LEARNING A LINEAR DELAY SURROGATE MODEL FOR TIMING-DRIVEN CHIP GLOBAL PLACEMENT

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031

032033034

035

037

040

041

042

043

044

046

047

048

049

051

052

Paper under double-blind review

ABSTRACT

Timing-driven global placement (GP) is a critical step in chip physical design, where the objective is to determine the physical locations of millions of cells to optimize signal delays and satisfy timing constraints. Existing GP algorithms commonly rely on gradient-based optimization, which requires the placement objective to be differentiable with respect to cell coordinates. However, timing evaluation—particularly the delay computation—is inherently complex and typically non-differentiable, making it difficult to integrate into gradient-based GP algorithms. To address this challenge, we propose LiTPlace, a Learning-based Timing-driven global placement framework, which learns a differentiable surrogate model to predict signal delays for timing-aware gradient-based optimization. To the best of our knowledge, the application of machine learning (ML) in timingdriven GP remains underexplored in previous works. At the core of LiTPlace is a graph neural network (GNN) inspired by the signal propagation in chip circuits, which predicts signal delays based on the netlist graph structure and the placement geometry. To ensure compatibility with gradient-based optimization, we design the GNN architecture so that its output is approximately a linear function of a set of geometric distance statistics, enabling efficient and stable gradient computation with respect to cell coordinates. Experiments on 28 chip designs from widely used benchmarks demonstrate that LiTPlace significantly improves timing quality, achieving an average improvement of 19.2% in TNS and 7.7% in WNS, which are two key metrics to quantify the chip timing quality.

1 Introduction

Electronic Design Automation (EDA) tools are crucial in modern chip design, enabling designers to manage the growing complexity and scale of integrated circuits (MacMillen et al., 2000; Markov et al., 2012). A central goal across the EDA workflow is to optimize physical and performance metrics, among which **timing performance** is especially critical, as it determines the maximum operating frequency and reflects whether signals propagate reliably within required timing constraints (Rabaey et al., 2002; Wang et al., 2009). While multiple design stages—such as logic synthesis, clock tree synthesis (CTS), and routing—affect timing, the **placement** stage plays a particularly pivotal role. It determines the physical locations of millions of chip components—including standard cells and macros—which directly affect the signals paths and propagation delays. Suboptimal placement can lead to late-arriving signals that violate timing constraints, thus causing functional failures. Therefore, timing-driven placement is a fundamental task in the EDA workflow (Wang et al., 2024b; Xue et al., 2025; Geng et al., 2025). Placement is typically divided into three stages: macro placement (MP), **global placement (GP)**, and **detailed placement (DP)**. MP arranges large functional blocks called macros; GP determines approximate locations for a large amount of standard cells; and DP fine-tunes these locations to meet strict design rules. Among these, GP is the first stage to perform full-chip placement and has the most substantial influence on the overall timing performance (Cheng et al., 2018; Shi et al., 2025; Fu et al., 2024).

Despite its importance, **timing-driven global placement** (**GP**) remains challenging due to its large scale, continuous search space, and the difficulty of integrating accurate timing evaluation into the optimization loop. As shown in Figure 1, GP involves positioning millions of standard cells on a chip layout, resulting in an extremely enormous and continuous design space. To handle this, existing GP algorithms primarily rely on **gradient-based optimization**, which iteratively updates cell coordinates

Figure 1: Comparison between macro placement (MP) and global placement (GP).

based on gradients of a differentiable placement objective (Lin et al., 2019; 2020; Gu et al., 2020; Liao et al., 2022). However, incorporating timing evaluation into such optimization is nontrivial, as timing analysis—especially delay computation—is computationally expensive and does not yield gradients with respect to cell coordinates. As a result, many approaches rely on differentiable, yet heuristic surrogates, such as approximated half-perimeter wirelength (HPWL), which are empirically correlated with timing performance (Lin et al., 2019; Guo & Lin, 2022). Such gap between heuristics and actual objectives can lead to suboptimal results, highlighting an opportunity for machine learning (ML) methods to offer more accurate and differentiable surrogate models.

Recently, ML techniques have shown great success across various design stages (Chen et al., 2024), including RTL code generation and logic synthesis (Thakur et al., 2024; Wang et al., 2024a;c; Lai et al., 2025). In particular, ML-based approaches—such as reinforcement learning (RL) and black-box optimization (BBO)—have achieved promising results in MP by replacing hand-crafted heuristics with data-driven policies (Mirhoseini et al., 2021; Lai et al., 2022; 2023; Cheng & Yan, 2021; Cheng et al., 2022; Shi et al., 2023; Geng et al., 2025). However, to the best of our knowledge, the application of ML to GP remains largely underexplored, owing to the combined challenges of large scale and structural complexity.

In this paper, we propose **LiTPlace**, a **L**earning-based **T**iming-driven global placement framework. The key idea of LiTPlace is to learn a signal delay predictor that is **differentiable** with respect to cell coordinates, thus enabling timing objectives to be directly integrated into gradient-based optimization. At the core of LiTPlace is a propagation-based graph neural network (GNN) that predicts delays based on the netlist structure and placement geometry. The GNN is inspired by the way timing signals propagate through the digital circuits, so as to model delay dependencies accurately. Importantly, to ensure compatibility with gradient-based optimization, we design the GNN architecture such that its output is approximately a **linear function** of pairwise cell distance statistics¹, enabling efficient and stable gradient computation with respect to cell coordinates. We evaluate LiTPlace on two widely used benchmark suites containing 28 chip designs from diverse domains. Experiments demonstrate that LiTPlace significantly improves placement timing quality, achieving an average improvement of 19.2% in total negative slack (TNS) and 7.7% in worst negative slack (WNS), which are two key metrics to assess the chip timing performance.

2 Preliminaries

We begin by introducing some necessary background to help readers understand our task. Supplemental background is in Appendix A, and a discussion of related work is in Appendix B.

2.1 Basics of Chip Design

A digital chip mainly consists of two types of components: **cells** and **macros**. **Cells** are the basic building blocks of the chip circuit. Cells include *registers*, which store signals, and *logic gates*, which perform logical operations on signals. **Macros** are large, pre-designed modules made up of many cells, and they typically implement more complex logic relationships. Each component contains a set of **pins**, which serve as connection points for signal transmission. Pins are categorized into *input pins*, which receive signals from upstream components, and *output pins*, which send signals to downstream components. **Nets** represent connections of pins across components, allowing signals to propagate across the circuit. Each net includes one output pin (called *driver pin*) to send the signal onto the net, and one or more input pins (called *load pins*) that receive the signal. Figure 2(a) illustrates these basic concepts. When the chip operates, signals are launched from input pins, propagate through a

¹Here, "linear" is an approximate description to aid understanding. Precise formulation is in Theorem 1.

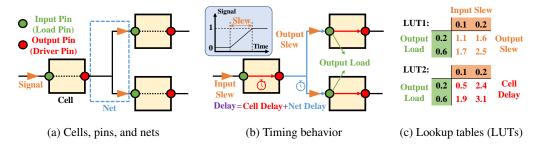


Figure 2: Illustrations of basic concepts in timing-driven global placement.

chain of cells and nets, and eventually arrive at output pins. To ensure correct functionality, these signals must arrive at their destinations within specified time constraints. This leads to the concept of **timing performance**, which measures how well a chip ensures that signals arrive on time.

Key concepts related to timing performance include: **delay**, **arrival time**, **slack**, **worst negative slack** (**WNS**), and **total negative slack** (**TNS**), which are illustrated in Figure 2(b). **Delay** refers to the time a signal takes to travel from one pin to another. It can be categorized into *cell delay*—the delay from an input pin to an output pin within the same cell—and *net delay*—the delay from the output pin of one cell to the input pin of another cell via a connecting net. **Arrival time** is the time a signal takes to reach its destination. It is computed by accumulating delays along its propagation path. **Slack** refers to the difference between the required and the actual arrival time. A negative slack indicates a timing violation. Two standard metrics derived from slack are commonly used to evaluate chip timing performance: **worst negative slack** (**WNS**) that pinpoints the most severe timing violation in the design, and **total negative slack** (**TNS**) that sums all negative slacks across the circuit. Smaller magnitudes of WNS and TNS (i.e., values closer to zero) indicate better timing performance.

2.2 STATIC TIMING ANALYSIS

Static Timing Analysis (STA) is a standard method to estimate the timing behavior of digital circuits (Bhasker & Chadha, 2009). It typically proceeds in three steps: (1) computing delays, (2) calculating signal arrival times based on delays, and (3) verifying whether these arrival times meet required timing constraints.

Computing the delay is a critical yet timing-consuming step in STA, which relies on a timing model provided by a .lib file. This file, as a key part of the technology library, is supplied by the technology provider (i.e., the foundry) and specifies the functional and timing characteristics of each standard cell. In post-placement STA, **net delay** is relatively straightforward to estimate. It primarily depends on the physical length and topology of the net, as well as the total **capacitance** of the **load pins**. These pin capacitance values are provided in the .lib file. In contrast, the **cell delay** is more complex to compute. It depends on two key factors: the **input slew** and the **output load**. The **slew** describes how quickly a signal transitions from low to high (or vice versa). The **output load** is the total capacitance seen at the output pin, determined by the layout of the connecting net and the downstream load pins. Each cell receives an input slew and generates an output slew, which is affected by the output load imposed by the connected net and its load pins.

Given the aforementioned two inputs, the STA engine uses pre-characterized Look-Up Tables (LUTs) in the .lib file to obtain the corresponding output slew and cell delay, as illustrated in Figure 2(c). The values are obtained via bilinear interpolation from discrete LUT entries. The output slew then propagates forward as the input slew to the next cell. This forward-propagation process continues across the circuit, allowing STA to recursively compute delays throughout the netlist.

2.3 GLOBAL PLACEMENT

Global placement (GP) is a core stage in chip physical design. In this stage, the positions of macros are fixed, and the task is to determine the locations of standard cells on the chip canvas, subject to constraints such as non-overlap, while optimizing the overall timing performance.

GP is typically formulated as a continuous optimization problem and then solved by gradient-based methods (Lin et al., 2019; 2020; Gu et al., 2020; Liao et al., 2022). The objective is reformulated as to minimize the overall wirelength, based on the heuristic that shorter interconnects generally lead to lower sinal delays and improved timing performance. Since routing has not yet been performed at this stage, the actual wirelength is unavailable. Instead, a widely adopted surrogate is the **half-perimeter wirelength** (**HPWL**), defined as the sum of the horizontal and vertical spans of the bounding box enclosing all pins of a net. HPWL is favored for its simplicity and empirical effectiveness in approximating wirelength. The global placement problem is then often relaxed into the following optimization problem:

$$\min_{(\boldsymbol{x},\boldsymbol{y})} \sum_{\text{net} \in \mathcal{N}} \tilde{W}_{\text{net}}(\boldsymbol{x},\boldsymbol{y}) + \lambda \cdot D(\boldsymbol{x},\boldsymbol{y}), \tag{1}$$

where (x, y) denotes the coordinates of all cells, \mathcal{N} is the set of nets, \tilde{W}_{net} represents a smoothed approximation of HPWL for each net, D is a density penalty term that discourages overlap, and λ is a hyperparameter. Both terms are designed to be differentiable with respect to the coordinates x and y, allowing the use of gradient-based methods to directly optimize x and y.

3 MOTIVATION

To incorporate timing optimization into global placement, a natural idea is to replace the expensive and non-differentiable delay estimation in STA with a lightweight, differentiable surrogate model. Specifically, we seek to learn a predictor $f_{\theta}(\mathcal{G}; x, y)$ that estimates signal delays based on the netlist \mathcal{G} and cell coordinates (x, y), while remaining differentiable with respect to x and y. This allows the surrogate to be directly integrated into gradient-based placement optimization. However, using raw coordinates x and y as model inputs introduces unnecessary complexity and sensitivity to global shifts. A key observation is that the delays are primarily governed by the **relative positions** of pins, specifically, the pairwise distances between pins. Motivated by this, we reformulate the delay predictor to take as input the pairwise distances d between cells, yielding a model $f_{\theta}(\mathcal{G}; d)$ that captures the most relevant geometric features while preserving differentiability. Yet, two technical questions remain . (1) How can we effectively model delay dependencies across the netlist to achieve accurate delay prediction? (2) How can we design the predictor architecture to support efficient gradient computation with respect to the pairwise distances d?

- (1) Capturing Delay Dependencies via Propagation-Based Graph Neural Network —As discussed in Section 2.2, STA performs delay computation through a forward propagation process, where the delay at each pin depends on the slews of its upstream nodes. To model this dependency, we design a propagation-based graph neural network (GNN), denoted as $\text{GNN}_{\theta}(\mathcal{G}; d)$, which simulates the signal timing propagation along the netlist. The GNN processes the circuit graph in topological order, passing messages from upstream to downstream nodes. By aligning the message-passing dynamics with the actual signal flow, this architecture accurately models timing dependencies across the circuit.
- (2) Enabling Efficient Gradient Computation via Linear Propagation While the propagation-based GNN can effectively model delay behavior, integrating it into a gradient-based placement framework introduces new challenges. In general, GNNs are structurally deep and complex. Computing the gradients $\nabla_{\boldsymbol{a}} \text{GNN}_{\boldsymbol{\theta}}(\mathcal{G}; \boldsymbol{d})$ typically requires full backpropagation through multiple message-passing layers, which can be both computationally expensive and potentially unstable during optimization. To address this, we design the GNN architecture such that the predicted delays are, *loosely speaking*, linear with respect to the input distances \boldsymbol{d} . This linearity is preserved even through multiple message-passing layers, as **the composition of linear operations remains linear**². As a result, the gradients $\nabla_{\boldsymbol{d}} \text{GNN}_{\boldsymbol{\theta}}(\mathcal{G}; \boldsymbol{d})$ can be computed analytically and efficiently, enabling efficient and stable integration into the gradient-based placement frameworks.

4 METHODOLOGY

This section presents our proposed approach, LiTPlace. An overview of LiTPlace is illustrated in Figure 3. In Section 4.1, we introduce the graph representation of the circuit netlist. Then,

²We refer to Theorem 1 for the formal definition of such approximate linearity.



Figure 3: **Overview of LiTPlace.** (a) We represent the circuit netlist as as a DAG $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{F})$, which is partitioned into topological levels reflecting the signal propagation order. (b) We use a propagation-based GNN to predict edge delays. At each level, we use layout-independent features to generate coefficients for a linear function that combines the previous node representations and geometric distance statistics to produce the edge representations. The propagation process iterates by alternately updating edge and node representations in a level-wise manner. (c) We train the GNN model to predict edge delays in a supervised manner. (d) During timing-driven global placement, the predicted delays are incorporated into the optimization objective. Thanks to the model's linear structure, gradients with respect to cell coordinates can be computed efficiently.

Section 4.2 details the architecture of our delay prediction model. Finally, in Section 2.3, we describe how the learned delay predictor is integrated into gradient-based placement optimization. More implementation details can be found in Appendix C.

4.1 GRAPH REPRESENTATION AND TOPOLOGICAL LEVEL

As shown in Figure 3(a), we represent the circuit netlist as a directed acyclic graph (DAG), denoted as $\mathcal{G}=(\mathcal{V},\mathcal{E},\mathcal{F})$, where each node $v\in\mathcal{V}$ corresponds to an input pin, and each edge $e\in\mathcal{E}$ represents a signal connection between two pins. An edge e=(u,v) is added if a signal is propagated from an input pin u, through a cell and its connecting net, to the input pin v of a downstream cell. Each edge is then associated a delay, i.e., the sum of a cell delay (the delay from an input pin to the output pin within the cell) and a net delay (the delay from the output pin to the next cell's input pin via the net). We refer to this combined delay as an edge delay. Our objective is to predict the edge delay y_e for each edge $e\in\mathcal{E}$, formulated as a supervised edge-level regression problem. For a given layout, each edge e=(u,v) is also associated with a distance $d_e=d(u,v)$, i.e., the distance between the two associated input pins in the layout. We denote the concatenation of all such distances as d.

We annotate the graph with timing-relevant features \mathcal{F} on both nodes and edges. Each node is assigned attributes including the pin capacitance, in-degree, and out-degree within the DAG. Each edge is assigned features derived from the standard cell it passes through. Specifically, we extract the corresponding Look-Up Tables (LUTs) from the .lib file, and apply principal component analysis (PCA) to embed them into low-dimensional feature vectors.

We then introduce some structural notations over the DAG. The **topological level** of a node or an edge is defined as the maximum number of hops from any source node (i.e., a node with zero in-degree). We use $\mathcal{V}^{(l)}$ and $\mathcal{E}^{(l)}$ to denote the sets of nodes and edges at topological level l, respectively. For each node $u \in \mathcal{V}$, we define its predecessor and successor neighborhoods as $\mathcal{N}^-(u) = \{v \mid (v,u) \in E\}$ and $\mathcal{N}^+(u) = \{v \mid (u,v) \in E\}$, respectively. Additional details can be found in Appendix C.1.

4.2 Propagation-Based GNN for Edge Delay Prediction

Based on the graph representation introduced in Section 4.1, we can employ a propagation-based graph neural network (GNN) to predict the edge delay y_e for each edge $e \in \mathcal{E}$. The GNN takes two types of inputs: (1) the netlist structure \mathcal{G} , which is layout-independent, and (2) the pairwise pin distances d for given layouts. The prediction process is then formulated as:

$$\hat{\mathbf{y}} = \text{GNN}_{\boldsymbol{\theta}}(\mathcal{G}; \boldsymbol{d}), \tag{2}$$

where $\hat{y} \in \mathbb{R}^{|\mathcal{E}|}$ denotes the predicted edge delays.

Our GNN architecture is illustrated in Figure 3(b). It is inspired by the forward propagation mechanism in STA. Following the topological level order, the GNN performs message passing from source nodes to leaf nodes, and sequentially compute the node and edge representations. At each level $l \in \{0,1,\ldots,L\}$, we denote the node representation as $\boldsymbol{h}_u^{(l)} \in \mathbb{R}^k$ for each $u \in \mathcal{V}^{(l)}$, and the edge representation as $\boldsymbol{h}_e^{(l)} \in \mathbb{R}^k$ for each $e \in \mathcal{E}^{(l)}$, where k is the embedding dimension. At the initial level l = 0, all node representations are initialized as zero vectors, i.e., $\boldsymbol{h}_u^{(0)} = \boldsymbol{0}$. At level l, we assume that node representations $\boldsymbol{h}_u^{(l)}$ have been computed, and we now describe how to construct edge representations $\boldsymbol{h}_e^{(l)}$ for $e = (u,v) \in \mathcal{E}^{(l)}$, and node representations $\boldsymbol{h}_v^{(l+1)}$ for the next level.

To enable accurate delay prediction, the edge representations are designed to encode timing-relevant information derived from both the netlist structure and physical layout. As introduced in Section 2.2, the delays depend on multiple factors, including input slew, pin capacitance, output load, layout geometry, and the cell timing models defined by Look-Up Tables (LUTs). To model these dependencies, the representation of each edge $e=(u,v)\in\mathcal{E}^{(l)}$ is computed from the following five components:

- (1) Source node representation $h_u^{(l)}$. It encodes propagated timing signal information from upstream nodes, such as input slew. This information is essential for estimating the cell delay.
- (2) **Pooled distance statistics** \tilde{d}_e^+ . Notably, delay is influenced not only by the distance $d_e = d(u, v)$, but also by all successors of node u, which contribute to the output load and thus affect both cell and net delays. Therefore, we define the set of distances $d_u^+ = \{d(u, v') : v' \in \mathcal{N}^+(u)\}$ to capture the placement local geometry, where d(u, v') denotes the physical distance between pins u and v'. To obtain a fixed-size representation, we apply a four-dimensional pooling operator:

$$\tilde{\boldsymbol{d}}_e^+ = \left(d_e, \min(\boldsymbol{d}_u^+), \max(\boldsymbol{d}_u^+), \max(\boldsymbol{d}_u^+)\right)^\top. \tag{3}$$

- (3) Source node feature vector f_u . It includes pin-level attributes of node u, such as capacitance, in-degree, and out-degree, which are relevant for estimating cell behavior.
- (4) **Edge feature vector** f_e . It contains timing-related features of edge e, specifically the PCA-compressed LUT embeddings used to model the cell delay and output slew.
- (5) **Pooled successor node feature vector** f_u^+ . We define $\mathcal{F}_u^+ = \{f_{v'} : v' \in N^+(u)\}$, which includes the features of all successor nodes and affects both cell and net delays. We aggregate these features via a sum pooling to produce a fixed-size representation:

$$f_u^+ = \sum_{f_{v'} \in \mathcal{F}_u^+} f_{v'} \tag{4}$$

We then design a mapping function ϕ_{θ} that combines these five inputs to obtain edge representations:

$$\boldsymbol{h}_{e}^{(l)} = \phi_{\boldsymbol{\theta}} \left(\boldsymbol{h}_{u}^{(l)}, \tilde{\boldsymbol{d}}_{e}^{+}; \boldsymbol{f}_{u}, \boldsymbol{f}_{e}, \boldsymbol{f}_{u}^{+} \right). \tag{5}$$

Notably, among these, the first two inputs $h_u^{(l)}$ and \tilde{d}_u^+ are **layout-dependent**, i.e., they depend on the edge distances d. The remaining three features, f_u , f_e , and f_u^+ , are **layout-independent**, as they are determined solely by the netlist itself, but not the layout. **Our key technical insight** is to ensure that ϕ_θ is **linear** with respect to the layout-dependent inputs, allowing the resulting representations to support efficient and stable gradient computation. Specifically, we compute:

$$h_e^{(l)} = A_e h_u^{(l)} + B_e \tilde{d}_e^+ + c_e,$$
 (6)

 where $A_e \in \mathbb{R}^{k \times k}$, $B_e \in \mathbb{R}^{k \times 4}$, and $c_e \in \mathbb{R}^k$ are coefficients generated by a multilayer perceptrons (MLP) conditioned on the layout-independent features:

$$\boldsymbol{A}_{e}, \boldsymbol{B}_{e}, \boldsymbol{c}_{e} = \mathrm{MLP}_{\boldsymbol{\theta}}^{(1)} \left(\boldsymbol{f}_{u}, \boldsymbol{f}_{e}, \boldsymbol{f}_{u}^{+} \right). \tag{7}$$

Once all edge representations $h_e^{(l)}$ are computed at level l, the node representations at level l+1 are obtained via mean aggregation over the incoming edges:

$$\boldsymbol{h}_{v}^{(l+1)} = \frac{1}{|\mathcal{N}^{-}(v)|} \sum_{e=(u,v)\in\mathcal{E}} \boldsymbol{h}_{e}^{(l)}.$$
 (8)

To predict the final edge delay \hat{y}_e for each e=(u,v), we employ a decoder with a similar linear structure. The decoder takes as input the same set of features used to construct the edge representation:

$$\hat{y}_e = \boldsymbol{\alpha}_e^{\top} \boldsymbol{h}_u^{(l)} + \boldsymbol{\beta}_e^{\top} \tilde{\boldsymbol{d}}_e^{+} + \gamma_e, \tag{9}$$

where $\alpha_e \in \mathbb{R}^k$, $\beta_e \in \mathbb{R}^4$, and $\gamma_e \in \mathbb{R}$ are coefficients generated by another MLP, also conditioned on layout-independent features:

$$\alpha_e, \beta_e, \gamma_e = \text{MLP}_{\boldsymbol{\theta}}^{(2)}(\boldsymbol{f}_u, \boldsymbol{f}_e, \boldsymbol{f}_u^+). \tag{10}$$

Preservation of Linearity in Propagation. A central property of our model architecture is that, loosely speaking, the predicted delay \hat{y}_e for each edge is a **linear function of layout-dependent inputs**, namely the pooled distance statistics. This structural linearity arises from our architectural design: both the edge representations $h_e^{(l)}$ and the decoder outputs \hat{y}_e are constructed as linear functions of layout-dependent variables, with coefficients entirely determined by layout-independent features. We formally state this property in the following theorem.

Theorem 1. Given a circuit netlist $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{F})$, for any topological level $l \in \mathbb{N}$ and edge $e = (u, v) \in \mathcal{E}^{(l)}$, there exists a set of vectors $\left\{ \mathbf{a}_{e,e'} \in \mathbb{R}^4 : e' \in \bigcup_{i=0}^l \mathcal{E}^{(i)} \right\}$ and a scalar bias $b_e \in \mathbb{R}$, such that for any pairwise distance configuration \mathbf{d} , the predicted delay satisfies:

$$\hat{y}_e(\boldsymbol{d}) = \sum_{e' \in \bigcup_{i=0}^l \mathcal{E}^{(i)}} \boldsymbol{a}_{e,e'}^\top \tilde{\boldsymbol{d}}_{e'}^+ + b_e, \tag{11}$$

where $\tilde{d}_{e'}^+ \in \mathbb{R}^4$ is the pooled distance statistic vector associated with edge e' (see Equation (3)).

Theorem 1 demonstrates the preservation of linearity throughout the propagation process. As a result, the gradients can be efficiently computed without backpropagating through the full GNN:

$$\nabla_{\boldsymbol{d}}\hat{y}_{e}(\boldsymbol{d}) = \sum_{e' \in \bigcup_{i=0}^{l} \mathcal{E}^{(i)}} \left(\nabla_{\boldsymbol{d}} \tilde{\boldsymbol{d}}_{e'}^{+} \right)^{\top} \boldsymbol{a}_{e,e'}, \tag{12}$$

where the coefficients $a_{e,e'}$ are layout-independent and thus can be pre-computed for any given netlist. Additional architectural details are in Appendix C.2, and the proof of Theorem 1 is in Appendix C.3.

4.3 TIMING-DRIVEN GLOBAL PLACEMENT WITH LINEAR DELAY SURROGATE

As illustrated in Figure 3(c), we train the delay surrogate to predict edge delays in a supervised manner. Training details are in Appendix C.4. Once trained, the learned model can predict delays $\hat{y}_e(d) = \text{GNN}_{\theta}(\mathcal{G}; d; e)$ for any given netlist \mathcal{G} and layout geometry d. To incorporate timing optimization into global placement, we augment the traditional objective in Equation (1) with a timing penalty term based on predicted delays, as illustrated in Figure 3(d). To better model the **critical paths**, which are the true timing bottlenecks of the design, we further design our objective to focus on the top-K timing-critical paths. Specifically, after every fixed number of optimization steps, we extract a set \mathcal{P}_K of K critical paths P with the highest cumulative predicted delays $\sum_{e \in \mathcal{E}(P)} \hat{y}_e(d)$. We restrict the timing penalty to only these paths, resulting in the following objective:

$$\min_{\boldsymbol{x},\boldsymbol{y}} \sum_{\text{net} \in \mathcal{N}} \tilde{W}_{\text{net}}(\boldsymbol{x},\boldsymbol{y}) + \lambda \cdot D(\boldsymbol{x},\boldsymbol{y}) + \mu \cdot \sum_{P \in \mathcal{P}_K} \sum_{e \in \mathcal{E}(P)} \hat{y}_e(\boldsymbol{d}),$$
(13)

where \tilde{W}_{net} is the smoothed HPWL, D is the density penalty, and λ , μ are hyperparameters.

Table 1: Comparison of TNS (×10⁵ps) and WNS (×10³ps) for global placement derived by different approaches. For both metrics, higher (closer to zero) is better. "+LiTPlace" represents integrating of our method into the baseline framework. For each comparison, the better results are highlighted in bold red. Improvement = $(S_{\text{Ours}} - S_{\text{Baseline}})/|S_{\text{Baseline}}|$, where S is TNS or WNS.

	DREAM	MPlace	+ LiT	Place	DREAM	Place 4.0	+ LiT	Place	Efficien	t-TDP	+ LiTF	lace
	TNS	WNS	TNS	WNS	TNS	WNS	TNS	WNS	TNS	WNS	TNS	WNS
superblue1	-262.44	-18.87	-173.73	-16.88	-85.03	-14.10	-95.44	-15.05	-17.44	-7.75	-12.56	-7.93
superblue3	-76.64	-27.65	-54.59	-26.80	-54.74	-16.43	-52.31	-14.12	-20.40	-11.82	-17.54	-11.02
superblue4	-290.88	-22.04	-161.21	-18.89	-144.38	-12.78	-144.88	-13.39	-82.88	-9.17	-68.49	-6.94
superblue5	-157.82	-48.92	-125.07	-38.78	-95.78	-26.76	-98.38	-25.97	-62.18	-24.65	-39.49	-22.91
superblue7	-141.55	-19.75	-122.60	-17.17	-63.86	-15.22	-55.55	-15.22	-43.52	-15.22	-49.53	-15.22
superblue10	-731.94	-26.10	-687.58	-28.71	-768.75	-31.88	-649.71	-25.13	-558.14	-23.08	-545.83	-22.53
superblue16	-453.57	-17.71	-183.71	-14.10	-124.18	-12.11	-59.03	-13.03	-22.90	-8.63	-12.55	-8.82
superblue18	-96.76	-20.29	-64.81	-12.08	-47.25	-11.87	-42.99	-11.76	-16.16	-6.92	-13.92	-5.86
Improvement	-	-	30.0%	14.1%	-	-	9.7%	2.5%	-	-	17.9%	6.4%

Thanks to the linear structure of our GNN architecture, as illustrated in Theorem 1, each predicted delay $\hat{y}_e(d)$ can be viewed as a linear function (with a biased term) of distance statistics $\tilde{d}_{e'}^+$. Consequently, the additional timing penalty is also a linear function, with coefficients determined solely by layout-independent features. We further provide an efficient procedure to pre-compute these coefficients in $\mathcal{O}(|\mathcal{E}|)$ time, as detailed in Algorithm 1, Appendix C.5. Once computed, the gradients can be efficiently obtained as shown in Equation (12), without backpropagating through the GNN. This enables efficient integration of timing objectives into gradient-based placement with negligible additional backpropagation cost. More implementation details can be found in Appendix C.5.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks We evaluate LiTPlace on two benchmark suites: ICCAD2015 and ChiPBench. ICCAD2015 (Kim et al., 2015) originates from the timing-driven placement contest at ICCAD 2015 and includes eight large-scale circuits, containing up to more than one million standard cells. It is widely used for evaluating timing performance in both macro and global placement tasks. ChiPBench (Wang et al., 2024b) is a more recent and comprehensive benchmark suite for placement algorithms, which includes 20 circuits from diverse application domains, covering a broad range of design sizes and complexity levels. Detailed statistics for both suites are provided in Appendix D.1.

Baselines As a general-purpose timing surrogate, LiTPlace can be integrated into existing gradient-based global placement (GP) frameworks as a plug-in objective term. We evaluate its effectiveness by incorporating it into three representative frameworks: **DREAMPlace** (Lin et al., 2019), **DREAMPlace** 4.0 (Liao et al., 2022), and **Efficient-TDP** (Shi et al., 2025). DREAMPlace is one of the most widely used open-source GP frameworks, which accelerates placement via GPU-based gradient descent. DREAMPlace 4.0 is an updated version of DREAMPlace, which extends this framework by periodically invoking STA to reweight nets for timing optimization. Efficient-TDP represents a recent state-of-the-art (SOTA) timing-driven GP method that identifies and optimizes critical paths through periodic STA analysis.

Evaluation Metrics In our experiments, we fix the positions of macros as provided in the benchmarks, and optimize the positions of cells. We report two standard timing metrics: **worst negative slack (WNS)** and **total negative slack (TNS)**, as introduced in Section 2.1. These metrics reflect the worst-case and cumulative timing violations, respectively, and are commonly used to assess timing performance. We use OpenTimer (Huang & Wong, 2015) for ICCAD2015 and OpenSTA (OpenSTA, 2023) for ChipBench to evaluate the timing performance.

Training and Inference As ICCAD2015 and ChiPBench have different technologies, we train a surrogate model for each benchmark suite. Each model is trained on a subset of circuits and evaluated on the full suite. For ICCAD2015, we use 4 circuits for training, 2 for validating, and 2 for zero-shot test. For ChiPBench, we use 12 circuits for training, 4 for validation, and 4 for zero-shot test. All splits are random. To construct training data, we generate three different placements per training/validation circuit using DREAMPlace, and use OpenSTA to extract delays. This produces

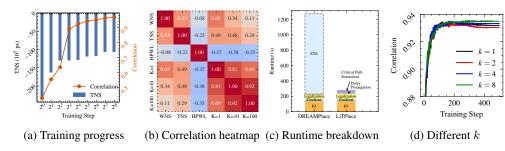


Figure 4: Results of analytical experiments.

approximately 1.2 million training samples for ICCAD2015 and 3.2 million for ChiPBench, demonstrating the data efficiency of our approach. Each trained predictor is then tested on all circuits, including those unseen during training. Additional setup details are in Appendix D.2.

5.2 MAIN RESULTS

Table 1 reports the TNS and WNS of different GP methods on ICCAD2015. The results show that LiTPlace consistently outperforms the baseline methods across most designs, with average improvements of 19.2% in TNS and 7.7% in WNS. More detailed results and the results on ChiPBench are in Appendix E.1. The visualizations of final placement outcomes are in Appendix E.2.

5.3 Analysis

Correlation Analysis (1) Table 2 reports the prediction accuracy of trained models on the training set, unseen edges in trained layouts, unseen layouts of trained designs, and entirely unseen designs, where the accuracy is measured by the Pearson correlation coefficient between predicted values and ground-truth. The results show that

Table 2: Correlation coefficient.

	ICCAD2015	ChiPBench
Training Set	0.974	0.921
Unseen Edges	0.967	0.924
Useen Layouts	0.969	0.922
Unseen Designs	0.932	0.908

the model achieves high predictive accuracy and generalizes well even to unseen design instances. (2) Figure 4(a) presents the progression of the correlation coefficient during training, along with the corresponding TNS of the models at different training steps. The trends show that improving prediction accuracy indeed leads to better placement performance. (3) Figure 4(b) presents a correlation heatmap of metrics including TNS, WNS, HPWL, and the predicted total delay on selected K critical paths, i.e., the additional timing term introduced in Equation (13). The results indicate that our timing term is more strongly correlated with TNS and WNS than HPWL. (4) These findings validate that the learned surrogate not only predicts delay accurately but also contributes directly to improving final placement quality. Additional training curves and detailed analyses are in Appendix E.3.

Placement Runtime Breakdown Figure 4(c) shows the placement runtime breakdown, indicating that the additional time introduces by our method, i.e., delay propagation and critical path extraction, is negligible, especially when compared with the extensive time required for STA.

Ablation Study As shown in Figure 4(d), setting the representation dimension as k=1 is sufficient to achieve strong performance. This result is intuitive, because node and edge representations are primarily used to propagate timing-related information, and the key signal for delay computation is slew, which is indeed a scalar. We thus adopt k=1 in main experiments for better efficiency. More ablation studies on different design choices are in Appendix E.4. Hyperparameter analysis results are in Appendix E.5. More discussions are in Appendix F.

6 Conclusion

This paper presents LiTPlace, a learning-based timing-driven global placement framework. At its core is a propagation-based GNN that serves as a differentiable surrogate model for predicting edge delays. The GNN architecture is carefully designed to enable efficient gradient computation with respect to cell coordinates, allowing seamless integration into gradient-based placement frameworks.

ETHICS STATEMENT

This paper proposes a new algorithm for chip placement. We do not foresee any direct, immediate, or negative societal impacts of our research. We ensure that this work adheres to the ICLR Code of Ethics (https://iclr.cc/public/CodeOfEthics).

REPRODUCIBILITY STATEMENT

All the results in this work are reproducible. We provide implementation details in Appendix C and experimental details in Appendix D to reproduce the results. Moreover, we will release our code once the paper is accepted for publication.

REFERENCES

- Jayaram Bhasker and Rakesh Chadha. Static timing analysis for nanometer designs: A practical approach. Springer Science & Business Media, 2009.
- Michael Burstein and Mary N Youssef. Timing influenced layout design. In 22nd ACM/IEEE Design Automation Conference, pp. 124–130. IEEE, 1985.
- H Chang, Eugene Shragowitz, Jian Liu, Habib Youssef, Bing Lu, and Suphachai Sutanthavibul. Net criticality revisited: An effective method to improve timing in physical design. In *Proceedings of the 2002 international symposium on Physical design*, pp. 155–160, 2002.
- Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and Shu-Wei Wu. B*-trees: A new representation for non-slicing floorplans. In *Proceedings of the 37th Annual Design Automation Conference*, pp. 458–463, 2000.
- Lei Chen, Yiqi Chen, Zhufei Chu, Wenji Fang, Tsung-Yi Ho, Yu Huang, Sadaf Khan, Min Li, Xingquan Li, Yun Liang, et al. The dawn of ai-native eda: Promises and challenges of large circuit models. *arXiv preprint arXiv:2403.07257*, 2024.
- Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen Chang. Ntuplace3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density constraints. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 27 (7):1228–1240, 2008.
- Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. Replace: Advancing solution quality and routability validation in global placement. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 38(9):1717–1730, 2018.
- Ruoyu Cheng and Junchi Yan. On joint learning for solving placement and routing in chip design. *Advances in Neural Information Processing Systems*, 34:16508–16519, 2021.
- Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-gradient placement and generative routing neural networks for chip design. *Advances in Neural Information Processing Systems*, 35:26350–26362, 2022.
- Amit Chowdhary, Karthik Rajagopal, Satish Venkatesan, Tung Cao, Vladimir Tiourin, Yegna Parasuram, and Bill Halpin. How accurately can we model timing in a placement engine? In *Proceedings of the 42nd annual Design Automation Conference*, pp. 801–806, 2005.
- AE Dunlop, VD Agrawal, DN Deutsch, MF Jukl, P Kozak, and M Wiesel. Chip layout optimization using critical path weighting. In *Proceedings of the 21st Design Automation Conference*, pp. 133–136, 1984.
- Hans Eisenmann and Frank M Johannes. Generic global placement and floorplanning. In *Proceedings* of the 35th annual Design Automation Conference, pp. 269–274, 1998.
- Bangqi Fu, Lixin Liu, Martin DF Wong, and Evangeline FY Young. Hybrid modeling and weighting for timing-driven placement with efficient calibration. In *Proceedings of the 43rd IEEE/ACM International Conference on Computer-Aided Design*, pp. 1–9, 2024.

- Tong Gao, Pravin M Vaidya, and Chung Laung Liu. A performance driven macro-cell placement algorithm. In *DAC*, pp. 147–152, 1992.
- Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Mingxuan Yuan, Hao Jianye, Yongdong
 Zhang, and Feng Wu. Reinforcement learning within tree search for fast macro placement. In
 Forty-first International Conference on Machine Learning, 2024.
 - Zijie Geng, Jie Wang, Ziyan Liu, Siyuan Xu, Zhentao Tang, Shixiong Kai, Mingxuan Yuan, Jianye Hao, and Feng Wu. Lamplace: Learning to optimize cross-stage metrics in macro placement. In *The Thirteenth International Conference on Learning Representations*, 2025.
 - Jiaqi Gu, Zixuan Jiang, Yibo Lin, and David Z Pan. Dreamplace 3.0: Multi-electrostatics based robust vlsi placement with region constraints. In *Proceedings of the 39th International Conference on Computer-Aided Design*, pp. 1–9, 2020.
 - Zizheng Guo and Yibo Lin. Differentiable-timing-driven global placement. In *Proceedings of the* 59th ACM/IEEE Design Automation Conference, pp. 1315–1320, 2022.
 - Shinn-Ying Ho, Shinn-Jang Ho, Yi-Kuang Lin, and WC-C Chu. An orthogonal simulated annealing algorithm for large floorplanning problems. *IEEE transactions on very large scale integration* (VLSI) systems, 12(8):874–877, 2004.
 - Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, et al. Machine learning for electronic design automation: A survey. *ACM Transactions on Design Automation of Electronic Systems (TODAES)*, 26(5):1–46, 2021.
 - Tsung-Wei Huang and Martin DF Wong. Opentimer: A high-performance timing analysis tool. In 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 895–902. IEEE, 2015.
 - Michael AB Jackson and Ernest S Kuh. Performance-driven placement of cell based ic's. In *Proceedings of the 26th ACM/IEEE Design Automation Conference*, pp. 370–375, 1989.
 - Andrew B Kahng, Sherief Reda, and Qinke Wang. Aplace: A general analytic placement framework. In *Proceedings of the 2005 international symposium on Physical design*, pp. 233–235, 2005.
 - Andrew B Kahng, Jens Lienig, Igor L Markov, and Jin Hu. *VLSI physical design: from graph partitioning to timing closure*, volume 312. Springer, 2011.
 - Ateen Khatkhate, Chen Li, Ameya R Agnihotri, Mehmet C Yildiz, Satoshi Ono, Cheng-Kok Koh, and Patrick H Madden. Recursive bisection based mixed block placement. In *Proceedings of the 2004 international symposium on Physical design*, pp. 84–89, 2004.
 - Myung-Chul Kim and Igor L Markov. Complx: A competitive primal-dual lagrange optimization for global placement. In *Proceedings of the 49th Annual Design Automation Conference*, pp. 747–752, 2012.
 - Myung-Chul Kim, Natarajan Viswanathan, Charles J Alpert, Igor L Markov, and Shyam Ramji. Maple: Multilevel adaptive placement for mixed-size designs. In *Proceedings of the 2012 ACM international symposium on International Symposium on Physical Design*, pp. 193–200, 2012.
 - Myung-Chul Kim, Jin Hu, Jiajia Li, and Natarajan Viswanathan. Iccad-2015 cad contest in incremental timing-driven placement and benchmark suite. In 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 921–926. IEEE, 2015.
 - Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing. *science*, 220(4598):671–680, 1983.
 - Yao Lai, Yao Mu, and Ping Luo. Maskplace: Fast chip placement via reinforced visual representation learning. *Advances in Neural Information Processing Systems*, 35:24019–24030, 2022.
 - Yao Lai, Jinxin Liu, Zhentao Tang, Bin Wang, Jianye Hao, and Ping Luo. Chipformer: Transferable chip placement via offline decision transformer. *arXiv preprint arXiv:2306.14744*, 2023.

- Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z Pan, and Ping Luo. Analogcoder: Analog circuit design via training-free code generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 379–387, 2025.
 - Peiyu Liao, Siting Liu, Zhitang Chen, Wenlong Lv, Yibo Lin, and Bei Yu. Dreamplace 4.0: Timing-driven global placement with momentum-based net weighting. In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 939–944. IEEE, 2022.
 - Jai Ming Lin, You Yu Chang, and Wei Lun Huang. Timing-driven analytical placement according to expected cell distribution range. In *Proceedings of the 2024 International Symposium on Physical Design (ISPD 2024)*, pp. 177–184, Taipei, Taiwan, 2024. Association for Computing Machinery. doi: 10.1145/3626184.3633318.
 - Yibo Lin, Shounak Dhar, Wuxi Li, Haoxing Ren, Brucek Khailany, and David Z Pan. Dreamplace: Deep learning toolkit-enabled gpu acceleration for modern vlsi placement. In *Proceedings of the 56th Annual Design Automation Conference 2019*, pp. 1–6, 2019.
 - Yibo Lin, David Z Pan, Haoxing Ren, and Brucek Khailany. Dreamplace 2.0: Open-source gpu-accelerated global and detailed placement for large-scale vlsi designs. In 2020 China Semiconductor Technology International Conference (CSTIC), pp. 1–4. IEEE, 2020.
 - Wing K Luk. A fast physical constraint generator for timing driven layout. In *Proceedings of the 28th ACM/IEEE Design Automation Conference*, pp. 626–631, 1991.
 - Don MacMillen, Raul Camposano, D Hill, and Thomas W Williams. An industrial view of electronic design automation. *IEEE transactions on computer-aided design of integrated circuits and systems*, 19(12):1428–1448, 2000.
 - Igor L Markov, Jin Hu, and Myung-Chul Kim. Progress and challenges in vlsi placement research. In *Proceedings of the International Conference on Computer-Aided Design*, pp. 275–282, 2012.
 - Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodology for fast chip design. *Nature*, 594(7862):207–212, 2021.
 - Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. Rectangle-packing-based module placement. *Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)*, pp. 472–479, 1995. URL https://api.semanticscholar.org/CorpusID: 13916081.
 - Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. Vlsi module placement based on rectangle-packing by the sequence-pair. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 15(12):1518–1524, 1996.
 - Bernd Obermeier and Frank M Johannes. Quadratic placement using an improved timing model. In *Proceedings of the 41st annual Design Automation Conference*, pp. 705–710, 2004.
 - OpenSTA. https://github.com/The-OpenROAD-Project/OpenSTA, 2023.
 - Jan M Rabaey, Anantha P Chandrakasan, and Borivoje Nikolic. *Digital integrated circuits*, volume 2. Prentice hall Englewood Cliffs, 2002.
 - Jarrod A Roy, Saurabh N Adya, David A Papa, and Igor L Markov. Min-cut floorplacement. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 25(7):1313–1326, 2006.
- Naveed A Sherwani. *Algorithms for VLSI physical design automation*. Springer Science & Business Media, 2012.
 - Yunqi Shi, Ke Xue, Lei Song, and Chao Qian. Macro placement by wire-mask-guided black-box optimization. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
 - Yunqi Shi, Siyuan Xu, Shixiong Kai, Xi Lin, Ke Xue, Mingxuan Yuan, and Chao Qian. Timing-driven global placement by efficient critical path extraction. *arXiv* preprint arXiv:2503.11674, 2025.

- M Shunmugathammal, C Christopher Columbus, and S Anand. A novel b* tree crossover-based simulated annealing algorithm for combinatorial optimization in vlsi fixed-outline floorplans. *Circuits, Systems, and Signal Processing*, 39:900–918, 2020.
- Peter Spindler, Ulf Schlichtmann, and Frank M Johannes. Kraftwerk2—a fast force-directed quadratic placement approach using an accurate net model. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 27(8):1398–1411, 2008.
- William Swartz and Carl Sechen. Timing driven placement for large standard cell circuits. In *Proceedings of the 32nd Annual ACM/IEEE Design Automation Conference*, pp. 211–215, 1995.
- Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. *ACM Transactions on Design Automation of Electronic Systems*, 29(3):1–31, 2024.
- Dhruv Vashisht, Harshit Rampal, Haiguang Liao, Yang Lu, Devika Shanbhag, Elias Fallon, and Levent Burak Kara. Placement in integrated circuits using cyclic reinforcement learning and simulated annealing. *arXiv* preprint arXiv:2011.07577, 2020.
- Natarajan Viswanathan, Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Haoxing Ren, and Chris Chu. Rql: Global placement via relaxed quadratic spreading and linearization. In *Proceedings of the 44th annual Design Automation Conference*, pp. 453–458, 2007a.
- Natarajan Viswanathan, Min Pan, and Chris Chu. Fastplace 3.0: A fast multilevel quadratic placement algorithm with placement congestion control. In 2007 Asia and South Pacific Design Automation Conference, pp. 135–140. IEEE, 2007b.
- Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Tim Cheng. *Electronic design automation:* synthesis, verification, and test. Morgan Kaufmann, 2009.
- Zhihai Wang, Lei Chen, Jie Wang, Yinqi Bai, Xing Li, Xijun Li, Mingxuan Yuan, Jianye Hao, Yongdong Zhang, and Feng Wu. A circuit domain generalization framework for efficient logic synthesis in chip design. In *Forty-first International Conference on Machine Learning*. PMLR, 2024a.
- Zhihai Wang, Zijie Geng, Zhaojie Tu, Jie Wang, Yuxi Qian, Zhexuan Xu, Ziyan Liu, Siyuan Xu, Zhentao Tang, Shixiong Kai, et al. Benchmarking end-to-end performance of ai-based chip placement algorithms. *arXiv* preprint arXiv:2407.15026, 2024b.
- Zhihai Wang, Jie Wang, Dongsheng Zuo, Yunjie Ji, Xinli Xia, Yuzhe Ma, Jianye Hao, Mingxuan Yuan, Yongdong Zhang, and Feng Wu. A hierarchical adaptive multi-task reinforcement learning framework for multiplier circuit design. In *Forty-first International Conference on Machine Learning*. PMLR, 2024c.
- Ke Xue, Ruo-Tong Chen, Xi Lin, Yunqi Shi, Shixiong Kai, Siyuan Xu, and Chao Qian. Reinforcement learning policy as macro regulator rather than macro placer. *Advances in Neural Information Processing Systems*, 37:140565–140588, 2025.

A SUPPLEMENTAL BACKGROUND

A.1 PINS IN A CHIP

Pins serve as connection points for nets, facilitating signal transmission and communication across different design components. Pins can be broadly categorized into two types: internal pins and external pins.

Internal pins are those located on cells and macros within the chip's internal architecture. These pins are further divided into input pins and output pins. An **internal input pin** is a terminal through which a cell or macro receives signals from other components. An **internal output pin** is where a cell or macro sends out signals to other connected elements, propagating the results of internal computations or signal transformations.

External pins are positioned at the chip's boundaries, acting as interfaces between the chip and the external system environment. These pins can also be subdivided into external input pins and external output pins. An **external input pin** is where signals from external devices or circuits enter the chip. An **external output pin** is responsible for transmitting signals generated within the chip to external components.

A.2 CLOCK SIGNAL

In most circuit designs, there is a dedicated clock pin used to receive an external clock signal. The clock signal is a periodic signal that serves as a timing reference for synchronizing the operation of different parts of the circuit. A clock signal consists of repetitive cycles, each with two key transitions known as **clock edges**. The **rising edge** occurs when the signal transitions from low to high. The **falling edge** happens when the signal transitions from high to low.

In a circuit, the primary components that receive the clock signal are registers. Specifically, when a register detects a specific clock edge, it captures the current input signal and produces a new output. Besides registers, some macros within the circuit also receive the clock signal, ensuring their operations are synchronized with the rest of the design.

A.3 TIMING PATH

In a digital circuit design, a timing path is a specific trajectory that a signal travels through the circuit, governed by precise timing constraints to ensure proper operation. A timing path starts from a clearly identified point, which can be an external input pin, the clock pin of a register, or the output pin of a macro.

This starting point marks the initiation of the signal, either triggered by a clock edge or an external event. The signal then propagates through various combinatorial logic elements and interconnections, experiencing cell delays and net delays. These delays accumulate as the signal moves along the path, directly impacting its arrival time at the destination.

The timing path concludes at a specific endpoint, which can be an external output pin, the data input pin of a register, or the input pin of a macro. At this endpoint, the arrival time of the signal is measured against critical timing requirements, including setup time, hold time, etc.

Notably, the pins of a macro are considered the start or end points of timing paths because the macro is perceived as a "black box" from the perspective of external logic. Since its internal timing behavior is hidden, timing paths do not traverse through its internal logic, and timing analysis is limited to its pins.

A.4 SLACK CALCULATION IN STA

In static timing analysis (STA), the calculation of slack is a critical step in evaluating the timing performance of a digital circuit.

The **arrival time** represents the amount of time required for a signal to propagate from the starting point of the timing path to a specific point in the circuit. This includes both cell delays and net delays. On the other hand, the **required arrival time** is the maximum allowable time for the signal to reach

its destination without violating timing constraints. This is derived from the clock period, setup or hold time requirements, and any additional constraints specified during design. It defines the upper limit for signal propagation to ensure proper synchronization and prevent timing violations.

The slack is then computed as the difference between the required arrival time and the arrival time. If the slack is positive or zero, the signal reaches its destination within the acceptable timing window, indicating that the path is timing-compliant. Conversely, a negative slack value indicates a timing violation, where the signal takes longer than the permissible duration to reach its endpoint, potentially causing functional errors.

B RELATED WORK

B.1 MACHINE LEARNING FOR ELECTRONIC DESIGN AUTOMATION (ML4EDA)

The use of machine learning (ML) in electronic design automation (EDA) has been extensively studied (MacMillen et al., 2000; Markov et al., 2012; Huang et al., 2021; Chen et al., 2024). ML techniques have been applied across various stages of the design flow, including RTL code generation and logic synthesis (Thakur et al., 2024; Wang et al., 2024a;c; Lai et al., 2025). Among them, ML-based methods for macro placement (MP) have attracted particular attention and are most relevant to our work.

Some approaches treat macro placement as a black-box optimization (BBO) problem and solve it using classical meta-heuristics such as simulated annealing (SA) and evolutionary algorithms (EA) (Kirkpatrick et al., 1983; Ho et al., 2004; Murata et al., 1995; Shi et al., 2023; Sherwani, 2012; Shunmugathammal et al., 2020; Vashisht et al., 2020; Murata et al., 1996; Chang et al., 2000; Roy et al., 2006; Khatkhate et al., 2004). Recently, reinforcement learning (RL) methods have emerged, beginning with AlphaChip (Mirhoseini et al., 2021), which dirst formulates macro placement as a Markov Decision Process (MDP). DeepPR (Cheng & Yan, 2021) and PRNet (Cheng et al., 2022) further integrate placement and routing, although they do not account for clock tree synthesis (CTS) or non-overlap constraints. MaskPlace (Lai et al., 2022) introduces the concept of wiremask, later extended by (Shi et al., 2023; Geng et al., 2024) to improve placement efficiency. ChiPFormer (Lai et al., 2023) applies offline RL to reduce online training cost. LaMPlace (Geng et al., 2025) extends this idea and proposes to learn a mask for optimizing cross-stage metrics. MaskRegulate (Xue et al., 2025) proposes to use RL as a regulator to guide timing optimization. These works focus on macro placement, where the number of objects is relatively small, making it more tractable for learning-based methods. In contrast, our work addresses timing-driven GP, significantly increasing problem scale and complexity, and pushing the boundary of ML4EDA toward finer-grained placement tasks.

B.2 GLOBAL PLACEMENT

Most global placement algorithms adopt analytical methods, formulating objectives such as half-perimeter wirelength (HPWL) as differentiable functions of cell coordinates. These formulations are optimized via quadratic programming (Kahng et al., 2005; Viswanathan et al., 2007a;b; Spindler et al., 2008; Chen et al., 2008; Kim et al., 2012; Kim & Markov, 2012; Cheng et al., 2018) or direct gradient descent (Lin et al., 2019; 2020; Gu et al., 2020; Liao et al., 2022). Although highly efficient, these methods rely on heuristic proxies such as approximated HPWL, which—as shown in our experiments—may not correlate well with actual timing performance.

Since global cell distribution significantly impacts timing, timing-driven placement (TDP) extensions of analytical placers have been extensively studied, which can be broadly categorized into net-based and path-based approaches. **Net-based methods** modify net weights to guide placement toward better timing. Weight adjustment can be static or dynamically updated based on timing feedback (Burstein & Youssef, 1985; Chang et al., 2002; Dunlop et al., 1984; Eisenmann & Johannes, 1998; Obermeier & Johannes, 2004; Gao et al., 1992; Kahng et al., 2011; Luk, 1991). DREAMPlace 4.0 (Liao et al., 2022) uses a momentum-guided net-weighting scheme coupled with an on-the-fly timing engine to continuously steer placement toward timing improvement. **Path-based methods** explicitly extract timing paths and incorporate them into the optimization process, either as additional objective terms or constraints (Chowdhary et al., 2005; Jackson & Kuh, 1989; Swartz & Sechen, 1995). By maintaining an accurate path-level timing view, these methods can directly target critical-path delay reduction.

Guo & Lin (2022) propose Differentiable-TDP, a hand-crafted differentiable timing-driven framework, which approximates the STA process by manually designed differentiable proxies. Efficient-TDP (Shi et al., 2025) introduces a pin-to-pin attraction scheme that iteratively shortens distances between pins on high-slack nets, yielding substantial timing improvements with low integration overhead. However, these methods either rely on hand-craft heuristics or rely on running the STA process, which is time-consuming. To our knowledge, LiTPlace is the first to develop a learning-based, differentiable timing surrogate that can be efficiently integrated into gradient-based global placement.

Notably, Differentiable-TDP (Guo & Lin, 2022) has a similar motivation to our work. However, Differentiable-TDP still relies on hard-crafted analytical delay model. In contrast, our method is learning-based, avoiding delay-model-specific formulations and enabling adaptation to different delay models. Besides, our learning framework has the potential to be trained with post-routing timing data, which is a unique advantage. Moreover, since the differentiable STA engine in (Guo & Lin, 2022) requires full-graph propagation, it may require relatively high GPU memory demands. In contrast, we design our GNN architecture to maintain linearity, allowing us to compute gradients without backpropagating through the GNN.

C IMPLEMENTATION DETAILS

C.1 GRAPH REPRESENTATION

We represent the circuit netlist as a directed acyclic graph (DAG), where each node corresponds to an input pin, and each directed edge represents a signal propagation path defined by timing dependencies. Specifically, the graph construction process is as follows:

1. Standard Cell Modeling For standard logic cells, all *input pins* are represented as nodes in the graph. If the *output pin* o_A of a cell A is connected to an input pin i_B of another cell B, a directed edge is established from the corresponding input pin i_A of cell A to the input pin i_B of cell B.

In addition, we apply specific modeling strategies for special pins and boundary components to handle unique structural characteristics.

- External Pin Modeling. External input and output pins are also modeled as nodes. We add
 directed edges between these nodes and the connected internal cell pins according to their
 netlist connectivity.
- **Register Modeling.** For each register, we model its *clock pin (ck)* as a node in the graph. Clock signals originating from external input pins are ignored. The clock pin nodes of all registers are assigned a topological level of zero and starting points of signal propagation paths. If the *output pin* of a register connects to any standard cell input pin, we add a corresponding edge. The *input pin* of each register is also modeled as a node, serving as a terminal node with only ingoing edges but no outgoing edges. This is because input pins of registers are endpoints of timing paths.
- **Macro Modeling.** Each *pin* of a macro block is modeled as an independent node. However, no edges are created between pins within the same macro, as their internal timing structure is abstracted away at this level.
- **2. Node Features** Each node is represented by a 3-dimensional feature vector consisting of: (1) in-degree of the node, (2) out-degree of the node, and (3) the Capacitance of the corresponding pin (extracted from the .lib file).

Edge Features Each edge is represented by a 5-dimensional feature vector derived from cell timing lookup tables (LUTs) via Principal Component Analysis (PCA).

• Timing Lookup Table Structure. In a given technology library (the .lib file), each edge is associated with four timing-related lookup tables describing the delay and slew characteristics for rising and falling transitions. Each table is a two-dimensional function of two indices (e.g., input slew and output load) and contains a grid of timing values.

- For ICCAD15 circuits, each lookup table table is a 7×8 table indexed by input slew and output load, with 7+8 index numbers and 56 entry values. There are four such tables, corresponding to rise/fall and delay/slew combinations, resulting in $L=4\times(7+8+7\times8)$ values for each edge.
- For ChiPBench circuits, each lookup table table is a 7×7 table indexed by input slew and output load, with 7+7 index numbers and 49 entry values. There are four such tables, corresponding to rise/fall and delay/slew combinations, resulting in $L=4\times(7+8+7\times8)$ values for each edge.
- **Feature Extraction.** We flatten the four timing tables of each cell into a single *L*-dimensional vector. PCA is then performed across all cell types in the library, and each cell is represented by a reduced 5-dimensional feature vector. These 5-dimensional vectors are used as the edge features in our netlist graph.

C.2 3. MODEL ARCHITECTURE

 The input of $\mathrm{MLP}_{\theta}^{(1)}$ is the concatenation of f_u, f_e , and f_u^+ . The input dimensionality is therefore 3+5+3=11. It outputs a vector with dimension k^2+5k . This output vector is then partitioned into three separate components with dimensions $k^2, 4k$, and k, respectively. The first two components are further reMLPshaped into matrices of size $k\times k$ and $k\times 4$, which are used as the outputs A_e and B_e , respectively. The third component is directly used as the output c_e . Similarly, the input dimension of $\mathrm{MLP}_{\theta}^{(2)}$ is also 11, and its output is a vector of dimension k+5. This vector is divided into three parts: a vector of dimension k, a vector of dimension 4, and a scalar. These three parts are used as the outputs α_e , β_e , and γ_e , respectively. $\mathrm{MLP}_{\theta}^{(1)}$ and $\mathrm{MLP}_{\theta}^{(2)}$ both consist of four hidden layers, each containing 32 neurons. Both $\mathrm{MLP}_{\theta}^{(1)}$ and $\mathrm{MLP}_{\theta}^{(2)}$ use the ReLU activation function for non-linear transformation.

We trained models with various k settings. The results are shown in Figure 4(d) in the main text. Experimental results indicate that different values of k have a little impact on the quality of the training outcomes. In fact, this conclusion is intuitive, as the main information that affect the timing metrics of downstream cells is the slew. Slew is a scalar, which is why k=1 results in comparable results with larger k. To achieve a lightweight design, we select k=1. Then, total number of learnable parameters in our model is 7,500. Therefore, LiTPlace is very lightweight and parameter-efficient.

C.3 PROOF OF THEOREM 1

Before we prove Theorem 1, we first prove the following lemma.

Lemma 1. Given a circuit netlist $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{F})$, for any topological level $l \in \mathbb{N}$ and node $v \in \mathcal{V}^{(l)}$, there exists a set of matrices $\left\{ \mathbf{R}_{v,e'} \in \mathbb{R}^{k \times 4} : e' \in \bigcup_{i=0}^{l-1} \mathcal{E}^{(i)} \right\}$ and a vector bias $\mathbf{s}_v \in \mathbb{R}^k$, such that for any pairwise distance configuration \mathbf{d} , the node representation $\mathbf{h}_v^{(l)}$ satisfies:

$$\boldsymbol{h}_{v}^{(l)} = \sum_{e' \in \bigcup_{i=0}^{l-1} \mathcal{E}^{(i)}} \boldsymbol{R}_{v,e'} \tilde{\boldsymbol{d}}_{e'}^{+} + \boldsymbol{s}_{v}, \tag{14}$$

where $\tilde{d}_{e'}^+ \in \mathbb{R}^4$ is the pooled distance statistic vector associated with edge e' (see Equation (3)).

Proof. To prove this lemma, we employ **mathematical induction** on the topological level l.

We begin from l=0. For a node $v_0 \in \mathcal{V}^{(0)}$, we have $h_{v_0}^{(0)} = \mathbf{0}$. The conclusion holds naturally. We assume that the conclusion holds for topological level l, and we will show the conclusion for l+1.

We consider a node $v \in \mathcal{V}^{(l+1)}$. For any edge $e = (u, v) \in \mathcal{E}$, it is trivial that $e \in \mathcal{E}^{(l)}$ and $u \in \mathcal{V}^{(l)}$. According to Equation (6) and the induction assumption, we have:

$$h_{e}^{(l)} = A_{e}h_{u}^{(l)} + B_{e}\tilde{d}_{e}^{+} + c_{e} = A_{e}\left(\sum_{e' \in \bigcup_{i=0}^{l-1} \mathcal{E}^{(i)}} R_{u,e'}\tilde{d}_{e'}^{+} + s_{u}\right) + B_{e}\tilde{d}_{e}^{+} + c_{e}$$

$$= \sum_{e' \in \bigcup_{i=0}^{l-1} \mathcal{E}^{(i)}} A_{e}R_{u,e'}\tilde{d}_{e'}^{+} + A_{e}s_{u} + B_{e}\tilde{d}_{e}^{+} + c_{e} = \sum_{e' \in \bigcup_{i=0}^{l} \mathcal{E}^{(i)}} P_{e,e'}\tilde{d}_{e'}^{+} + q_{e},$$
(15)

where

$$\boldsymbol{P}_{e,e'} = \begin{cases} \boldsymbol{A}_{e} \boldsymbol{R}_{u,e'}, & e' \in \bigcup_{i=0}^{l-1} \mathcal{E}^{(i)}, \\ \boldsymbol{B}_{e}, & e' = e, \end{cases} \text{ and } \boldsymbol{q}_{e} = \boldsymbol{A}_{e} \boldsymbol{s}_{u} + \boldsymbol{c}_{e}.$$

$$\boldsymbol{O}, & e' \in \mathcal{E}^{(l)} \setminus \{e\},$$

$$(16)$$

Then, according to Equation (8), we have

$$\boldsymbol{h}_{v}^{(l+1)} = \frac{1}{|\mathcal{N}^{-}(v)|} \sum_{e=(u,v)\in\mathcal{E}} \boldsymbol{h}_{e}^{(l)} = \frac{1}{|\mathcal{N}^{-}(v)|} \sum_{e=(u,v)\in\mathcal{E}} \left(\sum_{e'\in\bigcup_{i=0}^{l} \mathcal{E}^{(i)}} \boldsymbol{P}_{e,e'} \tilde{\boldsymbol{d}}_{e'}^{+} + \boldsymbol{q}_{e} \right)$$

$$= \sum_{e'\in\bigcup_{i=0}^{l} \mathcal{E}^{(i)}} \left(\frac{1}{|\mathcal{N}^{-}(v)|} \sum_{e=(u,v)\in\mathcal{E}} \boldsymbol{P}_{e,e'} \right) \tilde{\boldsymbol{d}}_{e'}^{+} + \frac{1}{|\mathcal{N}^{-}(v)|} \sum_{e=(u,v)\in\mathcal{E}} \boldsymbol{q}_{e}$$

$$= \sum_{e'\in\bigcup_{i=0}^{l} \mathcal{E}^{(i)}} \boldsymbol{R}_{v,e'} \tilde{\boldsymbol{d}}_{e'}^{+} + \mathbf{s}_{v},$$

$$(17)$$

where

$$\mathbf{R}_{v,e'} = \frac{1}{|\mathcal{N}^{-}(v)|} \sum_{e=(u,v)\in\mathcal{E}} \mathbf{P}_{e,e'}, \quad \forall e' \in \bigcup_{i=0}^{l} \mathcal{E}^{(i)}, \quad \text{and}$$

$$\mathbf{s}_{v} = \frac{1}{|\mathcal{N}^{-}(v)|} \sum_{e=(u,v)\in\mathcal{E}} \mathbf{q}_{e}.$$
(18)

According to mathematical induction, the proof of Lemma 1 is completed.

Theorem 1. Given a circuit netlist $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{F})$, for any topological level $l \in \mathbb{N}$ and edge $e = (u, v) \in \mathcal{E}^{(l)}$, there exists a set of vectors $\left\{ \mathbf{a}_{e,e'} \in \mathbb{R}^4 : e' \in \bigcup_{i=0}^l \mathcal{E}^{(i)} \right\}$ and a scalar bias $b_e \in \mathbb{R}$, such that for any pairwise distance configuration \mathbf{d} , the predicted delay satisfies:

$$\hat{y}_e(\mathbf{d}) = \sum_{e' \in \bigcup_{i=0}^l \mathcal{E}^{(i)}} \mathbf{a}_{e,e'}^\top \tilde{\mathbf{d}}_{e'}^+ + b_e, \tag{11}$$

where $\tilde{d}_{e'}^+ \in \mathbb{R}^4$ is the pooled distance statistic vector associated with edge e' (see Equation (3)).

Proof. According to Lemma (1), we can write

$$\boldsymbol{h}_{u}^{(l)} = \sum_{e' \in \bigcup_{i=0}^{l-1} \mathcal{E}^{(i)}} \boldsymbol{R}_{u,e'} \tilde{\boldsymbol{d}}_{e'}^{+} + \boldsymbol{s}_{u}$$
(19)

for some $oldsymbol{R}_{u,e'} \in \mathbb{R}^{k imes 4}$ and $oldsymbol{s}_u \in \mathbb{R}^k$.

According to Equation (9), we have

$$\hat{y}_e = \boldsymbol{\alpha}_e^{\top} \boldsymbol{h}_u^{(l)} + \boldsymbol{\beta}_e^{\top} \tilde{\boldsymbol{d}}_e^{+} + \gamma_e = \boldsymbol{\alpha}_e^{\top} \left(\sum_{e' \in \bigcup_{i=0}^{l-1} \mathcal{E}^{(i)}} \boldsymbol{R}_{u,e'} \tilde{\boldsymbol{d}}_{e'}^{+} + \boldsymbol{s}_u \right) + \boldsymbol{\beta}_e^{\top} \tilde{\boldsymbol{d}}_e^{+} + \gamma_e$$
(20)

$$= \sum_{e' \in \bigcup_{i=0}^{l-1} \mathcal{E}^{(i)}} \left(\mathbf{R}_{u,e'}^{\top} \boldsymbol{\alpha}_e \right)^{\top} \tilde{\mathbf{d}}_{e'}^{+} + \boldsymbol{\alpha}_e^{\top} \boldsymbol{s}_u + \boldsymbol{\beta}_e^{\top} \tilde{\mathbf{d}}_e^{+} + \gamma_e$$
 (21)

$$= \sum_{e' \in \bigcup_{i=0}^{l} \mathcal{E}^{(i)}} \mathbf{a}_{e,e'}^{\top} \tilde{\mathbf{d}}_{e'}^{+} + b_{e}, \tag{22}$$

where

$$\boldsymbol{a}_{e,e'} = \begin{cases} \boldsymbol{R}_{u,e'}^{\top} \boldsymbol{\alpha}_e, & e' \in \bigcup_{i=0}^{l-1} \mathcal{E}^{(i)}, \\ \boldsymbol{\beta}_e, & e' = e, \\ \boldsymbol{0}, & e' \in \mathcal{E}^{(l)} \setminus \{e\}, \end{cases}$$
 and $\boldsymbol{b}_e = \boldsymbol{\alpha}_e^T \boldsymbol{s}_u + \gamma_e.$ (23)

This completes the proof.

C.4 TRAINING THE PREDICTOR

To train the predictor, we construct a dataset \mathcal{D} using a collection of C chip netlists $\{\mathcal{G}_c(\mathcal{V}_c,\mathcal{E}_c,\mathcal{F}_c)\}_{c=1}^C$. For each netlist, we generate a set of M diverse layouts $\{X_{c,m}\}_{m=1}^M$ using DREAMPlace. To avoid same layouts and keep diversity, we first run DREAMPlace to generate one layout, after which we randomly fix a subset of cells and then run DREAMPlace to complete the layout.

Next, we compute the delay corresponding to each edge using an EDA timing analysis tool, resulting in delay vectors $y_{c,m} = \text{DelayCalc}(\mathcal{G}_c, X_{c,m})$, where each entry represents the delay between the pair of input pins connected by the corresponding edge.

This yields the final dataset:

$$\mathcal{D} = \{ (\mathcal{G}_c, \mathbf{X}_{c,m}, \mathbf{y}_{c,m}) | c \in [C], m \in [M] \}.$$
(24)

For each netlist \mathcal{G}_c and layout $X_{c,m}$, the predicted delay vector is given by

$$\hat{\boldsymbol{y}}_{c,m} = \text{GNN}_{\boldsymbol{\theta}}(\mathcal{G}_c, \boldsymbol{d}(\mathcal{G}_c, \boldsymbol{X}_{c,m})), \tag{25}$$

where $d(\mathcal{G}_c, X_{c,m})$ represents the vector of pairwise pins distances for all edges in \mathcal{G}_c under layout $X_{c,m}$. We use the MSE loss to train the predictor:

$$\mathcal{L} = \frac{1}{CM} \sum_{c,m} \frac{1}{|\mathcal{E}_c|} \left\| \hat{\boldsymbol{y}}_{c,m} - \boldsymbol{y}_{c,m} \right\|^2, \tag{26}$$

where $\|\cdot\|$ represents the Euclidean norm, i.e., the ℓ_2 norm.

Notably, each edge in the netlist graph, under a specific layout, is assigned a label via EDA timing analysis tool. This layout-dependent, edge-level supervision offers fine-grained labels, resulting in high data efficiency per layout instance.

More experimental settings and details can be found in Appendix D.

C.5 TIMING-AWARE GLOBAL PLACEMENT WITH TRAINED DELAY PREDICTOR

To effectively incorporate predicted timing information into the global placement process, we propose an efficient integration pipeline that leverages our trained delay predictor to guide cell placement toward timing-aware solutions. The core idea is to augment the traditional wirelength-based objective with a predicted total path delay term, updated periodically throughout placement.

Before placement begins, we precompute the following coefficients for each edge e, using the MLP component of our model conditioned on layout-independent features:

$$A_e \in \mathbb{R}^{k \times k}, \quad B_e \in \mathbb{R}^{k \times 4}, \quad c_e \in \mathbb{R}^k, \quad \alpha_e \in \mathbb{R}^k, \quad \beta_e \in \mathbb{R}^4, \quad \gamma_e \in \mathbb{R}.$$

As these coefficients are independent of placement coordinates, they can be treated as constants once the netlist \mathcal{G} and features \mathcal{F} are fixed, and can be reused throughout the entire placement process.

As summarized in Algorithm 2, our integration procedure consists of three key stages—delay prediction, critical path extraction, and objective function integration—which are performed in every fixed number of steps during the placement flow. Below, we elaborate on each stage in detail.

1027 1028 1029

1030 1031

1032 1033 1034

1035 1036

1037 1039

1040

1041

1043

1044 1045

1046

1047 1048

1049

1050 1051 1052

1053 1054

1055 1056

1057 1058

1061

1062

1064

1067 1068

1069 1070

1071 1072

1074

1075

1078

1079

1. Delay Prediction and Path Extraction At specific placement iterations, we perform a full forward propagation of our trained delay model on the current layout to obtain the predicted delay for each edge in the graph. Thanks to the precomputed per-edge linear coefficients, this process only requires evaluating the forward propagation of a lightweight linear function, which is faster than full model inference.

Based on these delay values, we extract the top-K timing-critical paths as follows:

- We traverse the DAG in topological order and compute the predicted arrival time for each node, defined as the maximum cumulative delay from any node at topological level 0 to the current node.
- We select the K nodes with the largest predicted arrival times and backtrack from each to reconstruct the corresponding critical path.
- **2. Linear Coefficient Precomputation** Once the top-K paths are identified, we compute the coefficients of the predicted total delay as a linear combination with bias. This step is performed via Algorithm 1, which operates in $\mathcal{O}(|\mathcal{E}|)$ time. Since the pre-edge linear coefficients have already been computed at initialization, the cost of this stage is minimal—especially when accelerated on GPU—and negligible compared to the critical path extraction process. We have included the runtime breakdown in the main text, demonstrating the high efficiency of our algorithm.

Algorithm 1 Precomputation of Predicted Total Delay

Require: Netlist graph G = (V, E), and for each edge $e \in E$, parameters: $A_e, B_e, c_e, \alpha_e, \beta_e, \gamma_e$ **Ensure:** The linear function (with a bias) TotalDelay of d

```
1: TotalDelay \leftarrow 0
2: for all node v \in V do
```

3: Initialize
$$s(v) \leftarrow \mathbf{0} \in \mathbb{R}^{1 \times k}$$

4: end for

5: for all edges $e^{(l)} = (u^{(l)}, v^{(l+1)}) \in E$ in reverse topological order do

6:
$$TotalDelay += oldsymbol{eta}_{e^{(l)}}^{ op} ilde{oldsymbol{d}}_{e^{(l)}}^{+} + \gamma_{e^{(l)}}$$
7: $TotalDelay += \left(s \left(v^{(l+1)}
ight)^{ op} + oldsymbol{lpha}_{e^{(l)}}
ight)^{ op} \left(B_{e^{(l)}} ilde{oldsymbol{d}}_{e^{(l)}}^{+} + c_{e^{(l)}}
ight)$

$$: \quad \boldsymbol{s}\left(u^{(l)}\right) \mathrel{+}= \left(\boldsymbol{s}\left(v^{(l+1)}\right)^{\top} + \boldsymbol{\alpha}_{e^{(l)}}\right)^{\top} A_{e^{(l)}}$$

9: end for

10: **return** *TotalDelay*

- **3. Objective Function Integration** The predicted total delay—expressed as a linear function—is incorporated into the placement objective over the following interval of iterations. To balance its influence with the wirelength objective, we adopt an adaptive gradient-based normalization strategy:
 - Compute the L₁ norm of the gradient of the predicted delay term and the wirelength term.
 - Their ratio is then multiplied by a user-defined hyperparameter η to yield the final weighting coefficient for the delay term.
 - This coefficient is recalculated every time when the critical paths are updated.
- **4. Integration Pipeline** The complete integration follows this pipeline:
 - During the early placement stage, we perform regular placement iterations without incorporating timing.
 - Starting from a specific iteration, and then at fixed intervals, we:
 - 1. Predict edge delays using our trained model.
 - 2. Extract top-K critical paths using predicted arrival times.
 - 3. Precompute the delay term as a linear function.
 - 4. Integrate this term into the placement objective using the computed scaling coefficient.

• This process repeats at each interval, ensuring dynamic timing guidance during placement refinement.

This overall pipeline is detailed in Algorithm 2.

Algorithm 2 LiTPlace Integration Pipeline

1080

1082

1084

1085

1110 1111

1112 1113

1114 1115

1116

11171118

1132

1133

```
Require: Netlist graph \mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{F}), trained delay predictor GNN_{\theta}, start iteration T_0, integration
1087
                   interval \Delta T, max iterations T_{\rm max}, top-K K, weight \eta
1088
             Ensure: Final placement X
1089
              1: Initialize X^{(0)}
1090
              2: Precompute per-edge linear coefficients: A_e, B_e, c_e, \alpha_e, \beta_e, \gamma_e for all e \in E using GNN<sub>\theta</sub>
              3: for t = 1 to T_{\text{max}} do 4: X \leftarrow X^{(t-1)}
1091
              5:
                         RunBaselinePlacementStep()
1093
                         Obj \leftarrow WL(X) + \lambda D(X)
              6:
1094
              7:
                         if t > T_0 then
1095
                              if (t - T_0) \mod \Delta T = 0 then
              8:
                                    \hat{y}_e \leftarrow \text{GNN}_{\boldsymbol{\theta}}(\mathcal{G}, X, \boldsymbol{A}_e, \boldsymbol{B}_e, \boldsymbol{c}_e, \boldsymbol{\alpha}_e, \boldsymbol{\beta}_e, \gamma_e)
              9:
                                                                                                                                  ▶ Predict edge delays
                                    \mathcal{P}_K \leftarrow \text{ExtractPaths}(\hat{y}, K)
             10:
                                                                                                                       ▶ Each path is a set of edges
                                    Delay_{total} \leftarrow PrecomputeDelay(\mathcal{G}, \mathcal{P}_K)
                                                                                                                       11:
1099
                                    \mu \leftarrow \eta \frac{\|\nabla_X \operatorname{WL}(X)\|_1}{\|\nabla_X \operatorname{Delay}_{\operatorname{total}}(X)\|_1}
             12:
1100
1101
             13.
                              end if
1102
                              \mathrm{Obj} \leftarrow \mathrm{Obj} + \mu \, \mathrm{Delay}_{\mathrm{total}}(X)
             14:
1103
             15:
                         X^{(t)} \leftarrow \text{UpdatePlacement}(X, \text{Obj})
1104
             16:
                         if Converged(X^{(t)}) then
1105
             17:
                              break
1106
             18:
             19:
                         end if
1107
             20: end for
1108
             21: return X^{(t)}
1109
```

D EXPERIMENTAL DETAILS

D.1 BENCHMARK STATISTICS

Table 3 and Table 4 detail the statistics for circuits from the ICCAD2015 (Kim et al., 2015) and ChiPBench (Wang et al., 2024b) benchmark suites, respectively.

Table 3: Statistics of 8 circuits from the ICCAD2015 benchmark suite.

Circuit	#Macros	#Standard Cells	#Nets	#Pins
superblue1	424	1215820	1215710	3767494
superblue3	565	1219170	1224979	3905321
superblue4	300	801968	802513	2497940
superblue5	770	1090247	1100825	3246878
superblue7	441	1937699	1933945	6372094
superblue10	1629	984379	1898119	5560506
superblue16	99	985909	999902	3013268
superblue18	201	771845	771542	2559143

D.2 EXPERIMENTAL SETUP

Training Details For the ICCAD2015 dataset, we use the circuits superblue1, superblue10, superblue16, and superblue18 for training; superblue4 and

Table 4: Statistics of public benchmark circuits.

Circuit	#Macros	#Standard Cells	#Nets	#Pins
ariane133	132	167907	197606	979135
ariane136	136	171347	201428	1000876
bp_fe	11	33188	39512	185524
bp_be	10	51382	62228	293276
bp	24	307055	348278	1642427
swerv_wrapper	28	98039	113582	573688
bp_multi	26	152287	174170	813050
vga_lcd	62	127004	151946	706931
dft68	68	41974	56217	226420
or1200	36	26667	32740	153379
mor1kx	78	68291	81398	394210
ethernet	64	35172	44964	205739
VeriGPU	12	71082	85081	421857
isa_npu	15	427003	548451	2406579
ariane81	81	153873	180516	894420
bp_fe38	38	26859	32661	154162
bp_be12	12	38393	47030	220938
bp68	68	164039	191475	887046
swerv_wrapper43	43	95455	110902	560088
bp_multi57	57	127553	146710	680748

superblue7 for validation; and hold out superblue3 and superblue5 as unseen test circuits. The partitioning is performed in a fully random manner.

For the ChiPBench dataset, we use morlkx, bp_be, swerv_wrapper, ariane81, or1200, bp68, bp, dft68, VeriGPU, swerv_wrapper43, ariane136, and bp_fe for training; bp_multi57, bp_multi, ethernet, and bp_be12 for validation; ariane133, vga_lcd, isa_npu, and bp_fe38 as unseen test circuits. The partitioning is also fully random.

For each circuit, we generate three distinct placement layouts. The timing information for each layout is extracted using the OpenSTA tool. For each path, we select the maximum cell delay and net delay across process corners (e.g., rise/fall) to obtain a representative delay.

During training, we sample 100,000 edges from each layout. For each design, two of its layouts are used for training and the third one is treated as an unseen layout of this design. Within each training layout, we split the sampled edges into 70% for training and 30% as unseen edges, which allows us to evaluate the model's generalization within the same layout.

Edge features are first reduced to five dimensions PCA, followed by z-score normalization using statistics computed from the training set. Node features are also normalized using statistics from the training set.

To ensure consistent label scaling across different circuits, we normalize edge delays by dividing them by the standard deviation of all delays across all layouts for each circuit. Additionally, edge distances are normalized by the die size, i.e., $(\text{die}_x + \text{die}_y)/2$.

To ensure numerical stability and facilitate learning of relative delay magnitudes, we introduce a trainable scaling factor for each circuit. This factor is multiplied with the predicted delay before computing the loss. The scaling factor is updated during training but is not used during inference. The loss function is the MSE between the scaled predicted delays and the ground-truth values.

We adopt cosine annealing to adjust the learning rate during training. For the <code>ICCAD2015</code> dataset, we use an initial learning rate of 5×10^{-3} and a final learning rate of 1×10^{-6} over 500 epochs. For the <code>ChipBench</code> dataset, the initial and final learning rates are 5×10^{-4} and 1×10^{-6} , respectively, also trained for 500 epochs.

All experiments are executed on a computational platform with an Intel Xeon Gold 6246R CPU (3.60 GHz) and NVIDIA RTX 3090 GPU. In the experiments on ICCAD2015, the training time was 2h17m34s; for ChipBench, the training time was 2h39m54s.

Integrated Global Placement Method Details As described in Section C.5, at each scheduled integration point, we apply our trained delay predictor to perform a forward pass and obtain per-edge delay estimates based on the current placement. Using these predictions, we extract the top-K timing-critical paths and compute their total delay in linear form via Algorithm 1, which supports masked execution on arbitrary path subsets.

The resulting delay term is then incorporated into the placement objective for the next 15 optimization steps. Its influence is dynamically scaled using the gradient-based normalization strategy introduced in Section C.5: we compute the ratio between the L_1 norms of the wirelength and delay gradients, and multiply it by a user-defined coefficient η to determine the final weighting.

In our experiments, we use one suite of hyperparameters across different designs. Specifically, we set the hyperparameters in Algorithm 2 as $T_0 = 400$, $\Delta T = 15$, $T_{\rm max} = 1000$, K = 10000, and $\eta = 0.1$.

E ADDITIONAL RESULTS

E.1 SUPPLEMENTAL MAIN RESULTS

Table 5 presents the experimental results on ChiPBench. These results show similar conclusions with on ICCAD2015, demonstrating the effectiveness of LiTPlace across different datasets. Notice that previous timing-driven GP algorithms, such as DREAMPlace 4.0 and Efficient-TDP, fail to run on ChiPBench due to compatibility issues.

Table 6 presents the experimental results on ICCAD2015, including TNS, WNS, HPWL and runtime (RT). The results demonstrate that our method significantly improves the placement quality with only a slight increase in runtime.

Table 5: Complete Experimental Results on the ChiPBench Dataset. All units: TNS and WNS in ns, HPWL in 10^6 , and RT in seconds.

Dan alam anla		DREAMP	lace			+ LiTPlac	ce	
Benchmark	TNS	WNS	HPWL	RT	TNS	WNS	HPWL	RT
bp_be	-501.5	-0.89	13.01	29.29	-445.1	-0.81	13.01	37.20
bp_fe	-36.8	-0.64	8.47	21.51	-29.2	-0.59	8.47	31.70
dft_68	-93.0	-0.55	9.08	29.87	-89.6	-0.55	9.08	37.52
mor1kx	-11807.9	-1.74	8.66	32.58	-11363.0	-1.70	8.72	41.51
or1200	-29607.6	-45.46	4.48	22.32	-29301.8	-41.30	4.49	30.36
swerv_wrapper	-19221.5	-4.32	14.75	33.47	-17082.4	-2.73	14.75	43.22
swerv_wrapper43	-22758.2	-3.47	19.05	27.24	-19503.8	-3.58	19.07	36.05
ariane81	-4666.2	-3.50	24.68	32.54	-4086.0	-3.46	24.71	42.55
ariane136	-513954.0	-35.73	25.49	34.26	-496675.0	-33.35	25.52	47.62
bp	-42324.3	-4.66	31.38	43.40	-37589.5	-4.60	31.64	65.00
VeriGPU	-48886.8	-14.55	5.41	32.60	-46117.7	-13.13	5.43	39.94
bp68	-25622.2	-5.78	58.71	36.05	-17627.2	-4.67	58.93	57.90
bp_fe38	-5322.3	-3.07	15.44	27.84	-4141.1	-2.73	15.46	28.52
ariane133	-5274.8	-5.49	25.52	36.13	-4038.3	-5.10	25.76	48.31
vga_lcd	-271064.0	-5914.19	7.15	31.35	-259035.4	-5153.29	7.17	40.69
bp_be12	-674.0	-1.43	16.83	27.84	-662.6	-1.43	16.84	31.03
bp_multi	-8407.8	-5.14	17.97	39.25	-8344.1	-5.14	17.97	56.82
bp_multi57	-2052.5	-5.12	23.84	28.62	-1784.6	-4.59	23.92	45.40
ethernet	-1.0	-0.21	4.16	25.66	-0.9	-0.20	4.21	30.95
isa_npu	-526.2	-1.34	32.03	20.12	-400.0	-1.30	32.05	30.31
Average Ratio	1.14	1.09	1.00	0.76	1.00	1.00	1.00	1.00

Table 6: Complete experimental results on the <code>ICCAD15</code> dataset. TNS and WNS are evaluated with the common framework in (Guo & Lin, 2022) for fair comparison. Results of **Differentiable-TDP** (Guo & Lin, 2022) and **Distribution-TDP** (Lin et al., 2024) are from their original papers. Since **Differentiable-TDP** does not report HPWL and runtime, those entries are left blank "-". The runtime of **Differentiable-TDP** is scaled from (Lin et al., 2024) to account for machine differences: RT = runtime_from_paper $\times \frac{\text{our.DREAMPlace_runtime}}{\text{DREAMPlace_runtime_from paper}}$. The units: TNS in 10^5 ps, WNS in 10^3 ps, HPWL in 10^6 , and RT in seconds.

	 I	Diataibu	tion-TDP		I 1	Difformanti	able-TDP	
Benchmark	TNS	WNS	HPWL	RT	TNS	WNS	HPWL	RT
superblue1	-74.85	-10.77	432.8	596.20	-42.10	-9.26	-	-
superblue3	-39.43	-12.37	478.4	837.12	-26.59	-12.19	-	-
superblue4	-82.92	-8.49	312.2	361.84	-123.28	-8.86	-	
superblue5	-108.08	-25.21	488.7	463.82	-70.35	-31.64	-	-
superblue7	-46.43	-15.22	602.1	925.68	-95.89	-17.24	-	-
superblue10	-558.05	-21.97	934.4	788.05	-691.10	-25.86	-	-
superblue16	-87.03	-10.85	485.1	337.34	-55.99	-12.21	-	-
superblue18	-19.31	-7.99	243.6	530.57	-19.23	-5.25	-	-
Average Ratio	2.80	1.17	1.02	0.55	2.19	1.19	-	-
			MPlace			+ LiT	Place	
	TNS	WNS	HPWL	RT	TNS	WNS	HPWL	RT
superblue1	-262.44	-18.87	422.0	176.61	-173.73	-16.88	410.7	208.45
superblue3	-76.64	-27.65	478.2	229.05	-54.59	-26.80	458.7	278.94
superblue4	-290.88	-22.04	312.0	120.82	-161.21	-18.89	322.5	166.37
superblue5	-157.82	-48.92	488.3	208.76	-125.07	-38.78	476.0	245.31
superblue7	-141.55	-19.75	604.3	257.82	-122.60	-17.17	591.1	316.55
superblue10	-731.94	-26.10	935.9	348.80	-687.58	-28.71	908.0	414.22
superblue16	-453.57	-17.71	435.8	98.56	-183.71	-14.10	421.8	131.89
superblue18	-96.76	-20.29	243.0	93.11	-64.81	-12.08	234.1	135.95
Average Ratio	10.10	2.27	1.01	0.16	5.69	1.88	0.98	0.20
		DREAM	IPlace 4.0			+ LiT	Place	
	TNS	WNS	HPWL	RT	TNS	WNS	HPWL	RT
superblue1	-85.03	-14.10	443.1	1180.53	-95.44	-15.05	531.9	1278.73
superblue3	-54.74	-16.43	482.4	1274.52	-52.31	-14.12	476.8	1313.48
superblue4	-144.38	-12.78	335.9	1277.07	-144.88	-13.39	353.0	1316.68
superblue5	-95.78	-26.76	556.2	1251.72	-98.38	-25.97	525.7	1300.73
superblue7	-63.86	-15.22	604.0	1399.17	-55.55	-15.22	600.9	1460.51
superblue10	-768.75	-31.88	1036.7	3040.44	-649.71	-25.13	1086.2	3101.36
superblue16	-124.18	-12.11	448.1	739.11	-60.69	-13.03	460.2	794.26
superblue18	-47.25	-11.87	253.6	597.64	-42.99	-11.76	246.2	636.19
Average Ratio	3.80	1.51	1.06	1.10	3.18	1.48	1.09	1.15
		Efficie	ent-TDP			+ LiT	Place	
	TNS	WNS	HPWL	RT	TNS	WNS	HPWL	RT
superblue1	-17.44	-7.75	431.0	1062.47		-7.93	419.4	1265.22
superblue3	-20.40	-11.82	472.5	1047.07	-17.54	-11.02	462.8	1135.35
superblue4	-82.88	-9.17	326.8	1049.37	-68.49	-6.94	319.6	1365.61
superblue5	-62.18	-24.65	520.2	1126.55	-39.49	-22.91	484.0	1174.33
superblue7	-43.52	-15.22	600.8	1249.25	-49.53	-15.22	597.4	1261.99
superblue10	-558.14	-23.08	974.2	1876.40	-545.83	-22.53	912.3	1882.96
superblue16	-22.90	-8.63	459.9	665.20	-12.55	-8.82	467.9	759.11
superblue18	-16.16	-6.92	244.0	517.87	-13.92	-5.86	233.7	578.92
Average Ratio	1.28	1.09	1.03	0.91	1.00	1.00	1.00	1.00

E.2 VISUALIZATION OF PLACEMENT

 We provide the visualization the final placement outcomes of 28 chip designs from ICCAD2015 and ChipBench in Figure 5 and Figure 6, respectively.

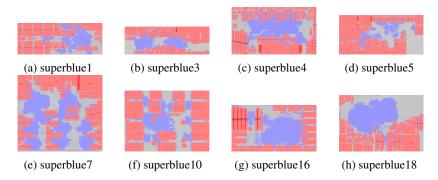


Figure 5: Visualization of final placement results of 8 designs from ICCAD2015.

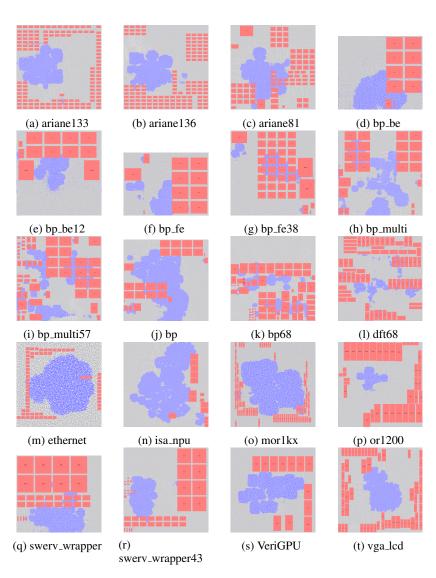
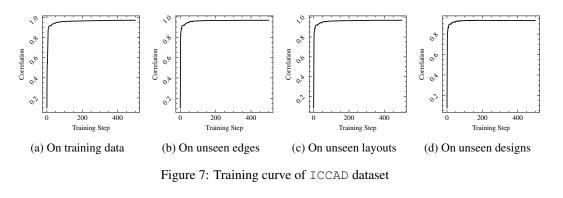


Figure 6: Visualization of final placement results of 20 designs from ICCAD2015.

E.3 CORRELATION ANALYSIS

In this section, we conduct correlation analysis experiments to show: (1) training improves prediction quality, (2) placement quality and prediction quality are improved together, (3) our learning-based optimization metric has a better correlation with the actual timing objectives than HPWL.

Correlation Coefficient Improvement In Training Progress We use the Pearson correlation coefficient between the predicted delay values and the groundtruth values to measure the prediction accuracy. Figure 7 and Figure 8 present the training curves of the correlation coefficient on ICCAD2015 and ChipBench, respectively.



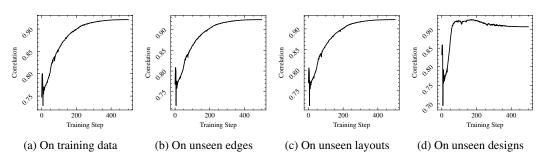


Figure 8: Training curve on ChiPBench.

Correlation between Training Progress and Placement Quality To investigate whether our training process indeed improves the final placement quality, we extract several model checkpoints during the training process and use them to perform timing-driven GP on the superblue1 design. The TNS and WNS of the placement results, along with the correlation between the predicted delays on the validation circuits and the ground truth, are recorded in Figure 9. As shown in the figure, there is a clear trend indicating that better delay prediction generally leads to improved global placement results when our method is applied.

Correlation Relationships Among Different Metrics We investigate the pairwise correlation coefficients among the following metrics: (1) TNS and WNS, which are the actual optimization objectives, (2) HPWL, which is the most commonly used surrogate metric, (3) The total predicted delay of the top-K critical paths, which is the additional timing term used in our method, where K=1,10,100. In our experiments, we collect these values for 48 different placement solutions, derived from 6 different methods and 8 different designs in ICCAD2015. We use these datapoints to compute their pairwise correlation coefficients and plot a correlation heatmap, i.e., Figure 4(b) in the main text. Each number in the heatmap corresponds to the correlation coefficient between two metrics computed using the corresponding 48×2 datapoints. The results show that our proposed surrogate metrics, i.e., total delay of top-K critical paths, exhibit a stronger correlation with WNS and TNS, compared to HPWL. This is why optimizing our additional term, rather than only optimizing HPWL, can effectively improve WNS and TNS.

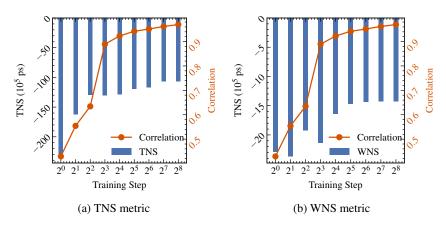


Figure 9: The superblue1 global placement results of different model checkpoints, along with the correlation coefficients between predictions and ground truth on validation circuits

Notably, in this correlation heatmap, HPWL almost does not correlate with WNS and TNS. This does not indicate that HPWL is totaly useless. This is because the placement datapoints that we collect are those with optimized HPWL values. The results show that when HPWL has been optimized to this level, further optimizing HPWL cannot improve TNS and WNS anymore. Instead, after we have obtained a solution with optimized HPWL, we should focus more on optimizing other timing-related metrics for further improvement.

E.4 ABLATION STUDY

In this section, we conduct ablation studies to analyze the contributions of different design choices of the model. We train separate models under different settings to compare the resulting correlation coefficients. Subsequently, we evaluate their performance on real GP tasks by integrating each trained model into DREAMPlace + LiTPlace and testing on superblue1, superblue3, and superblue4:

- 1. ℓ_1 loss: replace MSE with ℓ_1 during training;
- 2. w/o capacitance: remove capacitance from node features;
- 3. w/o in-degree and out-degree: remove in_deg/out_deg;
- 4. w/o propagation: use a non-propagation variant that treats edges independently.
- 5. different k: use different representation dimension.

The training results are in Table 7 and the GP results are in Table 8 and Table 9. We also visualize the training curves w/ and w/o propagation.

Table 7: Correlation coefficient of the original model and the models under different setting. The results for different k have already been presented in Figure 4(d).

	Training Set	Unseen Edges	Unseen Layouts	Unseen Designs
LiTPlace default model	0.974	0.967	0.969	0.932
ℓ_1 loss	0.958	0.953	0.957	0.924
w/o capacitance	0.936	0.931	0.934	0.904
w/o in-degree and out-degree	0.969	0.964	0.964	0.932
w/o propagation	0.956	0.949	0.949	0.916

As shown in Table 7 and Figure 10, the full model achieves the highest correlation across all splits, indicating stronger expressive capacity. Removing capacitance causes the largest degradation (e.g., $0.932 \rightarrow 0.904$ on $Unseen\ Designs$), highlighting its importance among node features. Eliminating in/out degree leads to a smaller drop and sometimes matches the full model on seen data. The non-propagation variant consistently underperforms, which is consistent with our design choice to model information flow via propagation.

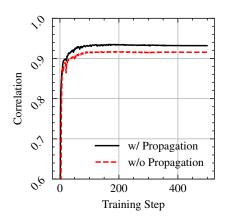


Figure 10: Training Curves for Models With and Without Propagation

Table 8 indicates that the original model is consistently the best or second best on TNS and WNS across all circuits. Table 9 further shows that placement quality is similar across k, while larger k increases runtime; thus, k=1 is a reasonable choice.

Table 8: Results of trained models under different settings applied to the GP task. The units: TNS in 10^5 ps, WNS in 10^3 ps, HPWL in 10^6 , and RT in seconds.

Benchmark	original TNS	model WNS	ℓ_1 lo				w/o in/ou TNS	_		agation WNS
	1110	W110	1110	******	1115	**145	1115	11110	1110	**110
superblue1	-173.73	-16.88	-188.54	-16.76	-262.34	-18.64	-262.34	-18.64	-275.36	-21.83
superblue3	-54.59	-26.80	-56.33	-27.56	-61.25	-31.32	-61.25	-31.32	-59.20	-32.99
superblue4	-161.21	-18.89	-167.54	-19.11	-171.36	-19.21	-167.64	-19.20	-180.21	-19.06

Table 9: Results of trained models under different k applied to the GP task. The units: TNS in 10^5 ps, WNS in 10^3 ps, HPWL in 10^6 , and RT in seconds.

- I I		k = 1			k = 2			k = 4			k = 8	
Benchmark	TNS	WNS	RT									
superblue1	-173.73	-16.88	208.45	-177.28	-17.12	228.90	-172.51	-16.62	260.71	-180.35	-18.46	280.32
superblue3	-54.59	-26.80	278.94	-51.31	-25.01	282.12	-59.32	-28.81	291.33	-60.18	-30.08	338.21
superblue4	-161.21	-18.89	166.37	-169.44	-19.13	170.19	-172.14	-19.50	183.41	-158.14	-16.20	232.34

E.5 INFLUENCE OF HYPERPARAMETERS IN GLOBAL PLACEMENT

We analyze the influence of hyperparameters on timing-aware global placement by conducting an ablation study on three key hyperparameters, as described in Section C.5:

- K: This parameter determines the number of top-k critical timing paths selected for modeling.
- Delay weight η : This coefficient controls the relative importance of the predicted total delay term in the placement objective. It helps adaptively determine the weight of our additional term, as described in Algorithm 2.
- start_iter: This parameter determines at which placement iteration the timing-aware objective is activated.

For K, we test different values of K in the DREAMPlace + LiTPlace framework on the ICCAD2015. The experimental results are shown in the Table 10. These results show our method is robust to K. Empirically, setting K=10000 yields both strong performance and efficient runtime.

Then, we evaluate $\eta \in \{0.01, 0.05, 0.10, 0.50, 1.0\}$ and start_iter $\in \{0, 200, 400, 600\}$. We integrate LiTPlace into DREAMPlace and conduct experiments on the superblue1 design. The

Table 10: Ablation on the Top-K parameterusing the superblue benchmarks. All units: TNS in 10^5 ps, WNS in 10^3 ps, HPWL in 10^6 , and RT in seconds.

Dbl-		DREA	MPlace			K=	=10			K=1	100	
Benchmark	TNS	WNS	HPWL	RT	TNS	WNS	HPWL	RT	TNS	WNS	HPWL	RT
superblue1	-262.44	-18.87	422.0	176.61	-298.91	-24.27	410.7	180.33	-240.57	-22.06	410.4	187.25
superblue3	-76.64	-27.65	478.2	229.05	-64.44	-25.05	457.2	234.87	-62.44	-25.60	457.2	241.54
superblue4	-290.88	-22.04	312.0	120.82	-191.14	-21.61	312.3	128.7	-186.96	-19.99	311.8	136.37
Benchmark	1	K=	1000			K=1	.0000			K=10	0000	
Вепсишагк	TNS	WNS	HPWL	RT	TNS	WNS	HPWL	RT	TNS	WNS	HPWL	RT
superblue1	-263.25	-18.95	410.6	192.72	-173.73	-16.88	410.7	208.45	-237.30	-18.73	410.8	318.98
superblue1 superblue3	-263.25 -61.27	-18.95 -25.06	410.6 457.2	192.72 254.53	-173.73 -54.59	-16.88 -26.80	410.7 458.7	208.45 278.94	-237.30 -47.34	-18.73 -25.66	410.8 458.7	318.98 465.15

baseline results from DREAMPlace are TNS = -262.44 and WNS = -18.87. The detailed results of our method under different hyperparameter configurations are reported in Table 12 (WNS) and Table 11 (TNS). The bold red numbers in the tables indicate the configurations that outperform the DREAMPlace baseline. The results demonstrate that our method consistently improves timing metrics across a wide range of hyperparameter settings, showing its robustness and practical effectiveness.

Table 11: TNS under different weights η and start iter values on superblue1

weight η	start iter=0	start iter=200	start iter=400	start iter=600
0.01	-266.06	-262.83	-261.23	-282.48
0.05	-238.23	-238.34	-234.77	-255.34
0.10	-195.07	-179.51	-173.73	-167.89
0.50	-83.92	-87.56	-91.24	-92.62
1.00	-108.04	-131.71	-110.83	-155.71

Table 12: WNS under different weights η and start_iter values on superblue1

weight η	start iter=0	start_iter=200	start iter=400	start iter=600
0.01	-19.01	-20.40	-19.17	-21.48
0.05	-19.89	-19.44	-18.69	-18.51
0.10	-17.66	-17.22	-16.88	-17.80
0.50	-14.26	-15.95	-17.18	-13.67
1.00	-14.11	-13.95	-15.46	-30.33

F DISCUSSIONS

F.1 Broader Impact

Our proposed framework has the potential to substantially improve timing-driven global placement, a critical stage in physical design, by enabling learning-based delay modeling with analytical gradient support. In the context of modern semiconductor design, improving timing closure directly translates to fewer design iterations, shorter time-to-market, and enhanced energy efficiency. These benefits have broad economic implications, especially as process nodes shrink and timing margins tighten.

From a broader research perspective, our work bridges the fields of machine learning and electronic design automation (EDA), demonstrating how graph neural networks and learning-based methods can be used to approximate non-trivial circuit behaviors such as signal delay. This opens a new avenue for applying AI techniques to solve traditionally non-differentiable, domain-specific optimization problems at industrial scale.

Moreover, the modularity of our approach allows it to be integrated into existing placement flows with minimal modification. By serving as a plug-in objective for standard gradient-based placers, our method provides a practical path toward improving chip performance without redesigning the

backend toolchain. This compatibility facilitates real-world adoption, making it a valuable stepping stone toward AI-augmented EDA pipelines.

F.2 LIMITATIONS AND FUTURE DIRECTIONS

While LiTPlace demonstrates strong empirical results, several limitations remain and offer promising directions for future work.

Support for Mixed-Size Placement. Our current formulation focuses mainly on standard-cell global placement and does not yet support mixed-size scenarios involving both macros and standard cells. In industrial designs, macro placement significantly affects routing congestion and timing. Extending our framework to jointly handle mixed-size placement would expand its applicability and enable more holistic layout optimization.

Beyond Timing Optimization. At present, our objective focuses mainly on timing metrics such as WNS and TNS. In real-world deployments, additional factors such as power, routability, thermal reliability, and signal integrity are also important. Incorporating these multi-objective constraints into the learning and optimization process would further broaden the scope of AI-driven placement and move toward full-stack co-optimization.

Toward End-to-End Differentiable EDA. Our work represents a step toward building differentiable surrogates for traditionally non-differentiable components in the EDA flow. We envision future systems where multiple stages—placement, routing, buffering, and CTS—can be jointly optimized through differentiable models. This direction may unlock new research paradigms where powerful foundation models are used to learn across entire chip design pipelines, tightly coupling algorithmic performance with downstream physical constraints.

F.3 THE USE OF LARGE LANGUAGE MODELS

In accordance with ICLR 2026 policy, we disclose the use of Large Language Models (LLMs) as an assistive tool in the preparation of this manuscript. The primary application of LLMs was to aid in improving the clarity and quality of the writing.

Our process involved using an LLM to perform the following specific tasks:

- **Grammar and Spelling Correction:** Identifying and correcting grammatical errors and spelling mistakes.
- Clarity and Readability Enhancement: Rephrasing sentences and suggesting alternative
 phrasings to improve the overall readability and flow of the text.
- Conciseness: Assisting in shortening sentences and paragraphs to make the writing more direct and concise.

The core scientific contributions, analyses, and claims presented in this paper are the work of the human authors. We have ensured that the use of LLMs in the writing process was conducted responsibly and in line with academic and ethical standards.