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Abstract

We consider the problem of learning a manifold from a teacher’s demonstration.
Extending existing approaches of learning from randomly sampled data points, we
consider contexts where data may be chosen by a teacher. We analyze learning from
teachers who can provide structured data such as individual examples (isolated
data points) and demonstrations (sequences of points). Our analysis shows that
for the purpose of teaching the topology of a manifold, demonstrations can yield
remarkable decreases in the amount of data points required in comparison to
teaching with randomly sampled points. We also discuss the implications of our
analysis for learning in humans and machines.

1 Introduction

In machine learning, learners are assumed to operate in a relatively simplified problem space: data
points sampled by a random process. Humans learn from a richer, stronger context. Two aspects
that have received the most attention are the fact that data may be chosen by a more knowledgeable
informant, such as a teacher [Shafto et al., 2014, Zhu, 2015], and that the data points may themselves
be structured into sequences as in demonstration [Kuhl et al., 1997, Brand et al., 2002a]. In this paper,
we consider how having teachers who select structured data may affect the complexity of learning.

Our goal is to understand theoretical bounds on learning manifolds and their topology from teaching
via structured data, which we expect to inform debates in machine learning and human learning.
We particularly investigate the topology of manifolds for several reasons. First, the decomposition
of learning into grounded and more abstract aspects parallels common wisdom across human and
machine learning, which have converged on hierarchical (“deep”) models of learning. Second,
teaching topology will prove to be data-efficient for manifold learning applications, such as clustering
where only information about the global structure of manifold (e.g. number of connected components
etc.) is needed. Third, teaching will be able to proceed without full knowledge of the geometry, and
the requirement for the teacher can be relaxed by just knowing the homotopy type of the manifold.

We begin with preliminaries in Section 2. Section 3 provides results related to teaching the topology
of manifolds via data points and demonstrations, showing that demonstrations can yield vastly more
efficient teaching. Section 4 provides concluding discussions.

2 Preliminaries

In machine learning, the manifold assumption states that high dimensional data in the real world are
typically concentrated on a much lower dimensional manifold. Because the difficulty of inferring the
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geometry of an arbitrary manifold is bounded by its worst local feature, quantified as the reach of the
manifold, we may only aim to reduce the sample complexity of learning a manifold by focusing on
its global properties, which are encoded by the topology.

In this paper,M is an orientable compact sub-manifold in Rn. We mainly focus on low dimensional
manifolds such as curves and surfaces. However, teaching methods developed in the following
sections can be directly used to convey low dimensional topological features of any manifold.

For the formalism of teaching-learning algorithms, we consider A as a class of learning algorithms
that construct approximations ofM and/or identify the homotopy type ofM from a set of data points
sampled fromM. Examples of such algorithms are available in Cheng et al. [2005], Niyogi et al.
[2008], Boissonnat and Ghosh [2014].

A collection of data points DA ⊂ M is called a teaching set with respect to A if there exists a
learning algorithm A ∈ A that recovers the homotopy type ofM using DA. |DA| denotes the size
of DA. A teaching set D∗A is said to be minimal w.r.t. M if |D∗A| ≤ |DA| for any teaching set DA
ofM. Further, D∗A is a minimal teaching set w.r.t. the homotopy type ofM if D∗A is a teaching
set for someM′ of the same homotopy type asM and |D∗A| ≤ |DA| for any teaching set DA of
a manifold homotopy equivalent toM. The size of a minimal teaching set is called the minimal
teaching number.

3 Structured data and manifold teaching

Our approach is inspired by human teaching together with their corresponding class of learners:
examples [Shepard et al., 1961] and demonstrations [Brand et al., 2002b]. Inspired by human
teaching, in this section, we propose two corresponding styles of methods to teach the topology of a
manifold using structured data: isolated data points (individual examples) and sequential data points
(demonstrations). In particular, we provide lower bounds for teaching complexity of each method.
pairs of points (comparisons),

3.1 Manifold teaching from sample points

The pioneering work in Niyogi et al. [2008] introduced a framework to reconstruct manifolds from
random sampling. Their work can be rephrased as a manifold teaching problem. Suppose two
agents, which we call a teacher and a learner, wish to communicate a manifoldM⊂ Rn. In their
setting, the teacher passes a collection of randomly sampled data points DA(ε) = {x1, . . . , xk} to the
learner, who then builds a manifold by a learning algorithm in the class A(ε): the learner first picks
a parameter ε ∈ R+, then for each xi ∈ DA(ε), makes an n-dimensional ball Bε(xi) centered at xi
of radius ε. Here n is the dimension of the ambient space which can be inferred from data points’
coordinate size. The union of all these balls Uε(DA(ε)) = ∪x∈DA(ε)

Bε(x) constitutes the learned
space.

The main result in Niyogi et al. [2008] provides an estimation Nε on the number of data that are
needed to guarantee that the learned space Uε and the target manifoldM are homotopy equivalent
with a given confidence. Nε depends on the confidence level, the volume and the reach ofM, and
also the learner’s choice of ε.

Considering Nε as a sufficient bound on the minimal teaching number ofM, we seek a necessary
condition. The calculation of Nε proposed in Niyogi et al. [2008] requires knowledge about the
geometric features ofM (volume and reach), which translated to our context implies that either the
teacher knows the trueM or the teacher has observed a large amount of data points, which allows one
to make good estimations of these geometric features. Hence we will start our analysis by assuming
that the teacher has access to the true manifold. In Section 4, we will discuss how this assumption
can be relaxed in many practical cases.

Suppose that the learner uses the class of algorithms A(ε), what is a minimal teaching set to convey
the homotopy type ofM? The case for non-contractible 1-dim manifolds is extremely neat. Since
every suchM is homotopy equivalent to a circle, at least three points are needed as explained below.

Example 3.1. Let S1 be a unit circle embedded in R2, and A(ε) be the class of learning algorithms
described above. It is clear that any data set with only one or two points will result contractible Uε for
any choice of ε. However, as illustrated in Figure 1(a), with three equidistant points sampled from S1,
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(a) (b)

Figure 1: Teaching sets for 1-dim manifolds

any learner A(ε) with
√
3
2 ≤ ε < 1 will recover the correct topology of S1 from the union of three

connected disks with a hole in the middle. Thus the minimal teaching number for a circle is three.

Suppose thatM is a closed orientable surface. An example is given below.

Figure 2: Teaching set for torus.

Example 3.2. Let T 2 be a torus embedded in R3 as shown in Figure 2. T 2 can be obtained by
rotating the red circle l1 around the green circle l2. Denote the radii of l1 and l2 by r1 and r2
respectively. Two 1-dim holes of T 2 are represented by l1 and l2. As in Example 3.1, each li needs at
least three teaching points. Since the learner A(ε) picks one ε for all data points, more data points are
needed for li when

√
3
2 ri ≥ rj , where i, j ∈ {1, 2} and i 6= j. Hence to find the minimal teaching set

for the homotopy type of T 2, we may assume that r1 = r2 = r. Suppose that any three data points
sharing a circle in Figure (b) are equidistant points. Then D1 = {a1, a2, a3, b1, c1} can be used to
teach l1 and l2. To recover the only 2-dim hole of T 2, it is natural to add {b2, b3, c2, c3} into D1 to
complete the red dotted circles going through b1 and c1. Ideally, ε-balls centered at these 9 points
should form a torus. However, there are large undesirable gaps left open between the red circles
because the learner is restricted to pick

√
3
2 r < ε < r.

We now compute how many extra points are needed to fill in all these gaps. Direct calculation shows
that the radius of the dashed blue circle l3 is 2.5r and nine equidistant data points on l3 are needed to
teach it with

√
3
2 r < ε < r. If we rotate l1 around l2 nine times with each step 2π/9, then the trace of

{a1, a2, a3} produces 27 data points (including all 9 points in D1). With these 27 points, we almost
form a torus but still have many small gaps. One may count that in total there are 27 such gaps. So
54 points are enough. Moreover, notice that the inner green circle l2 is over taught, one may check
that 3 teaching points can be removed from l2. Hence we may teach T 2 with 51 points.

The approach we used in Example 3.2 can be generalized to all orientable surfaces.

Proposition 3.3. Let Mg ⊂ R3 be a closed orientable surface with genus g. Then the minimal
teaching number for the homotopy type ofMg with respect to A(ε) is bounded by 49g + 2.

Proof. We will proceed by induction. When g = 1, M1 is homotopy equivalent to T 2. So the
homotopy type ofM1 can be taught by 51 points. Suppose that the claim holds for anyMg with
g < n. Notice that Mg,1, surface with genus g and 1 boundary component, can be obtained from
Mg by removing a disk. So when g < n, based on the inductive assumption, Mg,1 can be taught
by 49g + 1 points. Moreover, there exists aMn which can be obtained by gluing a M1,1 with a
Mn−1,1. Hence we may teachMn with [49 + 1] + [49(n− 1) + 1] = 49n+ 2 data points.

Remark 3.4. LetMg,b ⊂ R3 be a genus g orientable surface with b boundary components. Note that
Mg,b can be obtained fromMg by removing b disconnect disks. Therefore, the minimal teaching
number ofMg,b with respect to A(ε) is bounded by 49g + 2− b.
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The above analysis suggests that due to the locally Euclidean nature of manifolds, a local to global
teaching procedure as described above is not always efficient: even a simple manifold as a regular
torus requires a large set of teaching points. Below we propose a new class of teaching algorithms
that teaches the topology directly from demonstrations where each demonstration is a sequence of
data describing a loop.

3.2 Manifold teaching from demonstrations

A main task in manifold teaching is passing the correct topology. This task forces large amount of
data for any local to global teaching procedure due to the locally Euclidean nature of manifolds. In
this section we will describe a method that teaches the topology directly from demonstrations where
each demonstration is a sequence of data describing a loop.

Teaching with sequential data is efficient because topologies of manifolds are intuitively captured
by loops in various dimensions. As in Example 3.1, a unit circle can be taught by three points. In
fact, any (oriented) 1 non-contractible 1-dim manifold can be effectively described by a sequence
consisting three randomly sampled points. For example, the teacher may teach the black loopMb

in Figure 1(b) by D = {[a, b, c, a]}. The sequential data informs the learner to connect consecutive
points by a simple curve2, which will form a space UD that is homotopy equivalent toMb. The red
and blue curves in Figure 1(b) are two examples of UD obtained by different learners. If curves that
connect data points further adopt some mild assumption, for example smoothness, polynomial, linear
etc., then the obtained space UD can be parameterized accordingly.

Remark 3.5. It is important to note that calculations in this section are done for a particular target
manifoldM, whereas in the previous section were done for the homotopy type ofM. For instance,
given an arbitrary non-contractible 1-dim manifoldM1, any sequence with three points randomly
sampled fromM1 forms a teaching set forM1. However for learners using A(ε) (Section 3.1), it is
true that the minimal teaching size for the homotopy type ofM1 w.r.t. A(ε) is three, but it is possible
that there does not exist three points onM1 form a teaching set forM1 based on A(ε).

Higher dimensional manifolds can also be conveyed using sequential data. In this setting, the
teacher passes a sequence of sequences to the learner. The learner builds a manifold by a learning
algorithm in the class A(l) where l indexes all the choices: for each sequence a = [a1, . . . , am],
the learner connects consecutive points by a curve; for each sequence of sequences [a,b, . . . , c]
where a,b, . . . , c are sequences of data points with the same length, the learner connects consecutive
sequences by curved planes (the curvature is not necessarily zero). In more details, as Figure (d),
with a = [a1, a2, a3, a1],b = [b1, b2, b3, b1], the learner first connects points in a and b separately to
form two loops (shown as black circles). Furthermore, to join a and b, the learner may link each
distinct pair of ai and bi by a curve 3 (shown as dished lines). This completes a closed path through
ai, ai+1, bi+1

4 and bi, for i = 1, 2, 3. Then the learner glues a curved plane along each of these
closed path. For example, the gray area C in Figure 3(a) shows a curved plane glued along the red
closed path going through a1, a2, b2, b1.

(a) (b)

Figure 3: Teaching by sequential data

To make the learning algorithmA(l) robust to the choice of curves and planes, we further assume that
the teacher and the learner agree that (∗): (1) there is no intersection between different connecting
curves except end points; (2) two points are connected by at most one curve. For instance, a pair

1Without considering the orientation, a sequence with two points can also describe a loop.
2A curve is simple if it has no self-intersection.
3If ai and bi are the same point, do nothing.
4a4 = a1 and b4 = b1.
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of pants can be taught by Dpants = {[[a1,a2,a3,a6][b1,b2,b3,b6]],[[a1,a4,a5,a6][b1,b4,b5,b6]]} as shown in
Figure 3(b). With the teaching set Dpants, the learner needs to connect a1, b1 and a6, b6 multiple times.
If the learner makes the connection by the red curves for the first time, assumption (∗) ensures the
learner always picks the red curves during the entire learning process.
Example 3.6. The torus in Example 3.2 can be taught by a sequence of four sequences:

Dtorus = [[a1, a2, a3, a1][b1, b2, b3, b1][c1, c2, c3, c1][a1, a2, a3, a1]] as shown in Figure (b). This
teaching set only contains the 9 basic points which fits our initial intuition.
Proposition 3.7. LetMg ⊂ R3 be a closed orientable surface with genus g ≥ 2. Then the minimal
teaching number ofMg with respect to A(l) is bounded by 3g − 3 sequences, where each sequence
consists of at most 4 data points.

Proof. A classical result of surfaces states that for anyMg , there is a system of 3g−3 disjoint simple
closed curves which cutMg into pairs of pants (see for example, Farb and Margalit [2011]). Note
that each simple closed curve can be taught by a sequence of 4 points; each pair of pants can be taught
by a sequence that consists of three sequences representing its boundary curves. Moreover, two legs
of a pair of pants can be glued along their boundary curves through a sequential data. For instance,
two blue boundary curves in Figure 3(b) can be glued by [[b1, b2, b3, b1][b1, b4, b5, b1]]. Hence the
claim holds.

4 Conclusions

We considered the problem of teaching low-dimensional features of a manifold using structured data,
which extends mathematical approaches to learning manifolds toward the contexts more consistent
with the richness of human learning. Building on prior work in manifold learning, we formalize
teaching manifolds from data points, observe that contrary to intuition, teaching does not facilitate
learning as much as one would expect due to constraints imposed by the reach of the manifold.
Considering learning from demonstrations—sequences of data points—we show that learning can
be greatly facilitated by teaching. This approach relies on separating teaching the geometry of the
manifold itself from teaching its topology. Focusing on teaching only the topology, we show that
sequences of points can be used to represent the homology groups of the manifold, which compactly
capture important abstract structure that can be used to facilitate future learning. Moreover, this
relaxes the overly stringent and implausible requirement that the teacher must know the manifold
exactly to an estimation of its homotopy type, which is almost always less stringent than the true
manifold. A preliminary example where the teacher teaches with partial knowledge and unconstrained
data is included in the Supplementary material (See Section A). Finally, we argue for a connection
to human learning from teaching demonstrations, which are most naturally thought of as sequences.
Future work may extend this approach toward more naturalistic learning problems faced by humans
or solved by machine learning. The approaches are not restricted to manifold teaching and it would be
interesting to explore teaching more general mathematical objects with low dimensional topological
structures, such as graphs, CW-complexes and even groups.
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A Learning from teacher with partial knowledge

All teaching methods discussed in the main text assume teacher has full access to the true manifold.
However, in reality, the teacher often does not know the underlying manifold and often does not
have full control over which data can be used to teach. In this section, we consider teaching in a
much more practical scenario that allows a teacher, who may have limited knowledge, to teach with
unconstrained data. We illustrate how this would assist the learner to improve their estimation of the
relevant topological and geometrical information from the data.

Following the standard setting of topological data analysis Carlsson [2009], Chazal and Michel
[2017], we assume that the data D is a finite set of points sampled from the true manifoldM. Using
an algorithm in class A(ε) (Sec 3.1) with different ε’s, the learner obtains a summary of estimations
of M in form of persistent homology. Rather than picking a teaching set directly from M, the
teacher first selects a subset DT from D, then passes DT to the learner in a proper sequential format
according to algorithm A(l) (Sec 3.2) to demonstrate desired topological features ofM.

As discussed before, the difficulty of learning a manifoldM increases dramatically as the reach of
M drops. Now we illustrate how teaching helps in these situations by the following example.

Figure 4: A barbell shaped annulus.

Example A.1. Let the true manifoldM be the blue barbell shaped annulus shown in Figure 4 with
reach τ = 0.26. Assume that the learner analyzes randomly sampled data by TDA and the teacher
knows thatM contains a 1-dim hole. Based on A(l), three distinct points are required to form a
teaching sequence for this hole. When fewer than three data points are observed by the learner, the
teacher would simply wait until more data were collected. Suppose that the learner gets three data
D1 = {a, b, c} as shown. The corresponding persistence barcode of D1 is empty for H1 (no 1-dim
loop is ever formed for any choice of ε). With D1, the teacher may teach by marking these points
sequentially as for example [a, b, c, a]. Comparing the teacher’s demonstration with the barcode, the
learner would realize thatM is homotopy equivalent to a circle and currently points gathered are not
sufficient to extract any accurate geometrical information.

Further suppose that the learner intends to estimate the geometry of M and so more points are
sampled. A given data set D is called feasible, if the learner is able to derive the true geometry ofM
from D with some ε, i.e. if there exists ε∗ < τ = 0.26 such that Uε∗(D) is homotopy equivalent to
M 5. To estimate the lower bound on size of a feasible data set, we randomly sample data sets from
M with increasing sizes and 20 simulations for each size. Empirically it shows that feasible data sets
appear only after |D| > 150 and and appears in every simulation for |D| ≥ 500.

Figure 5(i) shows the persistence barcode for a data set of size 500.6 The red bars are the longest four
intervals for H0, which reflects the number of connected components. After ε > 0.156, only one
red bar remains which indicates Uε contains a single component for any ε > 0.156. The green bars
are the intervals for H1 (ignoring intervals of length less than 0.05), which represents the number
of 1-dim holes. The top green bar spans over (0.158, 1.751) and indicates that there is a 1-dim loop
forms at ε = 0.158 and persists until ε = 1.751. The bottom green bar spans over (0.357, 1.747)
and indicates that another 1-dim loop forms at ε = 0.357 and persists until ε = 1.747. All randomly
sampled data sets of size 500 exhibit similar persistence barcode with two long intervals for H1

as shown. Focusing on the range of ε where 1-dim holes exist, on average 78% choice of ε (with
variance 0.0002) indicates two 1-dim loops over all simulations. Thus, without teaching, the learner
would likely to conclude a wrong topological information, H1(M) = Z2×Z2, with high confidence.
In contrast, with a teaching set of three points, the learner is able to not only infer the correct topology

5It is possible that Uε(D) is homotopy equivalent to M for ε > τ . However the top and the bottom of the
narrow middle part of M will be connected up in such Uε(D), which leads to wrong geometry.

6The barcode was constructed using the GUDHI library Maria et al. [2014].
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immediately after teaching but also accurately estimate the geometry ofM by focusing on Uε with
0.158 < ε < 0.357.

Figure 5(ii) plots the average learning accuracy ofM’s geometry for different types of learners. The
blue curve shows the learners with a topological teacher who are assumed to follow a Bernoulli
distribution since they are able to infer the correct geometry with every feasible data set. The orange
curve is corresponding to learners who choose ε uniformly from the interval where barcode for
H1(M) is not empty (Variances are omitted as their magnitudes are bounded above by 0.01). The
green curve shows learners, who approximateM by Uε with the most persistent homology, stay
incorrect on geometry even with increasing data size. Clearly learner’s acquisition of geometry are
accelerated by teaching topology.

(i) (ii)

Figure 5: Learning based on TDA

Persistent homology has started to attract attention in machine learning Carlsson et al. [2008], Chazal
et al. [2013], Li et al. [2014], Reininghaus et al. [2015]. However, levering these topological features
for learning poses considerable challenges because the relevant topological information is not carried
by the whole persistence barcode but is concentrated in a small region of ε that may not be obvious
Hofer et al. [2017]. Teaching by demonstration resolves these challenges by allowing the the learner to
extract the most suitable topological information after the correct homology appears in the persistence
barcode, and zooming the analysis ofM’s geometry into the most appropriate range of ε with high
data efficiency.

More importantly, teaching by demonstration allows accumulation of information across learners,
whereas other forms of teaching can only transmit information from an already knowledgeable teacher.
As pointed out in Sec 3.1, the method of teaching by sampling points essentially assumes that the
teacher knows the true manifoldM. However, given the intractability of manifold learning in general,
there is no plausible way for the teacher to have access toM. On such accounts, teaching does not
resolve the true challenge of learning and instead passes off the problem to a teacher for whom the
learning problem does not exist. The key advantage of teaching from demonstrations is that it allows
the teacher to convey critical information ofM without knowing the entire manifold. For example,
letM be a torus as in Figure (b) with r1 << r2. The teacher may only have enough observations to
conclude that there is a loop homotopy equivalent to the green circle l2. With sequential data, the
teacher could easily pass the only loop l2 he observed, which allows the learner to focus on the region
of ε where l2 exists.

In addition, from a teacher’s perspective, much less data is needed to learn the topology of an irregular
manifold M than its geometry. For instance, let M be the 1-dim manifold shown in Figure (c).
Denote the reach ofM by τ and the radius of the left arc inM by r. Note that the teacher only
needs r-dense data to learn the topology of M, whereas τ -dense data to learn the geometry. In
fact, for any manifoldM, we may define its topological reach η to be the largest number such that
Uε(M) is homotopy equivalent toM for any ε ≤ η, where Uε(M) = ∪{p∈M}Bε(p). According
to Proposition 3.2 in Niyogi et al. [2008], for the same confidence level, points needed to achieve
ε-dense is polynomial increasing with 1/ε. Therefore whenM is irregular, i.e. τ is significantly less
than η, the amount of data needed to achieve η-dense is much fewer than τ -dense. Since the topology
of Uε(M) remains the same for data beyond η-dense, it requires much less data to learn the topology
of an irregular manifold than its geometry.
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