizing a
batch size of 1. All experiments are conducted on an NVIDIA RTX 3090.

4.2 Ablation Studies and Analysis

We use boldface and underline for the best and second best performing methods in tables and indicate
the performance improvements with ∆. All ablation studies are conducted on the 50Salads dataset.
More analysis is provided in the supplemental material.

Analysis of matching strategies. We evaluate the impacts of different matching strategies as sum-
marized in Table 1. We explored three matching approaches: Ordered Class Matching, Transcript
Matching, Instance Matching. Instance† utilizes the minimum feasible query count (26) to align
computational costs with the other methods. In the ordered class matching model, deterministic
query-to-class assignments provide a transparent optimization trajectory during training. Its com-
mendable performance reflects its effectiveness. Instance†, which employs bipartite matching to
correlate queries with unique segment instances, displays a slight decrease in performance relative
to ordered class matching, with accuracy, F1 @10, and Edit distance decreased by 1.8%, 2.8%, and
2.9%, respectively. This modest divergence implies that fixed query-to-class mappings may benefit
training. However, unlike static class numbers, increasing the number of queries from 26 to 100
enhances the performance of the instance-based method. In contrast, the transcript matching strategy
underperforms, evidenced by its considerable performance metric deficits. This technique, which
encodes only the sequential information into each query, predisposes the queries towards positional
grouping rather than convergent model learning, indicating that this is insufficient for coalescing
actions into meaningful query clusters.

Effectiveness analysis of different kinds of global query. The global query generates boundaries
that offer class-agnostic segment proposals essential for the query-based voting mechanism. We
explore two approaches for deriving the global query: a class token and an average pooling token.
The class token, like a class token in ViT [14], is learned at the beginning of the Transformer
decoder, whereas the average pooling token is aggregated from instance queries by an average
pooling operation. The comparative results of these approaches are presented in Table 2. When
evaluating different strategies, it demonstrates that the class token is inferior to the average pooling
token. We speculate that the superior performance of the average pooling token can be attributed to its
benefit from intermediate, query-based supervision, unlike the class token, which relies exclusively on
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Voting strategy Time(s) F1@{10,25,50} Edit Acc.
Frame-based(FV) 0.187 85.3 84.8 77.2 78.6 87.7
Query-based(QV) 0.139 89.3 88.4 83.9 84.2 89.5
∆QV−FV -0.043 +4.0 +3.6 +6.7 +5.6 +1.8

Table 3: Performance and efficiency of different voting
strategies on 50Salads.
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Figure 6: Query predictions and
frame-wise results on 50Salads.

Method Time(s) F1@{10,25,50} Edit Acc.
NMS 0.138 89.1 88.4 84.0 83.8 89.1
peak 0.139 89.3 88.4 83.9 84.2 89.5
∆peak−NMS +0.001 +0.2 0 -0.1 +0.4 +0.4

Table 4: Different strategies on boundary generation
on 50Salads.

Boundary F1@{10,25,50} Edit Acc.
Predict 89.3 88.4 83.9 84.2 89.5

GT 91.8 91.8 90.2 88.3 95.9

∆GT−Predict +2.5 +3.4 +6.3 +4.1 +6.4

Table 5: Performance with predicted or
ground-truth boundaries on 50Salads.

boundary supervision. This intermediate level of supervision likely results in finer temporal resolution
and a more integrated global context, significantly improving the model’s predictive accuracy.

Why do we use query-based voting? BaFormer efficiently compresses videos into sparse represen-
tations, thereby reducing computational demands. To derive the final frame-wise results from the
predictions of query classes, masks, and boundaries, we employ two voting strategies: frame-based,
and query-based voting. These strategies correspond to voting on boundaries by queries, and frames,
respectively (details are provided in supplemental material). The results of these voting strategies are
presented in Table 3. Specifically, the query-based voting mechanism identifies the query contributing
most significantly to a segment, treating each query as an integral unit. Conversely, the frame-based
voting method, detailed in the supplemental material, determines the segment’s class label based on
the majority class across frames within the segment. According to the comparison detailed in Table 3,
query-based voting significantly surpasses frame-based voting, showcasing improvements in running
time and evaluation metrics. Specifically, accuracy obtains an enhancement of 1.8%. The edit score
is increased by 5.6%, and F1@50 is improved by 6.7%.

Further, we identify the reasons why query-based voting enhances the results and why it is superior
to frame-based voting in Figure 6. Figure 6 comprises two parts. Specifically, to generate the top part,
we binarize the predicted masks from the final transformer decoder layer Pm

L ∈ RM×T to 0 or 1 with
a threshold 0.5. Thus, the positions with a value of 1 indicate the presence of actions corresponding
to the query class. Next, we apply different colors to these positions and each color represents a
single action. Then query masks are stacked to form the top part. In the bottom part, we present
video segment results of frame-based and query-based voting, along with the ground truth. The red
arrow points towards a specific query within a segment proposal, illustrated between two vertical
black dashed lines. The red dashed box shows the segment results within the proposal. Query-based
voting can identify new action segments, in contrast to frame-based voting, which is limited to
recognizing only the predefined action classes within a segment. As demonstrated in Figure 6, we
highlight intervals where new actions are discerned that would not be apparent through smoothing of
frame-wise results. We hypothesize that this is due to the voting process among segmental candidates,
which is independent of class probability and focuses instead on the number of frames. This approach
can rectify misclassifications inherent in frame-wise analysis that overemphasizes class probability.

Different strategies for boundary generation. To obtain boundaries quickly, we experiment with
two techniques: Non-Maximum Suppression (NMS) and peak choice, with the corresponding results
presented in Table 4. Peak choice focuses on identifying boundaries within a local context. In
contrast, NMS initially identifies boundaries with the maximum probability on a global scale and
subsequently eliminates other boundary candidates at a local level. The analysis reveals that they
yield similar outcomes and running time.

How well would our approach perform if we had perfect boundaries? We also conduct an analysis
related to class-agnostic boundaries. Given that boundary quality is crucial to our process, we aim to
quantify the potential performance improvement if “perfect” boundaries are available. To this end,
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S Method Time FLOPs Param GTEA 50Salads Breakfast
(s) (G) (M) F1@{10,25,50} Edit Acc. F1@{10,25,50} Edit Acc. F1@{10,25,50} Edit Acc.

M
ul

tip
le

MSTCN [15] 2019 0.094 4.59 0.80 85.8 83.4 69.8 79.0 76.3 76.3 74.0 64.5 67.9 80.7 52.6 48.1 37.9 61.7 66.3
SSTDA [7] 2020 0.173 9.37 0.80 90.0 89.1 78.0 86.2 79.8 83.0 81.5 73.8 75.8 83.2 75.0 69.1 55.2 73.7 70.2

BCN [43] 2020 0.152 73.54 12.77 88.5 87.1 77.3 84.4 79.8 82.3 81.3 74.0 74.3 84.4 68.7 65.5 55.0 66.2 70.4
HASR [1] 2021 0.217 29.02 19.17 90.9 88.6 76.4 87.5 78.7 86.6 85.7 78.5 81.0 83.9 74.7 69.5 57.0 71.9 69.4

DTGRM [41] 2021 0.261 3.75 0.73 87.8 86.6 72.9 83.0 77.6 79.1 75.9 66.1 72.0 80.0 68.7 61.9 46.6 68.9 68.3
ASRF [21] 2021 0.163 7.43 1.30 89.4 87.8 79.8 83.7 77.3 84.9 83.5 77.3 79.3 84.5 74.3 68.9 56.1 72.4 67.6

Gao et al [17] 2021 - - - 89.9 87.3 75.8 84.6 78.5 80.3 78.0 69.8 73.4 82.2 74.9 69.0 55.2 73.3 70.7
ASFormer [45] 2021 0.359 6.66 1.13 90.1 88.8 79.2 84.6 79.7 85.1 83.4 76.0 79.6 85.6 76.0 70.6 57.4 75.0 73.5

UARL [6] 2022 - - - 92.7 91.5 82.8 88.1 79.6 85.3 83.5 77.8 78.2 84.1 65.2 59.4 47.4 66.2 67.8
DTL[44] 2022 0.403 6.66 1.13 - - - - - 87.1 85.7 78.5 80.5 86.9 78.8 74.5 62.9 77.7 75.8
RTK [22] 2023 - - - 91.2 90.6 83.4 87.9 80.3 87.4 86.1 79.5 81.4 85.9 76.9 72.4 60.5 76.1 73.3

LtContext [2] 2023 0.202 8.31 0.66 - - - - - 89.4 87.7 82.0 83.2 87.7 77.6 72.6 60.1 77.0 74.2
DiffAct [32] 2023 2.306 43.94 1.21 92.5 91.5 84.7 89.6 82.2 90.1 89.2 83.7 85.0 88.9 80.3 75.9 64.6 78.4 76.4

KARI [18] 2023 - - - - - - - - 85.4 83.8 77.4 79.9 85.3 78.8 73.7 60.8 77.8 74.0

Si
ng

le

UVAST† [3] 2022 0.577 3.86 1.27 77.1 69.7 54.2 90.5 62.2 86.2 81.2 70.4 83.9 79.5 76.7 70.0 56.6 77.2 68.2
UVAST [3] 2022 480.888 3.06 1.10 92.7 91.3 81.0 92.1 80.2 89.1 87.6 81.7 83.9 87.4 76.9 71.5 58.0 77.1 69.7

UVAST‡ [3] 2022 1.765 3.86 1.27 82.9 79.4 64.7 90.5 69.8 88.9 87.0 78.5 83.9 84.5 76.9 71.5 58.0 77.1 69.7
BaFormer (ours) 0.139 4.54 1.63 92.0 91.3 83.5 88.7 83.0 89.3 88.4 83.9 84.2 89.5 79.2 74.9 63.2 77.3 76.6

Table 6: Performance on GTEA, 50Salads, and Breakfast datasets. In terms of running time, BaFormer
outperforms all methods except MSTCN. As for accuracy, BaFormer achieves comparable or better
results. UVAST†, UVAST, and UVAST‡ represent UVAST with alignment decoder, Viterbi, and
FIFA. All FLOPs and running time are evaluated on 50Salads using the official codes in a consistent
environment. We omit the running time and FLOPs on GTEA and Breakfast for simplicity as they
are proportional to video length.

Method Base FLOPs(G) Time(s) Parameters(M) F1@{10, 25, 50} Edit Acc.

SSTCN
CNN

1.71 0.035 0.30 27.0 25.3 21.5 20.5 78.2
MSTCN 4.59 0.094 0.80 76.3 74.0 64.5 67.9 80.7
BaFormer 4.02 0.074 1.55 84.3 83.1 75.8 78.4 84.5

∆BaFormer−SSTCN - +2.31 +0.039 +1.25 +57.3 +57.8 +54.3 +57.9 + 6.3

ASFormer(Encoder)

Transformer

2.23 0.110 0.38 53.1 51.4 47.0 43.3 85.7
DiffAct(1 step Decoder) 7.78 1.647 1.21 48.3 45.3 35.6 36.5 74.2
UVAST(Alignment) 3.86 0.577 1.27 86.2 81.2 70.4 83.9 79.5
BaFormer 4.54 0.139 1.63 89.3 88.4 83.9 84.2 89.5

∆BaFormer−ASFormer(Encoder) +2.31 +0.029 +1.25 +36.2 +37.0 +36.9 +40.9 + 3.8

Table 7: Performance of methods with similar running time, employing the CNN or Transformer
based frame decoder on the 50Salads dataset. To achieve comparable running time, DiffAct (1 step) is
adapted with an encoder and a single-step decoder, and ASFormer with an encoder only is included.

we run BaFormer using ground truth boundaries on the 50Salads dataset instead of our predicted
class-agnostic boundaries, as shown in Table 5. All the metrics have improved significantly. This
indicates that our approach yields more promising results by higher-quality class-agnostic boundaries,
which can be one of the future directions.

4.3 Comparisons with the State of the Arts

In Table 6, we categorize methods by multi-stage and single-stage. Our main comparison is with
the single-stage methods since our BaFormer adopts the same single-stage frame-wise decoder.
Compared with UVAST with different alignment modes, BaFormer demonstrates superior efficiency,
achieving the shortest processing time while outperforming it in most metrics. Notably, BaFormer
requires only 24% of the time compared to UVAST with an alignment decoder (UVAST†), while
enhances accuracy by 20.8%, 10%, and 8.4% on the GTEA, 50Salads, and Breakfast datasets,
respectively. These results underscore the efficacy of BaFormer in decoupling frame-wise prediction
into query masks and class prediction. Overall, BaFormer surpasses all multi-stage methods in terms
of accuracy and achieves comparable results in F1 and Edit scores on all datasets. As for efficiency,
compared to state-of-the-art multi-stage methods, i.e., DiffAct, our method operates with only 6% of
inference time and 10% of FLOPs, demonstrating a highly efficient approach to TAS.

Comparison with the methods with similar Running time. We compare our method with several
others that exhibit similar running time in Table 7, focusing on both CNN and Transformer-based
frame-wise decoder. Specifically, ‘CNN based frame-wise deocder’ refers to the single-stage MSTCN
structure, and ‘Transformer based frame-wise decoder’ refers to the single stage of ASFormer struc-
ture. Within the CNN based frame-wise decoder, i.e., SSTCN [15], BaFormer achieves outstanding
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enhancements, surpassing MSTCN by 3.8% in accuracy, 10.5% in Edit score, and 8.0% in F1@50.
Notably, BaFormer significantly augments SSTCN’s performance, yielding a 54.3% increase in
F1@50. This comparison underscores BaFormer’s single-stage capability to achieve high perfor-
mance efficiently, maintaining the same inference time. When leveraging a Transformer as the
frame-wise decoder, we modify the number of stages in multi-stage methods to match the inference
time of BaFormer. This adjustment leads to a new version of ASFormer with a single encoder
and DiffAct with a simplified step decoder. Among these methods, BaFormer emerges as the top
performer. This signifies that achieving frame-wise results through the decoupling of query masks
and class prediction is more effective than direct frame-wise prediction.

5 Limitations and Conclusion

BaFormer takes the query-based Transformer framework, which is known for its slow training
convergence and data thirsty. We observe that training query-based Transformer converges slower
than training frame-wise approaches. For the discontinuous binary mask predictions, it may also be
attributed to the limited data of action segmentation benchmarks. We hope that these factors can
inspire future work.

In conclusion, we introduce BaFormer, a novel boundary-aware, query-based approach for efficient
temporal action segmentation. Contrasting most of the previous methods that rely on multi-stage
or multi-step processing, BaFormer employs a one-step strategy. It simultaneously predicts the
query-wise class and mask, while yielding global boundary prediction for segment proposals. We
apply query-based voting for segment proposal classification. BaFormer offers a unique perspective
for addressing TAS challenges by integrating grouping and classification techniques, representing
a novel perception in the temporal action segmentation paradigm, emphasizing both efficiency and
accuracy.
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Appendix

A Broader impact

We assert that our proposed method processes temporal action segmentation efficiently while strictly
preserving privacy by utilizing features rather than raw video. Our work not only opens new
horizons for the academic community but also advances the task towards real-world application. We
also acknowledge that ethical concerns may be caused by the unsatisfactory boundary detection.
Nonetheless, safety and reliability will be our top priorities when we deploy this system in real-world
applications.

B Notations

To clarify, we denote l as the index for the transformer decoder layer and i as the index for the query.
Subscripts indicate the indices of parameters, while superscripts serve as abbreviations representing
parameter types. For instance, the superscript m in Pm stands for ‘mask.’

Notation Meaning

Fe Video features extracted from frame encoder
Fd Outputs of frame-wise encoder-decoder module
F Features collections from L frame decoder layers
fl Output features of lth frame decoder layer

Q0 M trainable instance queries with random initialization
Ql Instance query embedding from the lth layer

Pc
l Query class prediction from the lth layer (the c represents ‘class’)

Pm
l Query masks prediction from the lth layer (the m represents ‘mask’)

Pb
l Boundary predictions from the lth layer (the b represents ‘boundary’)

pc
i The ith query class prediction in Pc (the index l is committed in Pc for simplicity)

pm
i The ith query mask prediction in Pm (the index l is committed in Pm for simplicity)

pb
t The boundary prediction in the tth frame

φc The head for predicting query classes
φm The head for predicting query masks
φb The head for predicting boundaries

yc
i The ground-truth action class for the ith query

ym
i The ground-truth binary mask for the ith query

yb The ground-truth boundaries

C Other implementation details

C.1 Loss for ordered class and transcript matching

Similar to instance matching, we model ground-truth boundaries as yb ∈ RT , a heatmap generated by
applying a Gaussian distribution to the binary boundary mask. For ground truths of query classes and
masks, we employ different strategies: In ordered class matching, segments are derived according to
categorical order. In contrast, transcript matching segments are determined by the action sequence
outlined in the video transcript. Consequently, we represent ground-truth segments as class-mask
pairs {(yci , ymi )}Ni=1, with yci ∈ R denoting the action class, ymi ∈ RT as the corresponding binary
mask, and N as the total number of segments in the video. In ordered class matching, the N = K,
where K is the total number of action classes in the dataset. In the transcript matching, the N is the
number of actions in the video transcript.
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The predicted outputs for classes and masks, denoted as Pc and Pm, are organized into class-mask
pairs {(pc

i ,pm
i )}Mi=1, where pc

i ∈ RK+1 and pm
i ∈ RT represent the ith query’s predicted class

probabilities (including a no-label class) and mask probabilities, respectively. We define pc
(i,j) as the

probability value in the ith query class prediction pc
i indexed by the jth class. We define the cost when

matching a pair of mask a ∈ RT and b ∈ RT as:

Lmask(a,b) = λfocalLfocal(a,b) + λdiceLdice(a,b), (8)

where the λfocal and λdice is the loss weight of focal loss [31] and dice loss [35].

As a result, the loss function in ordered class and transcript matching can be formulated as follows:

L =

N∑
i=1

(
Lmask(pm

i , ym
i )− log pc

(i,yc
i )

)
−

T∑
t=1

ybt log p
b
t , (9)

where M is the number of queries, T is the length of the video, ybt is the tth element of yb, and pbt is
the tth element of Pb, which is the prediction of boundary probability.

C.2 Boundary-aware frame-wise voting

Different from the query-based voting, we also explore frame-wise voting, a more direct approach
when starting with frame-wise results. The details of the algorithm are in Algorithm 2.

Algorithm 2: Boundary-aware Frame Voting

Input: Probability of query class Pc ∈ RM×(K+1); Probability of query masks Pm ∈ RM×T ;
Boundary probability: Pb = {pbt}Tt=1, where pbt ∈ R is the boundary probability in the tth

frame.
Output: Frame-wise segmentation: S ∈ RT .

1 Initialize S ∈ RT with all zeros
2 Ps = (Pm)

⊺
(Pc[:, : K]) ∈ RT×K

3 S0 = argmax(Ps) ∈ RT

4 B = {bi}Nb
i=1 ← sort

(
{1, T}

⋃
{t|(pbt > pbt−1)&(pbt > pbt+1), 1 < t < T}

)
5 for i = 1, 2, ..., Nb − 1 do
6 act_id = FindMajorityElement(S0[bi : bi+1])
7 S[bi : bi+1] = act_id
8 end

D Impact of parameters

D.1 Number of transformer decoder layers

Table 8 explores the impact of varying the number of transformer decoder layers on the 50Salads
dataset and reveals a trend correlating the number of layers with performance metrics. Reducing the
transformer decoder layers to 3 results in a significant reduction of FLOPs to 2.97G and a minimal
change in running time, but it leads to decreased performance across all metrics, indicating a trade-off
between a more lightweight model and diminished robustness.

A further increase to 10 layers results in the best performance metrics, surpassing the model with
8 layers by 1.1% on accuracy, indicating that the additional depth provides a beneficial complexity
that enhances the model’s learning capability. Overall, the results suggests that while increasing the
number of transformer decoder layers incurs more computational cost, it also significantly boosts
performance, indicating a trade-off between efficiency and efficacy.

D.2 Query quantity

Table 9 provides an insightful look into how the quantity of queries impacts both the computational
cost and the performance of a model. Starting with 50 queries, we see a computational cost of
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# Transformer
decoder layer

FLOPs
(G)

Running
time(s)

#Parameter
(M)

F1
@{10, 25, 50} Edit Acc.

3 2.97 0.133 0.78 82.8 81.6 76.5 77.2 84.2
5 3.42 0.136 1.02 86.4 85.6 80.7 79.8 86.3
8 4.09 0.137 1.38 88.6 87.1 83.1 83.4 88.4

10 4.45 0.139 1.63 89.3 88.4 83.9 84.2 89.5
Table 8: Results of different numbers of Transformer decoder layers on 50Salads.

# query FLOPs
(G)

Running
time(s)

# Parameter
(M)

F1
@{10, 25, 50} Edit Acc.

50 4.26 0.138 1.629 87.8 87.2 82.8 82.8 87.1
70 4.28 0.139 1.630 88.4 87.5 83.4 82.9 87.9

100 4.45 0.139 1.632 89.3 88.4 83.9 84.2 89.5
120 4.56 0.139 1.633 86.6 85.7 81.1 81.3 87.0
150 4.60 0.139 1.636 84.3 82.8 77.2 78.4 84.4

Table 9: Influence of query quantity on 50Salads.

4.26G FLOPs and an accuracy of 87.1%. Increasing the query count to 70 results in a marginal
increase in FLOPs to 4.28G, but a notable improvement in accuracy to 87.9%. This indicates that a
slight increase in the number of queries can enhance the model’s ability without significantly raising
computational costs. However, the model’s performance peaks at 100 queries, achieving the highest
accuracy of 89.5% along with the best F1 and Edit scores, at a computational cost of 4.45G FLOPs.
This suggests that there is an optimal query range where the model’s performance is maximized.
Interestingly, beyond this point, as the number of queries continues to rise to 120 and 150, there is a
diminishing return in terms of accuracy, showing that additional queries beyond a certain threshold
may instead lead to overfitting.

E Structure and loss

E.1 Single/Multiple features

Different connection between frame decoder and transformer decoder. We investigate diverse
strategies for integrating the frame decoder with the transformer decoder modules. In the simplest
form, a uniform connectivity strategy is employed, wherein the transformer decoder ingests shared
video features originating from a singular level of the frame decoder, as illustrated in Figure 7(a).
Conversely, a more sophisticated approach is explored, wherein the transformer decoder harnesses
a hierarchy of video features, sourced from multiple layers within the frame decoder, to enrich the
representational capacity of the system, as demonstrated in Figure 7(b).

The results of these connectivity strategies are detailed in Table 10. We include the ASFormer as a
baseline for comparison. Regardless of whether auxiliary losses are applied or not, the adoption of
multi-level features yields substantial and noteworthy performance enhancements. These performance
improvements come at a minimal cost in terms of additional parameters and FLOPs. Specifically,
we observe an increase in accuracy by 5.5% and F1@10 by 6.0%, along with a corresponding
gain in accuracy by 3.9% and F1@10 by 3.9% in the presence and absence of auxiliary losses,
respectively. This phenomenon can be attributed to the mutually beneficial relationship between
query and mask predictions. When the transformer decoder and frame decoder operate independently,
there is a deficiency in the exchange of crucial information, impeding the training of query-based
mask classification methods.

E.2 Auxiliary loss

To rigorously analyze the impact of various loss functions on our method, we provide comparative
results in Table 10, detailing performance metrics both with and without auxiliary losses. These
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Figure 7: (a) and (b) illustrate the single-level and multi-level feature connection strategies, respec-
tively. In (a), a single-level feature from the frame decoder is shared with the transformer decoder
layers. While (b) involves the integration of multi-level features from various layers of the frame
decoder. (Note: Mask inputs have been omitted for simplicity.)

Feature Auxiliary
loss

#Parameter
(M)

Running
Time(s)

FLOPs
(G)

F1
@{10, 25,50} Edit Acc.

ASFormer - - 1.13 0.359 6.66 85.1 83.4 76.0 79.6 85.6

BaFormer
single no 1.51 0.137 3.83 82.6 81.8 75.6 76.6 83.5

yes 83.3 82.2 76.5 78.6 84.0

multiple no 1.63 0.139 4.45 86.5 85.3 81.2 80.4 87.4
yes 89.3 88.4 83.9 84.2 89.5

Table 10: Comparative analysis of the effect of feature connections, i.e., single or multiple, on
50Salads and the use of auxiliary loss.

results indicate that auxiliary losses enhance performance in both single-level and multi-level feature
representations. Notably, applying auxiliary losses in multi-level features yields a substantial improve-
ment in accuracy (2.1%), surpassing the 0.5% accuracy gain observed in single-level features. This
suggests that auxiliary losses have a more pronounced effect on multi-level feature representations.

F More detailed efficiency comparison and experiments

F.1 Methods with various stages.

Table 11 presents a comparative analysis of various multi-stage/step methods in contrast to BaFormer
for Temporal Action Segmentation (TAS). The methods compared include MSTCN with varying
stages, ASFormer with different numbers of decoders, and DiffAct with varying inference steps. We
have calculated the FLOPs and parameter count utilizing the official code repositories. We employed
the DiffuAct model, as it is reported to achieve the final results in their publication, to determine the
FLOPs and parameter metrics.

BaFormer has moderate FLOPs (4.45 G) and parameter count (1.64M), which stands between the
lightest and heaviest models compared. It is considerably more efficient than the most computationally
intensive models like DiffAct with 25 inference steps. MSTCN and ASFormer models show a
trend where increased stages or decoders generally lead to better performance, but also increased
computational costs. DiffAct’s performance improves significantly with the number of inference
steps, yet this comes at the cost of a substantial increase in FLOPs.

In conclusion, BaFormer achieves a balance between computational efficiency and performance,
making it a compelling choice for applications where both are critical considerations and presents a
competitive alternative to existing multi-stage/step methods, offering a reduction in computational
demands while maintaining high accuracy and outperforming in critical metrics like F1 score and
Edit distance. This suggests that BaFormer’s approach to integrating hierarchical tokens and utilizing
a boundary-aware transformer architecture is effective for TAS tasks.
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Method #Stage
/Step

FLOPs
(G)

Running
time(s)

#Parameter
(M)

F1
@{10, 25, 50} Edit Acc.

MSTCN1 1 1.71 0.080 0.30 27.0 25.3 21.5 20.5 78.2
MSTCN2 2 2.67 0.086 0.47 55.5 52.9 47.3 47.9 79.8
MSTCN3 3 3.63 0.092 0.63 71.5 68.6 61.1 64.0 78.6
MSTCN4 4 4.59 0.094 0.80 76.3 74.0 64.5 67.9 80.7

ASFormer1 1 2.23 0.168 0.38 53.1 51.4 47.0 43.3 85.7
ASFormer2 2 3.71 0.235 0.63 79.5 77.4 71.6 71.5 86.8
ASFormer3 3 5.19 0.299 0.88 83.9 82.8 76.8 76.7 86.8
ASFormer4 4 6.66 0.359 1.13 85.1 83.4 76.0 79.6 85.6

DiffAct1 1 7.78 1.647 1.21 64.9 63.8 59.3 56.5 88.6
DiffAct4 4 12.30 1.784 1.21 87.6 86.6 81.2 82.1 89.1
DiffAct8 8 18.33 1.887 1.21 89.3 88.3 83.1 83.5 89.0
DiffAct16 16 30.38 2.043 1.21 90.0 88.8 83.3 84.5 89.0
DiffAct25 25 43.94 2.306 1.21 90.1 89.2 83.7 85.0 88.9

BaFormer 1 4.45 0.139 1.63 89.3 88.4 83.9 84.2 89.5
Table 11: Comparative overview of multi-stage/step methods versus BaFormer on 50Salads. Here,
“MSTCNn” and “ASFormern” denotes a model with n processing stages, while “DiffActn” signifies
a model with “n” decoder steps.

Segment length 0∼1000 1001∼2000 2001∼3100

Frame-based 87.68 90.98 92.47
Query-based 86.85 92.01 95.38

Table 12: Accuracy for action segments of different lengths, comparing frame-based and query-based
methods on the 50Salads dataset.

F.2 Performance on segments with different lengths

To further compare the results of the frame-based and query-based voting methods, we propose
analyzing the outcomes at the segment level rather than across entire videos. We conduct experiments
on action segments of varying lengths based on the ground truth annotations of 50Salads dataset,
and the results are summarized below in Table 12. We observe that frame-based methods perform
slightly better on shorter segments, while query-based methods demonstrate higher accuracy on
longer segments. We attribute this difference to the voting mechanism. Specifically, when applying
the same boundaries for both methods, the query-based approach relies on query-level classification
and masks. This strategy captures information at the segment level, as opposed to frame-based
methods, which depend on individual frame-level predictions, leading to a distinction in performance.

G More visualization

In the 50Salads dataset, we present enhanced visualizations for a more comprehensive analysis.
Each subfigure’s upper portion depicts the outcomes of instance segmentation, while the lower
portion compares the segmentation results without boundary integration (“F”), the results achieved by
BaFormer (“S”), and the ground truth (“GT”). The absence of boundary consideration (“F”), where
the predicted instance token class probability is directly combined with the mask probability, leads to
excessive over-segmentation and suboptimal boundary delineation. This effect is attributable to the
frame-wise basis of mask prediction, which, when applied directly, perpetuates the over-segmentation
issue. “F” with “S” illustrates that BaFormer’s advancements are realized through the reduction
of over-segmentation and the refinement of boundaries. This improvement stems from the more
continuous nature of segment proposals informed by boundary predictions, enhancing the assignment
of actions to each proposal. The transition from the results of instance segmentation to frame-wise
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Figure 8: Visualization of the 50Salads dataset. Each subfigure presents a comparison of instance
segmentation and frame-wise results. “F” indicates the absence of boundary utilization. “S” signifies
its inclusion. “gt” represents the ground truth.

outcomes elucidates the efficacy of the majority voting mechanism. (Note: Boundary prediction is
not depicted in these visualizations.)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we discuss the challenges of the task and
present the solutions offered by our methods. The contributions are highlighted in the
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is discussed in the part of “Limitations and Conclusion”.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The conclusions presented in this paper are based on experimental results and
do not include theoretical findings.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: The model can be replicated using the implementation details provided in the
paper and supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We utilized public datasets for our experiments, and the code will be released
upon the paper’s acceptance. Additionally, the details provided in the paper and supplemental
material will aid in reproducing the experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all the datasets and the splits used for training and testing.
Detailed information on the training process, including hyperparameters, optimizer settings,
and other relevant details, is provided in both the paper and the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the ablation study section, the part titled "How well would our approach
perform if we had perfect boundaries?" demonstrates the potential improvement in model
performance if boundary errors were reduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides details on resources, model parameters, and running time.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper uses the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See the "Broader Impacts" in the supplementary.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper that produced the code and dataset, shown in the
paper and reference.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The datasets used in the paper are from public sources.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The datasets used in the paper are from public sources.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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