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ABSTRACT

Timing-driven global placement (GP) is a critical step in chip physical design,
where the objective is to determine the physical locations of millions of cells to
optimize signal delays and satisfy timing constraints. Existing GP algorithms
commonly rely on gradient-based optimization, which requires the placement
objective to be differentiable with respect to cell coordinates. However, timing
evaluation—particularly the delay computation—is inherently complex and typ-
ically non-differentiable, making it difficult to integrate into gradient-based GP
algorithms. To address this challenge, we propose LiTPlace, a Learning-based
Timing-driven global placement framework, which learns a differentiable surrogate
model to predict signal delays for timing-aware gradient-based optimization. To
the best of our knowledge, the application of machine learning (ML) in timing-
driven GP remains underexplored in previous works. At the core of LiTPlace is a
graph neural network (GNN) inspired by the signal propagation in chip circuits,
which predicts signal delays based on the netlist graph structure and the placement
geometry. To ensure compatibility with gradient-based optimization, we design
the GNN architecture so that its output is approximately a linear function of a set
of geometric distance statistics, enabling efficient and stable gradient computation
with respect to cell coordinates. Experiments on 28 chip designs from widely
used benchmarks demonstrate that LiTPlace significantly improves timing quality,
achieving an average improvement of 19.2% in TNS and 7.7% in WNS, which are
two key metrics to quantify the chip timing quality.

1 INTRODUCTION

Electronic Design Automation (EDA) tools are crucial in modern chip design, enabling designers to
manage the growing complexity and scale of integrated circuits (MacMillen et al., 2000; Markov et al.,
2012). A central goal across the EDA workflow is to optimize physical and performance metrics,
among which timing performance is especially critical, as it determines the maximum operating
frequency and reflects whether signals propagate reliably within required timing constraints (Rabaey
et al., 2002; Wang et al., 2009). While multiple design stages—such as logic synthesis, clock tree
synthesis (CTS), and routing—affect timing, the placement stage plays a particularly pivotal role.
It determines the physical locations of millions of chip components—including standard cells and
macros—which directly affect the signals paths and propagation delays. Suboptimal placement can
lead to late-arriving signals that violate timing constraints, thus causing functional failures. Therefore,
timing-driven placement is a fundamental task in the EDA workflow (Wang et al., 2024b; Xue et al.,
2025; Geng et al., 2025). Placement is typically divided into three stages: macro placement (MP),
global placement (GP), and detailed placement (DP). MP arranges large functional blocks called
macros; GP determines approximate locations for a large amount of standard cells; and DP fine-tunes
these locations to meet strict design rules. Among these, GP is the first stage to perform full-chip
placement and has the most substantial influence on the overall timing performance (Cheng et al.,
2018; Shi et al., 2025; Fu et al., 2024).

Despite its importance, timing-driven global placement (GP) remains challenging due to its large
scale, continuous search space, and the difficulty of integrating accurate timing evaluation into the
optimization loop. As shown in Figure 1, GP involves positioning millions of standard cells on a chip
layout, resulting in an extremely enormous and continuous design space. To handle this, existing GP
algorithms primarily rely on gradient-based optimization, which iteratively updates cell coordinates
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MP GP

Scale #Macros     ~100 #Cells    ~1 million

Search Space Discrete Continuous

Method RL, BBO, … Gradient-Based

Global Placement (GP)

...

Macro Placement (MP)

...

Figure 1: Comparison between macro placement (MP) and global placement (GP).

based on gradients of a differentiable placement objective (Lin et al., 2019; 2020; Gu et al., 2020;
Liao et al., 2022). However, incorporating timing evaluation into such optimization is nontrivial, as
timing analysis—especially delay computation—is computationally expensive and does not yield
gradients with respect to cell coordinates. As a result, many approaches rely on differentiable, yet
heuristic surrogates, such as approximated half-perimeter wirelength (HPWL), which are empirically
correlated with timing performance (Lin et al., 2019; Guo & Lin, 2022). Such gap between heuristics
and actual objectives can lead to suboptimal results, highlighting an opportunity for machine learning
(ML) methods to offer more accurate and differentiable surrogate models.

Recently, ML techniques have shown great success across various design stages (Chen et al., 2024),
including RTL code generation and logic synthesis (Thakur et al., 2024; Wang et al., 2024a;c; Lai
et al., 2025). In particular, ML-based approaches—such as reinforcement learning (RL) and black-box
optimization (BBO)—have achieved promising results in MP by replacing hand-crafted heuristics
with data-driven policies (Mirhoseini et al., 2021; Lai et al., 2022; 2023; Cheng & Yan, 2021; Cheng
et al., 2022; Shi et al., 2023; Geng et al., 2025). However, to the best of our knowledge, the application
of ML to GP remains largely underexplored, owing to the combined challenges of large scale and
structural complexity.

In this paper, we propose LiTPlace, a Learning-based Timing-driven global placement framework.
The key idea of LiTPlace is to learn a signal delay predictor that is differentiable with respect to cell
coordinates, thus enabling timing objectives to be directly integrated into gradient-based optimization.
At the core of LiTPlace is a propagation-based graph neural network (GNN) that predicts delays
based on the netlist structure and placement geometry. The GNN is inspired by the way timing signals
propagate through the digital circuits, so as to model delay dependencies accurately. Importantly, to
ensure compatibility with gradient-based optimization, we design the GNN architecture such that its
output is approximately a linear function of pairwise cell distance statistics1, enabling efficient and
stable gradient computation with respect to cell coordinates. We evaluate LiTPlace on two widely
used benchmark suites containing 28 chip designs from diverse domains. Experiments demonstrate
that LiTPlace significantly improves placement timing quality, achieving an average improvement
of 19.2% in total negative slack (TNS) and 7.7% in worst negative slack (WNS), which are two key
metrics to assess the chip timing performance.

2 PRELIMINARIES

We begin by introducing some necessary background to help readers understand our task. Supple-
mental background is in Appendix A, and a discussion of related work is in Appendix B.

2.1 BASICS OF CHIP DESIGN

A digital chip mainly consists of two types of components: cells and macros. Cells are the basic
building blocks of the chip circuit. Cells include registers, which store signals, and logic gates, which
perform logical operations on signals. Macros are large, pre-designed modules made up of many
cells, and they typically implement more complex logic relationships. Each component contains a set
of pins, which serve as connection points for signal transmission. Pins are categorized into input pins,
which receive signals from upstream components, and output pins, which send signals to downstream
components. Nets represent connections of pins across components, allowing signals to propagate
across the circuit. Each net includes one output pin (called driver pin) to send the signal onto the
net, and one or more input pins (called load pins) that receive the signal. Figure 2(a) illustrates these
basic concepts. When the chip operates, signals are launched from input pins, propagate through a

1Here, “linear” is an approximate description to aid understanding. Precise formulation is in Theorem 1.
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(a) Cells, pins, and nets
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(b) Timing behavior
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(c) Lookup tables (LUTs)

Figure 2: Illustrations of basic concepts in timing-driven global placement.

chain of cells and nets, and eventually arrive at output pins. To ensure correct functionality, these
signals must arrive at their destinations within specified time constraints. This leads to the concept of
timing performance, which measures how well a chip ensures that signals arrive on time.

Key concepts related to timing performance include: delay, arrival time, slack, worst negative
slack (WNS), and total negative slack (TNS), which are illustrated in Figure 2(b). Delay refers to
the time a signal takes to travel from one pin to another. It can be categorized into cell delay—the
delay from an input pin to an output pin within the same cell—and net delay—the delay from the
output pin of one cell to the input pin of another cell via a connecting net. Arrival time is the time
a signal takes to reach its destination. It is computed by accumulating delays along its propagation
path. Slack refers to the difference between the required and the actual arrival time. A negative
slack indicates a timing violation. Two standard metrics derived from slack are commonly used to
evaluate chip timing performance: worst negative slack (WNS) that pinpoints the most severe timing
violation in the design, and total negative slack (TNS) that sums all negative slacks across the circuit.
Smaller magnitudes of WNS and TNS (i.e., values closer to zero) indicate better timing performance.

2.2 STATIC TIMING ANALYSIS

Static Timing Analysis (STA) is a standard method to estimate the timing behavior of digital
circuits (Bhasker & Chadha, 2009). It typically proceeds in three steps: (1) computing delays, (2)
calculating signal arrival times based on delays, and (3) verifying whether these arrival times meet
required timing constraints.

Computing the delay is a critical yet timing-consuming step in STA, which relies on a timing model
provided by a .lib file. This file, as a key part of the technology library, is supplied by the
technology provider (i.e., the foundry) and specifies the functional and timing characteristics of
each standard cell. In post-placement STA, net delay is relatively straightforward to estimate. It
primarily depends on the physical length and topology of the net, as well as the total capacitance of
the load pins. These pin capacitance values are provided in the .lib file. In contrast, the cell delay
is more complex to compute. It depends on two key factors: the input slew and the output load. The
slew describes how quickly a signal transitions from low to high (or vice versa). The output load
is the total capacitance seen at the output pin, determined by the layout of the connecting net and
the downstream load pins. Each cell receives an input slew and generates an output slew, which is
affected by the output load imposed by the connected net and its load pins.

Given the aforementioned two inputs, the STA engine uses pre-characterized Look-Up Tables (LUTs)
in the .lib file to obtain the corresponding output slew and cell delay, as illustrated in Figure 2(c).
The values are obtained via bilinear interpolation from discrete LUT entries. The output slew then
propagates forward as the input slew to the next cell. This forward-propagation process continues
across the circuit, allowing STA to recursively compute delays throughout the netlist.

2.3 GLOBAL PLACEMENT

Global placement (GP) is a core stage in chip physical design. In this stage, the positions of macros
are fixed, and the task is to determine the locations of standard cells on the chip canvas, subject to
constraints such as non-overlap, while optimizing the overall timing performance.
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GP is typically formulated as a continuous optimization problem and then solved by gradient-based
methods (Lin et al., 2019; 2020; Gu et al., 2020; Liao et al., 2022). The objective is reformulated as
to minimize the overall wirelength, based on the heuristic that shorter interconnects generally lead to
lower sinal delays and improved timing performance. Since routing has not yet been performed at this
stage, the actual wirelength is unavailable. Instead, a widely adopted surrogate is the half-perimeter
wirelength (HPWL), defined as the sum of the horizontal and vertical spans of the bounding
box enclosing all pins of a net. HPWL is favored for its simplicity and empirical effectiveness in
approximating wirelength. The global placement problem is then often relaxed into the following
optimization problem:

min
(x,y)

∑
net∈N

W̃net(x,y) + λ ·D(x,y), (1)

where (x,y) denotes the coordinates of all cells, N is the set of nets, W̃net represents a smoothed
approximation of HPWL for each net, D is a density penalty term that discourages overlap, and λ is
a hyperparameter. Both terms are designed to be differentiable with respect to the coordinates x and
y, allowing the use of gradient-based methods to directly optimize x and y.

3 MOTIVATION

To incorporate timing optimization into global placement, a natural idea is to replace the expensive
and non-differentiable delay estimation in STA with a lightweight, differentiable surrogate model.
Specifically, we seek to learn a predictor fθ(G;x,y) that estimates signal delays based on the netlist
G and cell coordinates (x,y), while remaining differentiable with respect to x and y. This allows
the surrogate to be directly integrated into gradient-based placement optimization. However, using
raw coordinates x and y as model inputs introduces unnecessary complexity and sensitivity to global
shifts. A key observation is that the delays are primarily governed by the relative positions of
pins, specifically, the pairwise distances between pins. Motivated by this, we reformulate the delay
predictor to take as input the pairwise distances d between cells, yielding a model fθ(G;d) that
captures the most relevant geometric features while preserving differentiability. Yet, two technical
questions remain . (1) How can we effectively model delay dependencies across the netlist to achieve
accurate delay prediction? (2) How can we design the predictor architecture to support efficient
gradient computation with respect to the pairwise distances d?

(1) Capturing Delay Dependencies via Propagation-Based Graph Neural Network As discussed
in Section 2.2, STA performs delay computation through a forward propagation process, where the
delay at each pin depends on the slews of its upstream nodes. To model this dependency, we design
a propagation-based graph neural network (GNN), denoted as GNNθ(G;d), which simulates the
signal timing propagation along the netlist. The GNN processes the circuit graph in topological order,
passing messages from upstream to downstream nodes. By aligning the message-passing dynamics
with the actual signal flow, this architecture accurately models timing dependencies across the circuit.

(2) Enabling Efficient Gradient Computation via Linear Propagation While the propagation-
based GNN can effectively model delay behavior, integrating it into a gradient-based placement frame-
work introduces new challenges. In general, GNNs are structurally deep and complex. Computing the
gradients ∇dGNNθ(G;d) typically requires full backpropagation through multiple message-passing
layers, which can be both computationally expensive and potentially unstable during optimization.
To address this, we design the GNN architecture such that the predicted delays are, loosely speak-
ing, linear with respect to the input distances d. This linearity is preserved even through multiple
message-passing layers, as the composition of linear operations remains linear2. As a result, the
gradients ∇dGNNθ(G;d) can be computed analytically and efficiently, enabling efficient and stable
integration into the gradient-based placement frameworks.

4 METHODOLOGY

This section presents our proposed approach, LiTPlace. An overview of LiTPlace is illustrated
in Figure 3. In Section 4.1, we introduce the graph representation of the circuit netlist. Then,

2We refer to Theorem 1 for the formal definition of such approximate linearity.
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Figure 3: Overview of LiTPlace. (a) We represent the circuit netlist as as a DAG G = (V, E ,F),
which is partitioned into topological levels reflecting the signal propagation order. (b) We use a
propagation-based GNN to predict edge delays. At each level, we use layout-independent features
to generate coefficients for a linear function that combines the previous node representations and
geometric distance statistics to produce the edge representations. The propagation process iterates by
alternately updating edge and node representations in a level-wise manner. (c) We train the GNN
model to predict edge delays in a supervised manner. (d) During timing-driven global placement,
the predicted delays are incorporated into the optimization objective. Thanks to the model’s linear
structure, gradients with respect to cell coordinates can be computed efficiently.

Section 4.2 details the architecture of our delay prediction model. Finally, in Section 2.3, we describe
how the learned delay predictor is integrated into gradient-based placement optimization. More
implementation details can be found in Appendix C.

4.1 GRAPH REPRESENTATION AND TOPOLOGICAL LEVEL

As shown in Figure 3(a), we represent the circuit netlist as a directed acyclic graph (DAG), denoted as
G = (V, E ,F), where each node v ∈ V corresponds to an input pin, and each edge e ∈ E represents
a signal connection between two pins. An edge e = (u, v) is added if a signal is propagated from an
input pin u, through a cell and its connecting net, to the input pin v of a downstream cell. Each edge
is then associated a delay, i.e., the sum of a cell delay (the delay from an input pin to the output pin
within the cell) and a net delay (the delay from the output pin to the next cell’s input pin via the net).
We refer to this combined delay as an edge delay. Our objective is to predict the edge delay ye for
each edge e ∈ E , formulated as a supervised edge-level regression problem. For a given layout, each
edge e = (u, v) is also associated with a distance de = d(u, v), i.e., the distance between the two
associated input pins in the layout. We denote the concatenation of all such distances as d.

We annotate the graph with timing-relevant features F on both nodes and edges. Each node is
assigned attributes including the pin capacitance, in-degree, and out-degree within the DAG. Each
edge is assigned features derived from the standard cell it passes through. Specifically, we extract the
corresponding Look-Up Tables (LUTs) from the .lib file, and apply principal component analysis
(PCA) to embed them into low-dimensional feature vectors.

We then introduce some structural notations over the DAG. The topological level of a node or an edge
is defined as the maximum number of hops from any source node (i.e., a node with zero in-degree).
We use V(l) and E(l) to denote the sets of nodes and edges at topological level l, respectively. For each
node u ∈ V , we define its predecessor and successor neighborhoods as N−(u) = {v | (v, u) ∈ E}
and N+(u) = {v | (u, v) ∈ E}, respectively. Additional details can be found in Appendix C.1.
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4.2 PROPAGATION-BASED GNN FOR EDGE DELAY PREDICTION

Based on the graph representation introduced in Section 4.1, we can employ a propagation-based
graph neural network (GNN) to predict the edge delay ye for each edge e ∈ E . The GNN takes two
types of inputs: (1) the netlist structure G, which is layout-independent, and (2) the pairwise pin
distances d for given layouts. The prediction process is then formulated as:

ŷ = GNNθ(G;d), (2)

where ŷ ∈ R|E| denotes the predicted edge delays.

Our GNN architecture is illustrated in Figure 3(b). It is inspired by the forward propagation mecha-
nism in STA. Following the topological level order, the GNN performs message passing from source
nodes to leaf nodes, and sequentially compute the node and edge representations. At each level
l ∈ {0, 1, . . . , L}, we denote the node representation as h(l)

u ∈ Rk for each u ∈ V(l), and the edge
representation as h(l)

e ∈ Rk for each e ∈ E(l), where k is the embedding dimension. At the initial
level l = 0, all node representations are initialized as zero vectors, i.e., h(0)

u = 0. At level l, we
assume that node representations h(l)

u have been computed, and we now describe how to construct
edge representations h(l)

e for e = (u, v) ∈ E(l), and node representations h(l+1)
v for the next level.

To enable accurate delay prediction, the edge representations are designed to encode timing-relevant
information derived from both the netlist structure and physical layout. As introduced in Section 2.2,
the delays depend on multiple factors, including input slew, pin capacitance, output load, layout ge-
ometry, and the cell timing models defined by Look-Up Tables (LUTs). To model these dependencies,
the representation of each edge e = (u, v) ∈ E(l) is computed from the following five components:

(1) Source node representation h
(l)
u . It encodes propagated timing signal information from upstream

nodes, such as input slew. This information is essential for estimating the cell delay.

(2) Pooled distance statistics d̃+
e . Notably, delay is influenced not only by the distance de = d(u, v),

but also by all successors of node u, which contribute to the output load and thus affect both cell and
net delays. Therefore, we define the set of distances d+

u = {d(u, v′) : v′ ∈ N+(u)} to capture the
placement local geometry, where d(u, v′) denotes the physical distance between pins u and v′. To
obtain a fixed-size representation, we apply a four-dimensional pooling operator:

d̃+
e =

(
de,min(d+

u ),max(d+
u ),mean(d+

u )
)⊤

. (3)

(3) Source node feature vector fu. It includes pin-level attributes of node u, such as capacitance,
in-degree, and out-degree, which are relevant for estimating cell behavior.

(4) Edge feature vector fe. It contains timing-related features of edge e, specifically the PCA-
compressed LUT embeddings used to model the cell delay and output slew.

(5) Pooled successor node feature vector f+
u . We define F+

u = {fv′ : v′ ∈ N+(u)}, which
includes the features of all successor nodes and affects both cell and net delays. We aggregate these
features via a sum pooling to produce a fixed-size representation:

f+
u =

∑
fv′∈F+

u

fv′ (4)

We then design a mapping function ϕθ that combines these five inputs to obtain edge representations:

h(l)
e = ϕθ

(
h(l)
u , d̃+

e ;fu,fe,f
+
u

)
. (5)

Notably, among these, the first two inputs h(l)
u and d̃+

u are layout-dependent, i.e., they depend on
the edge distances d. The remaining three features, fu, fe, and f+

u , are layout-independent, as they
are determined solely by the netlist itself, but not the layout. Our key technical insight is to ensure
that ϕθ is linear with respect to the layout-dependent inputs, allowing the resulting representations
to support efficient and stable gradient computation. Specifically, we compute:

h(l)
e = Aeh

(l)
u +Bed̃

+
e + ce, (6)
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where Ae ∈ Rk×k,Be ∈ Rk×4, and ce ∈ Rk are coefficients generated by a multilayer perceptrons
(MLP) conditioned on the layout-independent features:

Ae,Be, ce = MLP
(1)
θ

(
fu,fe,f

+
u

)
. (7)

Once all edge representations h(l)
e are computed at level l, the node representations at level l + 1 are

obtained via mean aggregation over the incoming edges:

h(l+1)
v =

1

|N−(v)|
∑

e=(u,v)∈E

h(l)
e . (8)

To predict the final edge delay ŷe for each e = (u, v), we employ a decoder with a similar linear
structure. The decoder takes as input the same set of features used to construct the edge representation:

ŷe = α⊤
e h

(l)
u + β⊤

e d̃
+
e + γe, (9)

where αe ∈ Rk, βe ∈ R4, and γe ∈ R are coefficients generated by another MLP, also conditioned
on layout-independent features:

αe,βe, γe = MLP
(2)
θ (fu,fe,f

+
u ). (10)

Preservation of Linearity in Propagation. A central property of our model architecture is that,
loosely speaking, the predicted delay ŷe for each edge is a linear function of layout-dependent
inputs, namely the pooled distance statistics. This structural linearity arises from our architectural
design: both the edge representations h

(l)
e and the decoder outputs ŷe are constructed as linear

functions of layout-dependent variables, with coefficients entirely determined by layout-independent
features. We formally state this property in the following theorem.
Theorem 1. Given a circuit netlist G = (V, E ,F), for any topological level l ∈ N and edge

e = (u, v) ∈ E(l), there exists a set of vectors
{
ae,e′ ∈ R4 : e′ ∈ ⋃l

i=0 E(i)
}

and a scalar bias
be ∈ R, such that for any pairwise distance configuration d, the predicted delay satisfies:

ŷe(d) =
∑

e′∈
⋃l

i=0 E(i)

a⊤
e,e′ d̃

+
e′ + be, (11)

where d̃+
e′ ∈ R4 is the pooled distance statistic vector associated with edge e′ (see Equation (3)).

Theorem 1 demonstrates the preservation of linearity throughout the propagation process. As a result,
the gradients can be efficiently computed without backpropagating through the full GNN:

∇dŷe(d) =
∑

e′∈
⋃l

i=0 E(i)

(
∇dd̃

+
e′

)⊤
ae,e′ , (12)

where the coefficients ae,e′ are layout-independent and thus can be pre-computed for any given netlist.
Additional architectural details are in Appendix C.2, and the proof of Theorem 1 is in Appendix C.3.

4.3 TIMING-DRIVEN GLOBAL PLACEMENT WITH LINEAR DELAY SURROGATE

As illustrated in Figure 3(c), we train the delay surrogate to predict edge delays in a supervised
manner. Training details are in Appendix C.4. Once trained, the learned model can predict delays
ŷe(d) = GNNθ(G;d; e) for any given netlist G and layout geometry d. To incorporate timing
optimization into global placement, we augment the traditional objective in Equation (1) with a
timing penalty term based on predicted delays, as illustrated in Figure 3(d). To better model the
critical paths, which are the true timing bottlenecks of the design, we further design our objective to
focus on the top-K timing-critical paths. Specifically, after every fixed number of optimization steps,
we extract a setPK of K critical paths P with the highest cumulative predicted delays

∑
e∈E(P ) ŷe(d).

We restrict the timing penalty to only these paths, resulting in the following objective:

min
x,y

∑
net∈N

W̃net(x,y) + λ ·D(x,y) + µ ·
∑

P∈PK

∑
e∈E(P )

ŷe(d), (13)

where W̃net is the smoothed HPWL, D is the density penalty, and λ, µ are hyperparameters.
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Table 1: Comparison of TNS (×105ps) and WNS (×103ps) for global placement derived by
different approaches. For both metrics, higher (closer to zero) is better. “+LiTPlace” represents
integrating of our method into the baseline framework. For each comparison, the better results are
highlighted in bold red. Improvement = (SOurs − SBaseline)/|SBaseline|, where S is TNS or WNS.

DREAMPlace + LiTPlace DREAMPlace 4.0 + LiTPlace Efficient-TDP + LiTPlace
TNS WNS TNS WNS TNS WNS TNS WNS TNS WNS TNS WNS

superblue1 -262.44 -18.87 -173.73 -16.88 -85.03 -14.10 -95.44 -15.05 -17.44 -7.75 -12.56 -7.93
superblue3 -76.64 -27.65 -54.59 -26.80 -54.74 -16.43 -52.31 -14.12 -20.40 -11.82 -17.54 -11.02
superblue4 -290.88 -22.04 -161.21 -18.89 -144.38 -12.78 -144.88 -13.39 -82.88 -9.17 -68.49 -6.94
superblue5 -157.82 -48.92 -125.07 -38.78 -95.78 -26.76 -98.38 -25.97 -62.18 -24.65 -39.49 -22.91
superblue7 -141.55 -19.75 -122.60 -17.17 -63.86 -15.22 -55.55 -15.22 -43.52 -15.22 -49.53 -15.22
superblue10 -731.94 -26.10 -687.58 -28.71 -768.75 -31.88 -649.71 -25.13 -558.14 -23.08 -545.83 -22.53
superblue16 -453.57 -17.71 -183.71 -14.10 -124.18 -12.11 -59.03 -13.03 -22.90 -8.63 -12.55 -8.82
superblue18 -96.76 -20.29 -64.81 -12.08 -47.25 -11.87 -42.99 -11.76 -16.16 -6.92 -13.92 -5.86
Improvement - - 30.0% 14.1% - - 9.7% 2.5% - - 17.9% 6.4%

Thanks to the linear structure of our GNN architecture, as illustrated in Theorem 1, each predicted
delay ŷe(d) can be viewed as a linear function (with a biased term) of distance statistics d̃+

e′ .
Consequently, the additional timing penalty is also a linear function, with coefficients determined
solely by layout-independent features. We further provide an efficient procedure to pre-compute these
coefficients in O(|E|) time, as detailed in Algorithm 1, Appendix C.5. Once computed, the gradients
can be efficiently obtained as shown in Equation (12), without backpropagating through the GNN.
This enables efficient integration of timing objectives into gradient-based placement with negligible
additional backpropagation cost. More implementation details can be found in Appendix C.5.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks We evaluate LiTPlace on two benchmark suites: ICCAD2015 and ChiPBench.
ICCAD2015 (Kim et al., 2015) originates from the timing-driven placement contest at ICCAD
2015 and includes eight large-scale circuits, containing up to more than one million standard cells.
It is widely used for evaluating timing performance in both macro and global placement tasks.
ChiPBench (Wang et al., 2024b) is a more recent and comprehensive benchmark suite for placement
algorithms, which includes 20 circuits from diverse application domains, covering a broad range of
design sizes and complexity levels. Detailed statistics for both suites are provided in Appendix D.1.

Baselines As a general-purpose timing surrogate, LiTPlace can be integrated into existing gradient-
based global placement (GP) frameworks as a plug-in objective term. We evaluate its effectiveness
by incorporating it into three representative frameworks: DREAMPlace (Lin et al., 2019), DREAM-
Place 4.0 (Liao et al., 2022), and Efficient-TDP (Shi et al., 2025). DREAMPlace is one of the
most widely used open-source GP frameworks, which accelerates placement via GPU-based gradient
descent. DREAMPlace 4.0 is an updated version of DREAMPlace, which extends this framework
by periodically invoking STA to reweight nets for timing optimization. Efficient-TDP represents a
recent state-of-the-art (SOTA) timing-driven GP method that identifies and optimizes critical paths
through periodic STA analysis.

Evaluation Metrics In our experiments, we fix the positions of macros as provided in the bench-
marks, and optimize the positions of cells. We report two standard timing metrics: worst negative
slack (WNS) and total negative slack (TNS), as introduced in Section 2.1. These metrics reflect the
worst-case and cumulative timing violations, respectively, and are commonly used to assess timing
performance. We use OpenTimer (Huang & Wong, 2015) for ICCAD2015 and OpenSTA (OpenSTA,
2023) for ChiPBench to evaluate the timing performance.

Training and Inference As ICCAD2015 and ChiPBench have different technologies, we train
a surrogate model for each benchmark suite. Each model is trained on a subset of circuits and
evaluated on the full suite. For ICCAD2015, we use 4 circuits for training, 2 for validating, and 2 for
zero-shot test. For ChiPBench, we use 12 circuits for training, 4 for validation, and 4 for zero-shot
test. All splits are random. To construct training data, we generate three different placements per
training/validation circuit using DREAMPlace, and use OpenSTA to extract delays. This produces
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Figure 4: Results of analytical experiments.

approximately 1.2 million training samples for ICCAD2015 and 3.2 million for ChiPBench,
demonstrating the data efficiency of our approach. Each trained predictor is then tested on all circuits,
including those unseen during training. Additional setup details are in Appendix D.2.

5.2 MAIN RESULTS

Table 1 reports the TNS and WNS of different GP methods on ICCAD2015. The results show that
LiTPlace consistently outperforms the baseline methods across most designs, with average improve-
ments of 19.2% in TNS and 7.7% in WNS. More detailed results and the results on ChiPBench are
in Appendix E.1. The visualizations of final placement outcomes are in Appendix E.2.

5.3 ANALYSIS Table 2: Correlation coefficient.

ICCAD2015 ChiPBench

Training Set 0.974 0.921
Unseen Edges 0.967 0.924
Useen Layouts 0.969 0.922
Unseen Designs 0.932 0.908

Correlation Analysis (1) Table 2 reports the prediction
accuracy of trained models on the training set, unseen
edges in trained layouts, unseen layouts of trained de-
signs, and entirely unseen designs, where the accuracy is
measured by the Pearson correlation coefficient between
predicted values and ground-truth. The results show that
the model achieves high predictive accuracy and generalizes well even to unseen design instances.
(2) Figure 4(a) presents the progression of the correlation coefficient during training, along with the
corresponding TNS of the models at different training steps. The trends show that improving predic-
tion accuracy indeed leads to better placement performance. (3) Figure 4(b) presents a correlation
heatmap of metrics including TNS, WNS, HPWL, and the predicted total delay on selected K critical
paths, i.e., the additional timing term introduced in Equation (13). The results indicate that our timing
term is more strongly correlated with TNS and WNS than HPWL. (4) These findings validate that the
learned surrogate not only predicts delay accurately but also contributes directly to improving final
placement quality. Additional training curves and detailed analyses are in Appendix E.3.

Placement Runtime Breakdown Figure 4(c) shows the placement runtime breakdown, indicating
that the additional time introduces by our method, i.e., delay propagation and critical path extraction,
is negligible, especially when compared with the extensive time required for STA.

Ablation Study As shown in Figure 4(d), setting the representation dimension as k = 1 is sufficient
to achieve strong performance. This result is intuitive, because node and edge representations are
primarily used to propagate timing-related information, and the key signal for delay computation is
slew, which is indeed a scalar. We thus adopt k = 1 in main experiments for better efficiency. More
ablation studies on different design choices are in Appendix E.4. Hyperparameter analysis results are
in Appendix E.5. More discussions are in Appendix F.

6 CONCLUSION

This paper presents LiTPlace, a learning-based timing-driven global placement framework. At its
core is a propagation-based GNN that serves as a differentiable surrogate model for predicting edge
delays. The GNN architecture is carefully designed to enable efficient gradient computation with
respect to cell coordinates, allowing seamless integration into gradient-based placement frameworks.
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ETHICS STATEMENT

This paper proposes a new algorithm for chip placement. We do not foresee any direct, immediate,
or negative societal impacts of our research. We ensure that this work adheres to the ICLR Code of
Ethics (https://iclr.cc/public/CodeOfEthics).

REPRODUCIBILITY STATEMENT

All the results in this work are reproducible. We provide implementation details in Appendix C and
experimental details in Appendix D to reproduce the results. Moreover, we will release our code once
the paper is accepted for publication.
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A SUPPLEMENTAL BACKGROUND

A.1 PINS IN A CHIP

Pins serve as connection points for nets, facilitating signal transmission and communication across
different design components. Pins can be broadly categorized into two types: internal pins and
external pins.

Internal pins are those located on cells and macros within the chip’s internal architecture. These pins
are further divided into input pins and output pins. An internal input pin is a terminal through which
a cell or macro receives signals from other components. An internal output pin is where a cell or
macro sends out signals to other connected elements, propagating the results of internal computations
or signal transformations.

External pins are positioned at the chip’s boundaries, acting as interfaces between the chip and the
external system environment. These pins can also be subdivided into external input pins and external
output pins. An external input pin is where signals from external devices or circuits enter the chip.
An external output pin is responsible for transmitting signals generated within the chip to external
components.

A.2 CLOCK SIGNAL

In most circuit designs, there is a dedicated clock pin used to receive an external clock signal. The
clock signal is a periodic signal that serves as a timing reference for synchronizing the operation of
different parts of the circuit. A clock signal consists of repetitive cycles, each with two key transitions
known as clock edges. The rising edge occurs when the signal transitions from low to high. The
falling edge happens when the signal transitions from high to low.

In a circuit, the primary components that receive the clock signal are registers. Specifically, when
a register detects a specific clock edge, it captures the current input signal and produces a new
output. Besides registers, some macros within the circuit also receive the clock signal, ensuring their
operations are synchronized with the rest of the design.

A.3 TIMING PATH

In a digital circuit design, a timing path is a specific trajectory that a signal travels through the circuit,
governed by precise timing constraints to ensure proper operation. A timing path starts from a clearly
identified point, which can be an external input pin, the clock pin of a register, or the output pin of a
macro.

This starting point marks the initiation of the signal, either triggered by a clock edge or an external
event. The signal then propagates through various combinatorial logic elements and interconnections,
experiencing cell delays and net delays. These delays accumulate as the signal moves along the path,
directly impacting its arrival time at the destination.

The timing path concludes at a specific endpoint, which can be an external output pin, the data
input pin of a register, or the input pin of a macro. At this endpoint, the arrival time of the signal is
measured against critical timing requirements, including setup time, hold time, etc.

Notably, the pins of a macro are considered the start or end points of timing paths because the macro
is perceived as a “black box” from the perspective of external logic. Since its internal timing behavior
is hidden, timing paths do not traverse through its internal logic, and timing analysis is limited to its
pins.

A.4 SLACK CALCULATION IN STA

In static timing analysis (STA), the calculation of slack is a critical step in evaluating the timing
performance of a digital circuit.

The arrival time represents the amount of time required for a signal to propagate from the starting
point of the timing path to a specific point in the circuit. This includes both cell delays and net delays.
On the other hand, the required arrival time is the maximum allowable time for the signal to reach
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its destination without violating timing constraints. This is derived from the clock period, setup or
hold time requirements, and any additional constraints specified during design. It defines the upper
limit for signal propagation to ensure proper synchronization and prevent timing violations.

The slack is then computed as the difference between the required arrival time and the arrival time. If
the slack is positive or zero, the signal reaches its destination within the acceptable timing window,
indicating that the path is timing-compliant. Conversely, a negative slack value indicates a timing
violation, where the signal takes longer than the permissible duration to reach its endpoint, potentially
causing functional errors.

B RELATED WORK

B.1 MACHINE LEARNING FOR ELECTRONIC DESIGN AUTOMATION (ML4EDA)

The use of machine learning (ML) in electronic design automation (EDA) has been extensively
studied (MacMillen et al., 2000; Markov et al., 2012; Huang et al., 2021; Chen et al., 2024). ML
techniques have been applied across various stages of the design flow, including RTL code generation
and logic synthesis (Thakur et al., 2024; Wang et al., 2024a;c; Lai et al., 2025). Among them, ML-
based methods for macro placement (MP) have attracted particular attention and are most relevant to
our work.

Some approaches treat macro placement as a black-box optimization (BBO) problem and solve
it using classical meta-heuristics such as simulated annealing (SA) and evolutionary algorithms
(EA) (Kirkpatrick et al., 1983; Ho et al., 2004; Murata et al., 1995; Shi et al., 2023; Sherwani, 2012;
Shunmugathammal et al., 2020; Vashisht et al., 2020; Murata et al., 1996; Chang et al., 2000; Roy
et al., 2006; Khatkhate et al., 2004). Recently, reinforcement learning (RL) methods have emerged,
beginning with AlphaChip (Mirhoseini et al., 2021), which dirst formulates macro placement as a
Markov Decision Process (MDP). DeepPR (Cheng & Yan, 2021) and PRNet (Cheng et al., 2022)
further integrate placement and routing, although they do not account for clock tree synthesis (CTS)
or non-overlap constraints. MaskPlace (Lai et al., 2022) introduces the concept of wiremask, later
extended by (Shi et al., 2023; Geng et al., 2024) to improve placement efficiency. ChiPFormer (Lai
et al., 2023) applies offline RL to reduce online training cost. LaMPlace (Geng et al., 2025) extends
this idea and proposes to learn a mask for optimizing cross-stage metrics. MaskRegulate (Xue
et al., 2025) proposes to use RL as a regulator to guide timing optimization. These works focus
on macro placement, where the number of objects is relatively small, making it more tractable for
learning-based methods. In contrast, our work addresses timing-driven GP, significantly increasing
problem scale and complexity, and pushing the boundary of ML4EDA toward finer-grained placement
tasks.

B.2 GLOBAL PLACEMENT

Most global placement algorithms adopt analytical methods, formulating objectives such as half-
perimeter wirelength (HPWL) as differentiable functions of cell coordinates. These formulations
are optimized via quadratic programming (Kahng et al., 2005; Viswanathan et al., 2007a;b; Spindler
et al., 2008; Chen et al., 2008; Kim et al., 2012; Kim & Markov, 2012; Cheng et al., 2018) or direct
gradient descent (Lin et al., 2019; 2020; Gu et al., 2020; Liao et al., 2022). Although highly efficient,
these methods rely on heuristic proxies such as approximated HPWL, which—–as shown in our
experiments—–may not correlate well with actual timing performance.

Since global cell distribution significantly impacts timing, timing-driven placement (TDP) extensions
of analytical placers have been extensively studied, which can be broadly categorized into net-based
and path-based approaches. Net-based methods modify net weights to guide placement toward better
timing. Weight adjustment can be static or dynamically updated based on timing feedback (Burstein
& Youssef, 1985; Chang et al., 2002; Dunlop et al., 1984; Eisenmann & Johannes, 1998; Obermeier
& Johannes, 2004; Gao et al., 1992; Kahng et al., 2011; Luk, 1991). DREAMPlace 4.0 (Liao et al.,
2022) uses a momentum-guided net-weighting scheme coupled with an on-the-fly timing engine to
continuously steer placement toward timing improvement. Path-based methods explicitly extract
timing paths and incorporate them into the optimization process, either as additional objective terms or
constraints (Chowdhary et al., 2005; Jackson & Kuh, 1989; Swartz & Sechen, 1995). By maintaining
an accurate path-level timing view, these methods can directly target critical-path delay reduction.
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Guo & Lin (2022) propose Differentiable-TDP, a hand-crafted differentiable timing-driven framework,
which approximates the STA process by manually designed differentiable proxies. Efficient-TDP (Shi
et al., 2025) introduces a pin-to-pin attraction scheme that iteratively shortens distances between
pins on high-slack nets, yielding substantial timing improvements with low integration overhead.
However, these methods either rely on hand-craft heuristics or rely on running the STA process, which
is time-consuming. To our knowledge, LiTPlace is the first to develop a learning-based, differentiable
timing surrogate that can be efficiently integrated into gradient-based global placement.

Notably, Differentiable-TDP (Guo & Lin, 2022) has a similar motivation to our work. However,
Differentiable-TDP still relies on hard-crafted analytical delay model. In contrast, our method is
learning-based, avoiding delay-model-specific formulations and enabling adaptation to different delay
models. Besides, our learning framework has the potential to be trained with post-routing timing data,
which is a unique advantage. Moreover, since the differentiable STA engine in (Guo & Lin, 2022)
requires full-graph propagation, it may require relatively high GPU memory demands. In contrast,
we design our GNN architecture to maintain linearity, allowing us to compute gradients without
backpropagating through the GNN.

C IMPLEMENTATION DETAILS

C.1 GRAPH REPRESENTATION

We represent the circuit netlist as a directed acyclic graph (DAG), where each node corresponds to an
input pin, and each directed edge represents a signal propagation path defined by timing dependencies.
Specifically, the graph construction process is as follows:

1. Standard Cell Modeling For standard logic cells, all input pins are represented as nodes in the
graph. If the output pin oA of a cell A is connected to an input pin iB of another cell B, a directed
edge is established from the corresponding input pin iA of cell A to the input pin iB of cell B.

In addition, we apply specific modeling strategies for special pins and boundary components to
handle unique structural characteristics.

• External Pin Modeling. External input and output pins are also modeled as nodes. We add
directed edges between these nodes and the connected internal cell pins according to their
netlist connectivity.

• Register Modeling. For each register, we model its clock pin (ck) as a node in the graph.
Clock signals originating from external input pins are ignored. The clock pin nodes of all
registers are assigned a topological level of zero and starting points of signal propagation
paths. If the output pin of a register connects to any standard cell input pin, we add a
corresponding edge. The input pin of each register is also modeled as a node, serving as a
terminal node with only ingoing edges but no outgoing edges. This is because input pins of
registers are endpoints of timing paths.

• Macro Modeling. Each pin of a macro block is modeled as an independent node. However,
no edges are created between pins within the same macro, as their internal timing structure
is abstracted away at this level.

2. Node Features Each node is represented by a 3-dimensional feature vector consisting of: (1)
in-degree of the node, (2) out-degree of the node, and (3) the Capacitance of the corresponding pin
(extracted from the .lib file).

Edge Features Each edge is represented by a 5-dimensional feature vector derived from cell timing
lookup tables (LUTs) via Principal Component Analysis (PCA).

• Timing Lookup Table Structure. In a given technology library (the .lib file), each
edge is associated with four timing-related lookup tables describing the delay and slew
characteristics for rising and falling transitions. Each table is a two-dimensional function of
two indices (e.g., input slew and output load) and contains a grid of timing values.
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– For ICCAD15 circuits, each lookup table table is a 7 × 8 table indexed by input
slew and output load, with 7 + 8 index numbers and 56 entry values. There are
four such tables, corresponding to rise/fall and delay/slew combinations, resulting in
L = 4× (7 + 8 + 7× 8) values for each edge.

– For ChiPBench circuits, each lookup table table is a 7 × 7 table indexed by input
slew and output load, with 7 + 7 index numbers and 49 entry values. There are
four such tables, corresponding to rise/fall and delay/slew combinations, resulting in
L = 4× (7 + 8 + 7× 8) values for each edge.

• Feature Extraction. We flatten the four timing tables of each cell into a single L-
dimensional vector. PCA is then performed across all cell types in the library, and each cell
is represented by a reduced 5-dimensional feature vector. These 5-dimensional vectors are
used as the edge features in our netlist graph.

C.2 3. MODEL ARCHITECTURE

The input of MLP
(1)
θ is the concatenation of fu,fe, and f+

u . The input dimensionality is therefore
3+5+3 = 11. It outputs a vector with dimension k2+5k. This output vector is then partitioned into
three separate components with dimensions k2, 4k, and k, respectively. The first two components are
further reMLPshaped into matrices of size k× k and k× 4, which are used as the outputs Ae and Be,
respectively. The third component is directly used as the output ce. Similarly, the input dimension of
MLP

(2)
θ is also 11, and its output is a vector of dimension k + 5. This vector is divided into three

parts: a vector of dimension k, a vector of dimension 4, and a scalar. These three parts are used as the
outputs αe, βe, and γe, respectively. MLP

(1)
θ and MLP

(2)
θ both consist of four hidden layers, each

containing 32 neurons. Both MLP
(1)
θ and MLP

(2)
θ use the ReLU activation function for non-linear

transformation.

We trained models with various k settings. The results are shown in Figure 4(d) in the main text.
Experimental results indicate that different values of k have a little impact on the quality of the training
outcomes. In fact, this conclusion is intuitive, as the main information that affect the timing metrics
of downstream cells is the slew. Slew is a scalar, which is why k = 1 results in comparable results
with larger k. To achieve a lightweight design, we select k = 1. Then, total number of learnable
parameters in our model is 7, 500. Therefore, LiTPlace is very lightweight and parameter-efficient.

C.3 PROOF OF THEOREM 1

Before we prove Theorem 1, we first prove the following lemma.
Lemma 1. Given a circuit netlist G = (V, E ,F), for any topological level l ∈ N and node v ∈ V(l),

there exists a set of matrices
{
Rv,e′ ∈ Rk×4 : e′ ∈ ⋃l−1

i=0 E(i)
}

and a vector bias sv ∈ Rk, such that

for any pairwise distance configuration d, the node representation h
(l)
v satisfies:

h(l)
v =

∑
e′∈

⋃l−1
i=0 E(i)

Rv,e′ d̃
+
e′ + sv, (14)

where d̃+
e′ ∈ R4 is the pooled distance statistic vector associated with edge e′ (see Equation (3)).

Proof. To prove this lemma, we employ mathematical induction on the topological level l.

We begin from l = 0. For a node v0 ∈ V(0), we have h
(0)
v0 = 0. The conclusion holds naturally. We

assume that the conclusion holds for topological level l, and we will show the conclusion for l + 1.

We consider a node v ∈ V(l+1). For any edge e = (u, v) ∈ E , it is trivial that e ∈ E(l) and u ∈ V(l).
According to Equation (6) and the induction assumption, we have:

h(l)
e = Aeh

(l)
u +Bed̃

+
e + ce = Ae

 ∑
e′∈

⋃l−1
i=0 E(i)

Ru,e′ d̃
+
e′ + su

+Bed̃
+
e + ce

=
∑

e′∈
⋃l−1

i=0 E(i)

AeRu,e′ d̃
+
e′ +Aesu +Bed̃

+
e + ce =

∑
e′∈

⋃l
i=0 E(i)

Pe,e′ d̃
+
e′ + qe,

(15)
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where

Pe,e′ =


AeRu,e′ , e′ ∈

l−1⋃
i=0

E(i),

Be, e′ = e,

O, e′ ∈ E(l) \ {e},

and qe = Aesu + ce. (16)

Then, according to Equation (8), we have

h(l+1)
v =

1

|N−(v)|
∑

e=(u,v)∈E

h(l)
e =

1

|N−(v)|
∑

e=(u,v)∈E

 ∑
e′∈

⋃l
i=0 E(i)

Pe,e′ d̃
+
e′ + qe


=

∑
e′∈

⋃l
i=0 E(i)

 1

|N−(v)|
∑

e=(u,v)∈E

Pe,e′

 d̃+
e′ +

1

|N−(v)|
∑

e=(u,v)∈E

qe

=
∑

e′∈
⋃l

i=0 E(i)

Rv,e′ d̃
+
e′ + sv,

(17)

where

Rv,e′ =
1

|N−(v)|
∑

e=(u,v)∈E

Pe,e′ , ∀e′ ∈
l⋃

i=0

E(i), and

sv =
1

|N−(v)|
∑

e=(u,v)∈E

qe.

(18)

According to mathematical induction, the proof of Lemma 1 is completed.

Theorem 1. Given a circuit netlist G = (V, E ,F), for any topological level l ∈ N and edge

e = (u, v) ∈ E(l), there exists a set of vectors
{
ae,e′ ∈ R4 : e′ ∈ ⋃l

i=0 E(i)
}

and a scalar bias
be ∈ R, such that for any pairwise distance configuration d, the predicted delay satisfies:

ŷe(d) =
∑

e′∈
⋃l

i=0 E(i)

a⊤
e,e′ d̃

+
e′ + be, (11)

where d̃+
e′ ∈ R4 is the pooled distance statistic vector associated with edge e′ (see Equation (3)).

Proof. According to Lemma (1), we can write

h(l)
u =

∑
e′∈

⋃l−1
i=0 E(i)

Ru,e′ d̃
+
e′ + su (19)

for some Ru,e′ ∈ Rk×4 and su ∈ Rk.

According to Equation (9), we have

ŷe = α⊤
e h

(l)
u + β⊤

e d̃
+
e + γe = α⊤

e

 ∑
e′∈

⋃l−1
i=0 E(i)

Ru,e′ d̃
+
e′ + su

+ β⊤
e d̃

+
e + γe (20)

=
∑

e′∈
⋃l−1

i=0 E(i)

(
R⊤

u,e′αe

)⊤
d̃+
e′ +α⊤

e su + β⊤
e d̃

+
e + γe (21)

=
∑

e′∈
⋃l

i=0 E(i)

a⊤
e,e′ d̃

+
e′ + be, (22)
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where

ae,e′ =


R⊤

u,e′αe, e′ ∈
l−1⋃
i=0

E(i),

βe, e′ = e,

0, e′ ∈ E(l) \ {e},

and be = αT
e su + γe. (23)

This completes the proof.

C.4 TRAINING THE PREDICTOR

To train the predictor, we construct a dataset D using a collection of C chip netlists
{Gc(Vc, Ec,Fc)}Cc=1. For each netlist, we generate a set of M diverse layouts {Xc,m}Mm=1 us-
ing DREAMPlace. To avoid same layouts and keep diversity, we first run DREAMPlace to generate
one layout, after which we randomly fix a subset of cells and then run DREAMPlace to complete the
layout.

Next, we compute the delay corresponding to each edge using an EDA timing analysis tool, resulting
in delay vectors yc,m = DelayCalc(Gc,Xc,m), where each entry represents the delay between the
pair of input pins connected by the corresponding edge.

This yields the final dataset:

D = { (Gc,Xc,m,yc,m)| c ∈ [C], m ∈ [M ]} . (24)

For each netlist Gc and layout Xc,m, the predicted delay vector is given by

ŷc,m = GNNθ(Gc,d(Gc,Xc,m)), (25)

where d(Gc,Xc,m) represents the vector of pairwise pins distances for all edges in Gc under layout
Xc,m. We use the MSE loss to train the predictor:

L =
1

CM

∑
c,m

1

|Ec|
∥ŷc,m − yc,m∥2 , (26)

where ∥ · ∥ represents the Euclidean norm, i.e., the ℓ2 norm.

Notably, each edge in the netlist graph, under a specific layout, is assigned a label via EDA timing
analysis tool. This layout-dependent, edge-level supervision offers fine-grained labels, resulting in
high data efficiency per layout instance.

More experimental settings and details can be found in Appendix D.

C.5 TIMING-AWARE GLOBAL PLACEMENT WITH TRAINED DELAY PREDICTOR

To effectively incorporate predicted timing information into the global placement process, we propose
an efficient integration pipeline that leverages our trained delay predictor to guide cell placement
toward timing-aware solutions. The core idea is to augment the traditional wirelength-based objective
with a predicted total path delay term, updated periodically throughout placement.

Before placement begins, we precompute the following coefficients for each edge e, using the MLP
component of our model conditioned on layout-independent features:

Ae ∈ Rk×k, Be ∈ Rk×4, ce ∈ Rk, αe ∈ Rk, βe ∈ R4, γe ∈ R.

As these coefficients are independent of placement coordinates, they can be treated as constants once
the netlist G and features F are fixed, and can be reused throughout the entire placement process.

As summarized in Algorithm 2, our integration procedure consists of three key stages–—delay
prediction, critical path extraction, and objective function integration—–which are performed in every
fixed number of steps during the placement flow. Below, we elaborate on each stage in detail.
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1. Delay Prediction and Path Extraction At specific placement iterations, we perform a full
forward propagation of our trained delay model on the current layout to obtain the predicted delay for
each edge in the graph. Thanks to the precomputed per-edge linear coefficients, this process only
requires evaluating the forward propagation of a lightweight linear function, which is faster than full
model inference.

Based on these delay values, we extract the top-K timing-critical paths as follows:

• We traverse the DAG in topological order and compute the predicted arrival time for each
node, defined as the maximum cumulative delay from any node at topological level 0 to the
current node.

• We select the K nodes with the largest predicted arrival times and backtrack from each to
reconstruct the corresponding critical path.

2. Linear Coefficient Precomputation Once the top-K paths are identified, we compute the
coefficients of the predicted total delay as a linear combination with bias. This step is performed
via Algorithm 1, which operates in O(|E|) time. Since the pre-edge linear coefficients have already
been computed at initialization, the cost of this stage is minimal—especially when accelerated on
GPU—and negligible compared to the critical path extraction process. We have included the runtime
breakdown in the main text, demonstrating the high efficiency of our algorithm.

Algorithm 1 Precomputation of Predicted Total Delay

Require: Netlist graph G = (V,E), and for each edge e ∈ E, parameters: Ae, Be, ce,αe,βe, γe
Ensure: The linear function (with a bias) TotalDelay of d

1: TotalDelay ← 0
2: for all node v ∈ V do
3: Initialize s(v)← 0 ∈ R1×k

4: end for
5: for all edges e(l) =

(
u(l), v(l+1)

)
∈ E in reverse topological order do

6: TotalDelay += β⊤
e(l)

d̃+
e(l)

+ γe(l)

7: TotalDelay +=
(
s
(
v(l+1)

)⊤
+αe(l)

)⊤ (
Be(l) d̃

+
e(l)

+ ce(l)
)

8: s
(
u(l)

)
+=

(
s
(
v(l+1)

)⊤
+αe(l)

)⊤
Ae(l)

9: end for
10: return TotalDelay

3. Objective Function Integration The predicted total delay—expressed as a linear function—is
incorporated into the placement objective over the following interval of iterations. To balance its
influence with the wirelength objective, we adopt an adaptive gradient-based normalization strategy:

• Compute the L1 norm of the gradient of the predicted delay term and the wirelength term.

• Their ratio is then multiplied by a user-defined hyperparameter η to yield the final weighting
coefficient for the delay term.

• This coefficient is recalculated every time when the critical paths are updated.

4. Integration Pipeline The complete integration follows this pipeline:

• During the early placement stage, we perform regular placement iterations without incorpo-
rating timing.

• Starting from a specific iteration , and then at fixed intervals, we:

1. Predict edge delays using our trained model.
2. Extract top-K critical paths using predicted arrival times.
3. Precompute the delay term as a linear function.
4. Integrate this term into the placement objective using the computed scaling coefficient.
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• This process repeats at each interval, ensuring dynamic timing guidance during placement
refinement.

This overall pipeline is detailed in Algorithm 2.

Algorithm 2 LiTPlace Integration Pipeline

Require: Netlist graph G = (V, E ,F), trained delay predictor GNNθ , start iteration T0, integration
interval ∆T , max iterations Tmax, top-K K, weight η

Ensure: Final placement X
1: Initialize X(0)

2: Precompute per-edge linear coefficients: Ae, Be, ce, αe, βe, γe for all e ∈ E using GNNθ

3: for t = 1 to Tmax do
4: X ← X(t−1)

5: RunBaselinePlacementStep()
6: Obj←WL(X) + λD(X)
7: if t > T0 then
8: if (t− T0) mod ∆T = 0 then
9: ŷe ← GNNθ(G, X, Ae, Be, ce, αe, βe, γe) ▷ Predict edge delays

10: PK ← ExtractPaths(ŷ, K) ▷ Each path is a set of edges
11: Delaytotal ← PrecomputeDelay(G, PK) ▷ Build linear delay function

12: µ ← η
∥∇X WL(X)∥1

∥∇X Delaytotal(X)∥1
13: end if
14: Obj← Obj + µDelaytotal(X)
15: end if
16: X(t) ← UpdatePlacement(X, Obj)
17: if Converged(X(t)) then
18: break
19: end if
20: end for
21: return X(t)

D EXPERIMENTAL DETAILS

D.1 BENCHMARK STATISTICS

Table 3 and Table 4 detail the statistics for circuits from the ICCAD2015 (Kim et al., 2015) and
ChiPBench (Wang et al., 2024b) benchmark suites, respectively.

Table 3: Statistics of 8 circuits from the ICCAD2015 benchmark suite.

Circuit #Macros #Standard Cells #Nets #Pins

superblue1 424 1215820 1215710 3767494
superblue3 565 1219170 1224979 3905321
superblue4 300 801968 802513 2497940
superblue5 770 1090247 1100825 3246878
superblue7 441 1937699 1933945 6372094
superblue10 1629 984379 1898119 5560506
superblue16 99 985909 999902 3013268
superblue18 201 771845 771542 2559143

D.2 EXPERIMENTAL SETUP

Training Details For the ICCAD2015 dataset, we use the circuits superblue1,
superblue10, superblue16, and superblue18 for training; superblue4 and
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Table 4: Statistics of public benchmark circuits.

Circuit #Macros #Standard Cells #Nets #Pins

ariane133 132 167907 197606 979135
ariane136 136 171347 201428 1000876

bp fe 11 33188 39512 185524
bp be 10 51382 62228 293276

bp 24 307055 348278 1642427
swerv wrapper 28 98039 113582 573688

bp multi 26 152287 174170 813050
vga lcd 62 127004 151946 706931
dft68 68 41974 56217 226420

or1200 36 26667 32740 153379
mor1kx 78 68291 81398 394210
ethernet 64 35172 44964 205739
VeriGPU 12 71082 85081 421857
isa npu 15 427003 548451 2406579
ariane81 81 153873 180516 894420
bp fe38 38 26859 32661 154162
bp be12 12 38393 47030 220938

bp68 68 164039 191475 887046
swerv wrapper43 43 95455 110902 560088

bp multi57 57 127553 146710 680748

superblue7 for validation; and hold out superblue3 and superblue5 as unseen test circuits.
The partitioning is performed in a fully random manner.

For the ChiPBench dataset, we use mor1kx, bp be, swerv wrapper, ariane81, or1200,
bp68, bp, dft68, VeriGPU, swerv wrapper43, ariane136, and bp fe for training;
bp multi57, bp multi, ethernet, and bp be12 for validation; ariane133, vga lcd,
isa npu, and bp fe38 as unseen test circuits. The partitioning is also fully random.

For each circuit, we generate three distinct placement layouts. The timing information for each layout
is extracted using the OpenSTA tool. For each path, we select the maximum cell delay and net delay
across process corners (e.g., rise/fall) to obtain a representative delay.

During training, we sample 100, 000 edges from each layout. For each design, two of its layouts are
used for training and the third one is treated as an unseen layout of this design. Within each training
layout, we split the sampled edges into 70% for training and 30% as unseen edges, which allows us
to evaluate the model’s generalization within the same layout.

Edge features are first reduced to five dimensions PCA, followed by z-score normalization using
statistics computed from the training set. Node features are also normalized using statistics from the
training set.

To ensure consistent label scaling across different circuits, we normalize edge delays by dividing
them by the standard deviation of all delays across all layouts for each circuit. Additionally, edge
distances are normalized by the die size, i.e., (diex + diey)/2.

To ensure numerical stability and facilitate learning of relative delay magnitudes, we introduce a
trainable scaling factor for each circuit. This factor is multiplied with the predicted delay before
computing the loss. The scaling factor is updated during training but is not used during inference.
The loss function is the MSE between the scaled predicted delays and the ground-truth values.

We adopt cosine annealing to adjust the learning rate during training. For the ICCAD2015 dataset,
we use an initial learning rate of 5× 10−3 and a final learning rate of 1× 10−6 over 500 epochs. For
the ChiPBench dataset, the initial and final learning rates are 5× 10−4 and 1× 10−6, respectively,
also trained for 500 epochs.
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All experiments are executed on a computational platform with an Intel Xeon Gold 6246R CPU
(3.60 GHz) and NVIDIA RTX 3090 GPU. In the experiments on ICCAD2015, the training time was
2h17m34s; for ChiPBench, the training time was 2h39m54s.

Integrated Global Placement Method Details As described in Section C.5, at each scheduled
integration point, we apply our trained delay predictor to perform a forward pass and obtain per-edge
delay estimates based on the current placement. Using these predictions, we extract the top-K
timing-critical paths and compute their total delay in linear form via Algorithm 1, which supports
masked execution on arbitrary path subsets.

The resulting delay term is then incorporated into the placement objective for the next 15 optimization
steps. Its influence is dynamically scaled using the gradient-based normalization strategy introduced
in Section C.5: we compute the ratio between the L1 norms of the wirelength and delay gradients,
and multiply it by a user-defined coefficient η to determine the final weighting.

In our experiments, we use one suite of hyperparameters across different designs. Specifically, we
set the hyperparameters in Algorithm 2 as T0 = 400, ∆T = 15, Tmax = 1000, K = 10000, and
η = 0.1.

E ADDITIONAL RESULTS

E.1 SUPPLEMENTAL MAIN RESULTS

Table 5 presents the experimental results on ChiPBench. These results show similar conclusions
with on ICCAD2015, demonstrating the effectiveness of LiTPlace across different datasets. Notice
that previous timing-driven GP algorithms, such as DREAMPlace 4.0 and Efficient-TDP, fail to run
on ChiPBench due to compatibility issues.

Table 6 presents the experimental results on ICCAD2015, including TNS, WNS, HPWL and runtime
(RT). The results demonstrate that our method significantly improves the placement quality with only
a slight increase in runtime.

Table 5: Complete Experimental Results on the ChiPBench Dataset. All units: TNS and WNS in
ns, HPWL in 106, and RT in seconds.

Benchmark DREAMPlace + LiTPlace
TNS WNS HPWL RT TNS WNS HPWL RT

bp be -501.5 -0.89 13.01 29.29 -445.1 -0.81 13.01 37.20
bp fe -36.8 -0.64 8.47 21.51 -29.2 -0.59 8.47 31.70
dft 68 -93.0 -0.55 9.08 29.87 -89.6 -0.55 9.08 37.52
mor1kx -11807.9 -1.74 8.66 32.58 -11363.0 -1.70 8.72 41.51
or1200 -29607.6 -45.46 4.48 22.32 -29301.8 -41.30 4.49 30.36
swerv wrapper -19221.5 -4.32 14.75 33.47 -17082.4 -2.73 14.75 43.22
swerv wrapper43 -22758.2 -3.47 19.05 27.24 -19503.8 -3.58 19.07 36.05
ariane81 -4666.2 -3.50 24.68 32.54 -4086.0 -3.46 24.71 42.55
ariane136 -513954.0 -35.73 25.49 34.26 -496675.0 -33.35 25.52 47.62
bp -42324.3 -4.66 31.38 43.40 -37589.5 -4.60 31.64 65.00
VeriGPU -48886.8 -14.55 5.41 32.60 -46117.7 -13.13 5.43 39.94
bp68 -25622.2 -5.78 58.71 36.05 -17627.2 -4.67 58.93 57.90
bp fe38 -5322.3 -3.07 15.44 27.84 -4141.1 -2.73 15.46 28.52
ariane133 -5274.8 -5.49 25.52 36.13 -4038.3 -5.10 25.76 48.31
vga lcd -271064.0 -5914.19 7.15 31.35 -259035.4 -5153.29 7.17 40.69
bp be12 -674.0 -1.43 16.83 27.84 -662.6 -1.43 16.84 31.03
bp multi -8407.8 -5.14 17.97 39.25 -8344.1 -5.14 17.97 56.82
bp multi57 -2052.5 -5.12 23.84 28.62 -1784.6 -4.59 23.92 45.40
ethernet -1.0 -0.21 4.16 25.66 -0.9 -0.20 4.21 30.95
isa npu -526.2 -1.34 32.03 20.12 -400.0 -1.30 32.05 30.31

Average Ratio 1.14 1.09 1.00 0.76 1.00 1.00 1.00 1.00
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Table 6: Complete experimental results on the ICCAD15 dataset. TNS and WNS are evaluated
with the common framework in (Guo & Lin, 2022) for fair comparison. Results of Differentiable-
TDP (Guo & Lin, 2022) and Distribution-TDP (Lin et al., 2024) are from their original papers.
Since Differentiable-TDP does not report HPWL and runtime, those entries are left blank “-”. The
runtime of Differentiable-TDP is scaled from (Lin et al., 2024) to account for machine differences:
RT = runtime from paper × our DREAMPlace runtime

DREAMPlace runtime from paper . The units: TNS in 105 ps, WNS in 103 ps,
HPWL in 106, and RT in seconds.

Benchmark Distribution-TDP Differentiable-TDP
TNS WNS HPWL RT TNS WNS HPWL RT

superblue1 -74.85 -10.77 432.8 596.20 -42.10 -9.26 - -
superblue3 -39.43 -12.37 478.4 837.12 -26.59 -12.19 - -
superblue4 -82.92 -8.49 312.2 361.84 -123.28 -8.86 -
superblue5 -108.08 -25.21 488.7 463.82 -70.35 -31.64 - -
superblue7 -46.43 -15.22 602.1 925.68 -95.89 -17.24 - -

superblue10 -558.05 -21.97 934.4 788.05 -691.10 -25.86 - -
superblue16 -87.03 -10.85 485.1 337.34 -55.99 -12.21 - -
superblue18 -19.31 -7.99 243.6 530.57 -19.23 -5.25 - -

Average Ratio 2.80 1.17 1.02 0.55 2.19 1.19 - -

DREAMPlace + LiTPlace
TNS WNS HPWL RT TNS WNS HPWL RT

superblue1 -262.44 -18.87 422.0 176.61 -173.73 -16.88 410.7 208.45
superblue3 -76.64 -27.65 478.2 229.05 -54.59 -26.80 458.7 278.94
superblue4 -290.88 -22.04 312.0 120.82 -161.21 -18.89 322.5 166.37
superblue5 -157.82 -48.92 488.3 208.76 -125.07 -38.78 476.0 245.31
superblue7 -141.55 -19.75 604.3 257.82 -122.60 -17.17 591.1 316.55

superblue10 -731.94 -26.10 935.9 348.80 -687.58 -28.71 908.0 414.22
superblue16 -453.57 -17.71 435.8 98.56 -183.71 -14.10 421.8 131.89
superblue18 -96.76 -20.29 243.0 93.11 -64.81 -12.08 234.1 135.95

Average Ratio 10.10 2.27 1.01 0.16 5.69 1.88 0.98 0.20

DREAMPlace 4.0 + LiTPlace
TNS WNS HPWL RT TNS WNS HPWL RT

superblue1 -85.03 -14.10 443.1 1180.53 -95.44 -15.05 531.9 1278.73
superblue3 -54.74 -16.43 482.4 1274.52 -52.31 -14.12 476.8 1313.48
superblue4 -144.38 -12.78 335.9 1277.07 -144.88 -13.39 353.0 1316.68
superblue5 -95.78 -26.76 556.2 1251.72 -98.38 -25.97 525.7 1300.73
superblue7 -63.86 -15.22 604.0 1399.17 -55.55 -15.22 600.9 1460.51

superblue10 -768.75 -31.88 1036.7 3040.44 -649.71 -25.13 1086.2 3101.36
superblue16 -124.18 -12.11 448.1 739.11 -60.69 -13.03 460.2 794.26
superblue18 -47.25 -11.87 253.6 597.64 -42.99 -11.76 246.2 636.19

Average Ratio 3.80 1.51 1.06 1.10 3.18 1.48 1.09 1.15

Efficient-TDP + LiTPlace
TNS WNS HPWL RT TNS WNS HPWL RT

superblue1 -17.44 -7.75 431.0 1062.47 -12.56 -7.93 419.4 1265.22
superblue3 -20.40 -11.82 472.5 1047.07 -17.54 -11.02 462.8 1135.35
superblue4 -82.88 -9.17 326.8 1049.37 -68.49 -6.94 319.6 1365.61
superblue5 -62.18 -24.65 520.2 1126.55 -39.49 -22.91 484.0 1174.33
superblue7 -43.52 -15.22 600.8 1249.25 -49.53 -15.22 597.4 1261.99

superblue10 -558.14 -23.08 974.2 1876.40 -545.83 -22.53 912.3 1882.96
superblue16 -22.90 -8.63 459.9 665.20 -12.55 -8.82 467.9 759.11
superblue18 -16.16 -6.92 244.0 517.87 -13.92 -5.86 233.7 578.92

Average Ratio 1.28 1.09 1.03 0.91 1.00 1.00 1.00 1.00
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E.2 VISUALIZATION OF PLACEMENT

We provide the visualization the final placement outcomes of 28 chip designs from ICCAD2015 and
ChiPBench in Figure 5 and Figure 6, respectively.

(a) superblue1 (b) superblue3 (c) superblue4 (d) superblue5

(e) superblue7 (f) superblue10 (g) superblue16 (h) superblue18

Figure 5: Visualization of final placement results of 8 designs from ICCAD2015.

(a) ariane133 (b) ariane136 (c) ariane81 (d) bp be

(e) bp be12 (f) bp fe (g) bp fe38 (h) bp multi

(i) bp multi57 (j) bp (k) bp68 (l) dft68

(m) ethernet (n) isa npu (o) mor1kx (p) or1200

(q) swerv wrapper (r)
swerv wrapper43

(s) VeriGPU (t) vga lcd

Figure 6: Visualization of final placement results of 20 designs from ICCAD2015.
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E.3 CORRELATION ANALYSIS

In this section, we conduct correlation analysis experiments to show: (1) training improves prediction
quality, (2) placement quality and prediction quality are improved together, (3) our learning-based
optimization metric has a better correlation with the actual timing objectives than HPWL.

Correlation Coefficient Improvement In Training Progress We use the Pearson correlation
coefficient between the predicted delay values and the groundtruth values to measure the predic-
tion accuracy. Figure 7 and Figure 8 present the training curves of the correlation coefficient on
ICCAD2015 and ChiPBench, respectively.

0 200 400
Training Step

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

(a) On training data

0 200 400
Training Step

0.2

0.4

0.6

0.8

1.0
C

or
re

la
tio

n

(b) On unseen edges

0 200 400
Training Step

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

(c) On unseen layouts

0 200 400
Training Step

0.2

0.4

0.6

0.8

C
or

re
la

tio
n

(d) On unseen designs

Figure 7: Training curve of ICCAD dataset
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Figure 8: Training curve on ChiPBench.

Correlation between Training Progress and Placement Quality To investigate whether our
training process indeed improves the final placement quality, we extract several model checkpoints
during the training process and use them to perform timing-driven GP on the superblue1 design.
The TNS and WNS of the placement results, along with the correlation between the predicted delays
on the validation circuits and the ground truth, are recorded in Figure 9. As shown in the figure, there
is a clear trend indicating that better delay prediction generally leads to improved global placement
results when our method is applied.

Correlation Relationships Among Different Metrics We investigate the pairwise correlation
coefficients among the following metrics: (1) TNS and WNS, which are the actual optimization
objectives, (2) HPWL, which is the most commonly used surrogate metric, (3) The total predicted
delay of the top-K critical paths, which is the additonal timing term used in our method, where
K = 1, 10, 100. In our experiments, we collect these values for 48 different placement solutions,
derived from 6 different methods and 8 different designs in ICCAD2015. We use these datapoints to
compute their pairwise correlation coefficients and plot a correlation heatmap, i.e., Figure 4(b) in
the main text. Each number in the heatmap corresponds to the correlation coefficient between two
metrics computed using the corresponding 48× 2 datapoints. The results show that our proposed
surrogate metrics, i.e., total delay of top-K critical paths, exhibit a stronger correlation with WNS and
TNS, compared to HPWL. This is why optimizing our additional term, rather than only optimizing
HPWL, can effectively improve WNS and TNS.
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Figure 9: The superblue1 global placement results of different model checkpoints, along with the
correlation coefficients between predictions and ground truth on validation circuits

Notably, in this correlation heatmap, HPWL almost does not correlate with WNS and TNS. This does
not indicate that HPWL is totaly useless. This is because the placement datapoints that we collect
are those with optimized HPWL values. The results show that when HPWL has been optimized to
this level, further optimizing HPWL cannot improve TNS and WNS anymore. Instead, after we have
obtained a solution with optimized HPWL, we should focus more on optimizing other timing-related
metrics for further improvement.

E.4 ABLATION STUDY

In this section, we conduct ablation studies to analyze the contributions of different design choices
of the model.We train separate models under different settings to compare the resulting correlation
coefficients.Subsequently, we evaluate their performance on real GP tasks by integrating each trained
model into DREAMPlace + LiTPlace and testing on superblue1, superblue3, and superblue4:

1. ℓ1 loss: replace MSE with ℓ1 during training;
2. w/o capacitance: remove capacitance from node features;
3. w/o in-degree and out-degree: remove in deg/out deg;
4. w/o propagation: use a non-propagation variant that treats edges independently.
5. different k: use different representation dimension.

The training results are in Table 7 and the GP results are in Table 8 and Table 9. We also visualize the
training curves w/ and w/o propagation.

Table 7: Correlation coefficient of the original model and the models under different setting.The
results for different k have already been presented in Figure 4(d).

Training Set Unseen Edges Unseen Layouts Unseen Designs

LiTPlace default model 0.974 0.967 0.969 0.932
ℓ1 loss 0.958 0.953 0.957 0.924
w/o capacitance 0.936 0.931 0.934 0.904
w/o in-degree and out-degree 0.969 0.964 0.964 0.932
w/o propagation 0.956 0.949 0.949 0.916

As shown in Table 7 and Figure 10, the full model achieves the highest correlation across all splits,
indicating stronger expressive capacity. Removing capacitance causes the largest degradation (e.g.,
0.932→ 0.904 on Unseen Designs), highlighting its importance among node features. Eliminating
in/out degree leads to a smaller drop and sometimes matches the full model on seen data. The
non-propagation variant consistently underperforms, which is consistent with our design choice to
model information flow via propagation.
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Figure 10: Training Curves for Models With and Without Propagation

Table 8 indicates that the original model is consistently the best or second best on TNS and WNS
across all circuits. Table 9 further shows that placement quality is similar across k, while larger k
increases runtime; thus, k = 1 is a reasonable choice.

Table 8: Results of trained models under different settings applied to the GP task. The units: TNS in
105 ps, WNS in 103 ps, HPWL in 106, and RT in seconds.

Benchmark original model ℓ1 loss w/o capacitance w/o in/out-degree w/o propagation
TNS WNS TNS WNS TNS WNS TNS WNS TNS WNS

superblue1 -173.73 -16.88 -188.54 -16.76 -262.34 -18.64 -262.34 -18.64 -275.36 -21.83
superblue3 -54.59 -26.80 -56.33 -27.56 -61.25 -31.32 -61.25 -31.32 -59.20 -32.99
superblue4 -161.21 -18.89 -167.54 -19.11 -171.36 -19.21 -167.64 -19.20 -180.21 -19.06

Table 9: Results of trained models under different k applied to the GP task. The units: TNS in 105 ps,
WNS in 103 ps, HPWL in 106, and RT in seconds.

Benchmark k = 1 k = 2 k = 4 k = 8
TNS WNS RT TNS WNS RT TNS WNS RT TNS WNS RT

superblue1 -173.73 -16.88 208.45 -177.28 -17.12 228.90 -172.51 -16.62 260.71 -180.35 -18.46 280.32
superblue3 -54.59 -26.80 278.94 -51.31 -25.01 282.12 -59.32 -28.81 291.33 -60.18 -30.08 338.21
superblue4 -161.21 -18.89 166.37 -169.44 -19.13 170.19 -172.14 -19.50 183.41 -158.14 -16.20 232.34

E.5 INFLUENCE OF HYPERPARAMETERS IN GLOBAL PLACEMENT

We analyze the influence of hyperparameters on timing-aware global placement by conducting an
ablation study on three key hyperparameters, as described in Section C.5:

• K: This parameter determines the number of top-k critical timing paths selected for model-
ing.

• Delay weight η: This coefficient controls the relative importance of the predicted total delay
term in the placement objective. It helps adaptively determine the weight of our additional
term, as described in Algorithm 2.

• start iter: This parameter determines at which placement iteration the timing-aware
objective is activated.

For K,we test different values of K in the DREAMPlace + LiTPlace framework on the ICCAD2015.
The experimental results are shown in the Table 10. These results show our method is robust to K.
Empirically, setting K = 10000 yields both strong performance and efficient runtime.

Then, we evaluate η ∈ {0.01, 0.05, 0.10, 0.50, 1.0} and start iter ∈ {0, 200, 400, 600}. We
integrate LiTPlace into DREAMPlace and conduct experiments on the superblue1 design. The
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Table 10: Ablation on the Top-K parameterusing the superblue benchmarks. All units: TNS in
105 ps, WNS in 103 ps, HPWL in 106, and RT in seconds.

Benchmark DREAMPlace K=10 K=100
TNS WNS HPWL RT TNS WNS HPWL RT TNS WNS HPWL RT

superblue1 -262.44 -18.87 422.0 176.61 -298.91 -24.27 410.7 180.33 -240.57 -22.06 410.4 187.25
superblue3 -76.64 -27.65 478.2 229.05 -64.44 -25.05 457.2 234.87 -62.44 -25.60 457.2 241.54
superblue4 -290.88 -22.04 312.0 120.82 -191.14 -21.61 312.3 128.7 -186.96 -19.99 311.8 136.37

Benchmark K=1000 K=10000 K=100000
TNS WNS HPWL RT TNS WNS HPWL RT TNS WNS HPWL RT

superblue1 -263.25 -18.95 410.6 192.72 -173.73 -16.88 410.7 208.45 -237.30 -18.73 410.8 318.98
superblue3 -61.27 -25.06 457.2 254.53 -54.59 -26.80 458.7 278.94 -47.34 -25.66 458.7 465.15
superblue4 -175.07 -19.28 312.1 143.28 -161.21 -18.89 312.0 166.37 -159.87 -19.23 312.2 277.08

baseline results from DREAMPlace are TNS = −262.44 and WNS = −18.87. The detailed results
of our method under different hyperparameter configurations are reported in Table 12 (WNS) and
Table 11 (TNS). The bold red numbers in the tables indicate the configurations that outperform the
DREAMPlace baseline. The results demonstrate that our method consistently improves timing metrics
across a wide range of hyperparameter settings, showing its robustness and practical effectiveness.

Table 11: TNS under different weights η and start iter values on superblue1

weight η start iter=0 start iter=200 start iter=400 start iter=600
0.01 -266.06 -262.83 -261.23 -282.48
0.05 -238.23 -238.34 -234.77 -255.34
0.10 -195.07 -179.51 -173.73 -167.89
0.50 -83.92 -87.56 -91.24 -92.62
1.00 -108.04 -131.71 -110.83 -155.71

Table 12: WNS under different weights η and start iter values on superblue1

weight η start iter=0 start iter=200 start iter=400 start iter=600
0.01 -19.01 -20.40 -19.17 -21.48
0.05 -19.89 -19.44 -18.69 -18.51
0.10 -17.66 -17.22 -16.88 -17.80
0.50 -14.26 -15.95 -17.18 -13.67
1.00 -14.11 -13.95 -15.46 -30.33

F DISCUSSIONS

F.1 BROADER IMPACT

Our proposed framework has the potential to substantially improve timing-driven global placement, a
critical stage in physical design, by enabling learning-based delay modeling with analytical gradient
support. In the context of modern semiconductor design, improving timing closure directly translates
to fewer design iterations, shorter time-to-market, and enhanced energy efficiency. These benefits
have broad economic implications, especially as process nodes shrink and timing margins tighten.

From a broader research perspective, our work bridges the fields of machine learning and electronic
design automation (EDA), demonstrating how graph neural networks and learning-based methods can
be used to approximate non-trivial circuit behaviors such as signal delay. This opens a new avenue
for applying AI techniques to solve traditionally non-differentiable, domain-specific optimization
problems at industrial scale.

Moreover, the modularity of our approach allows it to be integrated into existing placement flows
with minimal modification. By serving as a plug-in objective for standard gradient-based placers,
our method provides a practical path toward improving chip performance without redesigning the
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backend toolchain. This compatibility facilitates real-world adoption, making it a valuable stepping
stone toward AI-augmented EDA pipelines.

F.2 LIMITATIONS AND FUTURE DIRECTIONS

While LiTPlace demonstrates strong empirical results, several limitations remain and offer promising
directions for future work.

Support for Mixed-Size Placement. Our current formulation focuses mainly on standard-cell
global placement and does not yet support mixed-size scenarios involving both macros and standard
cells. In industrial designs, macro placement significantly affects routing congestion and timing.
Extending our framework to jointly handle mixed-size placement would expand its applicability and
enable more holistic layout optimization.

Beyond Timing Optimization. At present, our objective focuses mainly on timing metrics such
as WNS and TNS. In real-world deployments, additional factors such as power, routability, thermal
reliability, and signal integrity are also important. Incorporating these multi-objective constraints into
the learning and optimization process would further broaden the scope of AI-driven placement and
move toward full-stack co-optimization.

Toward End-to-End Differentiable EDA. Our work represents a step toward building differen-
tiable surrogates for traditionally non-differentiable components in the EDA flow. We envision future
systems where multiple stages—placement, routing, buffering, and CTS—can be jointly optimized
through differentiable models. This direction may unlock new research paradigms where powerful
foundation models are used to learn across entire chip design pipelines, tightly coupling algorithmic
performance with downstream physical constraints.

F.3 THE USE OF LARGE LANGUAGE MODELS

In accordance with ICLR 2026 policy, we disclose the use of Large Language Models (LLMs) as an
assistive tool in the preparation of this manuscript. The primary application of LLMs was to aid in
improving the clarity and quality of the writing.

Our process involved using an LLM to perform the following specific tasks:

• Grammar and Spelling Correction: Identifying and correcting grammatical errors and
spelling mistakes.

• Clarity and Readability Enhancement: Rephrasing sentences and suggesting alternative
phrasings to improve the overall readability and flow of the text.

• Conciseness: Assisting in shortening sentences and paragraphs to make the writing more
direct and concise.

The core scientific contributions, analyses, and claims presented in this paper are the work of the
human authors. We have ensured that the use of LLMs in the writing process was conducted
responsibly and in line with academic and ethical standards.
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