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ABSTRACT

Large language models (LLMs) excel in various tasks but often suffer from hal-
lucinations, providing incorrect information with high confidence. To address
this, we focus on detecting whether an LLM possesses enough knowledge for
the answer, a concept referred to as the “feeling of knowing” (FoK). We pro-
pose a novel approach called semantic compression by trying to answer in one-
word (SCAO), which enables efficient FoK before generating full sentences, with
only minimal computational cost. Additionally, we introduce a method to mea-
sure the self-awareness of FoK methods precisely by filtering out distracting
variables, an approximate question-dependency effect (AQE) test. Our exper-
iments demonstrate that the feature fusion model of our SCAO and probing
achieves enhanced performance in FoK in both factoid and open-ended ques-
tion answering involving entity recall. The code and the dataset are available online
(https://anonymous.4open.science/r/SCAO-2FF8).

1 INTRODUCTION

Large language models (LLMs) demonstrate impressive abilities in various applications (Ouyang
et al., 2022; OpenAI, 2023). However, even the state-of-the-art LLMs often suffer from hallucination
(Cohen et al., 2023). By providing just one wrong answer out of 10 correct answers, the reliability of
the entire answer is undermined. While hallucination arises from various causes (failure of reading,
reasoning, memory retrieval, etc), it is well-known that a major cause is when the model is asked
questions on the knowledge not pre-trained (Tonmoy et al., 2024). In this sense, a simple strategy to
significantly reduce hallucination is just to reject answering when it can not. Therefore, the task of
determining whether an LLM knows the knowledge or not is crucial. This task has been researched
recently, and we name this task as the feeling of knowing (FoK), which is a psychological term
(Nelson, 1990; Koriat, 1993) referring to “The self-judgment whether a human can recall certain
memory”1. Similarly, the FoK of LLMs can be defined as the ability to be aware of whether the
model possesses specific knowledge. We introduce the term FoK to distinguish it from "hallucination
detection," as the two often have been regarded as identical (Zhang et al., 2024).

Numerous outstanding works have explored FoK of LLM; however, most of them have focused on a
scenario of “generating whole answer sentence and then detect” (Manakul et al., 2023; Chen et al.,
2024; Ren et al., 2023; Huang et al., 2023; Kuhn et al., 2023). Though performing FoK prediction
with all information may increase the accuracy, this approach is highly time-consuming and costly.
This approach makes the user wait until the end of the answer to know whether it is reliable, which is
less useful in a real-world service. Moreover, recent cognitive neuroscience research suggests that
the human brain conducts FoK judgment in about 300 milliseconds at the unconscious level, right
after being given a query (Irak et al., 2019). Additionally, this process is related to a brain region of
the prefrontal cortex, which is apart from the main region for language generation (Wernicke’s area)
(Binder, 2015). This observation suggests that detecting whether a biological neural network holds
a certain memory or not (FoK) can be partially achieved in a very short time, leveraging only the
information provided before the verbalization of the answer. Moreover, one of the widely recognized

1The term FoK in psychology refers to 1) the phenomenon of “feeling like you know something but being
unable to recall the name”, 2) and the self-judgment of knowing. We use the term in the latter sense in this study.
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theories of human FoK mechanism is the accessibility model (Koriat, 1993), which claims vividness
of memory serves as an important cue.

Believing that similar efficiency is achievable in artificial neural networks, we focus on exploring the
possibility of FoK before answer generation. In particular, we highlight that token-level confidence
can serve as one of the key sources of information, representing the vividness of memory. Previous
research has also explored token-level confidence as a method for FoK in generated text (Fadeeva
et al., 2024; Lin et al., 2024), but there remains still room for further improvement. We propose a
perspective that LLMs are structurally similar to dense retrievers, as both conduct maximum inner
product search (MIPS) over knowledge space. As the confidence scores of retrieved documents
reflect whether the queried knowledge is contained in the vector database (Zhang et al., 2022), the
token-level confidence of LLM might reflect whether the queried knowledge is contained in the LLM,
serving as a FoK verifier. However, this concept will make sense only when a single token embedding
vector of LLM encapsulates a single piece of knowledge, just like a dense retriever. For this, the token
embedding requires semantic compression, which is nontrivial. However, we discovered this could be
achieved simply by using the instruction prompt “answer in only one word” without further parameter
tuning. We term this method semantic compression via trying to answer in one word (SCAO). We
propose a method of combining SCAO with probing (Azaria & Mitchell, 2023), achieving enhanced
performance in the FoK task.

In addition, for a more precise evaluation of FoK, we provide a metric that can assess whether
a dataset is fit for evaluating FoK. As FoK is a fascinating topic that focuses on the LLM’s self-
awareness, it necessitates methods that can measure self-awareness. However, what we can explicitly
measure is only whether the model answers incorrectly, which does not directly indicate the model’s
lack of knowledge; It can also be due to the question itself, being too ambiguous or unanswerable.
To measure and filter out this question-dependent portion, we devised a novel metric without any
expensive human labor, called AQE (approximately measuring the question-dependency effect).
Through the AQE test, we prove that Mintaka2 and ParaRel OOD3 is relatively bias-free benchmarks.

We summarize our contributions: 1) By leveraging a perspective that LLMs and retrievers are
structurally similar, we develop a FoK verification method SCAO, which needs near-to-zero additional
resources. 2) We propose a metric to clearly measure the model-awareness of FoK methods. 3)
Experimental results in a controlled environment show that the feature fusion model of SCAO and
probing achieves enhanced performance in entity recall question answering, which demonstrates their
synergetic nature.

2 RELATED WORKS

As the human FoK has been extensively explored in cognitive psychology and neuroscience, the
concepts from this field can be leveraged to structure and categorize approaches on FoK in LLM.

FoK of Human: Cognitive Neuropsychology dd Observations of Koriat (1993); Irak et al. (2019);
Brown et al. (2017) suggest that human FoK is achieved through two major processes. 1) Unconscious
level: When a query is received, in the level not directly monitored by the conscious, the brain retrieves
related memories and determines whether each fits the temporal context. During this process, the
orbitofrontal cortex and prefrontal cortex are activated around 300-500 milliseconds (Schnider, 2001;
Irak et al., 2019), which are distinct regions from the area responsible for verbal fluency, posterior
temporal lobe (i.e., Wernicke area) (Binder, 2015). Koriat (1993) suggest that the stimuli (i.e., cue
for the process) for FoK include the amount of information activated, ease of access, and vividness
of each memory (Koriat, 1993). 2) Conscious level: Memories processed at the unconscious level
emerge at the conscious level and are further assessed with various meta-cognitive strategies. The
strategy of checking for logical and temporal consistencies between the retrieved memories is an
example. FoK of humans results from the ensemble of all these underlying processes.

According to the dual-process theory of Kahneman (2011), the level of the main process can vary
depending on the type of question or task. Immediate entity recall involves unconscious or implicit
memory systems, while tasks that require more procedural thinking—such as solving mathematical
equations or logical puzzles—engage conscious cognitive resources.

2https://github.com/amazon-science/mintaka
3https://github.com/yanaiela/pararel, https://github.com/shizhediao/R-Tuning
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FoK of LLM: a part of Hallucination Detection dd The two verification procedures of humans
roughly align with the before-generation and after-generation approaches in hallucination detection
(Among this, FoK of LLM is specified to knowledge recall issue). Also, benchmarks for FoK are
categorized to correspond to each process. 1) Before-generation: Including our work, studies on
the method of hallucination detection before answer generation (Mallen et al., 2022) align with
the feature of the unconscious process of human FoK. Also, benchmarks with entity type question-
answer (Sen et al., 2022; Elazar et al., 2021b) primarily utilize immediate memory retrieval. 2)
After-generation: Conversely, studies that assume the scenario of generating full answers one or
multiple times, including methods of utilizing other tools like external retriever (Béchard & Ayala,
2024), can be aligned with the feature of conscious level (Manakul et al., 2023; Chen et al., 2024).
Among benchmarks, mathematical problem solving such as MMLU (Hendrycks et al., 2021) is more
closely associated with the conscious level, as it benefits more from deliberate strategies such as
multi-step reasoning, rather than from vivid recall of knowledge. Additionally, answering abstract
questions that require multiple steps of reasoning (benchmarks such as TruthfulQA (Lin et al., 2022),
ELI5 (Fan et al., 2019a), and Natural Questions (Kwiatkowski et al., 2019)) are also more related to
conscious processes.

While FoK takes a large portion of hallucinations, not all hallucinations directly engage FoK, which
may raise confusion. For instance, hallucinations that arise in open-book tasks are more associated
with issues in reading comprehension than possession of knowledge. Benchmarks mainly associated
with open-book tasks are SQuAD (Rajpurkar et al., 2016), FEVER (Thorne et al., 2018).

While various tasks and methods have been grouped under the same name of “hallucination”, they
involve essentially different types of cognitive processes. Each process (e.g., memory retrieval,
reasoning, reading comprehension) may require distinct optimal methods to address its specific
challenges. Ultimately, it will be necessary to ensemble these different approaches. However, In our
work, we focus on methods and benchmarks related to FoK on the knowledge retrieval question at
the before-generation phase.

3 PRELIMINARY: CAUSAL LM IS A DENSE RETRIEVER WHEN COMPRESSED

Figure 1: Structural analogy between 1) dense retriever and 2) causal LM.

The structural similarity between LLMs and dense retrievers provides an explanation for why
confidence is a suitable criterion for LLM’s FoK. Furthermore, this perspective provides insights for
improving method with confidence score.

First, the mechanism of a dense retriever is retrieving knowledge by measuring the relevance scores
or distances (e.g., inner product, cosine similarity) between the query vector and document vectors. A
basic LM-powered dense retriever such as DPR (Karpukhin et al., 2020) consists of a question encoder
and a vector database (DB). Embedding vector in the DB compressively represents a paragraph that
contains factual knowledge. When a query is input, scores between this question vector and all
the document vectors are computed. And the document vector with the highest score (or minimal
distance) is retrieved, which is referred to as maximum inner product search (MIPS).

The distance can also be used to determine whether certain knowledge exists in the database. Previous
research on the dense retriever system such as Faiss (Douze et al., 2024) suggests range search,
which finds all the document vectors that are within some distance threshold. This concept can be
interpreted in reverse that we can evaluate whether knowledge is within the vector DB, with a fixed

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

confidence threshold. For example, querying “Give me an explanation on Lincoln” to a vector DB
of natural sciences may return only a few documents with confidence scores above the threshold.
Querying “Give me an explanation on Newton” would likely yield more documents surpassing the
threshold, indicating greater alignment between the query and the knowledge in the DB.

As an LLM is structurally analogous to a dense retriever, its confidence score can also be utilized to
assess the containment of certain knowledge. Specifically, the transformer body of LLM corresponds
to a question encoder, and its token vocabulary corresponds to a vector DB, if we assume each vocab
represents a piece of knowledge. When the LLM inputs a query, the final layer outputs a hidden state
(output embedding vector), which corresponds to the question embedding. The LM-head (decoder
linear layer of the LM) conducts MIPS between this output vector and all of the token vectors, thus
searching for the token with the highest confidence.

For more structural analogy, the output embedding vector should contains densely compressed
information. Unlike the dense retriever, the generative LLM often infers an output vector that holds
concept with low information density or focus only on the grammatical context, thus mapping to
tokens with minimal semantic significance, such as “a” or “It”. Therefore, we can consider that
LLM becomes structurally similar to a dense retriever, only if a single output vector of LLM is
semantically compressed: the output vector intensively aligns with vocab embeddings that contain
key concept of the answer. As an intuitive example of semantic compression, for the question “What
is the job of Abraham Lincoln?”, an answer “president” is more semantically compressed than an
answer such as “I know that Abraham Lincoln was a president”, as it carries essential information in
fewer expression. The semantic compression may be feasible to only a limited extent, because the
vocab embedding vector is not of high density itself, containing only fragments of words (e.g., “Pr”,
“Ch”). Though it is nontrivial, we provide the approximate compression method in the §4.3, which
empirically proves enhancement in FoK performance.

4 SCAO: SEMANTIC COMPRESSION BY TRYING TO ANSWER IN ONE WORD

4.1 TASK DEFINITION: FOK BEFORE ANSWERING

We define the FoK task as a binary classification to determine whether our target LLM θ possesses
the knowledge to correctly answer a given question q, based on the inner state of θ. In particular,
this process must be completed before answer generation. To test this task, we first need to create a
FoK dataset D, by letting the target LLM θ solve a question-answering benchmark. The benchmark
should consist of question q and the entity label z (e.g., “Lincoln”).

FoK dataset buildup dd To build the FoK dataset, we employ the setting of Zhang et al. (2024). The
θ is given q to generate answer a for the length of 50 tokens. It is then checked whether the entity
label z is contained in a, utilizing a string match with the normalized case. If z is present in a, the
FoK label y is annotated True (or 1), otherwise as False (or 0). As a result, we get the FoK dataset
D = {(q1, y1), (q2, y2), ..., (qn, yn), }.

FoK task dd FoK module with learnable parameter, ϕ, is trained on D to input q and predict y. Any
method can be applied, including extracting the hidden state of θ seeing q and then training ϕ to
utilize this to predict y. ϕ can be simply a threshold or a deep neural network. In our work, we
assume a scenario in which the answer token generation step of θ must be ≤ 1.

Real-world inference dd For a real-world scenario, we assume that when the system receives a
question, it first performs a rapid FoK assessment. Based on this, the system decides whether to allow
the LLM to start generating detailed answers, decline to answer, or leverage tools such as a retriever.

4.2 CONFIDENCE OF FIRST TOKEN IS A FOK DISCRIMINATOR

Previous works on confidence-based FoK research mostly utilize the confidence score of all to-
kens in the answer sentences, with normalization such as averaging (Chen et al., 2024). Utilizing
more information is ultimately more advantageous; however, it also has several drawbacks. We
observe a pattern that as the entity name length increases, the average confidence tends to rise. For
example, Figure 2 depicts the confidence pattern of the hallucinated question-answer pair “Ques-
tion: Give me an explanation about Obama. Answer: Harry Potter and the Philosopher’s Stone”.
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Figure 2: Probability pattern of the hal-
lucinated answer, by LLaMA3-8B. Each
bar stands for the probability (0,1) of the
corresponding token.

Up to the token “Harry Potter”, the confidence is near
zero since it conflicts with the question. However, from a
“philosopher”, confidence increases to a near maximum, as
the previous context of “Harry Potter” supports it strongly.
Thus, the average confidence tends to increase regardless
of whether it makes sense, when the entity name gets
longer or the sentence contains more grammatical ele-
ments. This observation is supported by the analysis in
Figure 3 (Left), which shows that the correlation between
the mean confidence and the FoK label tends to decrease
as the token increases.

Figure 3: Y-axis is a correlation between the mean confidence and the FoK label. The X-axis of
each figure stands for (Left) the number of tokens from the start point of the answer, and (Right) the
number of candidates used to calculate the mean. The LLaMA3-8B and FoK datasets from Mintaka
are utilized.

We also observe that averaging the confidence scores
across top-k vocabulary candidates, rather than just the top-1, shows a stronger correlation with the
FoK label, particularly peaking around k=15 (Figure 3 (Right)). This suggests that incorporating
more samples of distance provides more information about the relationship between the output vector
and the token space.

4.3 SEMANTIC COMPRESSION IMPROVES FOK DISCRIMINATION

In §3, we hypothesize that when knowledge is semantically compressed into only one vector (the first
token of an answer), the LLM becomes structurally more analogous to the memory retriever rather
than a sentence generator, leading to the enhancement of the confidence-based FoK performance. We
can achieve this compression by forcing LLM to try to answer in only one simple word. It is like
guiding θ to concentrate to recall the entity, while preventing it from obscuring the point.

We can simply achieve semantic compression by querying LLM with the instruction “Answer in only
one word”. As described in Figure 4, we first insert q into the template “[Question] {question
sentence}? You must answer in only one word [Answer]” and prompt to θ. The θ then infer
a probability p = p(xj |x<j ; θ), where j is the first position of the answer, and xj represents jth
token of the text. P is a set of probability of top-k vocabulary candidates [p1, p2, ..., pi, ..., pk]. The
concept of extracting P , through semantic compression with instructing to answer in one word as
described is termed SCAO.

By measuring the correlation coefficient between mean confidence and the FoK label for two
instruction types (SCAO and normal), we observe that SCAO instruction shows a clearly enhanced
correlation, as depicted in Figure 3.

Approaches for discrimination of FoK label given P . dd After the set of probabilities of top-k
vocab (P ) is extracted through SCAO, it is processed by fϕ to predict between True and False. There
are two approaches to process P : threshold-based and prediction-based.

1) Threshold-based: For the threshold-based discrimination, we first use the mean value of p of
top-k vocabulary and apply the threshold, as depicted in equation 1. Here, the learnable parameter
ϕ = {τ, k} consists of a threshold (τ ) and the number of vocabulary candidates (k). During the
training session, every possible pair of k and threshold (k is 1 to 30 in 30 steps, τ is 0 to 0.1 in 3000
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Figure 4: Pipeline of FoK through SCAO.

steps, total 90K {τ, k} pairs) are measured on the training dataset, and the pair with the highest
accuracy is applied to the test session.

fϕ(P ) =

{
1, if 1

k

∑k
i=1 pi ≥ τ

0, if 1
k

∑k
i=1 pi < τ

(1)

2) Prediction-based: Prediction through gradient descent is also a choice. We employ a 3-layer
deep neural network (DNN) structure of input size 30 (fixed number of k) and output size 1 for
logistic regression. The dimensions of each layer are R30×40, R40×40, and R40×1. ReLU activation
is applied between each layer. The objective function of DNN is binary cross entropy loss L =
− 1

N

∑
[y · log(DNNϕ(P )) + (1− y) · log(1−DNNϕ(P ))]. DNN is trained on the FoK dataset

while θ is frozen.

We analyze that DNN emulates the mechanism of the mean threshold approach. The weights
of the first layer decide how many candidates to count in, corresponding to the function of k
in the threshold-based approach. The second layer decides operations, such as mean or max
pooling. DNN structure is a more suitable choice if feature fusion with other data is required.

Figure 5: Structure of feature fusion with
SCAO and probing.

4.4 FEATURE FUSION OF SCAO AND PROBING

Another method of utilizing the hidden state of θ is the
linear probing (Li et al., 2024), which trains a linear model
to predict y with the input of the hidden state. As each
method captivates a distinct aspect of the hidden state (as
explained in Appendix B), we suggest the feature fusion
of SCAO and probing. That implies utilizing both top-30
confidence value P and hth hidden state from θ as inputs to
DNN. Similar to §4.3, we employ a 3-layer DNN structure
for feature fusion modeling as illustrated in Figure 5, which
takes the following procedure: The hth hidden state from
θ is first aggregated to R30 via a linear layer. Then, it is
concatenated with P and passed through the feed-forward
network with hidden size 60.

5 AQE: ASSESSING QUESTION-DEPENDENCY EFFECT OF FOK DATASET

For a more precise evaluation of FoK, we provide a metric that can assess whether a dataset is fit for
evaluating model-awareness. While FoK is the ability to be aware of whether LLM possesses specific
knowledge, what we can explicitly measure is only the amount of incorrect answers (hallucinations,
denote H =

∑n
i=1 1(yi = False)), which is not enough to measure self-awareness.

Causes of incorrect answers can be naively divided into two: question-dependent and model-
dependent. (1) Question-dependent: This occurs when the question is difficult or unanswerable
(denote Q). (2) Model-dependent: This happens when the model lacks the necessary knowledge to

6
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answer the question (denote M ). When H = Q +M , FoK refers to predicting the portion of M .
Since H is measurable, we should measure Q to accurately determine M . But measuring Q directly
is non-trivial, as it is for M .

To address this, we propose a method to approximately measure the Q. Our approach starts from the
definition of Q: the portion of incorrect answers (H) that can be predicted solely with the properties of
the question, independent of θ. To fit this definition, we train and test a model ϕ to predict y = False
(incorrect answer) case using only the question as input. The closer Q and H , the easier ϕ predict y.
This accuracy of ϕ is the AQE score. The closer AQE is to 1, the lower the model-dependency of the
dataset (paired with a certain model), making it unsuitable for measuring FoK.

We observe that the dataset with a high AQE score contains questions nearly impossible to answer
correctly. We analyze this arises from the failure to properly constrain the one-to-many mapping
between question and answer, which can be considered misannotation. The SimpleQA, which
recorded the highest AQE (82%), contains questions like “What is a Western genre on Netflix?”.
Though there are countless Western genre movies on Netflix, this dataset provides only one label
("Rawhide"). Even if the LM possesses extensive knowledge about Netflix, any answer other than
"Rawhide" will be labeled as incorrect. As there are multiple similar types of questions (e.g., “What
is a romance genre on Netflix?”, “What is a action genre on Netflix?”), this can cause the bias that
any question on Netfilx is paired with only a negative FoK label. This bias makes the FoK dataset
question-dependent, raising the AQE score. Even if a FoK method achieves a high score on such a
dataset, it is unlikely to predict M well on other datasets, or even H .

In contrast, Mintaka, which has a lower AQE (60%), contains questions with detailed information to
ensure that each question has only one label (e.g., “Who was the first wife of Queen Elizabeth II’s
eldest son?”). Such questions may appear as detailed tail questions but help prevent the misannotation,
resulting in lower AQE. ParaRel contains questions vulnerable to misannotation, as ParaRel ID (in-
domain) shows a high AQE score. However, the separation of the out-of-domain test dataset seems to
control the possibility of finding question-dependent shortcuts, resulting in a low AQE score. We
describe further benchmark setting in §6.2.1

Table 1: Bias assessment on benchmarks, with the FoK dataset labeled with LLaMA3-8B model.
AQEacc stands for AQE of accuracy, and AQEauc for AUROC.

(a) Accuracy: We measure 3 criteria, AQE score, p(True), and p(False), where p(True) is the portion of
True label. The lower bound for each benchmark is the maximum value among these three criteria and 0.5. The
maximum value is marked as bold.

ParaRel OOD ParaRel ID Mintaka HaluEval HotpotQA SimpleQA
AQEacc 55.05 73.65 60.13 66.68 66.18 82.36
p(True) 54.14 54.31 55.01 37.51 32.71 19.08
p(False) 45.85 45.68 44.98 62.48 67.28 80.19

Lower bound 55.05 73.65 60.13 66.68 67.28 82.36
(b) AUROC: The lower bound for each benchmark is the maximum value between AQE and 0.5.

ParaRel OOD ParaRel ID Mintaka HaluEval HotpotQA SimpleQA
AQEauc 55.02 82.24 63.63 65.25 66.78 68.13

Based on the results in Table 1(a), we exclude SimpleQA(Yin et al., 2016) and ParaRel ID in this
work, which shows a high AQEacc score. We focus on the datasets ParaRel OOD and Mintaka,
which show low AQEacc and a more balanced True/False rate. We suggest that minimum acceptable
performance (i.e., lower bound) of accuracy for ϕ is not random chance (0.5), but rather be defined
as max(0.5,AQEacc, p(True), p(False)), where p(True) stands for the portion of True label in
the FoK test dataset, and p(False) is 1 − p(True). This is the maximum performance that ϕ
can achieve through hacking the dataset. Also, we suggest setting the lower bound of AUROC as
max(0.5,AQEauc), not as just 0.5.

We measure AQE scores for accuracy and AUROC, both of which are the metrics of our work.
Notation AQEacc and AQEauc stands for each. We employ sentence BERT (sBERT) (Reimers &
Gurevych, 2019) as γ, and LLaMA3-8B model as θ for the AQE test.
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6 EXPERIMENT

We first conduct the main experiment on the hallucination detection benchmarks that assume a
closed-book factoid long-form question-answering scenario. Based on the assessment in §5, we
choose two benchmarks that show relatively low AQEacc: Mintaka (Sen et al., 2022) and ParaRel
OOD (Elazar et al., 2021a; Zhang et al., 2024). Those contain questions that have entity labels (e.g.,
“Which finalist gymnast did not win first place in the 2021 Olympic games?”).

Then, we conduct a further experiment to investigate if SCAO is also effective for open-ended
questions (Krishna et al., 2021) (e.g., “Give me an explanation about the Harry Potter series”). We
use the benchmark Explain, that we present to evaluate open-ended long-form question answering,
and ELI5 (Fan et al., 2019b). As both experiments share the same baseline and evaluation metrics,
we first describe these, followed by the benchmarks for each experiment.

6.1 BASELINE AND METRIC

Our baseline should predict FoK label y from question q without letting the target LLM θ in-
fer more than two steps. As this scenario has not been extensively explored, there are limited
methodologies available. We utilize LLaMA-34 (Meta-Llama-3-8B-Instruct), one of the
most advanced generative models. Additionally, we include experimental results from the larger
(Llama-2-13b-chat) model. Further details on the baselines are in Appendix D.2.

Confidence-Based Methodsd The baselines based on the confidence are as described in §4.2. For
notation, SCAOthre is a threshold-based method while SCAOdnn is DNN-based. SCAOprob is the
feature fusion model described in §4.4. Somewordsthre is threshold-based, but utilizes normal
instruction rather than SCAO.

Probingdd We employ the linear probing method of Li et al. (2024); Azaria & Mitchell (2023);
Mallen et al. (2022). As the LLM has H hidden layers, h ∈ {1, 2, ...H}, We train H number of a
FoK module ϕh corresponding to each hth hidden state from the first token of answer. Each ϕh is
trained to input hth hidden state to predict y. Then, only one ϕh with the highest accuracy on the
validation dataset is used for the test session. For notation, Probe (Linear) indicates that the ϕh

is a linear regression, while Probe (DNN) indicates that ϕh is 3-layer DNN.

R-tuningdd R-tuning (Zhang et al., 2024) is a method to train LLM to tell by itself whether it knows
certain knowledge in yes or no. While the original work conducted R-tuning with the data form
of “question + answer + sure/unsure expression” (note as R-tuning), we also train with the form
without answer “question + sure/unsure expression” (note as R-tuning (q only), as we assume a
before-generation FoK scenario.

Metric: accuracy, AUROCddOur metric is measuring whether ϕ accurately predicts the FoK label y,
as the FoK label indicates whether the LLM θ properly answered the question. Previous hallucination
detection studies (Chen et al., 2024; Ren et al., 2023) commonly use the AUROC metric to measure
this, due to the binary nature of the task. This metric applies all possible thresholds to the probability
score inferred by the model. However, as a common real-world setup allows only one fixed threshold,
accuracy better reflects the actual performance experienced by users. Thus, we mainly focus on
accuracy while we still include the AUROC to keep consistency with previous works.

6.2 EXPERIMENT ON FACTOID QUESTION ANSWERING

6.2.1 BENCHMARK SETUP

Both Mintaka and ParaRel OOD consist of factoid questions (e.g., “Which actor participated in
George of the Jungle but did not appear in George of the Jungle 2?”), paired with the entity label z
(e.g., “Brendan Fraser”). We build the FoK label y dataset according to the process in the §4.1: first θ
freely generate a long-form answer for a max token 50. Then, we check whether the entity label is
contained in the answer using a string match (following Stelmakh et al. (2023)). We also experiment
on HaluEval (Li et al., 2023) and HotpotQA (Yang et al., 2018). Details are in Appendix E.

4https://github.com/meta-llama/llama3
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Mintaka As Mintaka consists of five types of questions (entity, boolean, numerical, date, string),
we utilize only the entity type. This is to avoid the effect of misannotation, as we find some questions
of numerical and date type (e.g., “How old is the quarterback of the Tampa Bay Buccaneers?”)
impossible to address without further clue. Also, the boolean type (yes-no question) is too easy to
guess. And we only use English questions and exclude instances with multiple labels.

ParaRel OOD We utilize the rearranged version by (Zhang et al., 2024). This version consists
of train, ID (in-domain), and OOD (out-of-domain) sets. The ID set contains questions with forms
and categories that are shared with the training dataset, while the OOD set does not. Based on the
analysis of the AQE score in §5, we only utilize the OOD set.

6.2.2 RESULTS

Feature fusion of SCAO and probing (SCAOprobe) achieves the best performances. As illustrated
in Table 2, the probe method performs well in Mintaka, while SCAO shows better performance in
the ParaRel OOD. Interestingly, the feature fusion of the two methods, SCAOprobe, achieves tie or
slightly higher scores comparing the top-performing models in each benchmark. This suggests that
SCAOprobe effectively combines the strengths of each individual approach. A further experiment on
the larger model (LLaMA2-13B) shows similar trends (§C.2).

R-tuning was close to random and even lower than the lower bound. This supports the concepts
introduced in §2 that verbal fluency and the function of FoK are less dependent.

Table 2: FoK accuracy of LLaMA3-8B, examined on two benchmarks (Mintak and Pararel OOD).

ParaRel OOD Mintaka HaluEval HotpotQA

Accuracy AUROC Accuracy AUROC Accuracy AUROC Accuracy AUROC
lower bound 55.05 55.02 60.13 63.63 66.68 65.25 67.28 66.78
R-tuning 60.24 65.84 47.67 57.31 38.68 61.00 35.60 61.70
R-tuning (q only) 54.13 53.84 56.13 70.97 63.37 61.63 69.51 67.52
Probe (Linear) 66.91 75.31 68.95 75.70 74.24 79.78 77.69 82.03
Probe (DNN) 68.63 75.67 69.00 76.42 74.57 80.11 77.43 81.45
Somewordsthre 58.86 56.22 64.94 69.61 71.35 75.98 71.90 74.80

SCAOthre 70.77 76.33 67.17 70.99 74.08 79.23 75.33 79.27
SCAOprobe 72.05 77.58 70.53 77.06 76.23 82.28 78.06 83.05

SCAOprobe shows clear performance gain in Pararel OOD. d SCAOprobe exhibits a clear perfor-
mance gain compared to the Probe especially in ParaRel OOD, while the gain is small in others.
We suggest the following rationales. First, Pararel OOD focuses more on straightforward recall of
certain entities (e.g., “Where was Clonaid founded?”), while other datasets like Mintaka contain ques-
tions that require more complicated processes, including multiple steps of reasoning and comparing,
multiple entity recalls (e.g., “Which Quentin Tarantino movie was nominated for Best Director in
1995 but did not win?”). This observation supports the concept presented in §2, that different types of
tasks (immediate entity recall vs. multi-step reasoning) require different detection approaches, and
SCAO is more optimal for FoK of immediate entity recall.

Second, Pararel OOD has the lowest AQE score, leaving little room for shortcut interference. As
SCAO is a method that only takes 30 confidence scores as input, it is completely isolated from
granular information of the question, which limits question-dependency. This contrasts with the
probe, which accesses high-dimensional space where semantic characteristics of the question are
available, thus directly absorbing and enjoying the question-dependency effect. For this reason, SCAO
has more advantages in the environment with a low question-dependency effect. Third, SCAO’s
stronger generalization ability likely contributes to its robustness in out-of-domain settings, as further
explained in the Appendix B.

SCAO instruction clearly enhances FoK performance compared to normal instruction.dd
Ablation study (§C.1) suggests that semantic compression through SCAO instruction achieves clearly
better performance than normal instruction, supporting our hypothesis that semantic compression
improves FoK ability.
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6.3 EXPERIMENT ON OPEN-ENDED QUESTION ANSWERING

6.3.1 BENCHMARK SETUP

An open-ended question-answering scenario assumes there can be numerous correct answers depend-
ing on the perspective. As it is challenging to properly evaluate open-ended answers with automated
metrics such as string matching or ROUGE, we employ G-eval (Liu et al., 2023). First, we let θ
respond to a given question with a max token length 50, and then request GPT4o-mini API (Achiam
et al., 2023) to evaluate whether the generated answer contains no factual inaccuracies with no
reference label, returning a True or False judgment (with the prompt presented in Appendix F). We
utilize two benchmarks, ELI5-small and Explain, that are detailed in Appendix E.2. Additionally, we
exclude the R-tuning baseline as it shows poor performance in the main experiment.

ELI5-small ELI5 dataset comprises 270K threads from the Reddit forum “Explain Like I’m Five”.
We randomly sample 16K threads and split them into training, validation, and test sets for 8:2:2 ratio.

Explaindd We present a benchmark Explain to evaluate a model’s ability to provide a descriptive
answer to an open-ended question. Explain is an extended and refined version of an open-ended
long-form dataset in the well-known and verified work of FActScore (Min et al., 2023). In FActScore,
a small dataset is devised to test fact-checking pipeline for long-form QA. This dataset is created
by appending prompts like “Tell me a bio of <entity>” to person names sourced from Wikipedia.
However, its subjects are limited to only person names, and it includes only 500 entries. To address
this, we developed Explain. Explain covers more general categories such as people, history, buildings,
culture, etc (the entities from Mintaka), with the dataset size expanded to about 15000 entries. The
prompt is "Please give me an explanation about <entity>", which follows the concept of the dataset
in FActScore. We provide more details in Appendix E.2

6.3.2 RESULTS

Table 3: FoK accuracy of LLaMA3-8B, examined on
two benchmarks (ELI-small and Explain).

ELI5-small Explain

Accuracy AUROC Accuracy AUROC
lower bound 59.88 61.96 67.75 72.90
Probe (Linear) 66.76 72.03 76.06 83.40
Probe (DNN) 66.37 71.48 76.90 84.56
Somewordsthre 56.85 53.83 55.69 46.24

SCAOthre 57.62 53.47 59.60 61.85
SCAOprobe 66.92 71.99 80.07 87.33

The SCAOprobe shows a significant per-
formance gain on Explain, while a rare
gain on ELI5. Similar to the observation
in §6.2.2, we suggest that this result arises
from the difference in type of questions
between the two benchmarks. ELI5 cov-
ers questions involving analysis, compari-
son, causality, and methods, which require
complex and extended reasoning processes,
which corresponds to the conscious process
in human mind.

One of the questions in ELI5 (“Running,
sprinting, and jogging. What’s the differ-
ence?”) can be an example. For a human to answer this question, we must first retrieve information
on the three entities “running”, “sprinting”, and “jogging”. Then, we start comparing the detailed
features of each entity and list the similarities and differences. It already takes a few seconds for us to
go under such process. On the other hand, Explain consists of questions that are focused to retrieve
information relevant to the entity (e.g., “Please give me an explanation on Usain Bolt”).

This analysis suggests that the SCAO is the FoK method that is optimal for questions requiring
retrieval of information on a specific entity, regardless of whether the question is factoid or open-
ended. Again, this result supports the concept presented in §2: the term “hallucination” actually
consists of various subtypes, and each subtype requires each distinct optimal approach.

Moreover, the experiments show that the feature fusion (SCAOprobe) consistently shows the best
performance, by selecting only the best outcomes from both the SCAO and Probe methods. This
also supports our concept, that the ultimate solution for hallucination will be an ensemble of optimal
methods for distinct subtypes.

Further analysis and the experiment on longer response length are in Appendix C.3. And As an
open-ended question (such as Explain) is non-trivial to answer by a single word, we provide analysis
on the reacting pattern of SCAO on questions from Explain.
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A CONCLUSION AND LIMITATION

By leveraging the concept that LLMs and retrievers are structurally analogous, we suggest a hypothesis
that semantic compression enhances the utility of confidence of LLM for the FoK task. And we
demonstrate it through extensive experiments. Particularly, SCAO exhibited a clear performance
improvement in straightforward entity recall tasks, while the gains were relatively modest for
questions requiring multiple reasoning steps. Additionally, there remain limitations and future
research subjects on the following topics.

Semantic compression of vocab embedding vectors. As described in §3, the output embedding
vector is semantically compressed, while the vocab embedding vector is still of low density. This
property might limit the extent of compression, resulting in limited performance gain. If we find a way
to compress the vocab embedding vector to represent knowledge more densely, we may anticipate
further improvement in FoK performance.

FoK on the temporally evolving knowledge. SCAO relies on LLM’s confidence to determine FoK,
making it hard to handle temporally evolving knowledge. This is a common issue of all approaches
that utilize LLM’s inner state, including probing. We can gain insights from the neuro-cognitive
domain. According to Gündoğar & Demirci (2007), humans store time-related information alongside
knowledge memories. When retrieving memories, the temporal relevance of the information is
unconsciously evaluated. A similar idea is proposed in the dense retriever literature (Liska et al., 2022),
where document embeddings are encoded with temporal metadata and retrieved with consideration
of temporal context. Applying this concept, if a system is developed where LLMs store information
with temporal grounding, the confidence score could reflect the temporal relevance of the information.
Our work is significant as it contributes to this ultimate solution.

Comparison with full sentence generation scenario. We assume that after-generation approaches
are provided with more information, thus yielding better FoK performances. However, extensive
experimentation is required to investigate the performance gap.

B EXPLANATION ON THE SCAO AND PROBE

Figure 6: Illustration on two methods (probe,
SCAO) approximating the boundary of know-
ing of θ. In Se (lower right), the green balls
are the last hidden state vector that is mapped
to the vocab space. SCAO learns the thresh-
old of distance between the hidden state and
v to classify y of each ball.

In the main experiment (§6.2.2), SCAO outperforms
the probe with a larger gap in OOD settings, indicat-
ing the robust generalization ability of SCAO. We
suggest the following rationale for this result.

SCAO and probing are fundamentally similar. Prob-
ing directly utilizes the raw hth hidden state of θ,
while SCAO focuses on the last hidden state of θ,
which is projected onto the vocab embedding space.

Let us assume a knowledge space (Sk) (Figure 6),
which represents the embedding of each knowledge
in the θ. And we term the gray area in the Sk as a
boundary of knowing of θ, which represents the area
where y = 1. This space is hypothetical and unknown
but needs to be discovered to perform a FoK task for
θ. What we have at hand are 1) the 4096-dimensional
(in the case of LLaMA3-8B) hidden states (Sh) and 2)
a vocab embedding space (Se) of the same dimension,
with vocab embedding vectors (v) distributed across
Se. In probing, a linear layer is trained to map Sh to
Sk. The weight of the linear layer is supposed to be a
direction vector that represents a principal component
of the boundary of knowing. Thus, an inner product
with this vector tells if the given hidden states match
the direction. Since it utilizes all 4096 dimensions to describe Sk, it offers high informational
resolution, leading to generally strong performance.
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Conversely, SCAO assumes that Se approximately aligns with Sk and the v aligns with the boundary
of knowing when the key (the last hidden state hl) is semantically compressed. SCAO figures the
shape of Sk by measuring the distance between hl and other samples v in Se. These mechanisms
yields the following properties: 1) SCAO leverages Se, thus utilizing more information than probing.
2) However, this information is compressed into a single scalar value, distance, leading to lower
information resolution, showing lower performance than the probe. 3) Despite the lower resolution,
this simplification appears to enhance generalization. For instance, in out-of-domain scenarios,
probing struggles with unfamiliar features in Sh, while SCAO effectively handles these novel features
by employing its simplified distance-based measure.

Since probing and SCAO reflect slightly different aspects of Sk, combining these two methods in a
feature fusion appears to provide an additional performance boost by leveraging their complementary
strengths.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION

Table 4: FoK accuracy of LLaMA3-8B, examined on two benchmarks (Mintak and Pararel OOD).
The detailed setting for benchmark and baselines are in §6. The best performance is marked as bold
while the second best is underlined.

Mintaka ParaRel OOD

Accuracy AUROC Accuracy AUROC
somewords (instruction) thre acc 64.94 69.61 58.86 56.22
somewords (instruction) thre corr 64.94 69.61 58.77 56.32
oneword (instruction) thre acc 66.76 70.79 70.78 76.33
oneword (instruction) thre corr 66.34 70.99 62.04 76.79
oneword (instruction) DNN 65.38 70.37 70.55 76.28
oneword (finetune) thre acc 66.15 72.78 70.24 74.72
oneword (finetune) DNN 66.03 71.74 69.38 75.06

In this part, we examine variations of extracting and utilizing confidence from θ. For the notation
of Table 4, somewords indicates normal instruction, while oneword indicates SCAO manner. The
expression thre indicates that the model employs threshold and k as a ϕ. Suffix acc indicates corr
indicates that the optimal threshold is chosen according to the accuracy, and correlation coefficient,
respectively. Baseline with finetune in the name modifies θ with fine-tuning LoRA adapter to answer
in one word. The detailed method is in §D.2.1). In this manner, to confirm, oneword (instruction) thre
acc corresponds to SCAOthre, and somewords (instruction) thre acc corresponds to Somewordsthre

in Table 2. The observation of the experiment is as follows.

Semantic compression shows clear improvement in FoK. The accuracy of oneword instruction-
based methods shows better performance than somewords-based, as oneword (instruction) thres acc
gets 70.78% and somewords (instruction) thre acc gets 58.86% accuracy in ParaRel. This indicates
that the semantic compression clearly enhances the utility of confidence value for FoK.

Instruction is enough for compression. The accuracy of oneword (instruction) thre acc is similar
or even better than oneword (finetune) thres acc in both benchmarks. This demonstrates that sufficient
compression can be achieved purely through instruction, leveraging the reading comprehension and
reasoning ability of LLM. Additionally, we observe that fine-tuning causes the forgetting of knowledge
during training the LoRA adapter. Consequently, a gap arises between the FoK label and the real
amount of knowledge stored. This mismatch could cause a distraction to ϕ.

Threshold is better than DNN. oneword (instruction) thre acc shows better performance than
oneword (instruction) DNN. As a rationale for this phenomenon,
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C.2 EXPERIMENT ON LARGE MODEL

We conduct the main experiment with the larger (LLaMA2-13B) model. It shows consistent trends
with the §6. The Table 5 describes experiments on the FoK datasets, and Table 6 describes the AQE
scores.

Table 5: FoK assessment of LLaMA2-13B with factoid and open-ended question-answering bench-
marks.

PraRel OOD Mintaka HaluEval HotpotQA

Accuracy AUROC Accuracy AUROC Accuracy AUROC Accuracy AUROC
lower bound 53.49 56.80 60.78 57.95 68.85 63.81 73.23 67.06
R-tuning 55.11 57.56 54.83 48.38 38.39 53.29 32.72 52.13
R-tuning (q only) 56.12 48.15 54.55 52.22 38.51 54.41 33.05 55.54
Probe (Linear) 68.20 74.98 68.63 75.46 76.20 79.52 76.85 79.72
Probe (DNN) 68.76 73.82 69.51 76.45 76.55 81.01 77.21 80.87
Somewordsthre 56.35 60.47 59.50 63.28 67.75 64.53 67.75 64.53

SCAOthre 64.43 72.96 65.69 70.83 73.05 75.89 73.05 75.89
SCAOprobe 72.45 79.06 70.07 77.01 78.00 82.91 78.24 80.87

Table 6: AQE scores of the FoK dataset labeled with LLaMA2-13B model. AQEacc stands for AQE
of accuracy, and AQEauc for AUROC.

(a) Accuracy: We measure 3 criteria, AQE score, p(True), and p(False). The lower bound for each benchmark
is the maximum value among these three criteria and 0.5. The maximum value is marked as bold.

ParaRel OOD Mintaka HaluEval HotpotQA
AQEacc 52.86 60.78 68.85 73.23
p(True) 46.50 49.58 33.27 29.79
p(False) 53.50 50.42 66.73 70.21

Lower bound 53.50 60.78 68.85 73.23
(b) AUROC: The lower bound for each benchmark is maximum value between AQE and 0.5.

ParaRel OOD Mintaka HaluEval HotpotQA
AQEauc 56.80 57.95 63.81 67.06

C.3 OPEN-ENDED QUESTION ANSWERING

We present additional experimental results with a longer max token length (256), specifically focusing
on comparisons with the key baselines (Table 7). As the response length increased, the average FoK
accuracy of ELI5 improved. However, the overall tendency of the FoK results remains the same:
SCAO clearly outperforms in Explain, while there is no significant difference in ELI5.

Table 7: FoK accuracy of LLaMA3-8B, examined on two benchmarks (ELI-small and Explain), with
max token length 256.

ELI5-small Explain

Accuracy AUROC Accuracy AUROC
lower bound 67.19 67.02 75.37 74.77
Probe (Linear) 75.00 79.84 77.13 82.63
Probe (DNN) 74.65 78.98 77.98 83.87
somewordsthre 65.23 51.50 67.63 42.78
SCAOthre 64.87 55.21 67.92 60.51
SCAOprobe 75.03 79.29 80.61 86.72
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The accuracy of SCAOthre is below the lower bound. On the Explain benchmark with max token
length 50 (Table 3), we find that while SCAOprobe performs best, SCAOthre falls below the lower
bound, which is counter intuitive. We suggest following rationale for this phenomenon. As SCAO
is isolated from the question-awareness, we should consider that the lower bound for the SCAO
approach shall not include AQEacc, which is 55.76 for Explain. In this perspective, the accuracy
of SCAOthre (59.60) has 3.84p gain from its lower bound. This additional information seems to be
aggregated with Probe (DNN), resulting in a performance gain of SCAOprobe.

C.4 HOW SCAO REACTS TO OPEN-ENDED QUESTION

As an open-ended question (such as Explain) is non-trivial to answer by a single word, it will be
valuable to take a look at how model react at the first token of answer in both one-word prompt and
the normal prompt. (Figure 7)

First, in non-compressed cases (queried with a normal prompt), the following patterns are frequently
observed: (1) The response often starts by repeating the entity name mentioned in the query. (2)
The response begins with grammatical function words such as "The" or "A". In other words, the
model tends to take the easy path. As a result, the probability of the initial token is generally inflated,
regardless of whether the model truly knows the subject.

On the other hand, when prompted to answer with a one-word response, the first token often
corresponds to the initial token of a word encapsulating the entity’s characteristics. For example, in
response to the question "Please give me an explanation about ’Breaking Dawn’.", the first candidate
token was "Tw" (the first token of "Twilight"). In other words, with one-word prompting, the model
shows a stronger tendency to retrieve its own knowledge related to the entity. This trend is also
reflected statistically. Among the 2152 test samples in the Explain dataset, the case that the top-1
candidate of the first token of the response being a component of the entity is 84.5% for normal
prompting, significantly outpacing the 12.1% for one-word prompting. Similarly, the first token being
"the" occurred in 17.8% of normal prompting cases, compared to just 0.02% for one-word prompting.
(Table 8)

Table 8: The number and portion of each case, when questions from the test set (total 2152) of
Explain are asked to the LLaMA3-8B model using various prompts. The columns represent each
prompt style. In the rows, "repeating subject" refers to cases where the top-1 candidate for the first
token of the answer is a component of the queried subject entity. "The" refers to cases where the
top-1 token is "the."

one-word prompt normal prompt
repeating subject 1819 (84.5%) 261 (12.1%)
"the" 383 (17.7%) 5 (0.2%)

Figure 7: Y-axis is the top-7 candidates of the first token of the answer to the question “Please give
me an explanation about Breaking Dawn”. The X-axis is the probability for each candidate. Left is
for one-word prompt, and the Right is for normal prompt. With the one-word prompt, the model
appears to attempt to retrieve knowledge related to "Twilight," which is the series name of Breaking
Dawn. In contrast, with the normal prompt, the model tends to repeat the question entity, "Breaking
Down". Since it chooses the easier path, the probabilities are higher.
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D EXPERIMENT SETUP DETAIL

D.1 EXPERIMENT PIPELINE

First the dataset is divided into Dtrain, Dvalid, and Dtest. We fit ϕ to Dtrain, while θ is frozen. The
next step varies among two types.

Learning-Based The methods that need machine learning, such as DNNinst
oneword and probe, are

trained on the Dtest with the objective of BCELoss. We train for five epochs and choose the
checkpoint with the best accuracy on the Dvalid, which yields ϕ′. Then we use this ϕ′ to test on the
Dtest. We calculate two metrics of accuracy and AUROC. When training, the learning rate is 1e-3,
and the optimizer is AdamW.

Threshold-Based The threshold-based methods such as Thresinst
oneword find its ϕ (threshold, k) in

Dtrain, without evaluation on Dvalid. We select the ϕ′ (e.g., threshold, k) that achieves maximum
accuracy by performing a search over all possible threshold values between 0 and 1 and k of 1 to 30.
And use this ϕ′ to test on the Dtest. AUROC is measured only with kϕ′ , without thresholdϕ′ .

D.2 BASELINES DETAIL

D.2.1 SCAO WITH FINETUNING

In this part, we describe the finetuning method to achieve SCAO, training θ with a focused an-
swering pattern. The process involves the following step: (1) We build a dataset DSCAO with a
random 0.5 portion of the training dataset that consists of a sentence with the form of “question
+ instruction + one-word answer”. The one-word answer is the entity label, with the
grammatical prefix (e.g., “The ”) removed. For example, “[Question]:What is the job of Lincoln?
Answer in only one word. [Answer]:President.”. (2) We attach a LoRA adapter (Hu et al., 2021) π to
θ, train π on the DSCAO. (3) On the inference time, let π infer P with SCAO instruction again. π is
an adapter just for performing FoK, and the real answer exhibited on the service is generated by only
θ.

D.2.2 R-TUNING

Distinct from the original work, we train a separate LoRA adapter as a ϕ, then let ϕ predict the FoK
label of the body LLM θ. The original work directly trains θ itself as a ϕ. This modification is to
address the catastrophic forgetting problem (Jang et al., 2021) during training θ directly. We observe
that the True rate decreases by 13.2%p after R-tuning, seriously undermining the justification of the
method. We train for one epoch with a global batch size of 16 and a learning rate of 1e-5, as it is
reported that a small batch size is better for R-tuning.

E BENCHMARK DETAIL

FoK labeling detail On the factoid question answering experiment, we build FoK labeled dataset
following and modifying Zhang et al. (2024). Specifically, we raise the max token length from 5
of previous work to 50, as we observed several cases where LLM generates correct answers in a
descriptive style. This modification increases the True rate of the model and benchmark pair from
38.38 to 55.01 (Mintaka with LLaMA3-8B), significantly correcting the misannotation.

E.1 DATASET DETAIL

In this paragraph, we present details about the benchmark dataset HaluEval (Li et al., 2023) and
HotpotQA (Yang et al., 2018).

HaluEval HaluEval is a dataset containing question-answering, summarization, dialogue, and
user-query with correct answers and hallucinated answers. We only use the question-answering part,
following (Zhang et al., 2024). An example of the question is “The Oberoi family is part of a hotel
company that has a head office in what city?”, paired with the label “Delhi”.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

HotpotQA HotpotQA is a question-answering dataset where each instance consists of a question,
label (types including entity, boolean, numerical), and reference documents. We utilize only the
question and answer to fit the closed-book scenario. An example of the question is “What government
position was held by the woman who portrayed Corliss Archer in the film Kiss and Tell?”, paired
with the label “Chief of Protocol”. We use the development dataset as a test set, following (Zhang
et al., 2024).

E.2 EXPLAIN

We present examples of questions, categories, statistics on Explain (§E.2, Table 10, Table 12)

Table 9: Examples of questions in Explain

Questions Entity
Please give me an explanation about “A Game of Thrones”. A Game of Thrones
Please give me an explanation about “Simone Biles”. Simone Biles
Please give me an explanation about “Winston Churchill”. Winston Churchill
Please give me an explanation about “Fyodor Dostoevsky”. Fyodor Dostoevsky
Please give me an explanation about “District 12”. District 12
Please give me an explanation about “The Battle of Gettysburg”. The Battle of Gettysburg

Table 10: #Data for the entity categories in Explain

Train Dev Test
Music 914 139 273
History 1059 149 296
Geography 1033 144 306
Politics 1036 143 300
Video games 1057 150 302
Movies 953 138 269
Books 1020 140 283
Sports 909 128 245

Table 11: Bias assessment on benchmarks, with the FoK dataset labeled with LLaMA3-8B model
(both max length of answer 50 and 256). “ELI-small (50)” stands for the case with a max length of
50. As the answer length increases, the likelihood of errors rises, and the true rate tends to decrease.
AQEacc stands for AQE of accuracy, and AQEauc for AUROC.

(a) Accuracy: We measure 3 criteria, AQE score, p(True), and p(False). The lower bound for each benchmark
is the maximum value among these three criteria and 0.5. The maximum value is marked as bold.

ELI5-small (50) Explain (50) ELI5-small (256) Explain (256)
AQEacc 59.88 67.75 67.19 75.37
p(True) 57.71 44.24 35.85 32.58
p(False) 42.29 55.76 64.14 67.41

Lower bound 59.88 67.75 67.19 75.37
(b) AUROC: The lower bound for each benchmark is maximum value between AQE and 0.5.

ELI5-small (50) Explain (5) ELI5-small (256) Explain (256)
AQEauc 61.96 72.90 64.14 74.77
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E.3 DATA STATISTICS

We present data statistics of our main benchmarks, Mintaka and ParaRel OOD. And we also utilize
ELI5-small and Explain benchmarks for long form question experiments. The number in Table 12 is
the final version after filtering and preprocessing. For the ParaRel OOD, we utilize ParaRel ID as a
validation dataset.

Table 12: #data in each benchmarks

ParaRel OOD Mintaka HaluEval HotpotQA ELI5-small Explain
Train 5575 7583 6000 8000 9838 7583
Valid 5584 1075 2000 2000 3280 1075
Test 13974 2152 2000 7405 3280 2152

F INSTRUCTION PROMPTS

In this section, we compile the instructional prompts employed in our study. Terms marked with
underline indicate placeholders that need to be filled with the corresponding content.

A. Normal instruction template

[Question]:{question} [Answer]:

B. SCAO instruction template

[Question]: {question} You must answer in only one word. [Answer]:

C. G-eval instruction template

[instruction] The text provided within the triple backticks (“‘ ”’) is a Question and an
Answer by an agent. Your task is to evaluate whether the agent’s response is factually
correct or incorrect.
.
1) Very briefly and shortly explain whether the answer contains any factual inaccuracies.
2) Finally, classify the answer as either "True" (factually correct) or "False" (factually
incorrect).
.
“‘
[Question]:{question} [Answer]:{answer}
”’

G FURTHER RELATED WORKS

Semantic Compression Compression of LLMs is currently explored, with most studies focusing
on scenarios where a large knowledge is compressed into few or a single embedding vector (Ge et al.,
2024; Cheng et al., 2024). This vector is not projected into the token space but is directly fed into
the LLM, functioning like an externally supplied hidden state vector. This vector is utilized as a
replacement for real text documents in a scenario of retriever-augmented generation.

Our method shares a similar concept of compression, but assumes distinct scenarios and pipelines.
In our work, the compressed vector is projected to the token embedding space, and the distances
between the compressed vector and token embedding vectors become a key variable. This distance is
utilized as a measure of FoK.
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