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Thematic-LM: a LLM-based Multi-agent System for Large-scale
Thematic Analysis

Anonymous Author(s)

Abstract
Thematic analysis (TA) is a widely used qualitative method for
identifying underlying meanings within unstructured text. How-
ever, TA requires manual processes, which become increasingly
labour-intensive and time-consuming as datasets grow. While large
language models (LLMs) have been introduced to assist with TA on
small-scale datasets, three key limitations hinder their effectiveness
on larger datasets. First, current approaches often depend on inter-
actions between an LLM agent and a human coder, a process that
becomes challenging with larger datasets. Second, with feedback
from the human coder, the LLM tends to mirror the human coder,
which provides a narrower viewpoint of the data. Third, existing
methods follow a sequential process, where codes are generated for
individual samples without recalling or adapting previous codes
and associated data, reducing the ability to analyse data holistically.
To address these limitations, we propose Thematic-LM, an LLM-
based multi-agent system for large-scale computational thematic
analysis. Thematic-LM assigns specialised tasks to each agent, such
as coding, aggregating codes, and maintaining and updating the
codebook. We assign coder agents different identity perspectives
to simulate the subjective nature of TA, fostering a more diverse
interpretation of the data. We applied Thematic-LM to the Dreaddit
dataset and the Reddit climate change dataset to analyse themes
related to social media stress and online opinions on climate change.
We evaluate the resulting themes based on trustworthiness princi-
ples in qualitative research. Our study reveals significant insights,
such as assigning different identities to coder agents promotes
divergence in codes and themes.

Keywords
Computational Social Science, Thematic Analysis, Large Language
Model, Multi-agent System
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1 Introduction
The growing availability of unstructured text data, particularly
from social media, presents both an opportunity and a challenge
for researchers [19]. While such data can hold valuable insights,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
, ,
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

Figure 1: Differences between topic modelling, sentiment
analysis and thematic analysis, illustrated through examples
of climate change-related posts.

analysing them effectively requires robust methods to extract mean-
ing from vast volumes of information. Computational approaches,
such as topic modelling [1] and sentiment analysis [8], are de-
signed to handle large datasets but often produce descriptive results.
These methods capture surface-level patterns but fail to uncover the
deeper, context-specific meanings within the data. In contrast, qual-
itative methods, such as thematic analysis (TA) [5], are designed
to explore nuanced interpretations by focusing on the subjective
experiences and contexts that shape the data. As shown in Fig. 1, a
single topic may encompass underlying themes that provide richer,
more meaningful interpretations. However, TA is labour-intensive
and time-consuming, requiring manual processes [6] such as famil-
iarization, coding, theme development, and interpretation, which
become increasingly burdensome as the dataset grows. For larger
datasets, a team of trained coders is often required to work collab-
oratively to manage the volume while maintaining the reliability
and credibility of the results [46], which is both expensive and
logistically challenging. The challenge remains in combining the
scalability of computational methods with the depth of qualitative
approaches.

Recent advances in large language models (LLMs) have opened
new possibilities for automating thematic analysis, as LLMs have
demonstrated impressive capabilities in processing unstructured
data by learning from vast corpora of texts [2, 26, 48]. Researchers
have begun applying LLMs as single agents to assist in the thematic
analysis process [12, 13, 16, 25]. However, existing approaches have
three major limitations. First, current computational thematic anal-
ysis methods require interaction with a human coder. The human
coder needs to be familiar with the entire dataset, oversee the LLMs’
outputs, and provide feedback to the LLMs, which is infeasible given
a large dataset. Second, due to the iterative feedback process, the
LLMs often tend to imitate the human coder’s perspective, pro-
ducing results that mirror the coder’s viewpoint [12], limiting the
diversity of viewpoints and resulting in a narrower analysis [12].
Third, current approaches to thematic analysis are sequential; LLMs
do not revisit previously coded data to update codes as new infor-
mation arises, undermining a key principle of thematic analysis:
ensuring that codes accurately reflect consistent meanings across
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the dataset. Apart from the limitations, evaluating the themes gen-
erated by LLMs presents further challenges due to the volume of
data and the subjective nature of thematic analysis. While qualita-
tive evaluation by humans becomes impractical at scale, automatic
evaluation metrics, such as inter-rater reliability [35], often assess
the similarity between the LLMs’ output and manual results and
overlook the fact that thematic analysis can reflect multiple valid
perspectives within the data. Consequently, lower inter-rater relia-
bility may not necessarily indicate lower-quality thematic analysis.

To address these limitations, we introduce an LLM-based multi-
agent system for large-scale computational TA, which we term
Thematic-LM. Thematic-LM assigns distinct components of TA as
specialised tasks to individual LLM agents, fully automating the
process. To simulate the process of refining codes in response to
new data, we implement an adaptive codebook that stores prior
codes and their corresponding quotes. A reviewer agent retrieves
similar codes and quotes from the codebook, compares them to the
new data, and updates the codes accordingly. We allocate coder
agents with different identity perspectives to generate different
views on the codes and themes. Additionally, we analyse the quality
of themes based on the computational adaptation of the principles
of trustworthiness in qualitative research [27, 29, 40], including
credibility, dependability, confirmability, and transferability. Our
main contributions are as follows:

• We propose Thematic-LM, an LLM-based multi-agent sys-
tem for large-scale computational thematic analysis. To the
best of our knowledge, Thematic-LM is the first to employ
multiple LLM agents for qualitative analysis.

• We encourage different perspectives within the themes by
assigning different identities to the LLM agents, prompting
them to reflect on their identities while performing the
analysis.

• We apply Thematic-LM to the Dreaddit [49] and the Reddit
climate change dataset 1, uncovering underlying themes
regarding social media stress and public opinions on climate
change.

Our key findings are as follows:

• Themes from Dreaddit shows that stress-related posts re-
flect various levels of human needs resonatingwithMaslow’s
Hierarchy of Needs [38], from physiological needs to self-
actualisation.

• Themes from the Reddit climate change dataset indicate
that online opinions regarding climate change are multidi-
mensional, capturing psychological, societal, and systemic
aspects, such as eco-anxiety [43] and generational divides
in perspectives.

• We found that assigning the same identities to coder agents
within Thematic-LM resulted in high inter-rater reliability,
whereas assigning different identities to coder agentswithin
Thematic-LM reduces inter-rater reliability but fosters a
broader and more diverse understanding of the data.

1https://www.kaggle.com/datasets/pavellexyr/the-reddit-climate-change-dataset

2 Related Work
Social Media Data Analytic. With over a billion people using
social media, enormous amounts of unstructured data are generated
through daily interactions on these platforms [19]. Various machine
learning techniques have been employed to extract insights to han-
dle the scale of such data. Topic modelling approaches [4, 11, 57]
are applied to uncover abstract topics or clusters of similar content
from large datasets. Sentiment analysis [8, 39, 54] focuses on deter-
mining the emotional tone or attitude behind a piece of text, such
as classifying whether social media posts reflect positive, negative,
or neutral sentiment. Other classification approaches [45, 47] are
typically employed to categorize social media posts into predefined
categories, such as news, entertainment and sports. However, these
methods tend to produce high-level categorizations and descriptive
outputs, offering surface-level insights into the data, which do not
capture deeper, contextual meanings or allow for nuanced inter-
pretations of complex social media interactions. Our Thematic-LM
automates TA through a multi-agent system with multiple coders,
enabling deeper exploration of underlying meanings and perspec-
tives from large-scale datasets.
Computational Thematic Analysis. Several studies have ex-
plored the use of LLMs for automating TA. De Paoli [13] and Drá-
pal et al. [16] applied LLMs to relatively small datasets by guiding
the models through structured, step-by-step coding instructions.
Drápal et al. [16] found that LLM performance closely aligns with
human coders when iterative feedback is provided. Similarly, Dai et
al. [12] proposed a feedback loopwhere expert input helps refine the
LLM’s output. While these approaches demonstrate promise, their
reliance on human intervention and focus on small datasets limit
their scalability. In contrast, Thematic-LM assigns a team of LLM
agents to handle different components of TA, fostering a broader
perspective by simulating independent coders. Each coder agent is
given a unique identity, encouraging analysis from diverse view-
points. Additionally, Thematic-LM employs an adaptive codebook
that revisits and updates previously coded data, ensuring scalability
and adaptability to large datasets.
LLM-based Multi-agent System. Recent research has shown that
collaboration between multiple LLM agents can enhance inter-
consistency [53], improve factuality and reasoning [17], and en-
courage divergent thinking [31]. Motivated by the benefits, various
LLM-based multi-agent systems have been developed [10, 30, 52].
Multi-agents are often employed for problem-solving or simulation.
For example, Hong et al. [21] uses specialised LLM agents as a soft-
ware engineering team for developing applications collaboratively.
Chan et al. [9] proposed ChatEval, which uses multi-agent debate
to evaluate the quality of LLM outputs. For research on simulation,
Zhang et al. [55] explored simulating collaborative intelligence in
human society by assigning LLM agents various personal traits and
thinking styles. Similarly, Park et al. [42] established a community
of 25 agents in a sandbox environment simulating a small town,
while Kovač et al. [28] constructed a school environment with LLM
agents to explore developmental psychology. Moreover, Zhao et
al. [56] examine the competition between LLM agents by simulating
a virtual town with restaurant agents competing over customer
agents. Thematic-LM focuses on TA as a problem-solving task and
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Figure 2: Thematic-LM consists of coder, aggregator, reviewer, and theme coder agents, organized into two stages: coding
and theme development. In the coding stage, multiple coder agents independently analyse text data and output codes and
corresponding quotes to the code aggregator. The code aggregator refines and organizes the codes before sending them to the
reviewer. The reviewer maintains an adaptive codebook, ensuring updated codes are consistent with prior data. In the theme
development stage, theme coder agents use the codebook to identify themes, which are then refined by the theme aggregator to
produce the final themes.

simulates coders with different identities to encourage a broader
viewpoint regarding the data.

3 LLM-based Multi-agent System for Thematic
Analysis

We adopt the inductive thematic analysis (TA) approach outlined
by Braun and Clarke [5]. In TA, coding identifies items of ana-
lytic interest from the data and assigns short-phrase labels, while
themes are built by synthesizing and refining insights from these
codes. In traditional team-based TA, each coder often works in-
dependently to generate codes, followed by regular meetings to
compare and consolidate codes, reducing redundancy or overlap
and ensuring cohesion in the analysis [46]. Inductive TA is data-
driven, which develops themes from the data rather than with
a predefined codebook of themes [6]. In contrast to the conven-
tional predefined codebook approach, we implement an adaptive
codebook that continuously updates codes throughout the coding
process, accommodating new data and insights. Building on previ-
ous work of computational TA [12, 13, 16], Thematic-LM performs
TA in two stages: coding and theme development. In the coding
stage, the codebook is finalized as codes are generated and refined,
while the theme development stage focuses on synthesizing themes
from the codebook. We provide details of the system in Section 3.1
and the coders’ identities in Section 3.2.

3.1 Multi-agent System
As illustrated in Fig. 2, our multi-agent system consists of three
types of LLM agents: coder, aggregator, and reviewer. Each agent
has a specialised role in the TA process, contributing to coding and
theme development stages to fully automate these tasks. The agents
are implemented with conversational agents from AutoGen [52].
Coder Agents are responsible for coding in the first stage and
identifying themes in the second stage. In the coding stage, the
coders are instructed to write one to three codes for each piece of

data to capture concepts or ideas with the most analytical interest.
For each code, the coder extracts a representative quote from the
data as evidence. The resulting codes, quotes and corresponding
quote IDs are passed to the code aggregator agent. During the
theme development stage, the coders are given a complete version
of the codebook from the coding stage. The codebook is compressed
with LLMLingua [23, 24] to reduce token costs. The coder agents
then analyse the codes and associated quotes holistically to identify
overarching themes that reflect deeper insights into the data. These
themes, alongwith theme descriptions and themost relevant quotes,
are then passed to the theme aggregator.
Aggregator Agents refine and organize the outputs from the coder
agents into structured formats suitable for the next stage. During
the coding stage, the code aggregator merges codes with similar
meanings, retaining differences where necessary, and organizes
the codes, quotes, and quote IDs into a JSON format, which the
reviewer agent uses to update the codebook. Similarly, in the theme
development stage, the theme aggregator refines and organizes the
identified themes and associated quotes, merging similar themes
and outputting the final themes in JSON format.
Reviewer Agent operates exclusively during the coding stage,
maintaining and updating the codebook. This codebook stores pre-
vious codes, their corresponding quotes, and quote IDs in JSON
format. Codes are represented both as texts and as embeddings,
generated using a Sentence Transformer model [44]. The reviewer
agent processes new codes and quotes from the aggregator and
retrieves the top-𝑘 similar codes and quotes from the codebook by
computing the cosine similarity between their embeddings. The
reviewer compares the new codes and quotes with existing codes
and quotes to determine whether the new codes can be updated
based on prior information and whether similar existing codes can
be merged. After making these decisions, the reviewer updates
the codebook to save new codes and quotes and merge previous
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codes into new ones. The reviewing and updating process is cru-
cial in TA, as it plays a central role in ensuring the codes remain
dynamic, interpretative, and responsive to the data. Once finalized,
the codebook is passed to the theme development stage.
EvaluationWe evaluate the quality of themes based on the prin-
ciples of trustworthiness in qualitative research [27, 29, 40]. Ex-
isting metrics used in computational TA, such as inter-rater re-
liability [35], assume that there is one "correct" set of themes to
match against for measuring the level of accuracy. We propose that
trustworthiness principles, which emphasize meaningful, coherent,
and data-grounded analysis, provide a more robust framework for
evaluating themes. As shown in Fig. 3, We adopt the trustworthi-
ness principles for evaluating the computational TA approaches:
(1) Credibility and Confirmability: Credibility evaluates whether
the themes accurately represent the data, while confirmability as-
sesses whether the themes are data-driven rather than driven by
biases. We measure credibility and confirmability at the same time
by retrieving the associated data through quote IDs and assign-
ing an evaluator agent to compute the percentage of data that the
quote and themes are consistent with. The inconsistency with the
data can be caused by hallucinations or internal biases within the
LLM models. (2) Dependability: asses whether the same process can
be repeated by a separate researcher and reveal similar findings.
The dependability of the computational approach can be measured
by repeating the process and measuring the inter-rater reliability
of the resulting themes. We measure the inter-rater reliability in
themes by conducting the TA several times and computing the
average pairwise ROGUE scores [32], which measures the amount
of overlap between the themes. For each pair of theme sets 𝐴 and
𝐵, we first calculate the ROUGE-1 and ROUGE-2 scores by using
sets 𝐴 as the reference set:

ROUGE-1𝐴→𝐵 =
Number of overlapping unigrams in 𝐵

Total number of unigrams in 𝐴

ROUGE-2𝐴→𝐵 =
Number of overlapping bigrams in 𝐵

Total number of bigrams in 𝐴

(1)

We calculate the ROUGE-1 and ROUGE-2 scores by using sets 𝐵
as the reference set and compute the average of the ROUGE-1 and
ROUGE-2 scores for the pair of sets:

ROUGE-1 =
1
2
(ROUGE-1𝐴→𝐵 + ROUGE-1𝐵→𝐴)

ROUGE-2 =
1
2
(ROUGE-2𝐴→𝐵 + ROUGE-2𝐵→𝐴)

ROUGE =
1
2
(ROUGE-1 + ROUGE-2)

(2)

(3) Transferability assesses whether the identified themes and codes
can be meaningfully applied to other contexts or datasets with
similar characteristics. We measure the transferability by splitting
the dataset into a training and validation set, where we perform TA
separately and measure whether the themes from the training set
can transfer to the themes in the test set by computing the overlap
between themes via pairwise ROGUE scores shown in Eq. (2).

3.2 Coder Identities
TA inherently embraces subjectivity, recognizing that researchers
bring their own perspectives, assumptions, and interpretations
to the data [6, 18]. The identification of themes is guided by the

Figure 3: Evaluation framework: we employ an evaluator
agent to check the consistency between the themes and as-
sociated data to assess the credibility and confirmability of
the themes. To assess their dependability, we repeat the the-
matic analysis (TA) process 𝑁 times and examine whether
the themes remain stable by computing the overlap between
themes. For transferability between similar datasets, we per-
form TA independently on two split data sets and compute
the overlap between themes.

coder’s insights and understanding, which plays an active role in
deciding what is meaningful in the data. Consequently, the same
data may yield different themes depending on who is conducting
the analysis. Coders may interpret the same information in diverse
ways, especially when they come from varied social, cultural, or
professional backgrounds. This variability does not undermine the
reliability of the analysis but instead highlights the subjectivity that
enriches qualitative research. The subjective nature of thematic
analysis allows it to delve deeply into human experiences, emotions,
andmeaningswhile providing the contextual understanding needed
to explore nuanced social and cultural issues [18, 40].

In previous work on computational thematic analysis, the LLM’s
outputs are aligned with a human coder through iterative feedback.
In contrast, Thematic-LM simulates coders with varied backgrounds
to foster diverse perspectives in data interpretation. In profiling
the coder agents, we draw from existing literature on different
viewpoints and opinions related to the subject matter, assigning
distinct identities to each agent. These agents are instructed to
interpret the data through the lens of their assigned identities,
reflecting on how someone with such a background might perceive
and analyse the information. This approach allows us to explore the
diversity of perspectives that may emerge from the data and offers
a way to measure the divergence between coders’ interpretations
due to different backgrounds.
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Table 1: Themes and description of the themes produced by Thematic-LM on the Dreaddit dataset, compared with topic
modelling and sentiment analysis results.

Theme Description Related Topic Sentiment Score

Navigating Emotional and Mental
Health Challenges

The experiences of individuals dealing with anxiety, mental
health concerns, and the impact of emotional stressors on daily
life.

therapist_to_therapy 0.00

Impact of Economic Stress and Resource
Scarcity

The financial struggles and efforts to manage limited resources
and economic instability.

homeless_the_to_have 0.10

Familial Dynamics and Responsibilities The complex relationships within families, the burden of roles,
and the tension between obligations and emotional needs.

food_you_for 0.15

Coping with Academic and Professional
Pressures

The stress associated with academic performance and the pres-
sures to succeed in professional life.

job_and_have 0.20

Interpersonal Conflict and Relationship
Stress

The conflicts in personal relationships, whether with romantic
partners, friends, or colleagues, the emotional and mental strain
caused by unresolved tensions or disagreements.

sex_that_sexual 0.15

Seeking Validation and Emotional Sup-
port

The frequent attempts by individuals to gain reassurance or
validation from others, often by sharing their struggles and
emotions openly in the hope of receiving empathy or encour-
agement.

you_are_support 0.35

The Dichotomy of Online and Offline
Identities

The differences between one’s real and virtual personas and the
impact of social media on identity and interactions.

he_him_me 0.25

4 Experiments and Analysis
We conduct a series of experiments to assess Thematic-LM’s effec-
tiveness in performing thematic analysis on social media datasets.
At the time of writing, no other multi-agent systems were designed
for qualitative analysis, such as thematic analysis. Therefore, our
experiments focus primarily on Thematic-LM itself. Specifically,
we aim to answer the following questions:

• What insights can Thematic-LM uncover from the Dreaddit
and the Reddit climate change dataset? (Section 4.1)

• Does Thematic-LM produce higher quality themes com-
pared to a single LLM agent? (Section 4.2)

• How do the different coder identities influence the codes
and themes? (Section 4.3)

Experimental Setup. We use GPT-4o to serve as the LLM agent
accessible through the OpenAI API gpt-4o-2024-05-132. The temper-
ature and top_p are set at the default value of one. For each code
and theme, the agents save up to 20 of the most relevant quotes
associated with the concept. The reviewer retrieves the top 10 most
similar codes for each new code. To measure the dependability, we
conducted the TA three times and calculated the average pairwise
ROGUE scores between the resulting sets of themes. To measure
transferability, we split the dataset into a 50% training set and a
50% validation set. We employ Thematic-LM to analyse the Dread-
dit [49] and the Reddit climate change dataset. Dreaddit contains
over 190k posts from subreddits related to abuse, anxiety, financial
issues, PTSD and relationship problems. The Reddit climate change
dataset consists of 4.6 million Reddit posts and comments that men-
tion the terms “climate” and “change”. The source code is available
in the supplementary material.

2https://platform.openai.com/docs/models/gpt-4o

4.1 Thematic Analysis of Social Media Data
We assign two coder agents and two theme coder agents for TA
on Dreaddit and the Reddit climate change dataset. The agents
are provided with the instructions only, with no personal identi-
ties given to the agent. To compare the TA results, we perform
topic modelling and sentiment analysis on the datasets. We employ
BERTopic [20] to categorize the posts into topics and RoBERTa [33]
from TweetNLP [7] for sentiment analysis. We set the number of
neighbours, number of components for UMAP [37] and minimum
cluster size for HDBSCAN [36] in BERTopic as 15, 10 and 10, respec-
tively. We use cosine similarity as the distance metric in HDBSCAN.
For each theme, we select the most relevant topic by looking at
the majority of the topics of the data points associated with the
theme through the quote IDs. Similarly, we computed the average
sentiment of the data points. Sentiment scores of zero, one and two
denote negative, neutral and positive, respectively.
Dreaddit datset. As shown in Table 1, Thematic-LM produced
seven themes from the Dreaddit dataset. The sentiment analysis
returns mostly negative labels for the data associated with the
themes. We observe that the themes identified by Thematic-LM
on the Dreaddit dataset highlight a broader and more meaning-
ful understanding of the data compared to the related topics gen-
erated by topic modelling. For instance, the theme “Navigating
Emotional and Mental Health Challenges” captures the users’ strug-
gles with anxiety and emotional stressors. In contrast, the related
topic “therapist_to_therapy” provides a more fragmented associa-
tion of words, missing the depth in the narrative. Similarly, “Impact
of Economic Stress and Resource Scarcity” encapsulates the daily
struggles of managing limited resources, while the related topic
“homeless_the_to_have” only loosely connects words around home-
lessness and possession, failing to capture the specific challenges
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Table 2: Themes and description of the themes produced by Thematic-LM on the Reddit climate change dataset, compared with
topic modelling and sentiment analysis results.

Theme Description Related Topic Sentiment Score

Emotional Burden of Climate Change
Awareness

The complex emotions individuals face, such as anxiety, guilt,
frustration, and helplessness, stemming from the overwhelming
nature of climate change and a perceived lack of control over
its outcomes.

climate_change_years 0.20

Generational and Cultural Disconnec-
tion

The perceived gaps in understanding and values across different
generations and cultures, which are often exacerbated by rapid
societal and technological changes.

denier_climate_scope_change 0.30

Call for Collective Action and Unity Emphasizing the necessity for collective action and unity in
addressing societal challenges, including political divisions and
significant issues like climate change and economic inequality.

jobs_people_us 1.30

Critique and Skepticism of Political and
Economic Systems

A critical examination of current political and economic sys-
tems, highlighting concerns about inequality, inefficiency, and
the shortcomings of existing policies.

bank_companies_billion 0.25

Personal and Community Resilience Personal and communal efforts to adapt to the impacts of climate
change, emphasizing the importance of strengthening social
connections and local initiatives

people_change 0.85

Role of Technology in Climate Solutions The potential of technology and innovation to mitigate climate
change effects, including renewable energy advancements, car-
bon capture technologies, and sustainable agriculture practices.

energy_nuclear_power 0.90

Impact on Biodiversity and Ecosystems Individuals express worries about endangered species, habitat
destruction, and the overall health of the planet’s ecosystems.

meat_animals 0.10

Climate Migration and Displacement The challenges faced by communities and individuals who are
forced to relocate due to climate change impacts such as rising
sea levels, extreme weather events, and resource scarcity.

housing_cities_city 0.20

Table 3: Comparison of the themequality scores on theDread-
dit dataset.

Method Credibility & Confirmability Dependability Transferability
Single 0.63 0.45 0.41
Single (Codebook) 0.75 0.61 0.67
System (1 Coder) 0.92 0.81 0.86
System (2 Coders) 0.94 0.78 0.87

Table 4: Comparison of the theme quality scores on the Red-
dit climate change dataset.

Method Credibility & Confirmability Dependability Transferability
Single 0.66 0.56 0.73
Single (Codebook) 0.74 0.69 0.78
System (1 Coder) 0.96 0.84 0.90
System (2 Coders) 0.98 0.86 0.89

individuals face in their economic lives. This comparison illustrates
how thematic analysis delves into the underlying meanings and
human experiences, offering a much more insightful and compre-
hensive picture than topic modelling, which often yields superficial
groupings of co-occurring terms.

The themes reflect various levels of human needs, resonating
with Maslow’s Hierarchy of Needs [38]. “Navigating Emotional and
Mental Health Challenges” and “Impact of Economic Stress and Re-
source Scarcity” correspond toMaslow’s foundational physiological
and safety needs, as they involve mental well-being and financial

stability. “Familial Dynamics and Responsibilities” and “Interper-
sonal Conflict and Relationship Stress” align with belongingness
and love needs, highlighting the importance of relationships and
emotional bonds in individuals’ lives. Meanwhile, “Coping with
Academic and Professional Pressures” and “Seeking Validation and
Emotional Support” relate to esteem needs, where individuals seek
recognition, achievement, and emotional validation. Finally, “The
Dichotomy of Online and Offline Identities” reflects the higher-
order need for self-actualization as individuals navigate personal
identity and the complexities of presenting themselves in digital
and real-world environments.
The Reddit climate change dataset. As shown in Table 2, the
eight themes identified by Thematic-LM present a more nuanced
and interconnected understanding of climate change discourse,
emphasizing emotional and social dimensions rather than solely
categorizing discussions by co-occurring words. The emotion cap-
tured by the themes generally aligns with the sentiment score. The
“Emotional Burden of Climate Change Awareness” theme highlights
the psychological distress, anxiety, and feelings of helplessness that
individuals face, reflecting the concept of eco-anxiety [43]. This
emotional struggle is intertwined with the “Generational and Cul-
tural Disconnection”, which points to the gaps in understanding
and values that can arise between different generations, further
complicating collective responses to climate change. The theme
“Call for Collective Action and Unity” underscores the necessity for
collaboration in addressing climate-related challenges, emphasizing
a shared responsibility that can help foster social cohesion. This is
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complemented by the theme “Personal and Community Resilience”,
which showcases the importance of local initiatives and social con-
nections as individuals and communities adapt to the changing
environment. Meanwhile, the “Critique and Skepticism of Political
and Economic Systems” reflects a growing awareness of systemic
failures and the need for significant reforms to ensure effective
climate action. The theme “Role of Technology in Climate Solu-
tions” highlights the potential for innovation and advancements in
technology to mitigate the impacts of climate change, showcasing
a hopeful perspective amid the challenges. Finally, the theme “Im-
pact on Biodiversity and Ecosystems” serves as a reminder of the
broader ecological implications of climate change, emphasizing the
interconnectedness of human actions and environmental health.
Together, these themes illustrate a complex multifacet of emotional,
social, and systemic factors shaping climate change discourse from
social media.

4.2 Quality of Themes
To investigate the benefits brought by the adaptive codebook and
the multi-agent system, we compare the quality of themes between
a single LLM agent, a single LLM agent with an adaptive codebook,
Thematic-LM with one coder for coding and theme development
and Thematic-LM with two coders for coding and theme devel-
opment. The single LLM agent is instructed to first label the data
sequentially with codes, define themes from the codes, and save
the data IDs of the most relevant codes for each theme. The single
LLM agent with the adaptive codebook adds steps for retrieving
similar codes for comparison and saving codes and quotes into the
codebook. After the coding stage, the single LLM agent takes the
codebook as input and defines themes from the codebook. The coder
agents are given instructions without assigning any identities.

As shown in Tables 3 and 4, we observe that the introduction
of an adaptive codebook improves the quality of the themes of the
LLM agent, and multi-agents perform better than single agents.
The credibility & confirmability score of the single agent with
the codebook is improved due to the LLM agent having access to
retrieve past quotes, which provides a chance to reflect on past codes
and quotes whenever similar data arrive. The similar codes and
associated quotes together give a more holistic view and improve
the context understanding of the data, which makes the coding
less affected by randomness brought by a single data sample. The
improvement in both the dependability and transferability of the
themes shows this. The multi-agent systems have higher credibility
& confirmability, dependability and transferability scores. In the
multi-agent system, the distribution of specialised tasks has made
the tasks simpler and shorter for each agent, improving factuality
and reducing hallucination brought by doing complex tasks. This
has led to more stable and transferable themes across different runs.

4.3 Divergence of Pespectives
We aim to investigate whether assigning different identities can
broaden the views of the TA and the effects of assigning identities to
coders. We conducted the experiments on the Reddit climate change
dataset, as climate change is a polarizing issue due to the intersec-
tion of social, economic, political and cultural values, which lead
to divergent opinions [14, 15]. The subjectivity of TA and the scale

Table 5: Examples of themes not captured in Thematic-LM
with no assigned coder identities but emerged in Thematic-
LMwhere coders are assigned different identity perspectives.

Theme Description

Economic Impact of Cli-
mate Policies

Concerns about the economic consequences
of aggressive climate regulations, particularly
their impact on industries and job markets.

Environmental Stew-
ardship

The deep responsibility to protect and maintain
the natural environment, viewing humans as
caretakers of the earth.

Scepticism of Climate
Science

Questioning about the extent of human influ-
ence on global warming and discuss whether
climate change is part of the natural cycle.

Environmental Justice
and Vulnerable Com-
munities

Highlights the disproportionate impact of cli-
mate change on marginalized communities, ad-
vocating for policies that address environmental
justice and protect vulnerable populations.

of the dataset might lead to some views being underrepresented in
the resulting themes. We assign five coders with different identity
perspectives: (1) Human-Driven Climate Change Agent: This agent
adopts the widely accepted scientific view that human activities are
the primary drivers of climate change [15]. It focuses on the role
of industrialization, fossil fuel emissions, deforestation, and other
anthropogenic activities in accelerating global warming. The agent
emphasizes the need for policy reforms, renewable energy adoption,
and collective global action to mitigate the impact of human-caused
environmental degradation. (2) Natural Climate Change Agent: This
agent approaches climate change from the viewpoint that it is a
natural phenomenon, part of Earth’s long-term climatic cycles. It
reflects the arguments that climate fluctuations have occurred over
millennia due to factors like solar radiation, volcanic activity, and
ocean currents, suggesting that current climate shifts may not be
solely due to human activities [3, 34]. This perspective is often used
to critique policies perceived as overemphasizing the human impact
on the environment. (3) Progressive View Agent: The progressive
agent is given the progressive perspective rooted in environmental
justice, equity, and sustainability, advocating for systemic changes
that address not only environmental issues but also social inequal-
ities exacerbated by climate impacts [15]. The agent emphasizes
green technologies, grassroots activism, and policies that ensure
vulnerable communities are not disproportionately affected. (4)
Conservative View Agent: This agent reflects the conservative per-
spective on climate change, focusing on gradual, market-driven
solutions rather than large-scale regulatory interventions [15]. It
prioritizes economic stability, energy independence, and limited
government involvement in climate policies. From this viewpoint,
climate action should not jeopardize economic growth, jobs, or
individual freedoms. (5) Indigenous View Agent: The Indigenous
agent operates from the perspective that climate change is deeply
intertwined with human relationships with nature and the envi-
ronment [50, 51]. It emphasizes traditional ecological knowledge,
the interconnectedness of all living beings, and the sacred respon-
sibility to care for the land. This agent highlights climate change’s
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Figure 4: Comparison of codes and themes generated by five coders with no identities given, with the same identities of
“human-driven climate change” given, and with five different identities. The five different identities are agents which are
instructed to believe in “human-driven climate change” and “climate change as a natural cycle” and instructed to act with
“progressive view”, “conservative view” and “Indigenous view”, denoted as H, N, P, C, and I respectively. The pairwise ROGUE
scores measure the differences between codes and themes from different agents.

cultural, spiritual, and community-based dimensions, particularly
the impacts on Indigenous lands and ways of life.

To measure the effects of identity perspectives on the coders,
we measure the inter-rater reliability via pairwise ROGUE scores
(Eq. (2)) among the coder agents during the coding and theme devel-
opment stage within Thematic-LM. For example, during the coding
stage, we compare codes between each pair of agents by calculating
the ROGUE scores. The final scores for each system are the average
scores from the coding and theme development stages. We calculate
the ROGUE scores as the average between ROGUE-1 and ROGUE-2
scores. We compare the differences between assigning no identities
to coder agents, assigning the same identities to coder agents and
assigning different identities to coder agents. For the first system,
we assign five coders for coding and theme development without
any identities. Second, we assign the five coders the same identities
of the “human-driven climate change” view to measure the effect
of having the same identity perspectives. Third, we assign the five
different identities to the coders to measure the divergence of per-
spectives. As shown in Fig. 4, the agents with different identities
produced divergent codes and themes with overall lower ROGUE
scores than agents with no identities assigned, while the agents
with the same identities produced more similar codes than agents
with no identities assigned. For agents with no identities assigned,
there are some variations in the codes and themes, as the ROGUE
scores indicate there are about 58% to 77% of overlap words and
word pairs. While the codes and themes of the agents with different
identities diverge from each other, there is a relatively higher over-
lap of codes and themes for agents with related views. For example,
there is some overlap between codes from human-driven climate
change and progressive views, such as codes related to collective ac-
tion to reverse the effect of pollution on climate change. The results
from the assignment of identity perspectives mirror how the views
of the coders might affect their interpretation of the data in TA.
The convergence and divergence of codes and themes simulate and
resonate with social identity theory [22] and confirmation bias [41].
Social identity theory emphasizes that the categorization of individ-
uals into social groups influences their attitudes, behaviours, and

interpretation of information, while confirmation bias is the ten-
dency to search for, interpret, and favour information that confirms
one’s pre-existing beliefs or hypotheses.

Although in the Thematic-LM with five different coders, the
codes and themes diverge from each other, we have instructed the
code and theme aggregator to retain the different codes and themes
to maintain the different perspectives. As a result, the resulting
themes are more diverse than Thematic-LM with no agent identi-
ties assigned. For Thematic-LM with five different agent identities,
15 themes are identified from the Reddit climate change dataset.
As shown in Table 5, we illustrate examples of themes that are
not captured in Thematic-LM with no given coder identities but
have emerged in Thematic-LM with different coder identities. We
observe that with different identity perspectives, the agents might
highlight unaddressed issues by considering different viewpoints.
For example, themes such as “Economic Impact of Climate Policies”
and “Scepticism of Climate Science” reflect concerns and beliefs
that differ from those captured in a more homogenized analysis
without different identities.

5 Conclusion
We presented Thematic-LM, the first LLM-based multi-agent sys-
tem for large-scale thematic analysis. Thematic-LM addresses key
challenges in the computational thematic analysis of large-scale
datasets by distributing the tasks among specialised agents and
maintaining an adaptive codebook for maintaining and updating
codes. We employ Thematic-LM to analyse the Dreaddit and Reddit
climate change datasets. We evaluate the quality of themes based
on the principles of trustworthiness in qualitative research. Fur-
thermore, we experimented with assigning different perspectives
to the coder agent to simulate the subjective nature of thematic
analysis and broaden the views captured in the themes. Our work
lays a foundation for conducting qualitative research with LLM
agents. Future work could investigate combining other qualitative
methods and incorporating the imaging modality into the analysis.
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