Simultaneous Modeling of Protein Conformation and
Dynamics via Autoregression

Yuning Shen'*, Lihao Wang'*, Huizhuo Yuan', Yan Wang?',
Bangji Yang®’, Quanquan Gu'*

!ByteDance Seed
2School of Mathematical Sciences, Tongji University
3Department of Automation, Tsinghua University
{yuning.shen,quanquan.gu}@bytedance. com,

Abstract

Understanding protein dynamics is critical for elucidating their biological functions.
The increasing availability of molecular dynamics (MD) data enables the training
of deep generative models to efficiently explore the conformational space of pro-
teins. However, existing approaches either fail to explicitly capture the temporal
dependencies between conformations or do not support direct generation of time-
independent samples. To address these limitations, we introduce CONFROVER, an
autoregressive model that simultaneously learns protein conformation and dynam-
ics from MD trajectories, supporting both time-dependent and time-independent
sampling. At the core of our model is a modular architecture comprising: (i) an
encoding layer, adapted from protein folding models, that embeds protein-specific
information and conformation at each time frame into a latent space; (ii) a tem-
poral module, a sequence model that captures conformational dynamics across
frames; and (iii) an SE(3) diffusion model as the structure decoder, generating
conformations in continuous space. Experiments on ATLAS, a large-scale protein
MD dataset of diverse structures, demonstrate the effectiveness of our model in
learning conformational dynamics and supporting a wide range of downstream
tasks. CONFROVER is the first model to sample both protein conformations and
trajectories within a single framework, offering a novel and flexible approach for
learning from protein MD data.

1 Introduction

Proteins are flexible molecules that can adopt multiple structures, called conformations. Their
ability to transition between different conformations enables biological processes critical to life.
Characterizing the behavior of a protein, including its (/) dynamic motions, (2) conformational
distribution, and (3) transitions between different states, is crucial for understanding its function and
guiding the design of novel proteins [5, 12} 34]]. Molecular dynamics (MD) simulations are the “gold
standard” for studying protein conformational changes [8} 21, |33]. These simulations use physical
models to describe the energy of a protein conformation and the forces acting on its atoms. By
simulating atomic motion through classical mechanics and iteratively sampling conformations over
time, MD enables researchers to explore different conformations, approximating the conformational
distribution at equilibrium, and gain mechanistic insights in protein functions. However, MD
simulations are both computationally expensive and technically challenging due to long simulation
times and the tendency to become trapped in local energy minima.

These challenges have motivated the use of deep generative models to study proteins, leveraging the
rich conformational and dynamic information provided by large-scale MD datasets [28}, 43]:

*Equal contribution. TWork done during their internship at ByteDance. *Corresponding Author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

A) Conformation generation tasks B) Autoregressive generation p(x![x<!)
i) Trajectory simulation i
% é’" . @ kY
20|51 - f . R
. PO S e X P TR :
o) o0 e @R @An R @)
i) Time-independent sampling TG) -
| . | | | | o(x|2) X! -3 -2 X1 x!
Encode l l l l I Diffusion
iii) Conformation interpolation Decode
o 1
I:‘ - (x> xt,x") h! hi-3 hi-? hit Bl

Figure 1: Key ideas of CONFROVER. (A) Conformation generation tasks with various conditioning
configurations. Each block denotes a frame and arrows indicates the sequential dependencies
among frames from autoregressive formulation. Initial conditioning frames are outlined in black.
In conformation interpolation, the last frame is repositioned and prepended to the first frame for
proper sequential dependencies. (B) CONFROVER models each frame as a conditional distribution
given preceding frames. Sequential dependencies are captured through latent variables h, and
conformations are sampled from a diffusion decoder, conditioned on the updated latent.

(1) Generating the dynamic motions of proteins is a direct analog to MD simulation. Pioneering
works modeled this by learning transition probabilities of future conformations from the current
state [9, 22} 138]]. However, MD trajectories are often non-Markovian due to partially observed
coordinates (e.g., protein-only atoms) and environmental coupling (e.g., using Langevin thermostats).
To mitigate this, Cheng et al. [7] incorporated higher-order information using multiple context frames,
though this requires fix context windows and limits flexibility. Jing et al. [19] instead modeled the
joint distribution over the entire trajectory, capturing complex dependencies among frames. Due
to training on fixed-length trajectories and the non-autoregressive design, their model has limited
inference-time flexibility that cannot generate variable-length trajectories. Li et al. [27] introduced
an autoregressive approach for flexible trajectory extension, but its deterministic formulation cannot
capture trajectory distributions or generate diverse samples.

(2) Learning the conformational distribution enables sampling time-independent conformations.
Several methods [[18}25) 35144, 49] train diffusion- or flow-based generative models on conformation
ensembles from MD simulation data, bypassing the need for sequential sampling. While effective for
generating samples in parallel, they disregard temporal information in MD trajectories and therefore
cannot simulate physical motion of proteins.

(3) Conformation interpolation generate transition pathways between different states. Recent
works [L1,[19] have extended generative modeling to conformation interpolation, where the goal is to
generate plausible intermediate samples between known start and end conformational states. Jing
et al. [19] framed interpolation as a conditional trajectory generation task, but it requires training
task-specific model and has not been evaluated on large proteins.

As these generative problems all stem from the same underlying physical principles and involve
sampling from a protein’s conformational space, a natural question arises: can we develop a general
framework to learn all of these objectives?

We present CONFROVER, a framework for simultaneous learning protein conformation distribution
and dynamics from MD trajectory data (Figure[I)). Our key observation is that, for an MD trajectory
x L of length L, by adopting a general autoregressive formulation, p(x'*) = [T/, p(x'[x<!),
where x<! denotes all preceding frames of x! in the sequence, we can unify multiple generation
objectives as instances of frame generation: (1) generating future frame conditioned on all previous
frames, suitable for simulating non-Markovian dynamics; (2) unconditional single-frame generation,
p(x|9), corresponding to time-independent conformation sampling; (3) flexible frame sequence
ordering redefines the dependency structure, enabling tasks such as conformation interpolation.

Our contributions are summarized as follows:

* We introduce a simple yet general framework to learn both the conformational distribution and
dynamics from MD data, supporting multiple generation tasks including trajectory simulation,
time-independent conformation sampling, and conformation interpolation.

* We design a modular architecture that captures temporal dependencies in latent space using efficient
causal transformers (i.e., Llama [42]), and directly models conformations in continuous SE(3)
space using a diffusion decoder, avoiding discretization structure into tokens.

» Experiments show strong capabilities of CONFROVER: it outperforms MDGEN [19] in trajectory
simulation, matches the performance of ALPHAFLOW[18] and CONFDIFF[44] in time-dependent
generation, and can effectively sample conformations interpolating two endpoints.

2 Background

2.1 Data Generation from Molecular Dynamics

Molecular dynamics describes the motion of molecules through Newtonian mechanics Mx =
—VU (x), where x denotes coordinates of atoms in the system, M is the atomic mass, U(x) is the
potential energy of the configuration and —V U (x) represents the forces acting on atoms. In practice,
stochastic and frictional forces are integrated to model energy exchange with the environment and
maintain temperature control of the system, converting the equations of motion to a Langevin process:

M% = -VU(x) — yMx + /2M~kgTn(t),

where ~ is the friction coefficient, kp is the Boltzmann constant, 7" is the temperature, and 7(t)
is a Gaussian noise term delta-correlated in time (7;(¢)n;(t')) = 6;;6(t — ¢'). Sampling from this
stochastic process generates a time evolution of system configurations. Over time, the samples
converges to the Boltzmann distribution p(x) o exp(—U(x)/kpT). The trajectory of protein
coordinates, X\ % = (X0t Xoros - - - » Xigoy)» 15 extracted and saved at prescribed simulation intervals,
providing both distributional and kinetic information in the protein conformational dynamics. For
simplicity, we omit the subscript ‘prot’ and use x to denote protein coordinates throughout the paper.

2.2 Protein Representations

Proteins are chain-like molecules composed of amino acid residues, each selected from 20 standard
amino acid types. We parameterize the coordinates of heavy atoms in a protein using the SE(3)-
torsional convention [20]]: the backbone atoms (N-Cc«-C) of each residue define a local coordinate
via a Gram-Schmidt process, referred to as a rigid. The position and orientation of each rigid
relative to the global coordinate system are described by a translation-rotation transformation in
SE(3) space. The backbone conformation of a protein with /N residues can then be represented
as x = (T,R) € SE(3)", where T € R¥>*3 and R € SO(3)" are the translation and rotation
components. The coordinates of the oxygen atom of the backbone and the side chain atoms can be
determined with the addition of up to 7 torsional angles (¢, 1, w, x1, - - ., X4) describing the bond
rotation. Therefore, the complete configuration of a protein structure is parameterized in the space:
X= (T7 Ra ¢,¢,Wa X1y--+s X4) € (SE(S) X T7)N

2.3 SE(3)-Diffusion Models for Protein Conformation Generation

Diffusion generative models are capable of learning complex data distributions. Training involves
progressively corrupting data with noise and learning to reverse this process through denoising,
thereby modeling the original data distribution [[14, [39]. Recently, diffusion models operating in
SE(3) space have been proposed to model protein backbone structures [44, l48]]. Below, we provide a
brief overview of diffusion model and defer the detailed SE(3) formulation to Appendix

Given a protein backbone conformation as xo = (To,Ro) € SE(3)", and conditioned on the
protein identity (omitted in the equations for clarity), we aim to train a neural network to jointly
estimate the score functions of the reverse-time marginal distributions at varying diffusion time ¢,
so(x¢,t) = Vx, log pt(x:). This model is trained using the denoising score matching (DSM) loss:

Losm = Exyx,,¢ [ME)||s0(x¢, 1) — Vi, 1og pyjo(x¢|x0)|[|?] -

Here pyo(x¢|x0) is the forward transition kernel defined in the SE(3) space, x; = (T, Ry) is the
noisy data at time ¢, and \(t) is a time-dependent weight. During inference, DPM generates clean
conformations from random noise by simulating the reverse diffusion process with the learned score
network sg(x¢, t).

3 CONFROVER

3.1 Modeling MD Trajectories through Autoregression

Autoregressive generative models factorize the distribution of a sequence as a series of conditional
generations over frames. We cast this idea to MD trajectories, modeling a sequence of L frames as:

1L|P Hp Z‘X<l (])

where x<! is the preceding frames and P denotes the protein-specific conditioning input.

Despite its simplicity, this formulation naturally supports multiple learning objectives in protein
conformation modeling. In its base form, it models temporal dependencies among frames by learning
to generate the trajectory. When L = 1, it removes the frame context and reduces to a single-frame
distribution p(x|P), learning to direct sample time-independent conformations. In addition, the
sequential dependency in Equation (T]) can be extended to any desired frame-conditioned generation
tasks. By prepending conditioning frames /C to the sequence, we train the model to learn any
conditional generation p(x':L|KC, P), including conformation interpolation by setting K = {x*, x*}.
A similar idea was applied in text infilling tasks by shuffling the order of text contexts [4].

After defining the main learning objectives for trajectory simulation, single-frame (time-independent),
and conformation interpolation, we describe how to effectively model autoregressive dependencies
over protein conformations in Section[3.2] More critically, in Section[3.3] we explain how to adapt
sequence models, traditionally designed for discrete tokens, to the continuous space of protein
conformations. Lastly, we introduce a specific choice of architectures of CONFROVER in Section [3.4]

3.2 Latent Causal Modeling

We propose a modular design composed of an encoder, a latent sequence model, and a stochastic
decoder. This design enables the use of modern causal transformers, such as in Llama [42], to
efficiently capture sequential dependencies between frames in the latent space (Figure [2)). During
training, the input sequence is shifted by one frame and a mask token “[M]” is prepended; the
generation process also begins with the mask token and conditioning frames (e.g., x1).

To model p(x!|x<!,P), the context frames x<! are first encoded M x! %2
into intermediate latent states h<! = (h',... h!~!) using a shared
encoder network with protein-specific condltion P:

h' = foox',P), i=1,2,...,1—1.)

A temporal module is then used to capture the sequential dependen-
cies between the frame latents. Causal attention is used to ensure
the latent for frame h' is only updated by its preceding frames:
flemp (hl h2 . hl—l) . (3)) 5(2 f(g
Figure 2: Causal sequence
Since both the encoder and the temporal module are chosen to be model to generate trajectory

deterministic, p(x!|x<!) reduces to a conditional generation over (%2,...) from the mask to-

updated -

the updated latent, realized through a probabilistic decoder: ken “[M]” and the condition-
o <l plee ing frame x*. Each frame only
p(x' X<, P) = P (X' hypaea)- @ attend to its previous frames.

Details on this latent modeling are provided in Appendix [C} As Attention activations for x*
a result, we train a model (7, £, §) by jointly optimizing the three are highlighted in orange.
modules £, ftemp and pgec.

This setup easily accommodates learning single-frame distribution: by replacing all input frames with
a mask token and using identity attentions, where each frame only attends to itself, we effectively
disable inter-frame information flow. This trains the model to directly sample conformations. A
similar strategy has been used in image-video training [16} 29]].

3.3 Training Autoregressive Model with SE(3) Diffusion Loss

The main challenge in applying autoregressive modeling to conformation trajectories lies in rep-
resenting the continuous distribution of protein conformations within a framework typically used

" : protein length [:frame index A) Encoding Layer B) Trajectory Module C) Structure Decoder

SN : Interleaved blocks .
2 (N, N, d,) E— - p‘a(em «
embedding P Frame latent I

single repr. s: oyt

H 1ds); -
[A : | s Updated h! [TemPor:
o

A ¢
~ §
pdate
n
Sequence FoldingModule s Tem;” ;ja" 2
i — Structural
... MANLLVLFVDLG. . (frozen) z l’,;;a‘t‘z“ — — Atomic
P - p N o structure
Noisy rigids Denoised rigids

it Al >
Cs pair (R, T}) (R}, Th) o
Frame [input structure embedding l I N

Diffusion
Decoder

Other frames h' - Wi
5

R —> FrameEncoder —> Zhum
o

Diffusion time _T
t

Figure 3: Architecture overview. (A) Encoding Layer embeds protein sequence and input structure to
each frame as a frame latent representation h!, comprised of single and pair embeddings; (B) The
Trajectory Module then updates frame latent h' using interleaved structural and temporal update
blocks; (C) A diffusion-based Structure Decoder learns to denoise noisy conformations conditioned
on the updated frame latent h'; during inference, it samples conformations from the prior distribution.
See Appendix [D.T]for details.

for discrete token sequences. While some studies have approached this by discretizing the protein
structural space into discrete tokens [[13130}[31]], such approaches inherently suffer from discretization
error, which can lead to suboptimal performance in modeling protein conformations.

Instead, we propose to directly model the continuous conformational space using diffusion proba-
bilistic models and employ the DSM loss for autoregressive model training, similar to Li et al. [26].
Specifically, we perform DSM loss training in SE(3) space.

Given a clean frame x}, = (T}, R}), its latent embedding with temporal context h! (omit subscript
“update” for clarity), the forward transition kernels pyjo (T4 T{) and pjo(R}[RY) for the translation
and rotation component of SE(3), and a score network to jointly estimate the translation and rotation
scores sg(T%, h!,t) and s5 (R, h!,¢), the loss is defined as

L3 =B [A(®)50(T, b, 2) — Vogy Tog pyo(THTH)]
+E [V (1)55 (R}, b, £) — Vg log pujo (R R[])

where the expectation is taken over the diffusion time ¢ and noisy structure x; = (T%, R}) sampled
from the forward process. Gradients with respect to h! are then backpropagated to update the
weights in the temporal module fgemp and encoder f;". During inference, we decode each frame
autoregressively by performing reverse sampling as in Equation (), replacing the scores with
estimated values from sy (T!, h',¢) and s (R}, h!,?).

3.4 Model Architecture

An overview of model architecture is shown in Figure 3] with detailed illustrations of each module
provided in Appendix

Encoding Layer. A FoldingModule, parameterized by a pretrained OPENFOLD model [2], extracts
protein-specific embeddings P consisting of a single representation (s) and a pair representation (z),
shared across frames. For each frame, a FrameEncoder, adapted from the template module used in
prior works [18l[20], encodes pairwise distance of pseudo—Cg atoms via triangular updates and merges
this frame pair representations z%, . with the protein pair representation z. The resulting frame latent
embedding, h! = [s!, z!], is invariant to global translation and rotation of the conformations, and are
passed to the Trajectory Module. Following causal sequence modeling, a masked frame token “[M]”
is introduced by zeroing out the pseudo-Cg pairwise distances to remove structural information.

Trajectory Module. The Trajectory Module models structural and temporal dependencies across
frames, updating each frame’s embedding based on its preceding frames. It consists of interleaved
StructuralUpdate and TemporalUpdate layers that operate on the frame-wise latent embeddings.
StructuralUpdate incorporates Pairformer layers, a core architecture in protein structure modeling,
to update single and pair embeddings through triangular operations [2]. TemporalUpdate employs
a Llama-based causal transformer layer for channel-wise self-attention over the sequence of frame
embeddings. Each channel in the single and pair embeddings is updated independently. Frame indices

are encoded using Rotary Position Embedding [41]. This interleaved design enables efficient updates
while maintaining flexibility in modeling sequential dependencies.

Structure Decoder. The updated latent embeddings from Trajectory Module serve as conditioning
signals for generating the conformation at each frame. For the SE(3) diffusion model described in
Section we adopt CONFDIFF [44] as the DiffusionDecoder to generate 3D conformations.
CONFDIFF composes of layers of Invariant Point Attention and Transformer (on single embeddings)
to collectively update the residue SE(3) rigids, as well as single and pair embeddings. Trained with
denoising score matching in Equation (3)), the DiffusionDecoder learns to iteratively denoise noisy
frame structures drawn from a prior SE(3) distribution, conditioned on the frame latent embeddings,
to generate accurate backbone conformations of the frame. To reconstruct full-atom geometry, we
additionally predict the 7 torsional angles (¢, ¥, w, X1, - . ., x4) using a light-weight AngleResNet,
for the coordinates of backbone oxygen atom and side-chain atoms.

4 Experiments

Dataset. We evaluate model performance on ATLAS [43], a large-scale protein MD dataset covering
~1300 proteins with diverse sizes and structures. For each protein, it contains triplicated 100 ns
simulation trajectories. All models are trained on training trajectories and evaluated on test trajectories
split by protein identity [[18} 19} 44]. This presents a challenging task for assessing the generalization
to unseen protein structures and dynamics.

Model training. We use OPENFOLD (with frozen pretrained weights) as CONFROVER’s
FoldingModule and initialized the weights of the Dif fusionDecoder from CONFDIFF, while
training the remaining parts of the network from scratch. During training, trajectories of length L = 8
with varying timesteps (strides), corresponding to 1 ~ 1024 MD snapshots saved at 10 ps intervals,
are sampled to enable learning across multiple timescales. For the base CONFROVER, we adopt a
hybrid training strategy with 1:1 ratio between trajectory and single-frame training objectives. To
further enable conformation interpolation, we continue training the base model with a 1:1:1 ratio of
trajectory, single-frame and interpolation objectives, denotes the model as CONFROVER-INTERP.
See Appendix [D.2]for training details.

Baselines. We compare CONFROVER with state-of-the-art deep learning models for each task: For
trajectory simulation, we compare against MDGEN [19], a flow-based non-autoregressive trajectory
model trained on ATLAS; For time-independent generation, we evaluate against ALPHAFLOW [18]
and CONFDIFF [44], flow- and diffusion-based conformation generation models finetuned on ATLAS;
For conformation interpolation, no existing baseline is available for large proteins, therefore, we
focus on analyzing results of our model. See Appendix [A]for more details on the availability of
baseline models.

4.1 Trajectory Simulation

Since trajectories from both MD and models are stochastic samples, directly comparing them using
frame-wise error, such as root-mean-square-deviation (RMSD) between atomic coordinates, is not
appropriate. Therefore, we evaluate the model’s ability to recover trajectory dynamics from two
perspectives: (1) how well it captures the magnitude of conformation changes across varying start
conformations and timescales; (2) how well it recovers the conformational states and principal
dynamic modes observed in long-time MD simulations.

Evaluating conformation change accuracy on multi-start benchmark. We curated a test bench-
mark consisting of short trajectories with L = 9 frames, extracted from 82 ATLAS test proteins. For
each protein, we choose from varying starting frames (snapshot index 1000 ~ 7000) and strides (128
~ 1024 snapshots), resulting in a total of ~ 2, 700 generation conditions. For each trajectory, we
measure three aspects of conformational changes: Trajectory, the total changes over the entire se-
quence 7" d(x!, x!*1); Frame, the changes of each frame relative to the starting frame d(x!, x);
A Frame, the changes between consecutive frames d(x!,x'*1). Here, d(-, -) measures the distance
between two conformations. We report both the L2-distance in projected 2D PCA space and the
RMSD (in A) of alpha-carbon (Ca) atoms. This benchmark captures diverse dynamics at both the
trajectory and frame levels and enables comprehensive evaluation across varying conditions and
timescales (see Appendix for details).

MD REF. MDGEN CONFROVER MD REF. MDGEN CONFROVER

e
7%
wor

5ZNJ- 6P5X-B
Figure 4: Visualization of six proteins from multi-start. Trajectory conformations are colored by their
secondary structures and superposed to show the dynamic ensemble. MDGEN primarily exhibits
local movements, whereas CONFROVER captures conformations changes similar to MD simulations.

ConfRover shows superior performance in Table 1: Pearson correlations between conforma-
recovering the magnitude of conformational tion changes in model-generated and reference tra-
changes. We report the Pearson correlation of jectories under the multi-start setting. The mean
measured conformation changes between model- and standard deviations are calculated from five
generated and reference trajectories in Table independent runs. Models with higher correlations
with additional results in Appendix [E-T} Com- are highlighted in bold.

pared with MDGEN, CONFROVER shows a
significant improvement in correlation scores,
mean absolute error and structural quality (Ta- Traj. Frame AFrame
ble[9), indicating its stronger ability to recover MDGEN 0.562005 0474003 0.41+00
the magnitude of conformation changes across ~ CoNFROVER ~ 0.75+001 0.63+001 0.53:001
different starting conditions in the conforma-

Ca coordinates

tional space. The greater difference observed PCA2D
in PCA highlights that CONFROVER more ac- Traj. Frame AFrame
curately captures conformational changes along MDGEN 0182001 0.15%001 0.10+001

the feature dimensions most relevant to the struc- CoNFROVER 0734001 0.50:001 0.4310.00
tural variance observed in MD. Figure [] visual-
izes ensembles of conformations in generated trajectories, with additional examples in Figure
CONFROVER exhibit more notable conformation changes than MDGEN, and reflects the major
movements in the structured and loop domains observed in the MD reference.

MDGEN is a non-autoregressive model trained on trajectories of length L. = 250. Adjusting its
inference setup results in degraded conformation. To ensure fair comparison, we use the original
inference setting (S = 40, L = 250) and downsampled the trajectories for evaluation. To confirm
that this post-processing step does not introduce artifacts, we also trained MDGEN models under the
evaluation setups. The results are consistent with the downsampled version (see Appendix [E.5).

Assessing long trajectory generation on 100 ns sim- Table 2: Recovery of conformational states
ulation. We further evaluate model’s ability to recover in the 100 ns simulation experiment. The
conformational states and principal dynamics of pro- mean and standard deviation are computed
teins. For each of protein, we simulate a trajectory over five independent runs, and the better
of L = 80 frames at stride S = 120, approximat- results are highlighted in bold. MD 100NS
ing the 100 ns MD simulation in ATLAS. To assess serves as the oracle and is excluded from the
state recovery, model-generated conformations are pro- comparison.

jected into a reduced PCA space and compared with

the reference trajectory. Specifically, we discretize JSD(}) Recall (1) F1 (1)
each principal component into 10 evenly sized “states” Mp 100ns ~ 0.31 0.67 0.79
and measure the distribution similarity using Jensen- MDGEN 0.56+001 0.29+001 0.42+001

Shannon Distance (JSD). We also compute precision, coNFROVER 0.51+1001 0.424000 0.58-£0.00
recall, and F1-score on whether sample conformations
fall within these known states [32} 44} 49]. To evaluate dynamic mode recovery, we perform time-

A) MD 100ns MDGen —— ConfRover B) MD 100ns —— MDGen —-— ConfRover
—e— PC1 —x=- PC2 5ZNJ-A TAEX-A 6LAL-A
10 50
0.22 s 5 L. 2 §,§
) 2 sl
0.20 / g o Wn 0 .v% 0.0 4 .z‘g
s [x -5 L 4 d . & - 25 g
2018 —" 5
£ ./‘/“"’/ -10 0 10 0 10 -5 0 5
S 0.16
o
2 7NMQ-A 6H49-A 6TGK-C
§
% 0.14 5.0
= + 2 25 iR
B R e ——
0.12 o

\
1
|
|
1
1
1
1
1
|
|
|
i
1
1
1
1
1
1
|
4
pc2

gy ———— 1 o f 0.0
/4* ———————— S ®

0.10 @ > 723 \ _s5

0 2 4 6 8 10 12 14 16 18 20 -2 0 2 -5 0 5 0 10
TICA Lagtime (frames) pcl pcl pcl

Figure 5: Results from 100 ns simulation. (A) Correlations of principal dynamic modes between
sample and reference trajectories, evaluated at varying lag time. The mean and standard deviation are
shown as line and shadowed area, computed from five individual runs for MDGEN and CONFROVER.
(B) Examples trajectories illustrating the states explored by different methods (downsampled by 5
frames for visualization). The blue background indicates the density of the ground-truth conformation
distribution from MD reference.

lagged independent component analysis (tICA) at varying lag times on both reference and sample
trajectories. We then compute Pearson correlations between the per-residue contribution to the
leading components, based on the tICA coefficients. See Appendix [E.2|for details. We include one
of the triplicate MD trajectories—excluded from ground-truth evaluation—as an “oracle” reference,
denoted as MD 100NS, representing the performance expected if the model were as accurate as an
MD simulation run.

ConfRover recovers more conformational states than MDGen and accurately captures the principal
dynamics. As shown in Table[2] CONFROVER outperforms MDGEN in state recovery, achieving
lower JSD, higher recall and F1 scores, showing its improved ability to capture diverse conformations.
Additionally, CONFROVER shows clear advantage in capturing the principal dynamic modes across
varying lag times, performing even comparably to the MD oracle (Figure[5]A). This results suggest
CONFROVER can learn and generalize dynamics to unseen proteins and still capture the most
important dynamic modes. We visualize simulated trajectories in the PCA space in Figure 5B and
Figure[I2] These examples again confirm that CONFROVER is more capable of sampling over the
conformational space of the proteins and covering diverse conformations. Yet, we also observe
some cases where MD 100NS overcame the energy barrier and achieved more remote states while
CONFROVER did not (e.g., 7NMQ-A in Figure EIB).

Summary. These experiments demonstrate that CONFROVER outperforms the current state-of-the-art
model in trajectory simulation, effectively learning protein dynamics from MD data and generalizing
well to unseen proteins. While a gap remains compared to the oracle MD 100NS, particularly in
state recovery, the improvement narrows the gap between deep generative models and established
simulation methods.

4.2 Time-independent Conformation Sampling

We evaluate the time-independent sampling performance of CONFROVER, following the benchmark
setup in Ye et al. [47]. For each protein, 250 independent conformations are sampled and compared
the model generated ensembles with MD reference ensembles. We summarize the mean and standard
deviations from five independent runs with key metrics are summarized in Table 3| with full results in

Appendix [E3]

ConfRover matches the performance of state-of-the-art ensemble generation models. Compared
with ALPHAFLOW and CONFDIFF, CONFROVER demonstrate overall comparable performance
and outperforms at least one of the SOTA models in five evaluation criteria. This demonstrate that
CONFROVER, despite being a general-purpose model capable of trajectory generation, also performs
strongly in sampling independent conformations that approximate the equilibrium distribution from
MD simulation. In contrast, MDGEN, which is trained solely for trajectory generation, shows
suboptimal results with sequentially sampled conformations.

Effect of hybrid training. Without explicit single-frame training, the model primarily learns time-
dependent generation, with only the first frame of each trajectory learning to generate conformation

Table 3: Results from the time-independent generation experiment. ALPHAFLOW and CONFDIFF
are state-of-the-art models for direct conformation ensemble generation. CONFROVER is the base
model trained for both trajectory and time-independent generation, where as CONFROVER-TRAJ
and MDGEN are trained exclusively for trajectory generation. The mean and standard deviation are
computed from five independent runs. The best scores are highlighted in bold, and the second-best
scores are underlined.

Pairwise Per target RMWD MD Joint Weak Transient Exposed
RMSD RMSF L) PCA PCA contacts contacts residue
(1) (1) Wa () W2 () JM JM JM
ALPHAFLOW 0.56+0.06 0.85+0.01 2.62+0.03 1.524+005 2.264003 0.624000 0.41+£0.00 0.69+0.01
CONFDIFF 0.544000 0.85+000 2.704+001 1.44+000 2.22+004 0.64+0.00 0.404000 0.6740.00
MDGEN 0.474004 0.72+0.02 2.784004 1.8640.03 2.44+004 0.51+001 0.284001 0.5740.01
CONFROVER-TRAJ 0.48+0.00 0.84+001 2.85+002 1.43+0.01 2.30+001 0.534+001 0.364000 0.58+0.01
CONFROVER 0.514+001 0.85+000 2.664002 1.474003 2.23+004 0.62+001 0.374001 0.6640.01

unconditionally (i.e., from a masked token input). To test the importance of hybrid training, we
ablated the single-frame objective and trained a variant, CONFROVER-TRAJ, solely on trajectory
generation. As shown in Table 3] while this variant still outperforms time-dependent results from
MDGEN, it shows decreased performance across several metrics compared to CONFROVER. This
highlights the importance of hybrid training in balancing the learning objectives and enhancing the
model’s for generating independent conformations.

4.3 Conformation Interpolation

To enable CONFROVER for conformation interpolation, we continue training CONFROVER with
a hybrid objective combining trajectory, single-frame and interpolation, referred as CONFROVER-
INTERP. We select 38 short trajectories from multi-start for evaluation where the reference MD
trajectories for these cases exhibit significant conformation changes and clear state transitions, see
Appendix [E.4] for details. To condition on both start and end frames, we prepend the end frame
to the start frame and autoregressively generate the remaining (intermediate) frames. To evaluate
whether the model generate smooth transitions towards the target end state, we measure Ca-RMSD
and L? distance in the PCA space between each intermediate frame and the start/end frames.

Training on the interpolation objective enables smooth interpolation between conformations. As
shown in Figure @A, the distance to the start frame increases while the distance to the end frame
decreases with frame index, indicating smooth and directed transitions. Without explicit interpolation
training, the original CONFROVER (dashed lines in Figure [6]A) generates trajectory that do not
progress towards the end state. Figure[6B visualizes intermediate structures and transition pathways
in PCA space, showing that intermediate conformations from CONFROVER-INTERP closely resemble
those in the MD reference. In contrast, as shown in Figure[I4] the original CONFROVER can miss
key transitions and fails to reach the end state. Additional results and visualizations are provided
in Appendix [E.4] These results highlight the effectiveness of our interpolation training strategy: by
adjusting the dependency order in the sequence model, CONFROVER-INTERP learns to generate
smooth transitions between two conformations.

A) —o— vs.startframe —e— ConfRover-interp B) MD REF. CONFROVER-INTERP MD REF. CONFROVER-INTERP
vs.end frame -~ ConfRover

oseamiF00szss s) 3y

1o . b . Sl ¢ o : Ry A By 4
08 . 5 \:\c}, <:\<3 /”]
. N *N . ™ 3

Normalized Distance on Ca

Frame index

Figure 6: Results from conformation interpolation. (A) Ca-RMSD distance of intermediate frames to
the start and end frames, normalized by the distance between start and end frames. Reported values are
averaged over 38 cases selected from the multi-start benchmark. (B) Example interpolations results.
CONFROVER-INTERP generates smooth pathways between the start and end frames, capturing the
dynamics observed with the MD reference. Start and end frames are shown as solid structures;
intermediate conformations are shown in fading colors. Main motions are indicated by blue arrows.

Table 4: Quality of model generated conformations. Conformations sampled from 38 trajectories
are evaluated. Geometric metrics are reported as mean and standard deviations across 38 cases, and
energy values are reported as mean with 95% percentiles. The best scores are highlighted in bold.

Ramachandran ~ Rotamer Clash RMS RMS MolProbity MadraX

outliers % () outliers % (J) score (J) bonds () angles (}) score () energy (1)
MD REFERENCE 0.3840.49 1.0240.89 0.04+0.16 0.014000 1.88+0.05 0.7240.18 -519.3 (-1793.0,-53.4)
MDGEN 0.93+0.86 2.86+159 16.14420.05 0.024+0.02 2.134030 2.2440.40 -314.7 (-1483.8,263.6)
CONFROVER 0.58+0.63 1.984+1.48 7.814+652 0.01+0.01 1.88+0.25 1.72+038 -522.2 (-1858.9,-53.4)
CONFROVER-INTERP 0.7140.94 1.86+1.46 7.254874 0.024+001 1.91+032 1.61+051 -469.7 (-1712.3,-42.8)

4.4 Conformation Quality

To ensure that CONFROVER generates physically plausible conformations, we further evaluate the
quality using geometric assessments from MolProbity package [46] and energy profiles using a
coarse-grained force field MadraX [36]]. We compared conformations across 38 trajectories shared
between the forward simulation and interpolation experiments, including results from MDGEN,
CONFROVER, and an oracle MD REFERENCE. All structures are relaxed using the refinement
pipeline in OpenFold [2] to enable energy comparison.

As shown in Table d] conformations generated by MD simulation exhibit the hightest overall quality,
as expected. As a generative model, CONFROVER also produces high-quality conformations with
fewer backbone (Ramachandran) and side-chain (rotamer) outliers, more accurate covalent lengths
and angles, and achieving energy levels comparable to those of MD REFERENCE; outperforming
MDGEN across all metrics. Furthermore, we compare conformations generated from forward
simulation and interpolation tasks, where the latter includes additional constraints on terminal
conformations. CONFROVER-INTERP shows similar geometric and energetic metrics, indicating
that intermediate conformations maintains physical plausible when CONFROVER tries to interpolate
between two conformational states.

5 Conclusions and Limitations

We introduce CONFROVER, a general framework for learning protein conformational dynamics from
MD trajectory data. Through autoregressive factorization, CONFROVER supports three tasks in a
unified manner: trajectory simulation, time-independent sampling, and conformation interpolation.
This formulation reflects the temporal nature of MD while naturally encompassing conditional and
unconditional frame-level generation. Extensive experiments and analyses highlight several empiri-
cal advantages: (1) CONFROVER outperforms the current state-of-the-art in trajectory simulation,
accurately capturing dynamic magnitude, state recovery, and principal motions; (2) Despite being a
multi-purpose model, it achieves competitive performance in time-independent sampling compared
to specialized methods; (3) With simple sequence reordering, CONFROVER effectively learns to
interpolate between conformations.

Nevertheless, several limitations still remain: (1) Trajectory simulation and interpolation are emerging
tasks with few available baseline models. We hope that this work, together with future developments
in the field, will contribute to establishing more comprehensive benchmarks; (2) The dataset and
evaluation metrics used in this study are limited and preliminary. The ATLAS dataset contains
100 ns simulations of single-chain proteins, which may not capture large conformational changes
or the dynamics of protein complexes. Although we curated interpolation cases from ATLAS for
demonstration purposes, future benchmarks reflecting realistic functional state transitions would be
more meaningful. (3) Although CONFROVER narrows the gap with classical MD, it still falls short
in fully capturing the conformational space with high structural fidelity. Future gains may come
from scaling training data, using more efficient architectures, and leveraging additional information
from MD, such as energy information. (4) Finally, while the triangular updates in the structural
modules ensure high accuracy, their computational cost limits scalability to larger proteins and longer
trajectories. Despite these challenges, CONFROVER demonstrates the promise of autoregressive
models in molecular simulation, offering a unified, efficient, and extensible approach to modeling
protein dynamics.

6 Acknowledgments

We would like to thank Dr. Hang Li for his invaluable support of this project. We also thank Zaixiang
Zheng for insightful discussions, and Wesley Hsieh, Yi Zhou, Nima Shoghi, Yuxuan Liu, Xiaolu
Shen, Jing Yuan, Yilai Li, Fei Ye, and Wei Qu for their valuable feedback.

10

References

[1] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel,
Olaf Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W.
Bodenstein, David A. Evans, Chia-Chun Hung, Michael O’Neill, David Reiman, Kathryn
Tunyasuvunakool, Zachary Wu, Akvilé Zemgulyté, Eirini Arvaniti, Charles Beattie, Ottavia
Bertolli, Alex Bridgland, Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers,
Andrew Cowie, Michael Figurnov, Fabian B. Fuchs, Hannah Gladman, Rishub Jain, Yousuf A.
Khan, Caroline M. R. Low, Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian
Stecula, Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal
Zielinski, Augustin Zidek, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and
John M. Jumper. Accurate structure prediction of biomolecular interactions with alphafold 3.
Nature, 630(8016):493-500, 2024. doi: 10.1038/s41586-024-07487-w.

[2] Gustaf Ahdritz, Nazim Bouatta, Christina Floristean, Sachin Kadyan, Qinghui Xia, William
Gerecke, Timothy J O’Donnell, Daniel Berenberg, Ian Fisk, Niccold Zanichelli, Bo Zhang,
Arkadiusz Nowaczynski, Bei Wang, Marta M Stepniewska-Dziubinska, Shang Zhang, Adegoke
Ojewole, Murat Efe Guney, Stella Biderman, Andrew M Watkins, Stephen Ra, Pablo Ribalta
Lorenzo, Lucas Nivon, Brian Weitzner, Yih-En Andrew Ban, Peter K Sorger, Emad Mostaque,
Zhao Zhang, Richard Bonneau, and Mohammed AlQuraishi. OpenFold: Retraining AlphaFold2
yields new insights into its learning mechanisms and capacity for generalization. bioRxiv, 2022.

[3] Marloes Arts, Victor Garcia Satorras, Chin-Wei Huang, Daniel Ziigner, Marco Federici, Cecilia
Clementi, Frank Noé, Robert Pinsler, and Rianne van den Berg. Two for one: Diffusion models
and force fields for coarse-grained molecular dynamics. Journal of Chemical Theory and
Computation, 19(18):6151-6159, 2023. doi: 10.1021/acs.jctc.3c00702.

[4] Mo Bavarian, Heewoo Jun, Nikolas A. Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. ArXiv,
abs/2207.14255, 2022.

[5] Herman JC Berendsen and Steven Hayward. Collective protein dynamics in relation to function.
Current opinion in structural biology, 10(2):165-169, 2000.

[6] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:
Scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

[7] Kaihui Cheng, Ce Liu, Qingkun Su, Jun Wang, Liwei Zhang, Yining Tang, Yao Yao, Siyu
Zhu, and Yuan Qi. 4d diffusion for dynamic protein structure prediction with reference guided
motion alignment. arXiv preprint arXiv:2408.12419, 2024.

[8] Matthew Carter Childers and Valerie Daggett. Insights from molecular dynamics simulations
for computational protein design. Mol. Syst. Des. Eng., 2:9-33, 2017.

[9] Allan dos Santos Costa, Ilan Mitnikov, Franco Pellegrini, Ameya Daigavane, Mario Geiger,
Zhonglin Cao, Karsten Kreis, Tess Smidt, Emine Kucukbenli, and Joseph Jacobson. Equijump:
Protein dynamics simulation via so (3)-equivariant stochastic interpolants. arXiv preprint
arXiv:2410.09667, 2024.

[10] Diego del Alamo, Davide Sala, Hassane S Mchaourab, and Jens Meiler. Sampling alternative
conformational states of transporters and receptors with alphafold2. eLife, 11:¢75751, mar 2022.
doi: 10.7554/eLife.75751.

[11] Yuangi Du, Michael Plainer, Rob Brekelmans, Chenru Duan, Frank Noe, Carla P Gomes,
Alan Aspuru-Guzik, and Kirill Neklyudov. Doob’s lagrangian: A sample-efficient variational
approach to transition path sampling. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

[12] Hans Frauenfelder, Stephen G Sligar, and Peter G Wolynes. The energy landscapes and motions
of proteins. Science, 254(5038):1598-1603, 1991.

11

[13] Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J. Sofroniew, Deniz Oktay, Zeming Lin,
Robert Verkuil, Vincent Q. Tran, Jonathan Deaton, Marius Wiggert, Rohil Badkundri, Irhum
Shafkat, Jun Gong, Alexander Derry, Raul S. Molina, Neil Thomas, Yousuf A. Khan, Chetan
Mishra, Carolyn Kim, Liam J. Bartie, Matthew Nemeth, Patrick D. Hsu, Tom Sercu, Salvatore
Candido, and Alexander Rives. Simulating 500 million years of evolution with a language
model. Science, 387(6736):850-858, 2025.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Proceedings of the 34th International Conference on Neural Information Processing Systems,
NIPS 20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[15] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High
definition video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

[16] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and
David J. Fleet. Video diffusion models, 2022. URL http://arxiv.org/abs/2204.03458.

[17] Bowen Jing, Ezra Erives, Peter Pao-Huang, Gabriele Corso, Bonnie Berger, and Tommi Jaakkola.
Eigenfold: Generative protein structure prediction with diffusion models. arXiv preprint
arXiv:2304.02198, 2023.

[18] Bowen Jing, Bonnie Berger, and Tommi Jaakkola. Alphafold meets flow matching for generating
protein ensembles. In Proceedings of the 41st International Conference on Machine Learning,
pages 22277-22303, 2024.

[19] Bowen Jing, Hannes Stirk, Tommi Jaakkola, and Bonnie Berger. Generative modeling of
molecular dynamics trajectories. arXiv preprint arXiv:2409.17808, 2024.

[20] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin 7idek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas
Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure predic-
tion with alphafold. Nature, 596(7873):583-589, July 2021.

[21] Martin Karplus and John Kuriyan. Molecular dynamics and protein function. Proceedings of
the National Academy of Sciences, 102(19):6679-6685, 2005.

[22] Leon Klein, Andrew Foong, Tor Fjelde, Bruno Mlodozeniec, Marc Brockschmidt, Sebastian
Nowozin, Frank Noé, and Ryota Tomioka. Timewarp: Transferable acceleration of molecular
dynamics by learning time-coarsened dynamics. Advances in Neural Information Processing
Systems, 36, 2024.

[23] Jonas Kohler, Leon Klein, and Frank Noé. Equivariant flows: exact likelihood generative
learning for symmetric densities. In International conference on machine learning, pages
5361-5370. PMLR, 2020.

[24] David Péter Kovics, J. Harry Moore, Nicholas J. Browning, Ilyes Batatia, Joshua T. Horton,
Yixuan Pu, Venkat Kapil, William C. Witt, loan-Bogdan Magdau, Daniel J. Cole, and Gabor
Csényi. Mace-off: Short-range transferable machine learning force fields for organic molecules.
Journal of the American Chemical Society, 147(21):17598-17611, 2025. doi: 10.1021/jacs.
4c07099.

[25] Sarah Lewis, Tim Hempel, José Jiménez Luna, Michael Gastegger, Yu Xie, Andrew YK Foong,
Victor Garcia Satorras, Osama Abdin, Bastiaan S Veeling, Iryna Zaporozhets, et al. Scalable
emulation of protein equilibrium ensembles with generative deep learning. bioRxiv, pages
2024-12, 2024.

[26] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. arXiv preprint arXiv:2406.11838, 2024.

12

http://arxiv.org/abs/2204.03458

[27] Zongzhao Li, Jiacheng Cen, Liming Wu, Hao Sun, Hangyu Mao, zhangfuzheng, Di Zhang,
and Wenbing Huang. Geometric spatiotemporal transformer to simulate long-term physical
dynamics, 2025. URL https://openreview.net/forum?id=LOBhVTtVncl

[28] Ce Liu, Jun Wang, Zhiqiang Cai, Yingxu Wang, Huizhen Kuang, Kaihui Cheng, Liwei Zhang,
Qingkun Su, Yining Tang, Fenglei Cao, Limei Han, Siyu Zhu, and Yuan Qi. Dynamic pdb:
A new dataset and a se(3) model extension by integrating dynamic behaviors and physical
properties in protein structures, 2024.

[29] Haozhe Liu, Shikun Liu, Zijian Zhou, Mengmeng Xu, Yanping Xie, Xiao Han, Juan C Pérez,
Ding Liu, Kumara Kahatapitiya, Menglin Jia, et al. Mardini: Masked autoregressive diffusion
for video generation at scale. arXiv preprint arXiv:2410.20280, 2024.

[30] Yufeng Liu, Linghui Chen, and Haiyan Liu. Diffusion in a quantized vector space generates
non-idealized protein structures and predicts conformational distributions. bioRxiv, 2023. doi:
10.1101/2023.11.18.567666.

[31] Jiarui Lu, Xiaoyin Chen, Stephen Zhewen Lu, Chence Shi, Hongyu Guo, Yoshua Bengio, and
Jian Tang. Structure language models for protein conformation generation. arXiv preprint
arXiv:2410.18403, 2024.

[32] Jiarui Lu, Bozitao Zhong, Zuobai Zhang, and Jian Tang. Str2str: A score-based framework for
zero-shot protein conformation sampling. In The Twelfth International Conference on Learning
Representations, 2024.

[33] J Andrew McCammon, Bruce R Gelin, and Martin Karplus. Dynamics of folded proteins.
nature, 267(5612):585-590, 1977.

[34] JA McCammon. Protein dynamics. Reports on Progress in Physics, 47(1):1, 1984.

[35] Frank Noé, Simon Olsson, Jonas Kohler, and Hao Wu. Boltzmann generators: Sampling
equilibrium states of many-body systems with deep learning. Science, 365(6457):eaaw1147,
2019.

[36] Gabriele Orlando, Luis Serrano, Joost Schymkowitz, and Frederic Rousseau. Integrating physics
in deep learning algorithms: a force field as a pytorch module. Bioinformatics, 40(4):btac160,
2024.

[37] Benjamin Rhodes, Sander Vandenhaute, Vaidotas §imkus, James Gin, Jonathan Godwin, Tim
Duignan, and Mark Neumann. Orb-v3: atomistic simulation at scale, 2025. URL https:
//arxiv.org/abs/2504.06231,

[38] Mathias Schreiner, Ole Winther, and Simon Olsson. Implicit transfer operator learning: Multiple
time-resolution models for molecular dynamics. Advances in Neural Information Processing
Systems, 36, 2024.

[39] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[40] Richard A. Stein and Hassane S. Mchaourab. Speach_af: Sampling protein ensembles and
conformational heterogeneity with alphafold2. PLOS Computational Biology, 18(8):1-16, 08
2022. doi: 10.1371/journal.pcbi.1010483.

[41] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding, 2023. URL https://arxiv.org/
abs/2104.09864.

[42] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[43] Yann Vander Meersche, Gabriel Cretin, Aria Gheeraert, Jean-Christophe Gelly, and Tatiana Ga-
lochkina. Atlas: protein flexibility description from atomistic molecular dynamics simulations.
Nucleic acids research, 52(D1):D384-D392, 2024.

13

https://openreview.net/forum?id=LOBhVTtVnc
https://arxiv.org/abs/2504.06231
https://arxiv.org/abs/2504.06231
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864

[44]

[45]

[46]

[47]

[48]

[49]

Yan Wang, Lihao Wang, Yuning Shen, Yiqun Wang, Huizhuo Yuan, Yue Wu, and Quanquan
Gu. Protein conformation generation via force-guided se (3) diffusion models. In Forty-first
International Conference on Machine Learning, 2024.

Hannah K. Wayment-Steele, Adedolapo Ojoawo, Renee Otten, Julia M. Apitz, Warintra Pit-
sawong, Marc Homberger, Sergey Ovchinnikov, Lucy Colwell, and Dorothee Kern. Predicting
multiple conformations via sequence clustering and alphafold2. Nature, 625(7996):832-839,
November 2023.

Christopher J Williams, Jeffrey J Headd, Nigel W Moriarty, Michael G Prisant, Lizbeth L
Videau, Lindsay N Deis, Vishal Verma, Daniel A Keedy, Bradley J Hintze, Vincent B Chen,
et al. Molprobity: more and better reference data for improved all-atom structure validation.
Protein Science, 27(1):293-315, 2018.

Fei Ye, Zaixiang Zheng, Dongyu Xue, Yuning Shen, Lihao Wang, Yiming Ma, Yan Wang,
Xinyou Wang, Xiangxin Zhou, and Quanquan Gu. Proteinbench: A holistic evaluation of
protein foundation models. arXiv preprint arXiv:2409.06744, 2024.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina
Barzilay, and Tommi Jaakkola. SE(3) diffusion model with application to protein backbone
generation. In Proceedings of the 40th International Conference on Machine Learning, pages
40001-40039, 2023.

Shuxin Zheng, Jiyan He, Chang Liu, Yu Shi, Ziheng Lu, Weitao Feng, Fusong Ju, Jiaxi Wang,
Jianwei Zhu, Yaosen Min, et al. Predicting equilibrium distributions for molecular systems with
deep learning. Nature Machine Intelligence, 6(5):558-567, 2024.

14

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims are centered around a new framework (see Section[3) and its
claimed performance supported by empirical results across three key tasks (see Section).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section[3
Guidelines:

» The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

15

Justification: N/A
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed information about model framework, architectures, and experimental
setups are included in the main text and appendices.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]

Justification: The ATLAS data is open access (https://www.dsimb.inserm.fr/ATLAS/index.html).
Code and model checkpoints for this work will be released on GitHub.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section[d] Appendix [D]and [E]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For main experiments, we evaluated the results through repeated independent
runs and report the statistics (e.g., mean and standard deviations). Calculation details are
included in the caption of each Table.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix [D.3]and Appendix D}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: N/A
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix [E.7]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: We consider our work to pose a low risk of misuse.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly cited the dataset, model, and related references.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: N/A
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: N/A
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: N/A
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Additional Background
A.1 Related Work

Deep Generative Models for MD Trajectories. Recent works have explored generating protein
trajectories as a surrogate for MD simulations. Models such as TIMEWARP [22], ITO [38], and
EQu1JUMP [9] learn stochastic transport functions to sample future conformations at a lagged
time (longer than MD intervals), reducing the computational costs of long-timescale simulations.
However, these methods assume Markovian dynamics by relying solely on the current state for
prediction, which may not be suitable for non-Markovian dynamics common in protein MD data. To
capture higher-order dependencies between the frames, ALPHAFOLDING [7] incorporates history
frames via “motion nodes”, but it requires a fixed context window. MDGEN [19] takes a different
approach by directly modeling the joint distributions of frames in a trajectory and learning frame
dependencies through “masked frame modeling”, similar to masked language modeling. However, its
key-frame parameterization requires separate models for different tasks, and its non-autoregressive
paradigm limits flexible generation (e.g., not compatible for generating trajectories with variable
lengths). GST [27] applies autoregression for future frame prediction, enabling variable-length
conditioning context and prediction horizons. While the autoregressive approach is conceptually
similar to CONFROVER, their work differs in several key aspects: it performs deterministic prediction
rather than generative trajectory sampling; it employs a graph-based architecture with fixed structural
priors from an adjacency graph, instead of full attention across all residues; it is trained and evaluated
on a single protein instead of diverse proteins from ATLAS under a transferable setting.

Beyond forward trajectory simulation, generative models have also been applied to conformation
interpolation, that is, generating the intermediate trajectories between two conditioned states. The non-
autoregressive framework of MDGEN [[19] can be extended to sample transition pathways between
such states; however, its key-frame parameterization requires training a separate model for this task,
and it has not been tested on large proteins like those in ATLAS. Du et al. [11] proposed a simulation-
free objective for transition-pathway sampling based on Doob’s h-transform, but their approach has
only been validated on numerical models and the small protein Chignolin. Its generalizability to
larger, more diverse proteins remains unassessed.

Notably, the above models focus on learning temporal dependencies between frames and do not
support direct, time-independent conformation sampling from the learned distribution. In contrast,
CONFROVER is a general framework that learns both the trajectory generation tasks as well as direct
sampling of independent protein conformations.

Deep Learning Models for Conformation Ensemble Generation. Another line of work focuses
on direct sampling of conformations in a time-independent manner. Early efforts include perturbing
the input to folding models (e.g., AlphaFold) [10} 45, 40] or perturbing the conformation using a
structural diffusion model [32]. However, these models are trained solely on static PDB structures and
do not explicitly model the conformational distribution. Recent works have shifted to deep generative
paradigms that directly learn protein-specific conformational distributions [17, 49, |18 44} [31, [25]].
Several models in this category, including ALPHAFLOW, CONFDIFF, and BIOEMULATOR, fine-tune
pretrained structure models on large-scale MD datasets, enhancing their ability to capture conforma-
tional distributions. A related approach trains normalizing flow models to approximate the Boltzmann
distribution [35} 23]], but their invertibility constraints limit scalability and transferability beyond
small molecules and peptides. While these methods can generate time-independent conformations,
they overlook temporal relationships and do not capture the kinetic aspects of protein dynamics.

Deep Learning Enhanced Molecular Dynamics. Another direction integrates deep learning with
molecular conformation modeling through machine learning force field (MLFF) models [24, [37]].
These models aim to incorporate higher-level accuracy (e.g., from ab initio calculations) into classical
molecular dynamics simulations, improving fidelity while maintaining scalability. However, they
still rely on sequential MD sampling with small integration steps and can be more computationally
expensive than conventional MD. Two-for-One [3] does not directly learn an MLFF but instead trains
a diffusion model for protein conformations and uses the resulting score function as an approximate
coarse-grained force field for MD simulation. Although it still depends on sequential MD sampling,
this work provides an interesting perspective that connects conformation distribution modeling and
trajectory generation. In contrast, different from these approaches, CONFROVER explicitly models

22

and generates both individual conformation and trajectories, without relying on force field-based MD
simulations.

Image-Video Generation. The challenge of modeling protein dynamics conceptually parallels
tasks in image and video generation, requiring both data distribution learning and temporal modeling.
Recent advances in video generation offer valuable insights in addressing these challenges. Given
limited video data, extending image generative models to video has proven effective. Several
works [[16} 6, [15] achieve this by incorporating temporal attention layers, enabling frame-to-frame
communication. Disabling temporal attention reverts them to image models, allowing flexible
training across both modalities. These approaches efficiently model time correlations without
explicitly tracking offsets between frames. Meanwhile, the extension of autoregressive language
models to image and video domains has shown strong potential for sequential generation in different
data modalities. Li et al. [26] integrates language models’ sequential modeling with diffusion
models’ ability to model continuous distributions, showing that discrete tokens are not essential for
autoregressive models. MARDINT [29] extends the concept to video generation with efficient llama-
style temporal planning and high-resolution video generation via a diffusion decoder. By applying
masked “frame” modeling, MARDINI allows the model to learn flexible temporal relationships and
enables diverse tasks such as frame interpolation. CONFROVER differs from these works from
video models in several aspects: it employs SE(3) diffusion for 3D structure generation; by using an
autoregressive paradigm, it explicitly decouples the diffusion generation from temporal modeling,
unlike the spatiotemporal denoising process in MARDINTI; in addition, the causal autoregressive
framework enables more flexible trajectory generation with variable lengths.

A.2 Baseline Limitation

Modeling MD trajectories using deep generative models is still an emerging research area, few
models currently support learning protein dynamics in transferable settings. Existing approaches
based on forward transport operators have been primarily trained and evaluated on small peptides
(e.g., Timewarp [22]]) or small fast-folding proteins (e.g., EquiJump [9]]). Although AlphaFolding [7]
was also trained using ATLAS, the model weights are not publicly available at the time of this
work. (We attempted an internal reproduction and included its result in Appendix [E.6]) Due to these
limitations, we use MDGEN as the only available model for the main experiment. For conformation
interpolation, neither sampling-based method [11] nor video-like method MDGEN [19] have been
trained and evaluated on large proteins. Therefore, we focus on demonstrating the interpolation
results of CONFROVER-INTERP.

23

B Diffusion Models on SE(3) Space

Diffusion Probabilistic Models (DPM) model complex distributions through iterative denoising. In
the context of protein conformations, DPMs defined over SE(3) translation-rotation space have been
applied for protein backbone structural generation [48l 144]. Following Section xo = (To,Ry) €
SE(S)N denotes the translations and rotations of backbone rigids in data. The diffusion processes
defined in the translation and rotation subspace add noise to corrupt the data:

1
th = _iﬁtPTt dt “+ v/ BthWt;

d SO(3
dR, = |/ —of dw;),
where ¢ € [0, 1] is the diffusion time, 8, and o are predefined time-dependent noise schedules and

P is a projection operator removing the center of mass. w, and wtS ©®) are the standard Wiener

processes in (0, I3)®Y and U(SO(3))®¥ respectively.

The transition kernel of T satisfies py o (T¢|To) = N (T+; \/a; To, (1—ay)I), where oy = e~ Jo B2,
The transition kernel of R satisfies p;o(R:|Ro) = ZGSO3(Ry;Ro,t), where ZGSOs is the
isotropic Gaussian distribution on SO(3) [48].

The associated reverse-time stochastic differential equation (SDE) follows:

1
th =P _iﬁtTt — BtVlogpt(Tt)] dt + \/EP(]JI_Vt7

d d
dR; = *EUEVIOgPt(Rt)dt + \/}dwtsow)a 6)

_ _SO(3 . . .
where w; and w;) denote standard Wiener processes in the reverse time.

The reverse process can be approximated by a neural network through the denoising score matching
loss for translation and rotation:

L(0) =LT(0) + L™(0) ©)
=E [A(t)||s6(T¢, t) — Vo, log pyjo(Te|To)||?]
+E [N (t)lls5(Re,) — Vr, log pyjo(Re|Ro)[|] ,
where A(t) and A" (t) are time-dependent weights, s¢(T4,t) and sj (R, t) are the score networks

commonly parameterized with shared weights. The expectations are taken over diffusion time
t ~ U[tmin, 1], and over noisy and clean data pairs from the forward process (Tg, T;) and (R, Ry).

24

C Derivation of Equations in Section

Here we provide a more rigorous derivation of equations in Section [3.2] For clarity, we omit the
conditioning variable P in the intermediate steps.

As defined in Equation (T)), our goal is to model the frame-level conditional distribution p(x![x<!). To
achieve this, we encode the previous frames {xl}ﬁ;% into a sequence of latent embeddings {h® é;i,
and model inter-frame dependencies in this latent space.

By applying the Bayes’ rule, we can factor the joint distribution over the current conformation x' and
intermediate latent embeddings h = (h!, h<!) as:

p(Xl, hl, h<l | X<l) _ p(Xl ‘ hl,h<l,X<l)p(hl | h<l,x<l)p(h<l | X<l).
Integrating both sides over the latent variables h yields:

p(x [x<!) = / p(x' | B, b, x<) p(h! | b, x<") p(h<! | x<) dh. ®)
h

In our approach, both p(h! | h<!,x<!) and p(h<! | x<!) are modeled using deterministic neural

networks: an encoder f;" (x%) and an autoregressive temporal module fgemp(hd), respectively.

These mappings reduce both p(h! | h<!,x<!) and p(h<! | x<!) to Dirac delta functions, and the
conditional dependencies can be simplified as:

p(h'[h<!,x<") = p(h'[h=<")
p(Xl‘hl, h<l,X<l) _ p(Xl|hl).

Substituting into Equation (8) gives:

p(ajx<t) = / p() - p(h <) - p(h<!x<!)dh. ©)
h

Again, due to the deterministic nature of the encoder and temporal module, there is no marginalization
involved in Equation (9), yielding:

p(xl|x<l) :p(xl|hl)
where h'= f(x',P), i=12,...,1-1
and h'= £ (b, 0% W),

Finally, we approximate p(x'|h') with a parameterized model pg"(x!|h!).

25

D Method Details
D.1 Detailed Module Architectures

Encoding Layer. The protein-specific single and pair representations are obtained from the Evo-
former stack of a pretrained OpenFold model (with frozen weights), after three recycle iterations.
In addition, we encode residue-level sequence information by combining sinusoidal positional em-
beddings of residue indices with learnable embeddings for the 20 standard amino acid types. These
features are concatenated with the single representation from the FoldingModule.

To encode the structural information of each conformation frame, we introduced the FrameEncoder,
a pseudo-beta-carbon (Cg) coordinate encoder similar to the InputEmbedding module from AL-
PHAFLOW [18]] (without diffusion time embedding). Specifically, this module first compute the
pairwise distances between residues using Cg coordinates. These distances are then binned, embed-
ded into latent embedding, and further refined through triangular update blocks including triangle
attention and multiplication updates [20]]. See Algorithm I]for the specifics. The resulting per-frame
Cp pair embedding zk,,,. is concatenated with the pair representation from FoldingModule.

Both single and pair embeddings are projected into the same dimension of d for simplicity, forming
the latent embedding h! = [s, z!] for each frame. See detailed illustration in Figure
Encoding Layer

Amino acid (AA) concat.

g O —>|MLP
(resi_index, aa_type)
Frame latent
Sequence single repr. s: (N, dy) b = [s,2]]
.. .MANLLVLFVDLG... ’
() L——— single repr. s": (N, d)
FoldingModule
(frozen) 5H
2: (N, N, d,)
l pair representation
concat. O—> |MLP|—> | 2":(N,N,d)
Cg pairwise distance
Frame [input structure ’ |
< i . Clg pair
I ¢ Distogram InputPairStack embedding
"o —_ —ombeddin (Triangular Attention + e -
S} A 9 Triangular Multiplication) add ZFrame
|
FrameEncoder

Figure 7: Architecture details of the Encoding Layer. A frozen FoldingModule encodes the protein-
specific information from its sequence, containing prior knowledge on its chemical environment
and folding structures. The single representation is further concatenated with additional amino acid
embeddings and projected to a hidden dimension of size d; The pair representation is concatenated
with frame conformation information, encoded in Cg pair embedding, and projected to a hidden
dimension of size d. Both frame-level single and pair embeddings form the frame-level latent for
downstream modules.

Algorithm 1 FRAMEENCODER

Input: Pseudo beta carbon (Cg) coordinates x € RV >3, time ¢ € [0, 1]
Output: Input pair embedding z € RV *Nx64
zij < ||xi — x|))
z;; < Bin(z;;, min = 3.25 A, max = 50.75 A, Nyjns = 39)
z;; < Linear(OneHot(z;,))
for [< 1 to Npjocks = 4 do
{z};; += TriangleAttentionStartingNode(z;;, ¢ = 64, Nheaa = 4)
{z},; += TriangleAttentionEndingNode(z;;, ¢ = 64, Nheaa = 4))
{z};; += TriangleMultiplicationOutgoing(z;;, c = 64)
{z}:; += TriangleMultiplicationIncoming(z,;, c = 64)
{z};; += PairTransition(z;;,n = 2)
end for
z,; = LayerNorm(z;;)

26

Trajectory Module. In the Trajectory Module, we interleave layers of StructuralUpdate and
TemporalUpdate to iteratively update the latent [s!, z'], enabling the temporal reasoning across
frames and structural refinement within each frame.

For the StructuralUpdate, we adopt a Pairformer block from AlphaFold 3 [2], which jointly
updates the single and pair embeddings of the current frame through structural reasoning. After the
StructuralUpdate, the pair embedding is flattened from [N, N, d] to [N x N, d] and concatenated
with the single embedding before being passed into the TemporalUpdate.

To model temporal dependencies between frames, we use a lightweight Llama architecture [42]. We
transpose the input such that the temporal dimension is treated as the sequence axis for channel-wise
self-attention across time. Rotary positional encoding [41] is applied to encode the temporal position
for each frame. A causal attention mask is applied to restrict each frame to only attend to previous
frames. After the temporal update, the latent embedding are reshaped and split back into single and
pair embeddings.

Figure 8| and Table [5] provide the detailed module architecture and hyperparameter configurations,
respectively. A StructuralUpdate block is included for every two TemporalUpdate layers.

Trajectory Module Ohert
Other frames

:’f"‘j‘?‘e’}“ StructuralUpdate Updated b! TemporalUpdate Updated b
e

‘Channel-wise temporal sel-attention

1 i rotary posional sncodn —
gl et o (V]d) [[}—»&L{ }»@H sinlofop. ' (N, d) - = ° Shoe .o (V) ——
add add e

ncat. {

split

reshape

' i
PairStack D1 i > pai representaton
i reprosentaton pa— —
o g —— : : (N, N,d)
ntion) add reshape 4 B

o erasaaton
i)

g
Triangula

Figure 8: Architecture details of the Trajectory Module. Trajectory Module contains interleav-
ing blocks of StructuralUpdate and TemporalUpdate (only one block of each is shown).
StructuralUpdate leverages the Pairformer architecture from Abramson et al. [1]], updating the
pair embeddings with triangular updates and the single embeddings using with pair bias from the
updated pair. The updated pair embeddings are flatten and concatenate with single embedding for
channel-wise temporal update. The attention is applied along the temporal dimension and update
each single and pair embedding channels independently. The embeddings from TemporalUpdate
are split and reshape back into single and pair embeddings.

Table 5: Hyperparameter choices of Trajectory Module

Hyperparameters Values

Lightweight Llama (TemporalUpdate)

Number of layers 8
Dimension of the MLP embeddings 256
Dimension of the hidden embeddings 128
Number of attention heads 4

Pairformer (StructuralUpdate)

Dimension of single embeddings 128
Dimension of pair embeddings 128
Dimension of triangle multiplication hidden embeddings 128
Number of triangle attention heads 4
Dimension of pair attention embeddings 32
Transition layer expanding factor 4
Pair attention dropout rate 0.25

Structure Decoder. Conformation generation, conditioned on the temporal signals from the Trajec-
tory Module, is performed using the model architecture from CONFDIFF [44], As shown in Figure[9]
following CONFDIFF, the inputs to the denoising model include diffusion time ¢, pairwise distance
between residue rigids, and residue indices (not shown). They are encoded and concatenated with the
single and pair embeddings from FoldingModule. In addition, the single and pair embeddings from

27

the Trajectory Module are projected back to the latent dimension ds and d,, respectively, to modify
the single and pair embeddings used by CONFDIFF.

The core of the Structure Decoder consists of multiple IPA-transformer blocks, which update
single and pair embeddings as well as the SE(3) rigids of noisy conformations. In the final block,
torsional angles are predicted by TorsionPred and, together with denoised rigids, to reconstruct
the atomic structure of generated conformation. The corresponding hyperparameter settings are
summarized in Table

Structure Decoder

Protein embedding
from FoldingModule

paic epresentation concat = paic reprosentaton
ot (N, N.du) ML & o (N Vi) A WNG)
a4
aaaaaa [|
singe repr. s": (N, dy) —>(D—1 **f—> single repr s' (N, dy) " arien i D ' (N, dy) > ‘ ’———o singlo ropr. 5': (N,dy) —> -~ —— [single epx. s": (N, ds) —» | TorsionPred
add e

concat, 1

!

aaaaaaaaaaa

5§ s (R}, T ks (R, 1Y) oisad s (R, T
1o (R, T!) H igas (R}, T)) igds (R}, T)) donoised rigs (R}, T)

IPA-transformer block Aomic sinichwre
Figure 9: Architecture details of the Structure Decoder. Single and pair embeddings from Trajectory
Module is used to update the original embeddings from FoldingModule. The resulting embeddings
are fed into blocks of IPA-transformer to update single, pair embeddings and denoise rigids, SE(3)
representation of protein backbone conformations. Denoised rigids together with torsion angles

predicted by TorsionPred recovers the atomic structure of protein conformation at this frame.

Table 6: Hyperparameter choices of the Structure Decoder

Hyperparameters Values

Neural network

Number of TPA blocks 4
Dimension of single embedding (ds) 256
Dimension of pair embedding (d,) 128
Dimension IPA hidden embedding 256
Number of IPA attention heads 4
Number of IPA query points 8
Number of TPA value points 12
Number of transformer attention heads 4
Number of transformer layers 2
SE(3)-diffusion SDE
Number of diffusion steps 200
Translation scheduler Linear
Translation Bpin 0.1
Translation (p,ax 20
Rotation scheduler Logarithmic
Rotation opin 0.1
Rotation o,y 1.5

28

D.2 Training and Inference Details

We train all CONFROVER models on the trajectories from the ATLAS training set, following the
train-validation-test split of previous works [[18}144}|19]]. Specifically, we exclude the training proteins
longer than 384 amino acid residues, leading to 1080 training proteins.

Most components of CONFROVER models were trained from scratch, except for the FoldingModule,
where we used frozen weights from OpenFold to extract the single and pair representations from three
recycling iterations, and the Dif fusionDecoder, which was initialized from ConfDiff-0F-r3-MD
checkpoint provided by the authors{ﬂ

During each training epoch, we randomly sample stride length from 2° to 20 to extract sub-
trajectories of length L = 9 at varying time scales. With the use of causal transformers, input
frames were shifted forward by one frame with a [MASK] token padded at the beginning of the
trajectory. Combined with the use of a causal mask in temporal attention, the design ensures that
each frame is trained to sample conditioned only on previous frames and the first frame is generated
unconditionally using only the [MASK] token as input.

We trained main CONFROVER model 180 epochs (~ 37 hrs) and CONFROVER—INTERP model for
additional 220 epochs (~ 45 hrs). Additional training hyperparameters can be found in Table[7] All
model training and sampling were carried out using 8 NVIDIA H100 GPUs.

Table 7: Training hyperparameters

Hyperparameters Values

Batch Size 1

Frames Num 8

Gradient Clip 1.0

Learning Rate 1x10~4

Optimizer Adam (weight decay = 0.)

D.3 Training and Inference Cost

CONFROVER models in this work contains 19.6 M trainable parameters. All model training and
sampling were carried out using 8 NVIDIA H100 GPUs with Distributed Data Parallel. We trained
the main CONFROVER model for 180 epochs (~ 37 hrs) and CONFROVER—INTERP model for
additional 220 epochs (~ 45 hrs).

Inference cost varies with protein size and benchmark setups. To measure the potential speedups
from using CONFROVER compared with classic MD simulation, we measured the wall-clock time
required to generate 100 ns trajectories (80 frames) for ATLAS proteins of varying sizes and report
the average inference time per size bucket. For comparison, we selected a representative protein from
each bucket and estimated the time required to simulate 100 ns using OpenMM with implicit solvent.
Both are performed on a single NVIDIA H100-80G GPU. As shown in the Table[§] CONFROVER
provides significant speedup for 100 ns simulation, with even more pronounced acceleration for
larger proteins.

Table 8: Runtime comparison (in minutes) across different protein sequence lengths. Speedup is
computed as MD runtime divided by CONFROVER runtime

Sequence length (0,150) [150,300) [300,450) [450,600) [600,724]

ConfRover 6.99 7.53 10.92 15.88 20.83
MD 104.54 207.92 386.69 651.29 1099.13
Speedup 14.95 % 27.61x 35.41x 41.01x 52.77x

For our large-scale experimental benchmarks, multi-start trajectory simulation (2,700+ trajectories)
took 8 hours and 30 minutes, while time-independent sampling (250 conformations per protein) took
3 hours and 20 minutes.

"https://github.com/bytedance/ConfDiff

29

E Additional Experimental Results

E.1 Trajectory Simulation: multi-start

Benchmark Curation. In multi-start, we sample short trajectories from varying starting point
while ensuring the generation within the scope of the reference trajectory. For example, we select
frame index of 1000, 3000, 5000, and 7000 as starting frames for stride S = 128/256, resulting in 12
test trajectories from triplicates; frame index 1000, 3000, 5000 as starting frames for stride S = 512,
and frame index 1000 for stride S = 1024 to avoid exceeding total of 10000 frames. This provided
us 2,706 different starting conditions from 82 proteins from the ATLAS test set for evaluation.

PCA Projection. Following previous works [18 44]], we project the Ca coordinates of proteins
into a reduced PCA space to focus on the principal dimensions that best capture the structural
variations observed in MD simulations. Briefly, for each protein, conformations from triplicate MD
simulations in ATLAS are all aligned to the reference conformation (input structure for simulations).
The coordinates of each Ca atoms are then flattened and used to fit a per-protein PCA model. For all
subsequent analyses, sampled conformation are aligned to the reference structure before computing
their PCA projections.

Additional Results. Here we also include the scatterplot of Pearson correlation in Figure |10{and
additional metrics from the multi-start experiments at different strides in Table 9] (one experimental
included). Across different strides, CONFROVER models consistently outperforms MDGEN in
recovering the correct level of dynamics.

Table 9: Additional metrics from the multi-start benchmark. Results for different strides are shown
in separate blocks. The better score in each block is highlighted in bold (excluding diversity). One
inference run per model is used for this comparison.

Diversity MAE on PCA-2D ({) MAE on CA coordinates ({.) Quality
Pairwise . Frame . Frame PepBond
RMSD Trajectory ~ Frame Next Trajectory ~ Frame Next Brle):ak %)
Stride=128
MDGEN 1.26 6.53 1.28 0.91 5.02 0.96 0.71 27.9
CONFROVER 1.63 3.10 1.10 0.74 3.83 0.81 0.64 17.3
Stride=256
MDGEN 1.34 7.66 1.54 1.06 6.00 1.14 0.85 27.9
CONFROVER 1.78 391 1.28 0.87 4.60 0.91 0.75 16.6
Stride=512
MDGEN 1.40 9.12 1.94 1.25 7.27 1.41 1.01 28.0
CONFROVER 1.89 4.84 1.53 1.01 5.66 1.07 0.89 16.7
Stride=1024
MDGEN 1.51 11.48 2.62 1.55 9.04 1.80 1.24 28.1
CONFROVER 2.04 6.75 1.89 1.25 7.39 1.26 1.09 16.7

30

CA coordinates PCA-2D

MDGen ConfRover MDGen ConfRover

stride
128 .
- 60 256 . 60 60
H 512 K
Trajectory &, - 102 240
£ E
&

Sample traj
2
3

20 40 60 80 20 40 60 80 0 20 40 60 80 0 20 40 60 80

MD traj. MD traj MD traj MD traj.
MDGen ConfRover MDGen ConfRover
25 25
30 30
20 20
=15 =15 =20 =20
Frame 2 s s =
£10 E 10 £ H
& & & 10 &
5 s
. o S
0 10 20 0 0 20 30 0 0 20 3
MD traj MD traj MD traj.
MDGen ConfRover MDGen ConfRover
25 25
20 2 20 20
Eis Tis fis g5
AFrame & 2 2 @
E 10 E 10 E 10 E 10
a & . & &
0 0 0 TR . o
0 10 20 o 10 20 o 10 20 o 10 20
MD traj. MD traj MD traj MD traj.

Figure 10: Scatterplots of conformation changes in sample trajectories versus those in the reference
trajectories, measured by trajectory-level conformation changes, frame-level conformation changes,
and next-frame difference (AFrame), measured by the RMSD of alpha carbons (unit: A) or L?
distance in the projected PCA space. MDGEN tends underestimate the magnitude of conformation
changes while CONFROVER generate samples at similar level as the MD reference. The exact match
of measured conformation changes is not possible due to stochastic sampling in both MD simulation
and generative models.

31

Additional Visualization of Trajectory. We additional unfiltered examples (randomly selected)
for visual comparison of conformations generated by different models in the multi-start experiments,

as shown in Figure [T}

MD REEF. MDGEN CONFROVER
B % B
A Y

¥ 4 4
6Y2X-A

g kS A

Y Cyw e
6TGK-C

& &
6LUS.-A

MD REF.

MDGEN CONFROVER
L o
6GUS-A

& 5

6IN7-A

Figure 11: Visualization of 10 trajectories randomly selected from the Multi-start benchmark.
Trajectory conformations are colored by their secondary structures and superposed to show the
dynamic ensemble. MDGEN exhibits primarily local motions while CONFROVER better reflects the

motions observed in MD reference.

32

E.2 Trajectory Simulation: 100 ns Long Trajectory Simulation on ATLAS

Details on Evaluation Metrics. Conformational state recovery is evaluated by comparing the
distribution of model-generated and reference conformations in a PCA space. Same as in the
multi-start benchmark, each conformation is projected into the PCA space parameterized by the 3D
coordinates of Cac atoms. To compare distributions, each principal component is discretized into 10
evenly spaced bins. After projecting the conformations into this space, we count their occurrences
in each bin and compute the distribution similarity using Jensen—Shannon Distance (JSD). We
also binarize the occupancy counts to compute precision, recall, and F1-score—evaluating whether
sampled conformations fall within known states, following prior work [32] 44} 49].

Dynamic mode recovery is assessed using time-lagged independent component analysis (tICA)
applied separately to reference and generated trajectories across varying lag times. After fitting, we
extract tICA coefficients for each Ca atom and compute Pearson correlations between the per-residue
contributions to the leading components, evaluating alignment of dynamic modes.

Additional Visualizations. We additionally provide unfiltered (randomly selected) PCA plots in

Figure[12]

33

7JFL-C 6PCE-B TRM7-A 6PSH-A

~—— MD 100ns
2 —— MDGen
—— ConfRover
0
-2

% o
-1
-2
-4
-2 0 2 2 0o 2 4 o 10 20 -25 00 25 50
6QJ0-A 7JRQ-A 6)V8-A 6YHU-B
6 6
4 4
2
N 2
% o
0
-2
-2
-4
—6 -4
-10 0 10 0 5 -25 00 25 50 0 5
TAQX-A 60VK-R 6TLY-A 6JWH-A
5 7.5
4
2
o
g 0

5.0
25
0.0
=25
=5.0
5 -25 00 25 5. 5

10 =5 0 =5 0
6LAL-A 7C45-A 60Z1-A

o

0 5
TLAG-A
10

5
0 ‘
-5
10 10

0 10 0 5 =20 -10 O 10 20 = 0
6P5X-B 6XDS-A 6IN7-A B6KTY-A

20 15 10
-2 ‘

-4

pc2
o
1
VIS

=5

-10

10

=5

pc2
|
&
S o
|
N
S
o
~
S
|
e =
S o o u o5
o u
o N &

-10 0 10 20 0 10 -5 0 5
pcl pcl pcl pcl

Figure 12: Visualization the ATLAS-100ns trajectories from 20 randomly selected cases. The blue
background indicates the density of the ground-truth conformation distribution from MD reference.
CONFROVER shows improved conformation state recovery in several cases (e.g., 7JRQ-A, 6YHU-B,
TAQX-A, 6LAL-A, 60Z1-A, etc), sampling more diverse conformations. Yet, the gap between
the oracle MD 100NS and deep learning models is evident in some cases (e.g., 7JFL-C, 6TLY-A,
6JWH-A, etc)

E.3 Time-independent Conformation Sampling

We follow the evaluation protocol of Ye et al. [47] to assess time-independent conformation sampling
on the ATLAS test set. For each protein, 250 independent samples are generated. Since MDGEN does
not support time-independent sampling, we approximate its performance using samples from its 100-
ns trajectory, serving as a sequential-sampling baseline. The performance of state-of-the-art models,
ALPHAFLOW and CONFDIFF, is taken from Table 10 of Ye et al. [47]], using their best-performing
variants: ALPHAFLOW-MD and CONFDIFF-OPEN-MD. Full results are shown in Table [[0l

Table 10: Performance on time-independent conformation generation on ATLAS. A total of 250
conformations were sampled for each protein, and the mean and standard deviation of metrics are
computed from five independent runs. The best performance is highlighted in bold, and the second-
best is underlined. CONFROVER-TRAJ and MDGEN are trained to exclusive generate trajectories.
MDGEN does not support time-independent sampling and the metrics are evaluated on sequential
sampling result.

Diversity Flexibility: Pearson r on Distributional accuracy

Pairwise Pairwise Global Per target MD PCA Joint PC sim

RMSD RMSF pvspt RMSET RMSET RMWDL yy 1 pcAWL] > 0.5 %t
ALPHAFLOW 2.85+0.05 1.63+001 0.56+006 0.66+0.04 0.85+0.01 2.62+003 1.52+005 2.264+003 39.524322
CONFDIFF 3.59+0.02 2.18+002 0.544000 0.65+000 0.85+0.00 2.70+001 1.44+000 2.22+0.04 41.00+1.12
MDGEN 1.34+0.05 0.77+000 0.47+004 0.50+001 0.72+002 2.78+004 1.864003 2.44+004 10.24+3.18
CONFROVER-TRAJ 3.19+0.04 1.74+000 0.48+000 0.62+001 0.84+001 2.85+002 1.43+0.01 2.30+001 37.08+2383
CONFROVER 3.68+0.04 2.25+001 0.51+001 0.64+001 0.85+0.00 2.66+002 1.474003 2.23+004 38.28+4.44

Ensemble observables Quality

Weak Transient Exposed Exposed MI CA clash PepBond
contacts J 1 contacts J1 residue J 1 matrix p T % | break % |

ALPHAFLOW 0.62+000 0.41+000 0.69+001 0.35+001 0.00+0.00 22.00+0.19
CONFDIFF 0.64-+0.00 0.40+000 0.67+000 0.33+000 0.50+000 6.20-0.00
MDGEN 0.51+0.01 0.28+001 0.57+0.01 0.26+001 0.24+005 30.84+1.69
CONFROVER-TRAJ 0.53+0.01 0.36+000 0.58+001 0.27+000 0.32+004 11.78+024
CONFROVER 0.62-+0.01 0.37+001 0.66+0.01 0.32+001 0.50+000 19.18+0.08

35

E.4 Conformation Interpolation

In conformation interpolation experiment, we selected trajectories from multi-start. These trajectories
exhibit sufficient conformation changes (e.g., RMSD between the start and end frames > 4 A) and
clear interpolation path in the PCA space. The list of selected cases are in Table [TT}

The L? distance of generated intermediate frames to the start and end frames in the PCA spaces are
reported in Figure[I3] Distances are normalized by the distance between start and end frames. Similar
to the results measured by Ca-RMSD, CONFROVER-INTERP shows smooth interpolation between
the start and end frames while CONFROVER does not. This result shows that by continue training
the model on interpolation objective, CONFROVER can learn to generated interpolating trajectories
conditioned on the end state.

Table 11: List of 38 selected cases from multi-init for interpolation test. Naming conventions:

“{PDB_ID}_{Chain_ID}_R{ATLAS repeat}F{Starting index } S{Stride }”

0 5ZNJ-A-R2F1000S512 6L4L-A-R1F3000S256 6TGK-C-R1F5000S256 7JFL-C-R2F3000S256
1 6E7E-A-R3F3000S512 6LRD-A-R1F1000S1024 6TLY-A-R2F1000S256 7JRQ-A-R1F1000S1024
2 6GUS-A-R2F7000S256 6LUS-A-R2F3000S128 6XDS-A-RIF1000S128 7LA6-A-R1F1000S512
3 6H49-A-R2F1000S1024 60VK-R-R2F7000S128 6XRX-A-R3F5000S128 7LP1-A-R2F5000S256
4 6H86-A-R2F1000S1024 60Z1-A-R1F1000S512 6Y2X-A-R2F3000S512 7P41-D-R2F3000S256
5 6IN7-A-R3F5000S128 6P5H-A-R1F1000S1024 7AEX-A-R3F5000S256 7P46-A-R3F5000S256
6 6J56-A-R1F3000S256 6P5X-B-R1F3000S256 7TAQX-A-R2F3000S512 7RM7-A-R3F3000S128
7 6JPT-A-R2F5000S512 6Q9C-A-R3F3000S256 7ASG-A-R1F7000S128 7S86-A-R3F5000S256
8 6JV8-A-R3F1000S256 6QJ0-A-R1F1000S256 7BWF-B-R3F3000S128
9 6KTY-A-R3F1000S1024 6RRV-A-R1F1000S256 7C45-A-R1F50008512
—e— vs. start frame ~ —e— ConfRover-interp —e— vs. start frame ~ —e— ConfRover-interp
vs. end frame —e- ConfRover vs. end frame —®- MD reference

1.0 1.0

S o0s S o0s ¥

5 5 T

o) w v

2 0.6 2 0.6

8 8

a a

g 04 Y T 04

N ¢ N

© ©

€ €

502 S 02
0.0 0.0

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

Frame index Frame index

Figure 13: Normalized PCA distance of intermediate frames to the start and end frames, averaged over
38 cases selected from the multi-start benchmark. [Left] a comparison between CONFROVER-INTERP
and CONFROVER, where CONFROVER-INTERP generates smooth pathways while CONFROVER
does not; [Right] a comparison between CONFROVER-INTERP and reference trajectories.

36

Additional Visualizations. Here we include additional visualization on interpolation results.

MD REF. CONFROVER CONFROVER-INTERP

6)56-A-R1F30005256

—— MD Ref.
4 —— ConfRover-interp

6H86-A-R2F100051024
—— MD Ref.

6 —— ConfRoverinterp
4
2
o
9
2
0
-2
-4
10 0o 10 20
pcl
6QJ0-A-R1F10005256
© —— MD Ref.
4 ——_ConfRover-interp
2
T o
-2
-4
-6
-10 0 10
pcl
6TGK-C-R1F50005256
75 —— MD Ref.
A~ ConfRover-interp
5.0
25
o
Y o0
-25
-5.0
=75
-5 0 5 10
pcl
7BWF-B-R3F30005128
~—— MD Ref.
L —— ConfRoverinterp
50
25
b
% 00
-25
-5.0
-0 -5 0 5 10

pel

7JFL-C-R2F30005256 DR DL

—=— MD Ref.
—— ConfRoverinterp

=2 0 2 4

Figure 14: Example interpolations results. CONFROVER-INTERP generates smooth pathways between
the start and end frames, capturing the dynamics observed with the MD reference while CONFROVER
does not show the correct intermediate conformations. Start and end frames are shown as solid
structures; intermediate conformations are shown in fading colors. Main motions are indicated by
blue dashed arrows. These examples highlight the difference between the original CONFROVER and
CONFROVER-INTERP that further trained on the interpolation objective. The original CONFROVER
can miss key motions of the transition while CONFROVER-INTERP correctly capture these motions.

37

5ZNJ-A-R2F10005512 6E7E-A-R3F30005512 6GUS-A-R2F70005256 6H49-A-R2F100051024 6H86-A-R2F100051024
0 —— MDRef. 8 —— MDRef. —— MD Ref. . —— MD Ref.
—— ConfRover-interp 2 . —— ConfRover-interp 4 —— ConfRoverinterp —— ConfRover-interp
5 1 4 4
™ &0 § 2 o 5 2
g 0 8 -4 g 0 -4
= 0 0
-2 - -2
-5 5 -2
=MD Ref. a4 N
I K e ConfRover-interp 6 - -4
-0 o 10 -4 2 0 2 4 5 0 5 10 -50 -25 00 25 50 -0 0 10 20
pel pel pel pel pel
6IN7-A-R3F50005128 6)56-A-R1F30005256 6JPT-A-R2F50005512 6)V8-A-R3F10005256 6KTY-A-R3F100051024
100 a
—— MD Ref. - MD Ref. —— MD Ref. —— MD Ref. a —— MD Ref.
g —— ConfRover-interp 4 ‘—— ConfRover-interp 3 = er-interp —— fConfRover-interp —_ rinterp
. 2 2
2
g 9 gt 3o
Y g g g
o 0
1 -2
-5.0
- -2 "
[1) s Si— m— S
[10 -4 -2 0o 2 4 2 0o 2 4 -25 00 25 50 -5 3 5
pcl pcl pcl pcl pcl
6L4L-A-R1F30005256 6LRD-A-R1F100051024 6LUS-A-R2F30005128 60VK-R-R2F70005128 60Z1-A-R1F10005512
—— MD Ref. ® 75 —— MD Ref. 6 —— MD Ref. 10 —— MD Ref.
4 —— _GonfRoverinterp 10 50 —— ConfRover-interp —— ConfRover-interp — rinterp
2 5 25
o o o
2o g g 00
-25
2 s
i -5.0
-4 10— ver-interp
-5 0 5 -10 0 10 s o 5 10 -10 0 10
pcl pcl pcl pcl
6PSH-A-R1F100051024 6QIC-A-| 6QJ0-A-R1F10005256 6RRV-A-R1F10005256
a —— MD Ref. 6 — MDReft —— MD Ref. —— MD Ref.
— ver-interp 4 ConfRover-interp —_— rinterp 4 — rinterp
2) 2
%o 2o %o
-2 - -2
-4
-1 -6 -6 O
-25 00 25 50 -5 0 5 10 -10 [10 -5 0 5
pel pel pel pecl
6TGK-C-R1F50005256 6XDS-A-R1F10005128 6XRX-A-R3F50005128 6Y2X-A-R2F30005512
15— - = .
75 MD Ref. —— MD Ref. 15 —— MD Ref. 10— MDRef.
ConfRover-interp 10 nfRover-interp 0 —— ConfRover-interp —— ConfRover-interp
5 5
5
I T o 9 I
g g g 2 o
-25 -5 +
-5
-5.0 “10 -5
-10
-15 -15
- 0 5 10 -25 00 25 50 -0 0o 10 20 -10 0o 10 20 -10 0 10
pel pcl pel pel pel
7AEX-A-R3F50005256 7AQX-A-R2F30005512 7ASG-A-R1F70005128 7BWF-B-R3F30005128 7C45-A-R1F50005512
10 —— MD Ref.
6 (| = MORef |]|
75 75 —— ConfRover-interp 20
5.0 4 5 5.0
25 2 10
) o~ o o~ 25 o~
g 00 g0 g0 -4 g o
00
-25 =
’ -5 -25 -10 T
-5.0 —— MD 4 — —— MD Ref. —— MDRef,
75 —— ConfRoverinterp o T ConfRoverinterp —— ConfRoverinterp -50 _20 —— ConfRoverinterp
-5 0o 5 10 -5 0 B 10 -10 0 10 -0 -5 0 5 10 20 -10 0 10 20
pel Pl pel pel pel
7JFL-C-R2F30005256 7)RQ-A-R1F100051024 7LA6-A-R1IF10005512 7LP1-A-R2F50005256 7P41-D-R2F30005256
—— MD Ref. —— MD Ref. s 2 - MD Ref. 8
——_GonfRoverinterp 4 erinterp B —— ConfRoverinterp 6
50 4
2 1
25 2
S o o o o
-4 g 00 - g o
-2 -25 -2
4 ~5.0 —— MD Ref. -1 -4 —— M
755 —— ConfRoverinterp _g — ConfRover-interp
-2 0 2 4 o B -0 o 10 -2 [2 -5 0 5 10
pcl pcl pcl pcl pcl
7P46-A-R3F50005256 7RM7-A-R3F30005128 7586-A-R3F50005256
15 —— MD Ref.
10 o
10 nﬁ!jl&rm&fi
5
5
o o o
a o a o -4
-5 -2
- Ref. . -4
_10 —— ConfRover-interp ~10 —— ConfRover-interp -6
-0 o 10 20 -0 o 10 20 -5 0 5 10
pcl pel pel

Figure 15: PCA plot of 38 selected interpolation cases. MD reference trajectories and results from
CONFROVER-INTERP are shown in each plot.

38

E.5 Retraining MDGen for Experiment-Specific Setups

Due to its non-autoregressive design and training on fixed-length trajectories, MDGEN cannot
directly generate sequences of varying lengths. Therefore, in our evaluation, we generate trajectories
using the original settings (named MDGEN-S {stride } F{length}) and subsample them to match the
evaluation setup. However, this post-processing may introduce artifacts. To address this concern, we
retrain MDGEN under the evaluation settings and compare the results on the Multi-start benchmark
(stride = 256) and 100 ns long trajectory simulations, as shown below in Table [I2} Table [I3] Table[14]
and Figure Experimental results show no significant difference of performance for key metrics
observed comparing MDGEN with post-processed results and models specifically trained at the
evaluation settings, suggesting no evident decrease of trajectory quality from the subsampling post-
process. We use one inference run per model for this experiment.

Table 12: Compare MDGEN-S256F9 with MDGEN from subsampling post-process. Here is the
table summarizing the Pearson correlations of conformation changes between sampled and reference
trajectories in multi-start. MDGEN-S256F9 is trained and sampled with stride of 256 MD snapshots
and length of 9 frames. The best scores are highlighted in bold.

Ca coordinates

Trajectory Frame AFrame

MDGEN 0.57 0.46 0.41
MDGEN-S256F9 0.56 0.45 0.38
CONFROVER 0.77 0.62 0.53
PCA 2D
Trajectory Frame AFrame

MDGEN 0.18 0.13 0.11
MDGEN-S256F9 0.21 0.19 0.11
CONFROVER 0.75 0.5 0.44

Table 13: Compare MDGEN-S256F9 with MDGEN from subsampling post-process. Here is the
table summarizing additional metrics in multi-start benchmark. MDGEN-S256F9 is trained and
sampled with stride of 256 MD snapshots and length of 9 frames. The best scores are highlighted in
bold.

Diversity MAE on PCA-2D (}) MAE on CA coordinates ({) Quality

Pﬁ\r/l\glge Traj, Frame AFrame Traj. Frame AFrame PepBond

Break %({.)
MDGEN 1.34 7.66 1.54 1.06 6.00 1.14 0.85 27.9
MDGEN-S256F9 1.59 6.90 1.47 1.03 5.33 1.13 0.82 16.2
CONFROVER 1.78 391 1.28 0.87 4.60 0.91 0.75 16.6

Table 14: Compare MDGEN-S256F9 with MDGEN from subsampling post-process. Here is the
table summarizing the state recovery performance in 100 ns long trajectory simulation. MDGEN-
S120F80 is trained and sampled with stride of 120 MD snapshots and length of 80 frames. The best
scores are highlighted in bold. MD 100NS is included as the oracle.

JSD({) Recall(1) F1(1)

MD 100NS 0.31 0.67 0.79
MDGEN 0.56 0.30 0.44
MDGEN-S120F80 0.57 0.29 0.42
CONFROVER 0.51 0.42 0.58

39

MD 100ns

MDGen —— MDGen-S120F80

—e— PC1 -x= PC2 —— ConfRover

Pearson Correlation
e ©
[
- o

o
i
N

o
-
15}

o
1=}
©

0 2 4 6 8 10 12 14 16 18 20
TICA Lagtime (frames)

Figure 16: Compare MDGEN-S256F9 with MDGEN from subsampling post-process. This figure
shows correlations of main dynamic modes between sampled trajectory and reference trajectory.
MDGEN-S120F80 is trained and sampled with stride of 120 MD snapshots and length of 80 frames.

E.6 Reproducing AlphaFolding

Given the limited available baseline models for protein trajectory generation, we attempted to
reproduce AlphaFolding [7], a diffusion-based model that generate short trajectories (i.e., blocks)
and can be extended to longer through iterative generation. We followed the authors’ official
implementation El, setting the motion token count to 2 and the generation horizon (block length)
to 16 frames. To improve generation efficiency, we increased the stride from the default 1 to 40,
matching the setup in MDGEN. Training ALPHAFOLDING on the full ATLAS dataset resulted in out-
of-memory error on NVIDIA A100-80GB GPU. Therefore, we adopted the authors’ filtering criterion
of a maximum sequence length of 256 residues. Similarly, we encountered the out-of-memory error
for the five largest proteins during inference. The model was trained for 65K steps where we saw
convergence. For evaluation, we iteratively extended the 16-frame outputs to generate 256 frames
and retained the first 250 frames to match the 100 ns simulation setting.

We compared ALPHAFOLDING with MDGEN and CONFROVER on the ATLAS 100 ns simula-
tion task, using one inference run per model. As shown in Table [I5] both ALPHAFOLDING and
CONFROVER outperform MDGEN in capturing the principal coordinates of the dominant dynamics,
although ALPHAFOLDING slightly lags behind CONFROVER. However, as shown in Table [T6]
ALPHAFOLDING produces lower-quality conformations, exhibiting inflated backbone and side-chain
rotamer outliers as well as higher clash rates. We found more evident degradations from error
accumulation (Table , likely due to its iterative block-wise extension, which conditions only on the
last frame of the preceding block. In contrast, MDGEN employs non-autoregressive attention across
all frames, while CONFROVER maintains a full attention history via KV cache. Owing to the noisy
nature of its generated trajectories, ALPHAFOLDING also shows inflated recall in conformational
state recovery (Table[I8), as the increased structural noise likely leads to artificially higher coverage
in state space.

Although our implementation is a reproduction of [7] and may not faithfully reflect the authors’
original model, this analysis provides valuable insights into the performance and potential limitations
of block-extension-based trajectory models such as ALPHAFOLDING.

*https://github.com/fudan-generative-vision/dynamicPDB/tree/main/applications/4d_diffusion

40

Table 15: Pearson correlations of principal dynamic modes (PC1 and PC2) between sampled and
reference trajectories, evaluated at varying lag times (At, in frames). The best scores are highlighted
in bold.

At=1 At=5 At=10 At=20

PC1 MDGEN 0.11 0.12 0.10 0.12
PC1 ALPHAFOLDING 0.15 0.15 0.16 0.18
PC1 CONFROVER 0.19 0.17 0.19 0.19
PC2 MDGEN 0.12 0.10 0.10 0.11
PC2 ALPHAFOLDING 0.18 0.15 0.16 0.20
PC2 CONFROVER 0.19 0.17 0.18 0.17

Table 16: Conformation geometric quality evaluated using MolProbity. Unrelaxed conformations are
used for evaluation. The best scores are highlighted in bold.

Ramachandran Rotamer Clash RMS RMS MolProbity

outliers % () outliers % ({) score (}) bonds (}) angles ({) score ()
ALPHAFOLDING 291 15.37 151.35 0.07 4.76 3.94
MDGEN 1.87 2.85 128.08 0.04 3.14 3.28
CONFROVER 1.75 3.30 76.89 0.05 3.69 3.00

Table 17: Average Ramachandran outliers across trajectory frame ranges. Compared with MDGEN
and CONFROVER, ALPHAFOLDING exhibits an increased level of backbone outliers when simulating
longer trajectories.

Frame range 0,151 (15,311 (31,47] (47,63] (63,79]
ALPHAFOLDING 1.77 2.78 3.21 3.34 3.57
MDGEN 1.59 1.85 1.96 1.95 2.05
CONFROVER 1.34 1.61 1.77 1.93 2.08

Table 18: Recovery of conformational states in the ATLAS 100 ns simulation experiment. Although
ALPHAFOLDING shows the highest coverage, this may due to lower sample quality that artificially
inflates diversity.

JS-Dist | Recallt F17

ALPHAFOLDING 0.47 0.51 0.65
MDGEN 0.55 0.29 0.43
CONFROVER 0.51 0.42 0.58

E.7 Broader Impacts

This work aims to advance machine learning for protein modeling, with broad applications in biology
and drug discovery. By enabling efficient simulation of protein dynamics and conformational changes,
our method has the potential to accelerate research in structural biology and therapeutic development.
Beyond proteins, the approach may also be adapted to other domains of computer-aided design,
including small molecule design, materials science, and chip design. While the potential benefits are
significant, it is important to ensure responsible use and prevent misuse of the technology. Developing
appropriate safeguards and regulatory frameworks will be essential to mitigate any potential negative
impacts.

41

	Introduction
	Background
	Data Generation from Molecular Dynamics
	Protein Representations
	SE(3)-Diffusion Models for Protein Conformation Generation

	ConfRover
	Modeling MD Trajectories through Autoregression
	Latent Causal Modeling
	Training Autoregressive Model with SE(3) Diffusion Loss
	Model Architecture

	Experiments
	Trajectory Simulation
	Time-independent Conformation Sampling
	Conformation Interpolation
	Conformation Quality

	Conclusions and Limitations
	Acknowledgments
	Additional Background
	Related Work
	Baseline Limitation

	Diffusion Models on SE(3) Space
	Derivation of Equations in Section 3.2
	Method Details
	Detailed Module Architectures
	Training and Inference Details
	Training and Inference Cost

	Additional Experimental Results
	Trajectory Simulation: multi-start
	Trajectory Simulation: 100 ns Long Trajectory Simulation on ATLAS
	Time-independent Conformation Sampling
	Conformation Interpolation
	Retraining MDGen for Experiment-Specific Setups
	Reproducing AlphaFolding
	Broader Impacts

