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Abstract
Image classification accuracy on the ImageNet
dataset has been a barometer for progress in com-
puter vision over the last decade. Several re-
cent papers have questioned the degree to which
the benchmark remains useful to the commu-
nity (Stock & Cissé, 2017; Beyer et al., 2020;
Shankar et al., 2020; Yun et al., 2021; Tsipras
et al., 2020), yet innovations continue to con-
tribute gains to performance, with today’s largest
models achieving 90%+ top-1 accuracy. To help
contextualize progress on ImageNet and provide
a more meaningful evaluation for today’s state-of-
the-art models, we manually review and catego-
rize every remaining mistake that a few top mod-
els make and provide insights into the long-tail of
errors on one of the most benchmarked datasets
in computer vision. We focus on the multi-label
subset evaluation of ImageNet, where today’s best
models achieve upwards of 97% accuracy. Our
analysis reveals that nearly half of the supposed
mistakes are not mistakes at all, and we uncover
new valid multi-labels, demonstrating that, with-
out careful review, we are significantly underesti-
mating the performance of these models. On the
other hand, we also find that today’s best models
still make a significant number of mistakes (40%)
that are obviously wrong to human reviewers. To
calibrate future progress on ImageNet, we pro-
vide an updated multi-label evaluation set, and
we curate ImageNet-Major: a 68-example "ma-
jor error" slice of the obvious mistakes made by
today’s top models—a slice where models should
achieve near perfection, but today are far from
doing so.
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Label: dough; Model: bagel.
When does dough become a
bagel?

Computer vision models of-
ten evaluate their perfor-
mance on the ImageNet
classification dataset (Deng
et al., 2009; Russakovsky
et al., 2015) and many vari-
ants (Recht et al., 2019;
Hendrycks & Dietterich,
2019; Hendrycks et al.,
2019; 2020; Wang et al.,
2019), as a signal of capability for visual understanding.
As performance on the standard sets have reached dimin-
ishing returns to top-1 and top-5 accuracy, much recent
work (Stock & Cissé, 2017; Beyer et al., 2020; Recht et al.,
2019; Shankar et al., 2020; Tsipras et al., 2020; Kornblith
et al., 2019) has focused on understanding what is left for
the computer vision community to solve, and where the
community should be driving toward. Prior studies of Im-
ageNet errors have identified issues stemming from lack
of multi-labels, label noise, under-specified classes, and
more (Stock & Cissé, 2017; Shankar et al., 2020; Beyer
et al., 2020; Tsipras et al., 2020; Lee et al., 2017).

Label errors and label noise affect the evaluation of any
model (Northcutt et al., 2021b), and ImageNet is no excep-
tion. Many studies above have spent effort to correct and
improve these labels, showing that while ImageNet perfor-
mance improvements are approaching diminishing returns,
the dataset can remain useful to the community, but only if
we collectively continue to shepherd it. As the best models
improve, however, it is becoming increasingly challenging
to assess the often novel predictions these models make. For
example, should we penalize models for being the first to
predict that a pre-baked bagel may be a bagel, as one of the
models we review in this work does?

Machine learning models tend to make mistakes with vary-
ing severity and importance (a function of both the predic-
tion as well as the label definitions), and prior work (Stock
& Cissé, 2017; Beyer et al., 2020) has shown that non-
experts find it challenging to determine the correctness of a
model’s prediction on ImageNet. Our own experience, high-
lighted by the doughy-bagel, is that many of the remaining
mistakes these top models make are quite reasonable and
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probably should not be considered mistakes—understanding
the severity and type of these remaining mistakes can help
calibrate progress.

Indeed, to our knowledge, there has not been an expert-
review, categorization, and severity assessment of the re-
maining long-tailed mistakes, which becomes particularly
important at these margins. Our experience working with
production teams on deployed applications has suggested
that manual triage and assessing individual failures provides
a useful indicator of model performance that aggregate mea-
sures fail to capture. Thus, in this work we attempt to
analyze (as expert reviewers) every remaining mistake that
a few state-of-the-art models make to better understand (a)
which of the remaining mistakes remain egregious errors,
(b) what error category they might fall in, and (c) what eval-
uations might capture the most important long-tail failures.

In this paper we analyze the ImageNet multi-label validation
subsets (Shankar et al., 2020), in which expert labelers were
used to assess the correctness of model predictions through
the year 2020, and on which a 1000-image human-evaluated
subset provides a direct comparison to expert human per-
formance. By analyzing the mistakes of two large 2022-era
ImageNet models, we found that:

• Nearly half of each model’s mistakes were deemed
correct under a careful, expert multi-label re-
evaluation, halving the error rate. Had we not analyzed
the models’ mistakes, we would be severely underesti-
mating the models’ actual performance.

• Approximately 40% of the remaining mistakes can
be classified as ‘major’ errors: errors that most hu-
mans would likely not make, suggesting that many of
the long-tailed mistakes aren’t simply label noise, but
legitimate mistakes that leave room for improvement.

What do these lessons portend for the future of ImageNet
evaluation? Top-1 will become increasingly noisy as our
best models get better (though we have not yet completely
saturated top-1). Our work shows that multi-label accu-
racy, while better at capturing "true" errors compared to
top-1, suffers from a lack of a comprehensive, accurately
labeled large evaluation set, which is expensive to procure
and challenging to maintain.

We therefore propose ImageNet-M, a 68-example evalua-
tion split composed of "major" mistakes that several top-
performing models make; we believe this subset is one that
future image classification models should achieve near per-
fect accuracy on, and provides three clear benefits: (1) we
attempt to comprehensively-label all examples for multi-
label annotations to prevent the need to review novel correct
predictions, (2) we endeavor to maintain and provide a way
for the public to add new correct predictions; (3) the eval-
uation set is small enough to encourage completeness and
allow the community to inspect their own errors.

Dataset release. To evaluate on the
imagenet2012_multilabel and the ImageNet-M
subset, please visit https://www.tensorflow.
org/datasets/catalog/imagenet2012_
multilabel. We also include a notebook with ex-
ample code for evaluating on these splits, including
multi-label accuracy and the ImageNet-M split using
pre-computed logits for the ViT-3B and Greedy Soups
models used in the paper.

2. Mistake analysis method and taxonomy
To obtain an initial set remaining mistakes, we used a stan-
dard ViT (Dosovitskiy et al., 2021) model scaled to 3B
parameters (ViT-3B) that was pre-trained on JFT-3B (Sun
et al., 2017) and fine-tuned on ImageNet-1K (Deng et al.,
2009), achieving a top-1 accuracy of 89.5% (details in Ap-
pendix E). We also later reviewed mistakes made by the
Greedy Soups model (Wortsman et al., 2022). Using the
imagenet2012_multilabel dataset (Shankar et al.,
2020), we measured the initial multi-label accuracy (MLA)
of the ViT-3B model to be 96.3%. We describe the proce-
dure we followed to review mistakes using in Appendix B.1
and the severity and category definitions in Appendix B.2.

3. Analyzing the remaining mistakes
After review of all original 676 mistakes (comprising both
novel predictions and previously reviewed mistakes), we
found that a total of 298 were either correct or unclear, or
determined the original groundtruth incorrect or problem-
atic. Our evaluation of the ViT-3B model on this re-labeled
dataset is shown in Table 1, with the model making a total
of 378 mistakes on the dataset. In other words, approxi-
mately 44% of the initial mistakes made by this model were
determined to be correct!

3.1. Mistake category and severity

Each of the 378 remaining mistakes was assigned both a
mistake category and severity (Table 2) by the expert panel.

Category: 78.3% of errors were assessed to be fine-grained
in nature (either in-vocabulary or OOV), and 13.8% catego-
rized as a spurious correlation. To measure whether these
categories are meaningful, we measured the "hierarchy dis-
tance" between the groundtruth label and the model’s pre-
diction using the WordNet hierarchy (Miller, 1995). For ex-
ample, a hierarchy distance of 1 means that the groundtruth
and model prediction share the same parent; a distance of
2 means they share the same grandparent. We found that
80.9% of errors with a hierarchy distance of 1 were assessed
as fine-grained. In contrast, 54.3% of errors with a hier-
archy distance of 3 were fine-grained, matching intuition
that predictions close in the hierarchy are very likely to be

https://www.tensorflow.org/datasets/catalog/imagenet2012_multilabel
https://www.tensorflow.org/datasets/catalog/imagenet2012_multilabel
https://www.tensorflow.org/datasets/catalog/imagenet2012_multilabel
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All Organisms Objects

MLA MLA Re-labeled MLA MLA Re-labeled MLA MLA Re-labeled
ViT-3B 96.3% 97.9% 96.3% 97.8% 96.4% 98.0%

Table 1: Multi-label accuracy (MLA) of ViT-3B model before and after our re-labeling.

fine-grained errors, and predictions far in the hierarchy are
more likely to be spurious correlations, fine-grained with
out-of-vocabulary, or non-prototypical examples. We note
that WordNet does not provide a perfect (automated) cate-
gory function: "goblet" and "vase" are a hierarchy distance
of 4 apart, and we encountered one model mistake for this
pair that we nonetheless assessed as fine-grained.

Severity: We determined that around 40% of errors were
assessed to be "major" errors, indicating that this model still
appears to make mistakes that a human familiar with the
class definitions would not make, despite the fact that the
model on average performs better than an expert human. We
return to ‘major’ errors later in Section 4.1, as we believe
that a subset of these errors can be a useful evaluation slice
for future ImageNet benchmarking.

3.2. Generalization to new models

As models produce higher top-1 accuracy, how do the types
of mistakes they make and improve upon change? We use
the Greedy Soups model that obtains 90.9% top-1 accuracy
on ImageNet validation (Wortsman et al., 2022), measuring
its MLA after our initial re-labeling at 98.1%, and yielding
341 total remaining (and partially unreviewed) errors.

The Soups model corrected 209 mistakes that the ViT-3B
model made, while the model made 170 mistakes where
the ViT-3B model was correct, yielding an overall accuracy
improvement; 28 mistake examples were common with ViT-
3B but with a different prediction. In total there were 198
novel predictions made by this model that needed to be re-
viewed; upon review using the same panel method, we found
46.5% (92/198) were problematic (10) or actually correct
(82), showing with a second model that model predictions
on mistakes need to be reviewed, and that the single label
expected by top-1 is often insufficient. The Soups model
in the end made only 249 errors, for an MLA of 98.6%, a
0.5% absolute increase compared to unreviewed mistakes.
The categorization and severity of these errors is shown in
Table 2. A chi-square test of independence shows that there
is no significant difference between either the categorization
or severity (χ2(3, N = 629) = 2.41, p = .49) or mistake
severity (χ2(1, N = 629) = 1.61, p = .20).

Additional results: We include additional results analyz-
ing generalization of our mistake analysis to ImageNetV2,
analyzing class confusions, comparing model performance
to human performance, and analyzing model errors through
the lens of training data in Appendix D.

4. Recommendations and Discussion
In this section we provide recommendations for future eval-
uation, starting with ImageNet-M: our curated multi-label
evaluation set of "major mistakes" that we suggest should
be reported on in addition to metrics such as top-1 and
multi-label accuracy.

4.1. ImageNet-M: A "major mistakes" evaluation split

Studies over the last few years seeking to understand
whether ImageNet remains an informative benchmark have
typically concluded that aspects of ImageNet remain use-
ful but top-1 accuracy less so. These works encourage
alternative related metrics for ImageNet such as multi-label
accuracy (Beyer et al., 2020; Shankar et al., 2020) or object
vs. organism breakdowns (Shankar et al., 2020). In many
cases, stronger, more generalizable models often continue
to incrementally but inevitably improve on these metrics.

With an emphasis on understanding which long-tail errors
are unambiguously errors, we suggest that a benchmark fo-
cusing on the most egregious long-tail errors could provide
a useful additional signal about whether the improvements
are meaningful. In particular, we desire a long-tailed bench-
mark where we believe that 100% accuracy is achievable.
Because the minor mistakes are more subject to interpreta-
tion and discussion than the major mistakes, we believe a
benchmark focused on the latter will help the community
judge what is meaningful improvement on ImageNet.

To that end, we leverage our expert-reviewed analysis to
produce a small slice of the ImageNet multi-label set where
(1) today’s best top-1 models are still more wrong than right,
and (2) the mistakes are largely unambiguous to a human
given a reasonable understanding of the ImageNet label set.
We call this evaluation slice ImageNet-Major.

ImageNet-M example selection method. The ViT-3B
model made 155 "major" mistakes, for which we analyzed
whether each example was labeled correctly for three ad-
ditional models: (1) the Greedy Soups model, (2) a model
pre-trained on Instagram data but fine-tuned on ImageNet
that achieves 85.4% top-1 (Mahajan et al., 2018), and (3) A
zero-shot evaluation (Radford et al., 2021; Jia et al., 2021;
Pham et al., 2021) using a CoCa (Yu et al., 2022) model
pretrained on JFT and noisy image-text data. In order to
maximize prediction diversity, we purposefully selected
models with varying pre-training data and training method-
ologies, including a zero-shot model that does not see Im-
ageNet image-label associations directly (Gontijo-Lopes
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Model Dataset Categories Severities

Fine-grained (FG) FG w/ OOV Spurious Non-prototypical Major Minor

ViT-3B ImageNet 64.0% 14.3% 13.8% 7.9% 40.7% 59.3%
ViT-3B ImageNetV2 66.0% 9.4% 15.1% 9.4% 41.5% 58.5%

Greedy Soups ImageNet 69.1% 10.4% 12.9% 7.6% 35.7% 64.3%

Table 2: Mistake Category and Severity: We classified the majority of the ViT-3B mistakes as fine-grained or a variant of
fine-grained; many of the mistakes were considered "major" mistakes; these distributions held on ImageNetV2 as well as for
the Greedy Soups model.
et al., 2021).

From this suite of four models, we assembled a subset where
three or more of the models make a major mistake, yielding
68 such major mistakes. This process is similar in spirit
to ImageNet-A (Hendrycks et al., 2019), except we use
four high-performing but diverse models, and we restrict
the set to ImageNet images and the corresponding model
prediction that were rated as "major" errors. We analyzed
the predictions of all models on these examples (including
any novel predictions made by these additional models) and
verified that none of them were correct new multi-labels,
and that any model’s mistakes were major mistakes. In
addition, we attempted to comprehensively manually label
additional labels that no model has yet predicted but would
be correct, in an attempt to reduce the likelihood that fu-
ture models are penalized for making novel but unreviewed
correct predictions.

We design the ImageNet-M 68-example subset as an addi-
tional split of the validation set that we believe has the fol-
lowing properties: (a) many top performing models trained
in different ways make mistakes on this set; (b) the mistakes
are all major mistakes as determined by expert-reviewers;
(c) the example set is small enough to permit manual inspec-
tion by model evaluators; (d) strives to be comprehensively
labeled with respect to the ImageNet label set; (e) in theory
provides a subset that future models could achieve perfect
accuracy on without worrying about underspecified class
definitions. We anticipate stronger models will make correct
unreviewed predictions on this slice, so we will endeavor to
update the set of multi-labels as needed.

Evaluation. By construction, our ViT-3B model achieves
0% accuracy on ImageNet-M; the Instagram-pretrained
model gets 9 of the 68 correct, while the Greedy Soups
model gets 19 correct. The zero-shot model gets the best
performance with 24 correct, even though the zero-shot
model overall achieves lower multi-label accuracy (94.2%)
than any of the other models. Because we use these four
models to help choose the mistakes, these specific mod-
els comparatively will perform poorly on this benchmark.
Like with ImageNet-A (Hendrycks et al., 2019), a dataset
chosen using models may bias selection in such a way
that future models may easily get very high accuracy on
this subset, though we try to mitigate this effect by using
multiple differently-trained models in our selection criteria.

Trend of models on top-1 ImageNet vs.
ImageNet-M, using Clopper-Pearson in-
tervals. Red dashed line indicates total
number of images in ImageNet-M as an
upper-bound.

How do models
that were not
used to select this
dataset perform?
We evaluate the
suite of 70 mod-
els from Shankar
et al. (Shankar
et al., 2020) on
this dataset, in
addition to four
recent top models
not directly used to help filter the ImageNet-M set: a
ViT-G/14 model (Zhai et al., 2021) (90.5% top-1), a BASIC
model (Pham et al., 2021) fine-tuned on ImageNet (90.7%
top-1), an ALIGN model (Jia et al., 2021) fine-tuned on
ImageNet (88.1% top-1), and a CoCa model (Yu et al.,
2022) fine-tuned on ImageNet (91.0% top-1). The plot
shown here shows that most models as far back as AlexNet
through ResNets get between 10-25 examples correct, but
recent high accuracy models such as ViT-G/14, BASIC-FT,
and CoCa-FT are starting to solve more of these ‘major’
mistakes: CoCa-FT gets 42 of the 68 examples correct.
We reviewed the mistakes made by these four models,
which yielded a total of 5 novel predictions; 4 of them
were verified to be wrong (and major), and 1 additional
new valid prediction, for which we updated the label set
accordingly. We note that future models may predict classes
on these examples that are "minor" mistakes, since the
definition of severity is linked to the (prediction, example)
pair; should it be useful, the dataset slice can be augmented
with a ‘minor_wrong_multi_label’ attribute to provide more
fine-grained signals.

Although we did not find statistical evidence that stronger
models solve major errors first, we hope that progress on
image classification can be evaluated by whether improve-
ments help reduce egregious mistakes before focusing on
nebulous ones. Overall, we encourage reporting on several
slices, including ImageNet-M, to give a better sense of the
strengths and weaknesses of various models. For a more
thorough discussion of the limitations of our analysis see
Appendix C.
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A. Related Work
Multi-label annotations on ImageNet. As models con-
tinue to improve ImageNet top-1 accuracy, there has been
an increased interest in evaluating ImageNet multi-label ac-
curacy (Stock & Cissé, 2017; Beyer et al., 2020; Shankar
et al., 2020; Yun et al., 2021; Tsipras et al., 2020). Stock
et al. (Stock & Cissé, 2017) use non-expert human stud-
ies and explanations (e.g., model criticisms) on predictions
of a then-SOTA model on ImageNet, finding that machine
accuracy is underestimated and advocating for multi-label
evaluation. Beyer et. al. (Beyer et al., 2020) introduce a set
of Reassessed Labels (ReaL) for the ImageNet validation
set containing multi-label annotations. The researchers first
collected proposal labels from model predictions using a
testbed of 19 models, and then, in order to reduce the num-
ber of predictions to review, they narrowed the set of models
down to the 6 models that had the highest precision and re-
call above 97% on a set of 256 images reviewed by 5 experts.
The top predictions from these 6 models were then reviewed
by human annotators from a crowdsourcing platform. In a
similar vein, Shankar et. al. (Shankar et al., 2020) provide
a multi-label annotation dataset for 20,000 of the 50,000
ImageNet validation images and find that roughly 20% of
images have more than one valid label. To generate the
annotations, the researchers first collected predictions from
a testbed of 70 models for each image and then reviewed
the unique model predictions using a panel of three human
experts. Additionally, human accuracy was evaluated on a
subset of 1,000 images and a panel of 5 human experts re-
viewed human and model predictions on this subset. Tsipras
et al. (Tsipras et al., 2020) also find that 20% of images
in the validation set contain objects from multiple classes,
and identify sources of ambiguous label classes. Hooker et.
al (Hooker et al., 2019) use human evaluations to label a
subset of examples from ImageNet, finding that they con-
tained multiple labels 40–60% of the time. More recently,
Yun et al. (Yun et al., 2021) obtained pixel-level multi-label
ground truths for the ImageNet training set using a machine
annotator, and found that training a model with the dense
annotations leads to small improvements in both top-1 and
multi-label ImageNet accuracy.

Our paper focuses on (and adds to) the multi-label evalua-
tion of ImageNet using expert labelers, updating the dataset
to collapse classes that are overlapping or subset relation-
ships to better capture the remaining real errors. We adopt
the labeling methodology of Shankar et al. (Shankar et al.,
2020) and use a panel of human experts to determine the
validity of novel predictions. In contrast to prior work, we
re-visit all remaining model mistakes using human expert
review, and categorize them by type and severity.

ImageNet Label Error. Multi-label annotation datasets for
ImageNet (including our updated annotations) identify a set

of images that have no correct ground truth label (i.e. label
errors). Van Horn et. al (Van Horn et al., 2015) used experts
from the Cornell Lab of Ornithology to estimate that at least
4% of the bird images are misclassified, and more recently
Northcutt et. al (Northcutt et al., 2021b) used MTURK
workers to review algorithmically identified potential errors
and found a label error rate of 5.83% in ImageNet. Lee
et. al (Lee et al., 2017) sample 400 ImageNet mistakes and
perform a categorization, similarly finding significant label
error and label ambiguity.

Mistake analysis. Recent work has sought to understand or
analyze model mistakes on ImageNet, mainly focusing on
similarities or differences between mistake sets of indepen-
dently trained classifiers. For example, Mania et al. (Mania
et al., 2019) found that predictions of different models on
ImageNet are more similar than one would expect if the
models were making mistakes independently. Geirhos et al.
(Geirhos et al., 2020) studied a 16-class ImageNet classifi-
cation task and similarly found that CNNs make remarkably
consistent mistakes with one another but CNNs and humans
have an error consistency that is only slightly above what
can be expected from chance. In follow up work, Mania et
al. (Mania & Sra, 2020) studied the dominance probabilities
for pairs of ImageNet models, which capture the probability
that a higher accuracy model will make a mistake on a partic-
ular image that a lower accuracy model correctly classifies.
Their empirical analysis of dominance probabilities on Ima-
geNet implies that the mistakes of higher accuracy models
are typically subsets of the mistakes of lower accuracy mod-
els. However, Gontijo-Lopes et al. (Gontijo-Lopes et al.,
2021) and Andreassen et al. (Andreassen et al., 2021) found
that training on larger and more diverse datasets as well as
zero-shot evaluation can lead to models with more mistake
diversity, which in turn can be used to build more accurate
ensembles. Similarly, Nguyen et al. (Nguyen et al., 2021)
found systematic differences in the errors between wide
and deep ResNets on ImageNet. Ciregan et al. (Ciregan
et al., 2012) demonstrated that powerful models on MNIST
allowed for remaining error analysis in the single-label con-
text, highlighting the ambiguity in many of those remaining
errors.

In contrast to this prior work, we take a step towards fully
calibrating SOTA model evaluations by exhaustively and
visually reviewing every remaining model mistake using
manual expert review in the multi-label context; we believe
the remaining errors identified to be legitimately incorrect
and tempered by severity and category ratings that we hope
prove useful to future evaluations.
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B. Methods
B.1. Panel Review

To exhaustively and accurately assess every remaining mis-
take, we formed a panel of five reviewers and followed a
process similar to (Shankar et al., 2020) to evaluate the pre-
dictions made by this model on the 676 mistakes — we
avoided using non-expert crowd-source platforms specifi-
cally because the remaining mistakes are often difficult to
assess by non-expert annotators (Tsipras et al., 2020; Beyer
et al., 2020). For every mistake, the panel determined: (1)
Did the model make a mistake? (2) Was the original ground
truth annotation correct? (3) If the model made a mistake,
what is the category, type, and severity of the mistake? The
imagenet2012_multilabel dataset contains a field
for every image indicating which classes a large previous
suite of models predicted that were determined to be incor-
rect (wrong_multi_labels). Of these 676 initial mistakes,
221 were novel: they were not reviewed in the original
multi-label annotation process since none of the models
evaluated made the same prediction. Each member of the
panel reviewed all 221 novel mistakes.

Similar to (Shankar et al., 2020), we built a review tool
that allowed each panelist to see a) the predicted class, b)
the predicted top softmax score, c) the set of ground-truth
labels, d) the set of previously incorrect labels, and e) the
image. We also employed the labeling guide produced by
the authors of (Shankar et al., 2020) when investigating the
definition of a class, and a tool to iterate through the images
of every ImageNet validation example for that class, using
the validation images to help define the class boundaries
(rather than the gloss or lay definition of the class). See
Appendix F for screenshots of the review tools. In addition,
we collapsed a small number of classes for which previous
work has identified exhibited extreme overlap (Northcutt
et al., 2021a), such as ‘missile’ and ‘projectile missile’. In
Appendix G we provide these new collapsed class mappings.

We also used Google Image Search to help provide context
to some assessments; in one interesting but not isolated
case, a prediction of a taxi cab (with no obvious taxi cab
indicators beyond yellow color) was present in the image;
we determined the prediction to be correctly a taxi cab
and not just a standard vehicle by identifying a landmark
bridge in the background in order to localize the city, and
a subsequent image search for taxis in that city yielded the
images of the same taxi model and license plate design,
validating the model’s actually correct prediction.

Each panelist rated whether these novel mistakes had a mis-
labeled ground truth, or whether the prediction should be
added to the set of correct, unclear, or wrong multi-labels.
As a group, we reviewed any image where there was no
unanimous agreement, allowing those in the minority to

make their case and change minds, or highlight potential
oversights. The use of a panel and discussion was impor-
tant: in a non-trivial number of cases, a single panelist
found unique evidence for or against a prediction that no
other panelist saw that led to a different outcome. After
locking in final votes, we took the majority assessment, or
used ‘unclear’ for a tie. After this re-assessment, 140 of
the novel predictions were deemed correct (or the ground
truth deemed incorrect), leaving 536 remaining mistakes to
assess.

B.2. Mistake severity and category

The remaining mistakes then comprised images that had ei-
ther previously been deemed wrong by the panel in Shankar
et al. (Shankar et al., 2020), or deemed wrong by the cur-
rent panel. We then began a review of the mistakes for the
category and severity of mistakes. During this second phase
review, we re-reviewed all images in detail, potentially over-
turning decisions made by the previous panel, where they
missed the presence of an object that was in an example
or the decision was inconsistent with the labeling guide or
validation examples we relied on.1

Severity: We assessed each mistake’s severity with the as-
sumption that not all mistakes are equal: some mistakes
are extremely borderline, particularly because the ImageNet
class definitions are imprecise or because the image itself
provides ambiguous or incomplete information. For any
remaining mistake, we broke down the severity levels into
major and minor mistakes. A major mistake is a model
prediction that a human who understands the class defi-
nitions would find obviously incorrect. For example Fig-
ure 1(a) shows an example image where the prediction is
jigsaw puzzle but the label is dough; although the pieces
are somewhat jigsaw-puzzle-shaped, untrained humans are
more likely to classify this as dough than jigsaw puzzle.
A minor mistake is a model prediction that a human who
understands the class definitions would probably find to be
incorrect, but in a more subtle way than a major mistake.
Some minor mistakes are so subtle that even expert-trained
humans might debate their correctness.

We recognize that these severities are subject to the influ-
ences of the worldview of the panelists (and the web) and
should be judged accordingly (see Section C). For trans-
parency, we provide the panel assessments of the severity
for all the mistakes, and in Figure 1 we provide some exam-
ples of the severities of various mistakes made by this model
for the reader’s calibration. In Appendix H we provide many
additional examples of every severity and category.

1The labeling guide in Shankar et al. (Shankar et al., 2020) was
constructed after the initial panel review but prior to the human
accuracy assessment, resulting in some validation labels that would
be inconsistent with the labeling guide we used.
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(a) Major mistake
Label: dough
Model: jigsaw puzzle

(b) Minor mistake
Label: kuvasz
Model: Great Pyrenees

(c) New multilabel
Label: tape player
Model: cassette

(d) Problematic
Label: bee
Model: fly

.

Figure 1: Mistake Severity. Examples of the two mistake
severities (a-b), a correct model prediction where the model
identifies a previously missing multi-label (c); and a prob-
lematic example (d) where the label (bee) is incorrect (object
is a bee-fly, which is a type of fly).

(a) Fine-grained
Label: wall clock
Model: sundial

(b) Fine-grained w/ OOV
Label: syringe
Model: hamster

(c) Spurious correlation Label:
mouse, desk, monitor, screen
Model: desktop computer

(d) Non-prototypical
Label: stove
Model: hamper

Figure 2: Mistake Category. Examples of the four mistake
categories. In the fine-grained with OOV example, the
animal is a chinchilla, which is not an ImageNet class but is
visually similar to a hamster, which is an ImageNet class. In
the spurious correlation example, the scene contains relevant
context for desktop computer, but there is no such object in
the image.



When does dough become a bagel? Analyzing the remaining mistakes on ImageNet

Category: After reviewing many mistakes, we formulated
four mistake types (Figure 2).

(1) Fine-grained errors are where the model makes a mis-
take between two similar types of organisms or objects, one
of which is a groundtruth label. These mistakes often oc-
cur when the two confused classes are already similar (e.g.
two dog breeds), or when either of them is very broad or
ill-scoped (e.g. the “bake shop" class includes any baked
good or bakery).

(2) Fine-grained with out-of-vocabulary: there is an ob-
ject in the image that is not in the ImageNet class hierarchy
but is similar to a predicted class that is in ImageNet. We
separate out this category because it highlights the possible
benefits of training models to expect new classes to appear
at test time, and the importance of model uncertainty and
calibration in the face of this ‘open world’.

(3) Spurious correlations: Either (a) the predicted object
is not plausibly in the image but surrounding cues may have
been used, or (b) the predicted object does not match the
groundtruth. In extreme cases, there is no clear indication
of the predicted object; in more subtle cases, it is more
clear the model is trying to predict the class of an object in
the image but the predicted object would not be considered
either semantically or visually similar to the groundtruth
class.

(4) Non-prototypical labels: The predicted label is not
present but the groundtruth object is a non-prototypical
example of the class that bears resemblance to the predicted
label. Non-prototypical mistakes are relatively rare, and
capture the ‘long tail’ of examples for each class. These
mistakes highlight the internal diversity of each class, and
the difficulty of modeling the long within-class tail.

C. Limitations of Analysis
Much of our analysis on mistake categorization, severity,
and data cleaning depends greatly on qualitative factors
determined by the authors and experiment design, which we
briefly discuss here.

Limitations due to mistake subset. We only reviewed
multi-label annotation examples where the ViT-3B model
and Greedy Soups model we chose were incorrect; while the
multi-label dataset itself has undergone review of mistakes
from a suite of many models, we never review any validation
image whose groundtruth might be wrong, if all models
evaluated also make the incorrect groundtruth prediction.
We do partially review some of the mistakes made by a
few other models, and build upon a dataset where mistakes
made by many other models have already been reviewed, but
most of the work here assesses these two specific model’s
predictions.

Definition of a mistake. We re-iterate that we used qualita-
tive judgments to decide whether a prediction was a mistake,
and if so, its severity and categorization. Our qualitative
judgments are therefore based on a biased worldview (Tor-
ralba & Efros, 2011; Friedler et al., 2016; Baker; Paullada
et al., 2021) comprising the five panelists; moreover, we
are not world experts on dog or animal species, though
we believe our assessments are at least as good or better
than the original labeling process used for the validation set,
given the research effort we made on each mistake. As a
mitigation against imbuing too biased a worldview on class
definitions, we relied heavily on the validation data to de-
fine the boundaries of the class, even when those examples
did not match up with our personal definitions of the class.
Moreover, updating (and evaluating) multi-labels potentially
allows for different world-views to be expressed.

D. Additional Results
D.1. Out-of-distribution generalization

We evaluated the ViT-3B model on the ImageNetV2 multi-
label subset which produced over 900 unreviewed errors.
To assess what aspects of our analysis generalize to other
datasets, we sampled 100 of these errors using the same
panel review system employed for ImageNetV1. We discov-
ered that 47 of the 100 ImageNetV2 predictions were either
correct or had problematic labels, leaving 53 mistakes that
we reviewed for category and severity. For ImageNetV1, we
had previously found that 44% (296/676) of mistakes were
either problematic or correct and we found no statistically
significant difference between the two datasets in this regard
(χ2(1, N = 776) = 0.36, p = .55). These proportions
suggest that large models are frequently uncovering new
correct multi-labels, suggesting that mistake analysis and
label correction needs to be part of the lifecycle and main-
tenance of benchmark development of long-tailed errors
to properly assess performance as a benchmark saturates.
Table 2 compares the category and severity breakdowns
between the two datasets—overall the model is making sim-
ilar types and severities of mistakes on both datasets. A
chi-square test of independence shows that there is no sig-
nificant difference between either the mistake categorization
χ2(3, N = 434) = 0.97, p = .80. or mistake severity
χ2(1, N = 434) = 0.01, p = .92.

D.2. Analyzing class confusions.

Given that most failures were fine-grained, we tried to iden-
tify any patterns present in the class confusions made by the
model, but found no consistent pattern. The inline figure
shows the frequency of occurrence for confused class pairs.
The distribution is long-tailed in nature—the majority of
class pairs occur exactly once or twice and only a handful of
class pairs occur three or more times. The long-tailed nature
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of the class confusions suggests that we will not be able
to resolve a large fraction of model mistakes by focusing
on cleaning up or adding additional data to only a small
number of classes.

D.3. Comparison to humans

We compare the
performance of
the ViT-3B and
Greedy Soups
models to the best
human labeler
from Shankar et
al. (Shankar et al.,
2020)2 by evaluating on the subset of 1,000 ImageNet val
images used to compute human accuracy in the prior work.
To fairly compare to the models, we re-compute the human
accuracy scores using the original human predictions and
our updated label set. Overall, the re-labeling did not
significantly change human accuracy; the best human
labeler achieved 97.3% MLA on the original multi-labels
and 97.4% MLA on the updated multi-labels.

Table 3 compares the re-labeled MLA of the ViT-3B and
Greedy Soup model to the best human for all ImageNet
classes as well as the subset of ImageNet classes corre-
sponding to objects and organisms. Similar to Shankar et
al. (Shankar et al., 2020), we also find that the performance
of the models is more uniform across the object and organ-
ism classes, but humans do substantially better on the object
classes than the organism classes. However, unlike prior
work, current models outperform the best human when eval-
uated on all ImageNet classes (though humans still achieve
slightly better performance on the object classes).

D.4. Analyzing the Training Data

Finally, we investigate how much we can understand model
validation set errors through the lens of the training data.
To do so, we inspect the K = 10 nearest neighbor training
images using JFT-pretrained (before ImageNet fine tuning)
embeddings for the ViT-3B model. Doing this, we redis-
cover (originally documented in Sun et al. (Sun et al., 2017)
and Kolesnikov et al. (Kolesnikov et al., 2020)) that 797
(1.59%) ImageNet validation images exist in the training set
as exact duplicates. Interestingly, we are the first to notice
that every single leaked image has a different label in
the training set than the validation set. In Appendix J.1
we show removing these images has relatively little impact
on the model’s performance, and detail a more pernicious
leakage pattern of "near duplicates" in Appendix J.2 that is

2Best human is chosen based on MLA on all classes (as op-
posed to object or organism subset) and corresponds to Human E
in the original work.

hard to fully quantify. Finally, we show how the training
data sometimes explain spurious correlations in Appendix
J.3.

E. ViT-3B model details
The ViT model we use in this work is based on a stan-
dard Vision Transformer (Dosovitskiy et al., 2021) model
scaled to nearly 3 billion parameters, using a patch size of
14, 16 heads, 64 blocks, an MLP dimension of 8192 and
a hidden dimension of 2048. The model is defined and
trained in Lingvo (Shen et al., 2019); we additionally em-
ploy GSPMD (Xu et al., 2021) for training. The model is
pre-trained on JFT-3B (Sun et al., 2020) using training set-
tings that optimize for performance on JFT-3B rather than
for fine-tuning on ImageNet; notably, we do not use the train-
ing recipe that helps few-shot transfer performance (Zhai
et al., 2021). For fine-tuning on ImageNet, we use the
AdamW optimizer (beta1=0.9, beta2=0.999, epsilon=1e-
8, weight_decay=0.3) with a cosine learning rate schedule
(max learning rate of 3e-2, warmup of 2k steps, final rate of
3e-4), a training batch size of 512, and fine-tune for a total
of 10 epochs.

F. Review tools
We include screenshots of the reviewing tools we built to an-
alyze model mistakes. Figure 3 shows the UI for reviewing
model predictions and Figure 4 shows the UI that displays
the labeling guide and slide bar to browse images for a
particular class.



When does dough become a bagel? Analyzing the remaining mistakes on ImageNet

All Classes Organisms Objects

ViT-3B 97.8% 97.4% 98.1%
Greedy Soup 98.6% 98.4% 98.8%

Best Human (Shankar et al., 2020) 97.4% 95.4% 99.0%

Table 3: Multi-label accuracy compared to humans. Both the ViT-3B and Greedy Soup model achieve better MLA on all
ImageNet classes than the best human labeler from Shankar et al. (Shankar et al., 2020). However, on the object classes,
where the class boundaries are substantially less ambiguous for humans, the best human labeler still outperforms the models.

Figure 3: A screenshot of the UI we built to review model predictions. For each image, we determined whether the prediction
was correct, wrong, or unclear. We also flagged images as problematic if the ground truth label for the image was incorrect.
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Figure 4: A screenshot of the class search tool we built that displays the labeling guide and a slider bar that allows users to
browse validation images for a particular class.
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G. Collapsed mappings
We provide our collapsed class mappings that we employed
unilaterally, based on determining that the classes exhibited

significant overlap based on the validation set images, or
there was a strict superset relationship between two or more
classes. For example, a prediction of ‘eskimo dog’ for a
‘siberian husky’ label would be considered correct, whereas
a prediction of ‘siberian husky’ for an ‘eskimo dog’ label
might not.

All siberian huskies and malamutes are also eskimo dogs.
250: 248, 249: 248

Sunglass and sunglasses are the same class (bidirectional).
836: 837, 837: 836

Indian and African elephants are also tuskers. 385: 101,
386: 101

A coffee mug is also a cup. 504: 968

Maillot and maillot, tanksuit are the same class (bidirec-
tional). 638: 639, 639: 638

Missile and projectile missile are the same class (bidirec-
tional). 657: 744, 744: 657

Notebook computer and laptop are the same class (bidirec-
tional). 620: 681, 681: 620

Monitor and screen are the same class (bidirectional). 664:
782, 782: 664

A cassette player is also a tape player. 482: 848

Weasel, polecats, black-footed ferrets, and minks are all the
same class. 356: [357, 358, 359], 357: [356, 358, 359], 358:
[356, 357, 359], 359: [356, 357, 358],

All bathtubs are tubs, but not all tubs are bathtubs. 435: 876
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H. Mistake Examples by Severity

GT: tripod
Pred: swing

GT: wardrobe, bucket, broom
Pred: entertainment center

GT: cleaver
Pred: hatchet

GT: agama
Pred: frilled lizard

GT: hen
Pred: cock

GT: jay
Pred: magpie

GT: African elephant, tusker
Pred: Indian elephant

GT: Madagascar cat
Pred: indri

GT: water snake
Pred: ringneck snake

GT: toilet tissue, pot, window shade; Pred:
paper towel

GT: squirrel monkey
Pred: titi

GT: reflex camera
Pred: Polaroid camera

GT: Border collie, patio
Pred: collie

GT: Chesapeake Bay retriever
Pred: Labrador retriever

GT: squirrel monkey
Pred: titi

GT: whippet
Pred: Italian greyhound

Figure 5: Major mistakes. Additional examples of major mistakes. Of the correct multi-labels, the original ImageNet label
is listed first.
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GT: otterhound
Pred: cairn

GT: wolf spider
Pred: barn spider

GT: muzzle, Rhodesian ridgeback, red-
bone, Labrador retriever
Pred: beagle

GT: spider monkey
Pred: siamang

GT: marmoset
Pred: titi

GT: English foxhound
Pred: Walker hound

GT: wood rabbit
Pred: hare

GT: eggnog, mixing bowl, dough
Pred: frying pan

GT: horned viper
Pred: hognose snake

GT: bookshop
Pred: bakery

GT: wolf spider
Pred: tarantula

GT: pop bottle
Pred: vending machine

GT: Lhasa
Pred: Shih-Tzu

GT: sea cucumber
Pred: sea slug

GT: pot
Pred: birdhouse

GT: Kerry blue terrier, computer keyboard
Pred: Lakeland terrier

Figure 6: Minor mistakes. Additional examples of minor mistakes. Of the correct multi-labels, the original ImageNet label
is listed first.
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GT: altar, church
Pred: church

GT: kelpie, German shepherd
Pred: German shepherd

GT: nematode, bee
Pred: bee

GT: wing, airliner
Pred: airliner

GT: cellular telephone, hand-held com-
puter
Pred: hand-held computer

GT: suspension bridge, pier
Pred: pier

GT: tray, espresso
Pred: espresso

GT: tape player, cassette player, radio
Pred: radio

GT: suspension bridge, cab
Pred: cab

GT: tiger cat, tabby
Pred: tabby

GT: ice cream, plate
Pred: plate

GT: suspension bridge, pier
Pred: pier

GT: rule, iron
Pred: iron

GT: Bouvier des Flandres, Siberian husky,
Eskimo dog
Pred: Siberian husky

GT: handkerchief, velvet
Pred: velvet

GT: wall clock, analog clock, bell cote
Pred: bell cote

Figure 7: Correct “mistakes". Additional examples where the model makes a correct prediction that we add to the original
multi-label annotations. Of the original multi-labels shown, the original ImageNet label is listed first. Often the model
correctly identifies a different object in the image, and in some cases a single object has ambiguous class membership and
could plausibly belong to either the ground truth or the predicted class.
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GT: Appenzeller
Pred: Greater Swiss Mountain dog

GT: guenon
Pred: macaque

Actual: ?

GT: wire-haired fox terrier
Pred: Lakeland terrier
Actual: stuffed animal

GT: washbasin
Pred: toilet seat
Actual: bidet

GT: Airedale
Pred: Irish terrier

GT: envelope
Pred: shower curtain

GT: meerkat
Pred: binoculars

GT: EntleBucher
Pred: Appenzeller

Figure 8: Problematic “mistakes". Examples where our panel determined that the image or its original label was
problematic (and therefore should not be in the validation set). Most problematic examples are problematic because the
original ImageNet label was deemed incorrect because the prediction by the model was indeed correct.
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I. Mistake Examples by Category

GT: Appenzeller
Pred: EntleBucher

GT: measuring cup
Pred: nipple

GT: water jug
Pred: Crock Pot

GT: rock python
Pred: boa constrictor

GT: miniature poodle, quilt, laptop, note-
book
Pred: toy poodle

GT: cleaver
Pred: hatchet

GT: Appenzeller
Pred: EntleBucher

GT: spotted salamander
Pred: European fire salamander

GT: soft-coated wheaten terrier
Pred: Irish terrier

GT: breastplate, pole
Pred: cuirass

GT: china cabinet
Pred: bookcase

GT: wall clock, analog clock
Pred: sundial

GT: miniature schnauzer
Pred: standard schnauzer

GT: wooden spoon, spatula
Pred: ladle

GT: agama
Pred: green lizard

GT: four-poster, crib
Pred: cradle

Figure 9: Fine-grained mistakes. Additional examples of fine-grained mistakes. Of the correct multi-labels, the original
ImageNet label is listed first.
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GT: jersey
Pred: crossword puzzle
OOV: Calendar design

GT: chest
Pred: badger
OOV: Other animal

GT: sliding door, patio, studio couch,
Pred: rocking chair
OOV: spinning chair

GT: grille
Pred: police van
OOV: Police car

GT: cradle
Pred: mosquito net
OOV: Cradle cover

GT: cauliflower
Pred: broccoli
OOV: Romanesco

GT: pot
Pred: ear

OOV: Corn plants

GT: desktop computer, desk
Pred: Angora
OOV: Other rabbit/hare

GT: zucchini
Pred: head cabbage
OOV: Other vegetable

GT: strawberry
Pred: strainer
OOV: Other pan

GT: cowboy hat
Pred: banded gecko
OOV: Other reptile

GT: hay
Pred: barn

OOV: Other building

GT: parking meter
Pred: cab
OOV: Other vehicle

GT: teddy
Pred: toyshop

OOV: Other shop

GT: plate, soup bowl
Pred: trifle
OOV: Other food

GT: Siberian husky, Eskimo dog
Pred: Norwegian elkhound
OOV: Other breed

Figure 10: Fine-grained with OOV mistakes. Additional examples of fine-grained with out-of-vocabulary mistakes. Of
the correct multi-labels, the original ImageNet label is listed first.
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GT: chime
Pred: maze

Lack of context

GT: street sign
Pred: bakery
Over-reliance on context

GT: dam, stone wall, valley
Pred: cliff
Lack of context

GT: dock, crane
Pred: submarine
Over-reliance on context

GT: hatchet, chain mail
Pred: cuirass
Over-reliance on context

GT: candle, packet, combination lock,
knot, desk
Pred: carpenter’s kit
Lack of context

GT: doormat
Pred: switch
Over-reliance on context

GT: lens cap, sock, theater curtain, screen,
monitor
Pred: Band Aid
Lack of context

GT: pop bottle, water bottle
Pred: pot
Over-reliance on context

GT: bonnet
Pred: bookcase
Lack of context

GT: gondola, dock, lakeside
Pred: boathouse
Over-reliance on context

GT: cradle, barn, hay
Pred: altar
Over-reliance on context

GT: paper towel, washbasin
Pred: dishwasher
Over-reliance on context

GT: chain
Pred: crane

Lack of context

GT: mouse, desk, monitor, screen
Pred: desktop computer
Over-reliance on context

GT: tobacco shop
Pred: restaurant
Over-reliance on context

Figure 11: Spurious correlation examples. Of the correct multi-labels, the original ImageNet label is listed first. Over-
reliance on context indicates that surrounding cues in the image correlate with the predicted class, although the predicted
class is not present. Lack of context indicates that the model has failed to understand relevant context in the image, and
predicts a class that is inconsistent with a holistic understanding of the image.
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GT: Egyptian cat
Pred: doormat

GT: flat-coated retriever
Pred: giant schnauzer

GT: bullfrog
Pred: tailed frog

GT: electric fan, knot
Pred: washer

GT: vizsla
Pred: Rhodesian ridgeback

GT: Pembroke
Pred: Cardigan

GT: cassette player, tape player
Pred: CD player

GT: Border collie
Pred: Newfoundland

GT: ice cream
Pred: lemon

GT: cup
Pred: toyshop

GT: dingo
Pred: basenji

GT: beach wagon, car wheel
Pred: minivan

GT: moving van
Pred: pickup

GT: sliding door
Pred: minibus

GT: chest
Pred: prayer rug

GT: red fox
Pred: kit fox

Figure 12: Non-prototypical mistakes. Additional examples of non-prototypical mistakes. Of the correct multi-labels, the
original ImageNet label is listed first. Non-prototypical examples are typically unusual border cases of the groundtruth class,
such as puppies of a dog breed, or unusual/unique versions of the class.
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(a)
GT: Lhasa

(b)
GT: West Highland white terrier

(c)
GT: Norwich terrier

(d)
GT: bluetick

(e)
GT: jack-o’-lantern
Pred: ballpoint

(f)
GT: torch

Pred: lighter
(g)

GT: cup
Pred: toyshop (h)

GT: spotlight
Pred: grocery store

Figure 13: Difficult images for humans and models. Top row: the only 4 images that all humans (Shankar et al., 2020)
classify incorrectly (our model classifies these correctly). Bottom row: images that should-be-easy (all humans get correct),
but the model gets incorrect.
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J. Analyzing the Training Data
In this section, we try to understand the model’s remain-
ing mistakes by investigating the training data. We do this
through the lens of looking at the nearest training examples
to the ViT-3B models remaining mistakes. To do this, we
generate embeddings for every training and validation ex-
ample using the pretrained ViT-3B models JFT checkpoint
(before fine-tuning on Imagenet), and for every error, we
query the K=10 nearest neighbors using an exact nearest
neighbor lookup.

J.1. Validation Set Leakage.

One of the most interesting findings using nearest neigh-
bors was rediscovering that 797 ImageNet validation images
(1.594%) exist in the training set as exact duplicates (pix-
elwise L2 distance of 0), 34 of them more than once for a
total of 831 duplicate training images. While this was pre-
viously documented in (Sun et al., 2017) and (Kolesnikov
et al., 2020), we are the first to notice that every single
leaked sample has a different label in the train set than in
the validation set, indicating the ImageNet authors did de-
duplicate within a class, but not across classes. Analyzing
these duplicates we find most of them represent challenging
fine grained image classes (e.g. two similar dog breeds), or
images where multiple annotations are appropriate. Addi-
tionally, in the Appendix J.2 we detail a second, harder to
detect leak pattern we saw commonly in the training data
with "near duplicates", images in the training set that are
from the same photo-shoot or scene as a validation image,
or are cropped or processed versions of a validation image.
This phenomenon, with similar discovery methodology, has
also been observed on CIFAR (Barz & Denzler, 2020).

To understand the impact of this validation set leakage, we
remove all the exact duplicates from the training set and re-
train both a ResNet50 from scratch, and our JFT pretrained
ViT-3B. Results are shown in Table 4. Unintuitively, when
we remove all the leaked validation images from the training
set and retrain, we see both Top1 Accuracy and Multi-label
Accuracy (MLA) actually stay the same or decrease overall,
despite all leaked training images having different labels
than their leaked validation image counterpart. MLA ac-
curacy both before and after deduplication are high, which
leads us to believe that the training labels may be correct
under multi-label evaluation. To verify this, we find 320 of
the leaked validation images were in our 20k multi-label
validation set, corresponding to 331 training images. Using
these multi-labels, we find that 219/331 (66.2%) of these
training images labels would have been correct under multi-
label evaluation. Nevertheless, we do see an increase in
both Top1 and MLA accuracies on the leaked subset of the
data. Finally, it seems the ViT-3B model is less sensitive to
leaked validation images, which may be a function of the

fine tuning recipe we used (which was exactly the same as
the fine-tuning recipe on the origianl non-deduped data).

J.2. Near Duplicates

In addition to the 831 training examples that are exact du-
plicates of validation examples (all with different labels),
there is a large collection of "near duplicates" in the Ima-
genet train set. "Near duplicates" are images that are either
crops, augmentations, or resizes of validation images, or
more unexpectedly, images from the same scene or photo
shoot. These images are often visually different but seman-
tically the same, and as a result are much harder to detect
with traditional embedding distance thresholding based de-
duplication. Nevertheless, these can also leak test set in-
formation, introduce label noise (if the labels are different
than the validation set), or if many training examples are
from the same scene, reduce the effective dataset size of that
class.

While we cannot provide an estimate of the prevalence of
this problem, we find it often while analyzing the K-Nearest
Neighbors (in JFT embedding space) of validation images.
We show some of these examples in Figures 14 and 15.
While we just show dog and object examples here, we find
this also happens with reasonable frequency for human re-
lated classes (especially activity related classes like soccer,
basketball, parallel bars, etc). The existence of these dupli-
cates raises an interesting question: How close can training
examples be to your validation set before it becomes prob-
lematic?

J.3. Neighbors of Spurious Correlations

While fine grained errors and OOV mistakes are often some-
what intuitive to a human, spurious correlations are harder
to understand. To try to understand them in more detail,
we look at the neighbors of several of the ViT-3B models
major spurious correlations. In Figure 16 we show two such
examples, but find this to be relatively common.
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(a) Validation Image
GT: Australian Terrier

(b) Training Image
GT: Norwich Terrier

(c) Training Image
GT: Australian Terrier

(d) Training Image
GT: Norwich Terrier

(e) Training Image
GT: Norwich Terrier

(f) Training Image
GT: Australian Terrier

(g) Training Image
GT: Norwich Terrier

(h) Training Image
GT: Norwich Terrier

Figure 14: Near Duplicates: (a) We show a validation image of two dogs playing, labeled originally as an Australian
Terrier. When looking at the K = 10 nearest neighbors, we find all 10 of them to be of the same two dogs with one of two
labels, shown as images (b) through (h), including some training examples that are duplicates of each other. Because we
only retrieve the 10 nearest neighbors, there could be even more than 10 images of this scene.
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(a) Validation Image
GT: wire-haired fox terrier

(b) Training Image
GT: wire-haired fox terrier

(c) Training Image
GT: wire-haired fox terrier

(d) Training Image
GT: wire-haired fox terrier

(e) Validation Image
GT: loudspeaker

(f) Training Image
GT: CD Player

(g) Training Image
GT: cassette player

(h) Training Image
GT: CD Player

Figure 15: Near Duplicates: Top: (a) We show a wire-haired fox terrier with a cropped version of the validation image as a
training image, and two more training images that are cropped versions of each other. We find 6/10 of the nearest neighbors
are of the same dog. Bottom: We show a "loudspeaker" in the validation set with nearby images from the training set of the
same speaker setup with labels of "CD Player" and "cassette player". We find 8/10 of its nearest neighbors are the same
speaker setup, with several of the training images being exact duplicates of each other (or the validation set) with different
labels.
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(a) Validation Image
Label: plate rack
Model: dishwasher

(b) Training Set
Label: dishwasher

(c) Training Set
Label: dishwasher

(d) Training Set
Label: dishwasher

(e) Validation Image
Label: hammer
Model: shovel

(f) Training Set
Label: shovel

(g) Training Set
Label: shovel

(h) Training Set
Label: shovel

Figure 16: Neighbors of a Major Spurious Correlation. We show an example of two major spurious correlations and a
subset of their K=10 nearest neighbors (in JFT embedding space). For the dishwasher example (top), 8/10 of the nearest
neighbors were pictures of cluttered dishes where the dishwasher machine was not in view. For the shovel example, we find
all 10 nearest neighbors are shovels standing upright and outdoors. There are no other validation images of the hammer
class with it standing upright or even outdoors.
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Model Deduped? Top1 Top1 on Leaked MLA MLA on Leaked

ResNet50 - 76.0% 26.9% 84.8% 80.1%
ResNet50 X 76.0% 40.2% 84.6% 82.1%
ViT-3B - 89.5% 42.5% 97.8% 93.4%
ViT-3B X 89.4% 45.1% 97.4% 94.0%

Table 4: Change in performance when removing leaked training examples. We show both our ViT-3B and a ResNet50
for comparison, and report both Top1 accuracy and Multi-label Accuracy (MLA) on both the whole validation set and the
leaked subset.


