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ABSTRACT

Speech emotion recognition (SER) systems are constrained by existing datasets that
typically cover only 6-10 basic emotions, lack scale and diversity, and face ethical
challenges when collecting sensitive emotional states. We introduce EMONET-
VOICE, a comprehensive resource addressing these limitations through two com-
ponents: (1) EmoNet-Voice Big, a 5,000-hour multilingual pre-training dataset
spanning 40 fine-grained emotion categories across 11 voices and 4 languages,
and (2) EmoNet-Voice Bench, a rigorously validated benchmark of 4,7k samples
with unanimous expert consensus on emotion presence and intensity levels. Using
state-of-the-art synthetic voice generation, our privacy-preserving approach en-
ables ethical inclusion of sensitive emotions (e.g., pain, shame) while maintaining
controlled experimental conditions. Each sample underwent validation by three
psychology experts. We demonstrate that our Empathic Insight models trained on
our synthetic data achieve strong real-world dataset generalization, as tested on
EmoDB and RAVDESS. Furthermore, our comprehensive evaluation reveals that
while high-arousal emotions (e.g., anger: 95% accuracy) are readily detected, the
benchmark successfully exposes the difficulty of distinguishing perceptually simi-
lar emotions (e.g., sadness vs. distress: 63% discrimination), providing quantifiable
metrics for advancing nuanced emotion AI. EMONET-VOICE establishes a new
paradigm for large-scale, ethically-sourced, fine-grained SER research.

1 INTRODUCTION

Synthetic speech technology has reached unprecedented fidelity, with state-of-the-art text-to-speech
(TTS) and audio generation models, e.g., GPT-4 OmniAudio (OpenAI, 2024), achieving near-human
fidelity. These advancements significantly enhance human-computer interaction (HCI), enabling
virtual assistants to convey appropriate emotional qualities across diverse contexts (Kirk et al., 2025).
However, this advancement remains asymmetric: while machines can to some extent effectively
synthesize convincing affective speech, they still struggle to recognize the nuanced, context-dependent
emotional information humans naturally convey (Lee & Gomez, 2021; Schuller, 2018), a critical
capability for truly conversational AI.

Despite steady progress in speech emotion recognition (SER) through deep architectures and self-
supervised representations, evaluation remains constrained by datasets predominantly built around
a limited set of “basic” emotions (Ekman, 1992; Zhao & Kumar, 2022). Established benchmarks
such as IEMOCAP (Busso et al., 2008), RAVDESS (Livingstone & Russo, 2018), and CREMA-
D (Cao et al., 2014) have been invaluable for the field but exhibit three fundamental limitations:
(i) Insufficient Granularity. Coarse taxonomies fail to capture subtle or compound emotional
states (e.g., bittersweet, embarrassment, envy) that are essential for naturalistic interaction (Cowen
et al., 2019). (ii) Limited Representativeness. Current datasets predominantly consist of studio-
quality acted speech, lacking linguistic diversity and omitting sensitive emotional states due to
privacy constraints (Lorenzo-Trueba et al., 2017; Schuller et al., 2013). (iii) Restricted Scalability.
Licensing restrictions, privacy concerns, and annotation costs severely limit dataset size, impeding
the data-intensive training regimes required by modern deep learning approaches (Zhang et al., 2020;
Poria et al., 2020), specifically for open-source and -science.

These limitations are compounded by evolving views in affective science, which frame emotions as
context-dependent constructions rather than fixed categories (Barrett, 2017). Dimensional models
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Table 1: Comparison of SER datasets. Key aspects include licensing, size, emotional range, speaker
diversity, synthetic origin, and multilingual support. Open license means CC-BY 4.0 or equivalent;
var. means varies across pooled corpora.

Dataset
Open

Licence
Size

(#Utts/Hours) #Emo. #Spk. Synth. Multilin.
IEMOCAP (Busso et al., 2008) ✗ 10k / ∼12h 9 10 (5M/5F) ✗ ✗
RAVDESS (Livingstone & Russo, 2018) ✓ 1.4k / ∼1h 8 24 (12M/12F) ✗ ✗
SAVEE (Jackson & Haq, 2014) ✗ 480 / <1h 7 4 (Male) ✗ ✗
EmoDB (Burkhardt et al., 2005) ✗ 535 / <1h 7 10 (5M/5F) ✗ ✗
CREMA-D (Cao et al., 2014) ✓ 7.4k / ∼6h 6 91 (48M/43F) ✗ ✗
SERAB (Scheidwasser-Clow et al., 2021) ✗ 9 corpora / var. 6 var. ✗ ✓
EmoBox (Ma et al., 2024) ✗ 32 corpora / var. ≤8 var. ✗ ✓
SER Evals (Osman et al., 2024) ✗ 18 corpora / var. ≤8 var. ✗ ✓
BERSt (Tuttösí et al., 2025) ✓ ∼4h 6 98 ✗ ✗

ou
rs EMONET-VOICE BIG ✓ >1M / >4,500h 40 11 (Synth) ✓ ✓

EMONET-VOICE BENCH ✓ ∼12k / 35.8h 40 11 (Synth) ✓ ✓

such as the valence–arousal circumplex (Russell, 1980) reinforce the need for richer datasets and
modeling strategies beyond discrete classification (Schuhmann et al., 2025).

To address these challenges, we introduce two complementary datasets. First, EMONET-VOICE BIG,
a foundational dataset for pretraining models on SER. It is a comprehensive synthetic voice corpus
of 5,000 hours in four languages (English, German, Spanish, French), featuring 11 distinct voices
with different (gender) identities and a fine-grained taxonomy of 40 emotion categories. As such, it
provides an open, privacy-compliant foundation for emotional TTS research and multilingual speech
analysis at scale. Second, from this corpus we curate EMONET-VOICE BENCH, comprising 12,600
audio clips annotated by psychology experts using a strict consensus protocol that evaluates both
the presence and intensity of each target emotion across our 40-category emotion taxonomy. This
approach yields a high-quality, multilingual benchmark for fine-grained SER while circumventing
the privacy barriers that inhibit the collection of authentic sensitive vocal expressions.

Building on our pretraining dataset, we develop EMPATHICINSIGHT-VOICE (SMALL and LARGE),
novel SER models that achieve state-of-the-art performance in fine-grained SER while demonstrating
strong alignment with human expert judgments. Through comprehensive evaluation across the
concurrent SER model landscape, we reveal critical insights into current SER capabilities, including
systematic patterns in which emotions prove more challenging to recognize (e.g., low-arousal states
like concentration versus high-arousal emotions like anger). Finally, we demonstrate strong real-to-
sim generalization of our models, trained on our synthetic data, across two real-world datasets.

In summary, our contributions are: (1) We build EMONET-VOICE BIG, a pretraining, open-access,
5,000-hour multilingual synthetic speech corpus featuring 11 distinct synthetic voices across 4
languages and 40 emotion categories. (2) We introduce EMONET-VOICE BENCH, a meticulously
curated and expert-verified benchmark dataset of 13k high-quality audio samples for fine-grained
SER, featuring 40 emotions with 3 intensities. (3) We build EMPATHICINSIGHT-VOICE (Small and
Large), novel SER models designed for nuanced emotion estimation. (4) We conduct comprehensive
evaluations on our benchmark, providing critical insights into current SER capabilities and limitations.

2 RELATED WORK

Current SER research operates on a constrained empirical foundation. The field currently
relies on a few acted corpora recorded in controlled studios—IEMOCAP (12h, 9 emotions) (Busso
et al., 2008), RAVDESS (1h, 8 emotions) (Livingstone & Russo, 2018), SAVEE (0.8h, 7 emotions)
(Jackson & Haq, 2014), the German EMODB (Burkhardt et al., 2005), and the multi-ethnic CREMA-
D (Cao et al., 2014). While these offer clean labels and high acoustic quality, they share four
key weaknesses. First, they use restrictive taxonomies—typically six basic emotions from Ekman
(1992)—omitting compound or socially nuanced states such as envy, or contemplation (Plutchik, 2001;
Cowen et al., 2019). Second, acted prosody exaggerates cues, limiting generalization to spontaneous
speech (Lorenzo-Trueba et al., 2017). Third, privacy and ethics hinder collection of intimate or
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stigmatizing emotions (e.g., shame, desire) (Schuller et al., 2013). Fourth, scale and linguistic diversity
are limited: most corpora have <100 speakers, few hours of audio, and focus on English. Recent
expansions include multilingual sets like EMOREACT, which broaden emotion categoriesbut still
retain one language, English, (Nojavan & Soleymani, 2021). Aggregation benchmarks like SERAB
(nine corpora, six languages) (Scheidwasser-Clow et al., 2021), EMOBOX (32 datasets, 14 languages)
(Ma et al., 2024), SER EVALS (18 minority-language corpora) (Osman et al., 2024), and BERST
(4h shouted speech, 98 actors, 19 smartphone positions) (Tuttösí et al., 2025) extend coverage but
inherit core limits: acted/scripted speech, narrow taxonomies (≤8 emotions), and no expert-validated
intensities or sensitive states. These datasets, summarized in Tab. 1, reveal a clear gap: they are often
restricted by licensing, limited scale (hours and utterances), narrow emotion range (typically ≤8),
rely on actors limiting privacy-sensitive emotions, and lack multilingual scope. EMONET-VOICE
BIG and BENCH address these by providing a large-scale, openly licensed, synthetic, multilingual
corpora with a 40-emotion taxonomy.

Taxonomic limitations exacerbate data-scarcity and theoretical gaps. Modern affective science
models emotions as context-dependent and graded rather than discrete (Barrett, 2017; Lindquist,
2013). Dimensional (valence–arousal–dominance) and multi-label schemes (Russell, 1980; Zhang
et al., 2020) better capture blended affect, yet almost all benchmarks still assign a single discrete label
per clip. When intensity annotations exist, they typically rely on crowdsourcing and show low agree-
ment (Kajiwara et al., 2021; Stappen et al., 2021). Consequently, the community lacks benchmarks
that reflect contemporary understanding of emotion as multidimensional and graded, particularly for
sensitive affective states that cannot be ethically collected from human participants. Expert-validated
intensity annotations across multidimensional affective spaces are missing from existing benchmarks,
and we fill this critical gap by contributing EMONET-VOICE BENCH with 12,600 carefully chosen
clips whose emotional presence and intensity we had annotated by psychology experts, yielding a
high-agreement subset. We overcome previous taxonomic, scale, and ethical limitations by combining
multilingual coverage, a 40-category taxonomy grounded in contemporary affective science (Cowen
et al., 2020; Barrett, 2017), and privacy-preserving synthetic speech generation, offering the first
benchmark that provides expert ratings across a multidimensional affective space.

3 THE EMONET-VOICE SUITE: DATASET CONSTRUCTION

This section covers building the EMONET-VOICE resources: the emotion taxonomy, the large-scale
pre-training dataset EMONET-VOICE BIG, the expert-validated EMONET-VOICE BENCH, and finally
the EMPATHICINSIGHT-VOICE models that set a new SER standard.

3.1 EMONET-VOICE EMOTION TAXONOMY

For EMONET-VOICE, we adopt the comprehensive 40-category emotion taxonomy originally devel-
oped for EMONET-FACE (Schuhmann et al., 2025). The taxonomy includes a diverse set of categories
spanning positive emotions (e.g., Elation, Contentment, Affection, Awe), negative emotions (e.g.,
Distress, Sadness, Bitterness, Contempt), cognitive states (e.g., Concentration, Confusion, Doubt),
physical states (e.g., Pain, Fatigue), and socially mediated emotions (e.g., Embarrassment, Shame,
Pride, Teasing). This fine-grained structure enables the evaluation of models beyond binary or basic
categorical classification. The full set of 40 emotion categories and their descriptive terms can be
found in App.A.1. A comprehensive description of the methodology used to construct the taxonomy,
including literature-based extraction and expert-guided refinement, is provided in App.A.4.

3.2 EMONET-VOICE BIG: BUILDING A LARGE-SCALE SYNTHETIC SER DATASET

The foundational dataset, EMONET-VOICE BIG, consists of emotionally expressive speech samples
synthesized using GPT-4 OmniAudio. An overview of EMONET-VOICE BIG’s scale and language
distribution is provided in Table 2. Our prompting strategy cast the model as an actor auditioning
for a film, tasked with performing texts designed to evoke one of 40 emotion categories (from the
taxonomy in Section 3.1). Key prompt elements included directives for strong emotional expression
from the outset and naturalistic human speech patterns (e.g., varied rhythm, volume, tone, and
appropriate vocal bursts). This aimed to ensure perceptible emotional content and avoid monotonous
delivery. Audio was generated as 3- to 30-second, 24kHz WAV files, utilizing 11 synthetic voices (6
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Table 2: Overview of EMONET-VOICE BIG
Category Hours

Playtime by Language
English (en) 2,156
German (de) 716
Spanish (es) 888
French (fr) 881
Acting Chal. (en+de) 111
total 4,752

English Accent Distribution
Louisiana 133
Valley Girl 159
British 132
Chinese 126
French 140
German 135
Indian 129
Italian 134
Mexican 131
Russian 134
Spanish 132
Texan 131
Vulgar Street 149
No accent specified 391

Table 3: Overview of EMONET-VOICE BENCH
Category Value

Number of Clips
English (en) 6,156 (48.9%)
German (de) 1,886 (15.0%)
Spanish (es) 2,193 (17.4%)
French (fr) 2,365 (18.8%)

Total Clips 12,600
Avg. Clip Duration 10.36 s
Total Playtime 36.26 h

Table 4: Number of voice audios annotated
by human experts across batches for EMONET-
VOICE BENCH. Mainly samples with at least
positive weak agreement (emotion weakly /
strongly present annotated by two human ex-
perts) were used in a next batch.

Batch Unique Human
Annotators

Annotated
Voice Audios

1 2 4,538
2 3 7,719
3 4 343

female/5 male) across English, German, French, and Spanish to build a diverse multilingual corpus.
We show more details on the prompting template and methodology, e.g., instruction sensitivity and
language-specific adaptations for vocal burst generation, in the Supplement.

3.3 EMONET-VOICE BENCH: A HUMAN EXPERT BENCHMARK FOR SER

From EMONET-VOICE BENCH, we created a subset of 12,600 unique audio files annotated for
emotion by human experts on a three-point annotation scale, summarized in Table 3. We depict the
annotation platform for our human experts in Appendix Figures 2 and 3. The dataset features 11
distinct synthetic voices (6 female and 5 male) across four languages: English (48.9%), German
(15.0%), Spanish (17.4%), and French (18.8%). The average clip duration is 10.36 seconds, resulting
in a total playtime of 36.26 hours.

Table 4 summarizes our annotation procedure. Ensuring the quality and reliability of the emotion
annotations was a central priority in constructing the EMONET-VOICE BENCH. We recruited a team
of six human experts with at least a Bachelor’s degree in Psychology to serve as benchmark annotators,
thereby guaranteeing familiarity with emotional theory and terminology. In total, 33,605 single-
emotion labels across 12,600 unique audio samples were contributed — some samples ultimately
received more than three annotations. Each audio clip was first labeled independently by two experts
who were presented with the audio alongside one specific target emotion category from our taxonomy
in addition to a three-point scale: 0 indicating the emotion was not perceived, 1 indicating it was
mildly present at low intensity, and 2 indicating it was intensely present and clearly perceptible.
If both human experts agreed that the emotion was present (either “weakly present” or “strongly
present”), the clip was sent to a third expert for confirmation. Additionally, we randomly selected
a subset of clips to receive a third or even a fourth annotation regardless of whether the first two
annotators agreed. To reduce potential gender biases in emotional perception, each group assigned
per snippet was balanced in gender composition. Importantly, annotators performed their assessments
independently and were blinded to the ratings of others.

Figure 1 illustrates inter-annotator agreement patterns across emotion categories, showing the dis-
tribution of full agreement, partial agreement, and disagreement for each emotion-audio pair. The
numbers alongside each bar indicate total instances and rating distributions across multiple annotators.
The analysis reveals clear consensus patterns: emotions like concentration and bitterness achieve
strong expert agreement, while others such as numbness and awe show notable disagreement even
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Figure 1: Expert annotator agreement on perceived emotions. Stacked bars show the proportion
of audio-emotion instances by agreement type, from unanimous agreement on presence (e.g., ’3:0
(+)’) to disagreement (’1:1’) and unanimous agreement on absence (’3:0 (-)’). Numbers to the right
indicate total instances (n) per emotion and the distribution of raters (%2r, %3r). The patterns reveal
high consensus for acoustically salient emotions like concentration but significant ambiguity for
nuanced states like awe, underscoring the challenge of fine-grained SER.

among psychology professionals. The overall inter-rater reliability measured by Cronbach’s α is 0.14
(95% CI [0.12, 0.15]), with per-emotion values detailed in Appendix Table 10. While this low α
might initially suggest poor reliability, it actually reflects the inherent complexity of fine-grained
emotion perception rather than annotation deficiencies. Unlike simpler emotion taxonomies, our
40-category framework captures subtle distinctions that legitimately evoke different interpretations
among experts. These patterns demonstrate that while human agreement is robust for many emotions,
certain categories naturally elicit diverse interpretations—underscoring the nuanced nature of affec-
tive expression in speech. Rather than indicating weak annotation quality, this variability highlights
EMONET-VOICE’s sensitivity to the inherent complexity of emotional perception. Our annotations
thus capture both the challenges and opportunities in modeling authentic emotional diversity at scale.

3.4 EMPATHICINSIGHT-VOICE: TRAINING STATE-OF-THE-ART SER MODELS

Leveraging our datasets, we further contribute by developing novel state-of-the-art SER models.

In first linear probing experiments, and previous works (Li et al., 2023; Dutta & Ganapathy, 2024),
we observe that the off-the-shelf Whisper encoders (Radford et al., 2023) are not capable of reflecting
on emotions. Specifically, at a fine-grained level, existing TTS models fail to recognize emotions
effectively, as we will discuss later. To address this limitation, we continually pre-trained Whisper
encoders as the backbone of our EMPATHICINSIGHT-VOICE. Specifically, we leverage EMONET-
VOICE BIG as a pretraining dataset and train emotion-experts in two stages. We base our experiments
on Whisper-Small to optimize for the performance-efficiency tradeoff.

In the first stage, the Whisper encoder is trained on a combination of EMONET-VOICE BIG and
another 4,500 hours of public emotion-related content1 to develop general emotional acoustic rep-

1https://huggingface.co/datasets/mitermix/audiosnippets
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Table 5: Performance comparison of audio language models on the EMONET-VOICE BENCH. Models
are evaluated against human emotion ratings using correlation metrics (Spearman and Pearson r,
higher is better) and error metrics (MAE and RMSE, lower is better). Our EMPATHICINSIGHT-VOICE
models demonstrate superior performance across all metrics, with LARGE achieving the highest
Pearson correlation and lowest error and refusal rates. Refusal rates indicate the percentage of
samples where models declined to provide emotion assessments. Best scores in bold.

Model Refusal (↓) Spearman (↑) Pearson (↑) MAE (↓) RMSE (↓)

Gemini 2.0 Flash 0.01% 0.355 0.350 3.608 4.453
Gemini 2.5 Pro 0.00% 0.417 0.416 3.008 3.785
GPT-4o Mini Audio Preview 2.26% 0.326 0.327 3.320 4.124
GPT-4o Audio Preview 2024-12-17 27.59% 0.337 0.336 3.432 4.247
Hume Voice 39.16% 0.274 0.231 4.744 5.474

ou
rs EMPATHICINSIGHT-VOICE SMALL 0.00% 0.418 0.414 2.997 3.757

EMPATHICINSIGHT-VOICE LARGE 0.00% 0.415 0.421 2.995 3.756

resentations. This data was annotated using an iterative process with Gemini Flash 2.0 to obtain
emotion scores (0–4 scale) for all audio snippets. In the second stage, we freeze the Whisper encoder
and train MLP expert heads—one per emotion dimension—on top of the fixed encoder embeddings.
This way, each MLP receives the full voice audio sequence from the Whisper encoder as sequence
flattened token embeddings and then regresses a single emotion intensity score. We propose two
model sizes to accommodate different performance requirements, namenly EMPATHICINSIGHT-
VOICE SMALL with 74M paremeter MLP heads and EMPATHICINSIGHT-VOICE LARGE with 148M
paremeter MLP heads. We optimize them using mean absolute error (MAE) on the Gemini Flash
2.0–generated emotion scores. Through this two-stage fine-tuning and dedicated MLP ensemble,
EMPATHICINSIGHT-VOICE effectively captures and predicts fine-grained emotional content from
speech with high human alignment, as we demonstrate in the following. More details in App. A.2.

4 EXPERIMENTS: DO THEY HEAR WHAT WE HEAR?

In this section, we evaluate current SER models on our novel benchmark. Before that, we start by
introducing our experimental setup.

Experimental Setup. EMONET-VOICE BENCH assesses a model’s proficiency in discerning
emotional intensity from audio. To facilitate a nuanced comparison across models, many of which
output continuous scores, our primary evaluation employs metrics suited for regression and correlation
analysis on a common scale. The 3-level intensity human judgments (0: Not Present, 1: Mildly
Present, 2: Intensely Present) are mapped to a 0-10 scale for this evaluation, becoming 0, 5, and 10,
respectively. Model predictions are likewise generated or normalized to this 0-10 continuous scale.

We benchmarked general-purpose multimodal models (e.g., Gemini, GPT-4o) via zero-shot prompting,
as well as specialized speech models (e.g., Hume Voice). Hume Voice was subject to constraints on
input length (≤5s) and taxonomy coverage. Initial experiments with Whisper failed, due to a general
lack of emotion understanding, which led to our development of EMPATHICINSIGHT-VOICE, which
pair continually pre-trained Whisper encoders with MLP regressors on our EMONET-VOICE dataset.

We report four key metrics: Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
to quantify the average magnitude and larger deviations of prediction error on this 0-10 scale.
Additionally, Pearson Correlation (Pearson r) and Spearman Rank Correlation (Spearman r) are
used to assess the linear and monotonic agreement, respectively, between model-predicted intensities
and human judgments. These metrics collectively provide a comprehensive view of how well models
capture both the absolute values and the relative ordering of perceived emotional intensities.

4.1 EVALUATING SPEECH EMOTION RECOGNITION MODELS

Table 5 presents performance across seven models on the unseen EMONET-VOICE BENCH, revealing
clear performance tiers. Our EMPATHICINSIGHT-VOICE models achieve state-of-the-art results, with
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Table 6: Spearman’s ρ by emotion for audio models. Emotions are sorted by average model
performance, with best values in bold, runner-up underlined, and color-coded by correlation (gradient
from red =−1 to blue = 1, NaN in gray). Key patterns: (i) There is generally strong alignment
with humans for high-arousal emotions like teasing. (ii) Our EMPATHICINSIGHT-VOICE models
consistently outperform or place second across emotions. (iii) Some commercial models show
systematic refusal (NaNs) for sensitive emotions (e.g., sexual content). (iv) Performance drops for
low-arousal emotions (e.g., concentration). (v) Even SOTA models struggle with complex cognitive-
emotional states (e.g., contemplation), suggesting general limits to detect less physiological emotions.

emotion
GPT-4o

Mini Audio
GPT-4o

Audio
Hume
Voice

Gemini
2.0 Flash

Gemini
2.5 Pro

EMPATHICINSIGHT-
VOICE SMALL (ours)

EMPATHICINSIGHT-
VOICE LARGE (ours) avg.

Teasing 0.569 0.636 NaN 0.556 0.626 0.649 0.662 0.617
Embarrassment 0.550 0.637 0.416 0.529 0.618 0.669 0.678 0.585
Anger 0.496 0.555 0.418 0.526 0.602 0.578 0.577 0.536
Impatience and Irritability 0.455 0.471 NaN 0.448 0.504 0.554 0.570 0.500
Malevolence/Malice 0.345 NaN NaN 0.333 0.529 0.562 0.615 0.477
Shame 0.437 0.393 0.441 0.419 0.516 0.552 0.558 0.474
Sadness 0.470 0.404 0.357 0.466 0.529 0.483 0.521 0.461
Helplessness 0.347 0.375 NaN 0.462 0.483 0.536 0.535 0.457
Astonishment/Surprise 0.487 NaN NaN 0.454 0.459 0.451 0.428 0.456
Pleasure/Ecstasy 0.364 NaN NaN 0.342 0.462 0.538 0.529 0.447
Disgust 0.421 0.493 0.330 0.419 0.483 0.419 0.460 0.432
Contempt 0.412 0.433 0.324 0.407 0.466 0.478 0.469 0.427
Fear 0.355 0.367 0.437 0.353 0.441 0.470 0.458 0.411
Amusement 0.412 0.362 0.380 0.355 0.432 0.454 0.462 0.408
Relief 0.317 0.361 0.398 0.349 0.463 0.462 0.501 0.407
Pain 0.365 0.345 0.370 0.386 0.413 0.472 0.474 0.404
Jealousy/ Envy 0.334 0.361 0.264 0.425 0.487 0.469 0.471 0.402
Elation 0.390 0.330 0.313 0.344 0.466 0.475 0.487 0.401
Pride 0.348 0.308 0.259 0.415 0.482 0.484 0.474 0.396
Confusion 0.379 0.339 0.331 0.358 0.451 0.423 0.451 0.390
Disappointment 0.301 0.466 0.249 0.370 0.426 0.432 0.461 0.386
Doubt 0.379 0.347 0.241 0.403 0.402 0.459 0.463 0.385
Triumph 0.333 0.279 0.216 0.370 0.482 0.460 0.455 0.371
Infatuation 0.315 0.317 NaN 0.354 0.413 0.392 0.408 0.367
Bitterness 0.330 0.324 NaN 0.286 0.360 0.411 0.404 0.352
Fatigue/Exhaustion 0.221 NaN NaN 0.297 0.400 0.455 0.384 0.351
Thankfulness/Gratitude 0.297 NaN NaN 0.281 0.418 0.358 0.379 0.347
Intoxication/Altered States
of Consciousness 0.198 NaN NaN 0.269 0.241 0.486 0.487 0.336

Distress 0.374 0.369 -0.138 0.375 0.450 0.432 0.430 0.327
Sexual Lust 0.203 0.279 NaN 0.356 0.450 0.332 0.334 0.326
Affection 0.310 0.390 0.182 0.330 0.349 0.359 0.356 0.325
Longing 0.289 0.330 0.214 0.326 0.348 0.365 0.350 0.317
Awe 0.298 0.276 0.058 0.314 0.314 0.329 0.332 0.275
Hope/Enthusiasm/Optimism 0.250 NaN NaN 0.175 0.203 0.345 0.343 0.263
Sourness 0.158 0.180 NaN 0.250 0.303 0.331 0.323 0.258
Interest 0.161 0.169 0.119 0.148 0.287 0.351 0.315 0.221
Contemplation 0.187 0.128 0.177 0.252 0.282 0.263 0.247 0.219
Contentment -0.044 -0.019 0.195 0.140 0.224 0.231 0.330 0.151
Emotional Numbness 0.139 0.092 NaN 0.099 0.125 0.139 0.145 0.123
Concentration 0.085 0.019 0.262 0.186 0.151 0.055 0.068 0.118

EMPATHICINSIGHT-VOICE LARGE obtaining the highest Pearson correlation (0.421) and lowest error
rates (MAE: 2.995, RMSE: 3.756). EMPATHICINSIGHT-VOICE SMALL demonstrates competitive
performance with the highest Spearman correlation (0.418). Gemini 2.5 Pro emerges as the strongest
foundation model competitor (Pearson r: 0.416, Spearman r: 0.417), while other commercial models
show significantly lower correlations and higher error and refusal rates. This shows that current
audio models show decent alignment with human expert ratings on SER. Notably, refusal rates vary
drastically across models. While EMPATHICINSIGHT-VOICE models and Gemini variants process
all samples (0-0.01% refusal), GPT-4o Audio Preview refuses 27.59% of samples, and Hume Voice
refuses 39.16%—reflecting safety constraints around sensitive emotional content, such as intoxication
and pleasure/ecstasy. Overall, this indicates that our specialized AI models can, to some extent, “hear”
what humans hear and demonstrate reasonable alignment with human emotion ratings, while several
(general-purpose) models struggle in this task. Yet, this recognition capability proves more complex
than initially apparent, as we will explore further next.

Emotion-Specific Performance Patterns. Per-emotion analysis in Table 6 reveals clear perfor-
mance hierarchies. High-arousal emotions prove most detectable across all models: teasing (average
Spearman r: 0.617), embarrassment (0.585), and anger (0.536) show strong human-model alignment,
suggesting these acoustic signatures are most reliably encoded in prosody. Conversely, performance
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drops dramatically for subtle, low-arousal states like concentration (0.118) and emotional numbness
(0.123), highlighting fundamental limitations in detecting nuanced emotional states from audio alone.

Moreover, the table reveals systematic differences in emotion detection across our 40-category taxon-
omy. It demonstrates that EMPATHICINSIGHT-VOICE models consistently outperform competitors
across most emotions, particularly excelling in complex states often missed by other systems. For
instance, EMPATHICINSIGHT-VOICE achieves superior performance on challenging emotions like
intoxication (where EMPATHICINSIGHT-VOICE scores 0.48 compared to 0.269 by the runner-up
and many commercial models often completely refuse assessment), and similar for malevolence—
emotions that require nuanced prosodic understanding.

Commercial Model Limitations. Commercial models exhibit systematic refusal patterns for sensi-
tive content, with GPT-4o Audio and Hume Voice showing nearly identical NaN patterns for emotions
like sexual content and intoxication—indicating shared (safety) constraints. This creates evaluation
gaps precisely where human emotional complexity is especially relevant for applications. Even
state-of-the-art models struggle with complex cognitive-emotional states (contemplation, interest,
contentment), suggesting current architectures may be fundamentally limited to more physiologically
manifest emotions rather than subtle internal states.

4.2 CROSS-DATASET GENERALIZATION TO REAL-WORLD DATA

Table 7: Sim-to-real generalization of
EMPATHICINSIGHT-VOICE LARGE
on real-world human-acted datasets
EmoDB and RAVDESS. Accuracies
are reported per emotion category.
Emotion EmoDB RAVDESS

Anger 95.3% 88.5%
Boredom 28.4% –
Disgust 28.3% 33.9%
Fear 62.3% 92.2%
Happiness 74.7% 92.2%
Neutral 100.0% 100.0%
Sadness 74.2% 48.4%
Surprise – 97.9%
Calm – 53.1%

Overall 70.6% 74.2%

A key question for any synthetic dataset is whether models
trained on it can generalize to real-world data. To assess
this synthetic-to-real transfer capability, we evaluated our
EMPATHICINSIGHT-VOICE LARGE model, trained exclu-
sively on EMONET-VOICE BIG, on two widely-used human-
acted SER benchmarks: EmoDB (Burkhardt et al., 2005)
and RAVDESS (Livingstone & Russo, 2018). A significant
challenge in this evaluation is the "semantic gap" between
our 40 fine-grained emotion categories and the 7-8 coarse
categories used in these benchmarks. To handle this semantic
gap, we designed a mapping from our fine-grained labels to
the target labels (detailed in Tab. 11) and employed a multi-
label prediction strategy. For each audio clip, we apply a
softmax function across all mapped fine-grained emotions
(e.g., 38 for EmoDB). A coarse label is predicted as ’present’
if the probability of any of its constituent emotions surpasses
a dynamic threshold set at 1.5 times uniform chance.

The results, shown in Tab. 7, demonstrate strong generaliza-
tion. Our model achieved an overall accuracy of 70.6% on EmoDB and 74.2% on RAVDESS.
Performance is particularly high for high-arousal emotions with clear acoustic signatures, such as
Anger (95.3% on EmoDB) and Surprise (97.9% on RAVDESS). Performance on categories like
Boredom and Disgust is lower, which may reflect both the inherent subtlety of these emotions and
potential mismatches in (overly) acted portrayal between datasets. Despite the inherent noise and
subjectivity of mapping labels, these strong above-chance results validate that EMONET-VOICE BIG
enables the learning of robust SER representations that successfully transfer to human speech.

5 DISCUSSION

ASR models don’t (yet) understand emotions? ASR models like Whisper currently lack the ability
to accurately understand and represent nuanced emotions (Dutta & Ganapathy, 2024; Li et al., 2023).
However, our work shows that with continually pretraining, ASR models can begin to perceive
and respond to emotional cues in ways that support more human-like predictions. Our EMONET-
VOICE BIG dataset represents a crucial first step toward equipping AI models with this emotional
understanding. In particular, our real-to-sim generalization results offer promising evidence: models
trained on synthetic data learn representations that transfer well to human speech, achieving strong
results on established benchmarks. While a sim-to-real gap remains, our findings suggest it is
surmountable, emphasizing synthetic data as a viable foundation for training robust SER systems.
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Arousal-Dependent Recognition Bias. At the same time, our fine-grained evaluation on EMONET-
VOICE BENCH reveals the profound challenges that remain. We observe a clear hierarchy where
high-arousal, acoustically salient emotions like Anger are well-recognized, while subtle, low-arousal
states like Concentration or Contentment remain elusive for all tested models. This suggests that
current architectures may be overly reliant on simple prosodic cues (pitch, energy) and struggle with
the nuanced signatures of internal states.

Annotation Ambiguity Predicts Model Performance. Perhaps the most crucial insight comes from
the relationship between human annotator agreement and model performance. Emotions with high
expert consensus consistently yield high model performance, while those with low agreement lead
to near-chance model accuracy. This pattern suggests that inter-annotator agreement may represent
a practical upper bound on performance for subjective tasks like SER. Furthermore, our analysis
on distinguishing Sadness from Distress shows that our benchmark succeeds in its primary goal: to
quantify the difficulty of nuanced emotional distinctions. Rather than being a failure of the model, the
modest 63% accuracy is a success of the benchmark in providing a concrete metric for a problem that
was previously difficult to even define. It moves the field from simple classification toward measuring
the resolution of a model’s emotional understanding.

The Cognitive Emotion Recognition Gap. A particularly noteworthy pattern emerges for cognitively-
oriented emotions—states that require contextual understanding beyond immediate acoustic features.
Emotions such as Contemplation, Interest, and Concentration represent mental processes rather than
affective responses, and their recognition may fundamentally require understanding why someone
is in a particular state, not merely how they sound while experiencing it. This limitation points to a
broader challenge in current emotion recognition paradigms: the reliance on acoustic features alone
may be insufficient for detecting emotions that are primarily cognitive rather than affective. Future
architectures might need to incorporate contextual information, dialogue history, or multimodal inputs
to bridge this gap, going toward multimodal AI assistants.

Limitations. While EMONET-VOICE represents a significant step forward in SER, several limitations
point to important directions for future work. First, our prompting approach involves actors simulating
emotions. This was necessary to generate clear, labeled instances across 40 emotions, but such
performances differ from spontaneous, real-world emotional speech, which tends to be more nuanced
and blended. Despite strong generalization results, bridging the gap between our benchmark and
natural conversational speech remains a core challenge. Second, although EMONET-VOICE includes
11 distinct voices across 4 languages—more diverse than prior work—it does not fully represent the
global range of accents, dialects, age groups, or cultural vocal styles. However, the synthetic pipeline
is designed to be easily expanded to improve this coverage over time. Third, all data was generated
using GPT-4o Audio. While this offers consistency and control, it may also introduce model-specific
acoustic artifacts or biases. Mitigating such single-source bias through multi-model data generation is
a priority for future iterations. Lastly, emotion perception is inherently subjective (Schuhmann et al.,
2025). Our high-agreement labels with intensities, derived from unanimous expert consensus, offer a
reliable benchmark—but they reflect only one interpretation. To support broader research, we also
release lower-agreement samples that capture the ambiguity and complexity of emotional expression.

6 CONCLUSION

We introduced EMONET-VOICE, a suite of novel datasets for fine-grained SER, designed to overcome
critical limitations of existing SER resources. This includes EMONET-VOICE BIG, a large-scale syn-
thetic multilingual pretraining dataset, and EMONET-VOICE BENCH, an expert-annotated benchmark
covering 40 emotion categories with 3-level ratings. Their synthetic design ensures privacy, diversity,
and scalability. Furthermore, we also release EMPATHICINSIGHT-VOICE models (Small and Large),
which set a new standard, outperforming foundation models such as Gemini, GPT-4o, and Hume.

Our findings reveal persistent gaps in SER and highlight several research directions: examining
agreement-performance dynamics across modalities (text, video, physiological signals), building
targeted architectures for low-agreement categories, and developing context-aware models to bridge
cognitive recognition challenges. Expanding EMONET-VOICE with more samples, languages, and
speakers, incorporating multiple generative models, and probing cross-modal consistency (e.g.,
linking speech with facial expressions) present promising paths for richer benchmarks and models.
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ETHICS STATEMENT

This work addresses concerns about unintended effects of emotionally uncalibrated AI. As AI models
become more capable of producing emotionally charged content, it is essential to understand how
people interpret and respond to these synthetic expressions. Our datasets enable the study of risks
such as miscommunication and manipulation, underscoring the need for safeguards (Helff et al.,
2025). The development of EMONET-VOICE was guided by a strong ethical commitment, primarily
addressed through the exclusive use of synthetic voice generation. To minimize privacy risks,
EMONET-VOICE relies exclusively on synthetic voice generation, avoiding the collection of sensitive
human emotional data. While unlikely, we note the remote possibility that synthetic samples could
resemble real individuals (Hintersdorf et al., 2024); however, no personally identifiable data was used
at any stage. We applied prompt diversification to reflect a broad range of gender, demographic, and
accent representations while minimizing problematic content, motivated by Friedrich et al. (2025).
We release EMONET-VOICE as a research artifact intended for academic use.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we will release all code for data generation, model training, and evaluation.
We provide all resources in the supplement. The EMONET-VOICE BIG and EMONET-VOICE BENCH
datasets are publicly available on Hugging Face [link will be provided upon acceptance]. Our trained
EMPATHICINSIGHT-VOICE models will also be released with instructions for inference. The expert
annotation protocol and the full label mappings used for cross-dataset evaluation are detailed in the
appendix, providing all necessary information for others to replicate our findings.

LLM USAGE

We used Large Language Models (LLMs) in several capacities during this research. GPT-4 was used
to assist in the initial extraction of emotion concepts from literature during the taxonomy construction
phase, as described in Appendix A.4. Gemini Flash 2.0 was used for the large-scale, automated
annotation of our pre-training data, as detailed in Section 3.4. Finally, we used an LLM for assistance
with grammar, clarity, and rephrasing during the writing of this manuscript. All final claims, data,
and written text were reviewed and verified by the human authors, who take full responsibility for the
content of this paper.
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A APPENDICES

A.1 EMONET-VOICE TAXONOMY

The 40 emotion categories used in EMONET-VOICE, adapted from EMONET-FACE (Schuhmann
et al., 2025), are listed below with associated descriptive terms used during conceptualization and
prompting:

• Amusement: ’lighthearted fun’, ’amusement’, ’mirth’, ’joviality’, ’laughter’, ’playfulness’,
’silliness’, ’jesting’

• Elation: ’happiness’, ’excitement’, ’joy’, ’exhilaration’, ’delight’, ’jubilation’, ’bliss’,
’Cheerfulness’

• Pleasure/Ecstasy: ’ecstasy’, ’pleasure’, ’bliss’, ’rapture’, ’Beatitude’
• Contentment: ’contentment’, ’relaxation’, ’peacefulness’, ’calmness’, ’satisfaction’, ’Ease’,

’Serenity’, ’fulfillment’, ’gladness’, ’lightness’, ’serenity’, ’tranquility’
• Thankfulness/Gratitude: ’thankfulness’, ’gratitude’, ’appreciation’, ’gratefulness’
• Affection: ’sympathy’, ’compassion’, ’warmth’, ’trust’, ’caring’, ’Clemency’, ’forgiveness’,

’Devotion’, ’Tenderness’, ’Reverence’
• Infatuation: ’infatuation’, ’having a crush’, ’romantic desire’, ’fondness’, ’butterflies in the

stomach’, ’adoration’
• Hope/Enthusiasm/Optimism: ’hope’, ’enthusiasm’, ’optimism’, ’Anticipation’, ’Courage’,

’Encouragement’, ’Zeal’, ’fervor’, ’inspiration’, ’Determination’
• Triumph: ’triumph’, ’superiority’
• Pride: ’pride’, ’dignity’, ’self-confidently’, ’honor’, ’self-consciousness’
• Interest: ’interest’, ’fascination’, ’curiosity’, ’intrigue’
• Awe: ’awe’, ’awestruck’, ’wonder’
• Astonishment/Surprise: ’astonishment’, ’surprise’, ’amazement’, ’shock’, ’startlement’
• Concentration: ’concentration’, ’deep focus’, ’engrossment’, ’absorption’, ’attention’
• Contemplation: ’contemplation’, ’thoughtfulness’, ’pondering’, ’reflection’, ’meditation’,

’Brooding’, ’Pensiveness’
• Relief: ’relief’, ’respite’, ’alleviation’, ’solace’, ’comfort’, ’liberation’
• Longing: ’yearning’, ’longing’, ’pining’, ’wistfulness’, ’nostalgia’, ’Craving’, ’desire’,

’Envy’, ’homesickness’, ’saudade’
• Teasing: ’teasing’, ’bantering’, ’mocking playfully’, ’ribbing’, ’provoking lightly’
• Impatience and Irritability: ’impatience’, ’irritability’, ’irritation’, ’restlessness’, ’short-

temperedness’, ’exasperation’
• Sexual Lust: ’sexual lust’, ’carnal desire’, ’lust’, ’feeling horny’, ’feeling turned on’
• Doubt: ’doubt’, ’distrust’, ’suspicion’, ’skepticism’, ’uncertainty’, ’Pessimism’
• Fear: ’fear’, ’terror’, ’dread’, ’apprehension’, ’alarm’, ’horror’, ’panic’, ’nervousness’
• Distress: ’worry’, ’anxiety’, ’unease’, ’anguish’, ’trepidation’, ’Concern’, ’Upset’, ’pes-

simism’, ’foreboding’
• Confusion: ’confusion’, ’bewilderment’, ’flabbergasted’, ’disorientation’, ’Perplexity’
• Embarrassment: ’embarrassment’, ’shyness’, ’mortification’, ’discomfiture’, ’awkward-

ness’, ’Self-Consciousness’
• Shame: ’shame’, ’guilt’, ’remorse’, ’humiliation’, ’contrition’
• Disappointment: ’disappointment’, ’regret’, ’dismay’, ’letdown’, ’chagrin’
• Sadness: ’sadness’, ’sorrow’, ’grief’, ’melancholy’, ’Dejection’, ’Despair’, ’Self-Pity’,

’Sullenness’, ’heartache’, ’mournfulness’, ’misery’
• Bitterness: ’resentment’, ’acrimony’, ’bitterness’, ’cynicism’, ’rancor’
• Contempt: ’contempt’, ’disapproval’, ’scorn’, ’disdain’, ’loathing’, ’Detestation’
• Disgust: ’disgust’, ’revulsion’, ’repulsion’, ’abhorrence’, ’loathing’
• Anger: ’anger’, ’rage’, ’fury’, ’hate’, ’irascibility’, ’enragement’, ’Vexation’, ’Wrath’,

’Peevishness’, ’Annoyance’
• Malevolence/Malice: ’spite’, ’sadism’, ’malevolence’, ’malice’, ’desire to harm’, ’schaden-

freude’
• Sourness: ’sourness’, ’tartness’, ’acidity’, ’acerbity’, ’sharpness’ (Note: Primarily gustatory,

vocal correlates might be subtle reactions)
• Pain: ’physical pain’, ’suffering’, ’torment’, ’ache’, ’agony’
• Helplessness: ’helplessness’, ’powerlessness’, ’desperation’, ’submission’
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• Fatigue/Exhaustion: ’fatigue’, ’exhaustion’, ’weariness’, ’lethargy’, ’burnout’, ’Weariness’
• Emotional Numbness: ’numbness’, ’detachment’, ’insensitivity’, ’emotional blunting’,

’apathy’, ’existential void’, ’boredom’, ’stoicism’, ’indifference’
• Intoxication/Altered States of Consciousness: ’being drunk’, ’stupor’, ’intoxication’,

’disorientation’, ’altered perception’
• Jealousy & Envy: ’jealousy’, ’envy’, ’covetousness’

A.2 MORE DETAILS ON SOTA SER MODEL TRAINING METHODOLOGY

This section provides an in-depth description of the training procedures for the models discussed in
Section 4: i.e. the Whisper backbone and the EMPATHICINSIGHT-VOICE ensembles.

Data Curation and Fine-tuning for Emotion Captioning. Our goal was to adapt pre-trained
Whisper models (Radford et al., 2023) for the task of generating nuanced emotional captions from
speech. The data generation and fine-tuning pipeline involved several key steps:

1. Initial Large-Scale Data Sources: The primary data source was the EMONET-VOICE
BIG synthetic voice-acting dataset. This was augmented with approximately 4,500 hours
of audio extracted from publicly available online videos (vlogs, diaries, documentaries).
We applied voice activity detection (VAD) to isolate speech segments ranging from 3 to 12
seconds.

2. Dimensional Emotion Scoring with Gemini Flash 2.0: All audio snippets—both from
EMONET-VOICE BIG and the VAD-extracted clips—were annotated using Gemini Flash
2.0. A complex, multi-shot prompt (detailed in the supplementary materials) guided the
model to produce intensity scores on a 0–4 scale (0 = absent, 4 = extremely present) for
each of our 40 emotion dimensions simultaneously. This provided a structured, dimensional
representation of perceived emotional content.

3. Iterative Caption Generation for Whisper Training:

• Our initial attempt was to fine-tune Whisper to directly regress these 40-dimensional
scores (i.e., to output numerical values), but this approach consistently collapsed into
predicting nonsensical sequences of numbers. Similarly, training a specialized output
head to perform ordinal regression utilizing a Wasserstein distance loss did not yield
more sophisticated or coherent captions.

• We then converted the dimensional scores into procedurally generated string captions
using predefined templates (e.g., “The speaker sounds strongly amused and slightly
joyful.”). Training on these templated captions improved over direct regression, but
the resulting Whisper outputs still tended toward repetitive or syntactically unnatural
phrasing.

• The most effective strategy was to take those procedurally generated captions and run
them back through Gemini Flash 2.0 for paraphrasing. This second pass introduced
significant linguistic diversity and more natural sentence structures, while preserving the
original 40-dimensional semantics. The paraphrasing prompt specifically encouraged
varied wording and sentence complexity.

4. Training Data Preparation: All EMONET-VOICE BIG audio segments longer than 30
seconds were truncated to their first 30 seconds, to meet Whisper’s input constraints. Very
long segments were further subdivided at silent regions into shorter clips, resulting in a final
training pool of over 2 million audio–caption pairs when combined with the processed VAD
data.

5. Whisper Fine-tuning: Various sizes of OpenAI’s Whisper models were then fine-tuned
on this dataset of audio paired with the paraphrased emotional captions. The objective
was to teach Whisper to generate fluid, context-sensitive descriptions of emotional content
given raw speech input. Iteratively refining the captions via paraphrasing proved crucial for
yielding outputs that were both semantically accurate and linguistically natural. We also
experimented with incorporating synthetic “emotion bursts” during fine-tuning, but this led
to degraded embedding quality and was therefore not used in the final models.
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EMPATHICINSIGHT-VOICE: MLP Ensembles for Dimensional Emotion Prediction. The
EMPATHICINSIGHT-VOICE models were designed to provide direct predictions for each of the 40
emotion dimensions—complementing the captioning approach with explicit scalar estimates.

1. Feature Extraction: We used the encoder from our best-performing Whisper variant as
a fixed feature extractor. For any input audio, we ran it through the Whisper encoder and
collected the full sequence of token embeddings (sequence length = 1,500; embedding
dimension = 768), yielding 1,152,000 features when flattened. Preliminary experiments
showed that preserving the entire unpooled sequence outperformed all tested pooling strate-
gies (mean, max, min, concatenation) for downstream MLP regression.

2. MLP “Expert” Heads: We trained an ensemble of 40 independent MLP models. Each
MLP served as an “expert” head dedicated to regressing the intensity score for exactly one
of the 40 emotion dimensions using the corresponding flattened Whisper embeddings as
input.

3. Training Targets: The regression targets were the direct 0–4 intensity scores produced
by Gemini Flash 2.0 (via the multi-shot prompt described in the supplementary files).
During the encoder fine-tuning stage, we experimented with injecting synthetic “emotion
bursts”—artificially boosting certain dimension signals in the audio—to encourage a more
robust embedding space. However, this augmentation degraded the underlying Whisper
embeddings and ultimately hurt downstream MLP performance. Consequently, no synthetic
bursts were used for final training.

4. MLP Architecture: Both the Small and Large EMPATHICINSIGHT-VOICE variants share
the same overall architectural pattern for regressing from the high-dimensional flattened
embeddings:

• Input Projection: A first linear layer reduces the 1,152,000-dimensional input to a
much smaller embedding space.

• Hidden Layers: Three fully connected layers with ReLU activations, each followed by
dropout for regularization to mitigate overfitting.

• Output Layer: A final linear projection that outputs a single continuous value in [0, 4],
corresponding to the predicted intensity for that emotion.

5. Model Sizes:
• EMPATHICINSIGHT-VOICE SMALL: The initial projection reduces 1,152,000 inputs

to 64 dimensions. The subsequent hidden layer sizes are 64 → 32 → 16. Each MLP
head has about 73.73 million trainable parameters, the vast majority residing in that
first projection layer.

• EMPATHICINSIGHT-VOICE LARGE: The initial projection reduces 1,152,000 inputs
to 128 dimensions. The subsequent hidden layers are 128 → 64 → 32. This yields
approximately 147.48 million trainable parameters per head, again dominated by the
input projection.

6. Parallel Inference and Training Loss: At inference time, we evaluate all 40 MLP experts
in parallel to predict the full 40-dimensional emotion profile (i.e., different strengths of emo-
tionality across dimensions). During training, each MLP head is optimized independently
using the mean absolute error (MAE) between predicted and target emotion strength.

All trained EMPATHICINSIGHT-VOICE models (Small and Large) and the associated inference code
are available via our project page.

A.3 HUME VOICE MAPPING

A.4 DETAILED TAXONOMY CONSTRUCTION METHODOLOGY

The 40-category emotion taxonomy utilized in both the EMONET-VOICE foundation and benchmark
datasets was originally developed for the EmoNet-Face Benchmark (Schuhmann et al., 2025).

The primary objective was to create a taxonomy that supports a more fine-grained and nuanced
understanding of affective states in AI, moving beyond the limitations of traditional basic emotion
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Hume Voice Label Our Taxonomy
Joy Elation
Empathic Pain Distress
Guilt -
Nostalgia Longing
Determination -
Surprise (positive) Surprise
Horror Fear
Calmness Contentment
Desire Sexual Lust
Awkwardness Embarrassment
Satisfaction Pleasure
Aesthetic Appreciation Awe
Entrancement Concentration
Romance Infatuation
Love Affection
Excitement Arousal
Realization Contemplation
Tiredness Fatigue
Envy Jealousy & Envy
Anxiety -
Boredom -
Adoration -
Sympathy -
Admiration Admiration
Craving Craving
Surprise (negative) Astonishment

Table 8: Mapping of Hume Voice labels to our emotion taxonomy. Note that if one Hume Voice label
fits to more than one emotion from our taxonomy, only one item was chosen.

Table 9: Summary of key dataset statistics for EMONET-VOICE. *Hume Voice provides 46 emotions
on a continuous scale from 0-1, of which we were able to map 29 to our emotion taxonomy. Human
annotators voted on a discrete scale: 0 (emotion not present), 1 (emotion weakly present), 2 (emotion
strongly present). All scales were transformed to a 0-10 scale for further analysis. Note that GPT-4o
Audio Preview was not able to process 2,100 samples (e.g., returned an empty response).

Annotator Unique Audio Files Emotions per Annotation Scale

Human 1 6837 1 0-2
Human 2 6620 1 0-2
Human 3 2600 1 0-2
Human 4 11605 1 0-2
Human 5 343 1 0-2
Human 6 5600 1 0-2
EMPATHICINSIGHT-VOICE LARGE 12600 40 0-4
EMPATHICINSIGHT-VOICE SMALL 12600 40 0-4
GPT-4o Audio Preview 2024-12-17 10500 40 0-10
GPT-4o Mini Audio Preview 12600 40 0-10
Gemini 2.0 Flash 12600 40 0-10
Gemini 2.5 Pro 12600 40 0-10
Hume Voice 12600 *29 0-1

models. This development was rooted in contemporary psychological research and significantly
informed by the principles of the Theory of Constructed Emotion (TCE) (Barrett, 2017).

The taxonomy was designed to encompass a wide array of affective experiences, including not only
common positive and negative emotions but also intricate social emotions (e.g., Embarrassment,
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emotion alpha alpha ci lower alpha ci upper n items

Embarrassment 0.272 0.186 0.368 300
Teasing 0.271 0.178 0.362 300
Pain 0.247 0.160 0.334 300
Anger 0.220 0.129 0.310 300
Shame 0.216 0.122 0.297 300
Sadness 0.211 0.111 0.301 300
Distress 0.208 0.121 0.297 300
Malevolence 0.204 0.098 0.294 300
Contentment 0.197 0.109 0.281 300
Relief 0.196 0.098 0.280 300
Jealousy / Envy 0.194 0.095 0.282 300
Intoxication 0.193 0.104 0.279 300
Authenticity 0.185 0.093 0.279 300
Disappointment 0.176 0.071 0.271 300
Fear 0.161 0.066 0.241 300
Impatience and Irritability 0.159 0.057 0.247 300
Helplessness 0.158 0.070 0.246 300
Pride 0.156 0.057 0.241 300
Sexual Lust 0.149 0.048 0.243 300
Triumph 0.145 0.043 0.246 300
Elation 0.138 0.040 0.229 300
Overall 0.138 0.124 0.152 12600
Fatigue 0.129 0.034 0.217 300
Concentration 0.103 0.023 0.186 300
Disgust 0.103 0.004 0.195 300
Thankfulness 0.088 -0.008 0.178 300
Pleasure 0.082 -0.011 0.177 300
Doubt 0.078 -0.020 0.171 300
Amusement 0.068 -0.031 0.155 300
Infatuation 0.063 -0.031 0.150 300
Confusion 0.060 -0.027 0.148 300
Contempt 0.046 -0.045 0.130 300
Affection 0.043 -0.052 0.133 300
Bitterness 0.033 -0.051 0.116 300
Astonishment 0.021 -0.068 0.109 300
Contemplation 0.021 -0.065 0.104 300
Sourness 0.004 -0.088 0.083 300
Hope -0.005 -0.106 0.090 300
Longing -0.046 -0.149 0.046 300
Arousal -0.066 -0.170 0.030 300
Interest -0.094 -0.178 -0.009 300
Emotional Numbness -0.099 -0.179 -0.017 300
Awe -0.127 -0.218 -0.035 300

Table 10: Cronbach’s α inter-rater reliability (0 = emotion absent; 1 = weakly present; 2 = strongly
present) for each emotion category (n = 300 items per label), with 95% confidence intervals obtained
via non-parametric bootstrap (1 000 resamples, seed = 42). “Overall” reports α and CI computed
across all 40 emotion categories + 2 extra categories (12 000 + 600 = 12 600 total annotations). Note
that the analysis contains two extra categories (authenticity and arousal) that is not present in the
narrow emotion category definition A.1.

Shame, Pride), cognitive states (e.g., Concentration, Doubt, Confusion), and bodily states (e.g.,
Pain, Fatigue, Intoxication). Less typical but experientially relevant categories like Sourness and
Helplessness were also incorporated. The full list of 40 categories and their descriptive word clusters
can be found in App. A.1 (cross-referencing the list you already have, which is similar to App. Tab. 4
from the EmoNet-Face paper).
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Figure 2: Instructions given to the human annotator for the expert annotation of EMONET-VOICE
BENCH.

The construction process involved several key stages:

1. Literature-Driven Candidate Extraction: The comprehensive "Handbook of Emotions"
(946 pages) (Lewis et al., 2016) was digitized using Optical Character Recognition (OCR).
The digitized text was then divided into manageable 500-word segments.

2. AI-Assisted Term Identification: GPT-4 was employed to analyze these text segments and
extract potential nouns representing emotion concepts.

3. Refinement and Deduplication: The initially extracted terms were aggregated, and du-
plicates were removed, resulting in a candidate list of approximately 170 unique emotion-
related nouns.

4. Expert-Guided Clustering and Categorization: This refined list of terms underwent an
iterative process of clustering. This involved independent categorization efforts by team
members, followed by critical reviews and discussions. Psychologists and researchers in
affective computing provided expert guidance throughout this phase to ensure the semantic
coherence and psychological relevance of the emerging categories. Each of the final 40
categories represents a cluster of these semantically related emotion words.

In line with the Theory of Constructed Emotion, this taxonomy does not presuppose the biological
universality or fixedness of these emotional categories. Instead, it is intended to facilitate context-
aware and socially informed interpretations of affective expressions by AI systems. Recognizing
the inherent ambiguity in perceiving emotions (e.g., a high-arousal vocal expression might be
interpreted as amusement, elation, or excitement depending on context and observer), the taxonomy
was specifically designed to support plausible multi-label annotations rather than forcing rigid,
single-label classifications. This approach aims to enable richer and more contextually sensitive
representations of emotion in AI.

B ANNOTATION PLATFORM INSTRUCTIONS AND UI

C FINE-GRAINED TO COARSE EMOTION MAPPING

Table 11 details the mappings used for our cross-dataset evaluation. Bridging the semantic gap
between our 40 fine-grained categories and the 7-8 coarse labels of EmoDB and RAVDESS is a
non-trivial challenge. The following mappings represent a best-effort, yet inherently subjective,
alignment.

The differences between the two mappings arise because the target taxonomies are distinct; for
instance, EmoDB includes ’boredom’ while RAVDESS has ’calm’ and ’surprised’. This subjectivity
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Figure 3: UI of our expert annotation tool for EMONET-VOICE BENCH.

is important context for our results: we acknowledge that lower performance on certain categories
(e.g., ’boredom’ or ’disgust’) may reflect a poor semantic fit in the mapping rather than a fundamental
model deficiency. A ‘—‘ indicates an unmapped emotion.
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Table 11: Mapping from EMONET-VOICE’s 40 fine-grained emotion categories to the coarse cat-
egories of EmoDB (n = 7: anger, boredom, disgust, fear, happiness, sadness, neutral) and
RAVDESS (n = 8: angry, calm, disgust, fearful, happy, neutral, sad, surprised). Shared cate-
gories are in bold; unique in italics.

EMONET-VOICE Fine-Grained Emotion EmoDB Mapping RAVDESS Mapping
Affection happiness calm
Amusement happiness happy
Anger anger angry
Astonishment/Surprise fear surprised
Awe — calm
Bitterness anger angry
Concentration neutral neutral
Contemplation neutral calm
Contempt disgust disgust
Contentment happiness happy
Disappointment sadness sad
Disgust disgust disgust
Distress fear fearful
Doubt neutral surprised
Elation happiness happy
Embarrassment sadness sad
Emotional Numbness boredom neutral
Fatigue/Exhaustion sadness disgust
Fear fear fearful
Helplessness sadness fearful
Hope/Enthusiasm/Optimism happiness happy
Impatience and Irritability anger angry
Infatuation happiness happy
Interest neutral surprised
Intoxication/Altered States — calm
Jealousy / Envy sadness angry
Longing sadness sad
Malevolence/Malice anger angry
Pain sadness sad
Pleasure/Ecstasy happiness happy
Pride happiness happy
Relief happiness calm
Sadness sadness sad
Sexual Lust — —
Shame sadness disgust
Sourness disgust disgust
Teasing happiness happy
Thankfulness/Gratitude happiness happy
Triumph happiness happy
Confusion neutral surprised
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