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Diffusion models (DMs) are a class of generative models that allow sampling from
a distribution learned over a training set. When applied to solving inverse imag-
ing problems (IPs), the reverse sampling steps of DMs are typically modified to
approximately sample from a measurement-conditioned distribution in the image
space. However, thesemodificationsmay be unsuitable for certain settings (such as
in the presence of measurement noise) and non-linear tasks, as they often struggle
to correct errors from earlier sampling steps and generally require a large number
of optimization and/or sampling steps. To address these challenges, we state three
conditions for achieving measurement-consistent diffusion trajectories. Building
on these conditions, we propose a new optimization-based sampling method that
not only enforces the standard data manifold measurement consistency and for-
ward diffusion consistency, as seen in previous studies, but also incorporates back-
ward diffusion consistency that maintains a diffusion trajectory by optimizing over
the input of the pre-trainedmodel at every sampling step. By enforcing these condi-
tions, either implicitly or explicitly, our sampler requires significantly fewer reverse
steps. Therefore, we refer to our acceleratedmethod asStep-wiseTriple-Consistent
Sampling (SITCOM). Compared to existing state-of-the-art baseline methods, un-
der different levels ofmeasurement noise, our extensive experiments across five lin-
ear and three non-linear image restoration tasks demonstrate that SITCOMachieves
competitive or superior results in terms of standard image similarity metrics while
requiring a significantly reduced run-time across all considered tasks.

1. Introduction
Inverse problems (IPs) arise in a wide range of science and engineering applications, including
computer vision [1], signal processing [2], medical imaging [3], remote sensing [4], and geophysics
[5]. In these applications, the primary goal is to recover an unknown image or signal x ∈ Rn from
measurements or degraded image y ∈ Rm, which are often corrupted by noise. Mathematically,
the unknown signal and the measurements are related as

y = A(x) + n , (1)

where A(·) : Rn → Rm (with m ≤ n) represents the linear or non-linear forward operator that
models the measurement process, and n ∈ Rm denotes the noise in the measurement domain, e.g.,
assumed sampled from a Gaussian distribution N (0, σ2

yI), where σy > 0 denotes the noise level.
Exactly solving these inverse problems is challenging due to their ill-posedness in many settings,
requiring advanced techniques to achieve accurate solutions.

Deep learning techniques have recently been utilized as a prior to aid in solving these problems
[6, 7]. One framework that has shown significant potential is the use of generative models, particu-
larly diffusion models (DMs) [8]. Given a training dataset, DMs are trained to learn the underlying
distribution p(x). During inference, DMs enable sampling from this learned distribution through
an iterative procedure [9]. When employed to solving inverse problems, DM-based IP solvers often
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Figure 1: Qualitative results on the FFHQ dataset on two linear tasks (top) and two non-linear tasks (bot-
tom) under measurement noise of σy = 0.05. The PSNR and LPIPS values are given below each restored
image. Zoomed-in regions show how SITCOM captures greater image details when compared to two general
(non)linear DM-based methods (DPS [10] and DAPS [12]).

modify the reverse sampling steps to allow sampling from the measurements-conditioned distribu-
tion p(x|y) [10, 11]. These modifications typically rely on approximations that may not be suitable
for all tasks and settings, and in addition to generally requiring many sampling iterations, often
suffer from errors accumulated during early diffusion sampling steps [12]. In most DM-based IP
solvers, these approximations are designed to enforce standard measurement consistency on the
estimated image (or posterior mean) at every reverse sampling iteration, as in [10], and may also
include resampling using the forward diffusion process (which we refer to as forward diffusion
consistency), such as in [13, 14].

A key bottleneck in DMs is their computational speed, as they are slower than other generative
models due to the large number of sampling steps. Although various methods have been proposed
to reduce sampling frequency (e.g., [15]), these improvements have yet to be fully realized for DMs
applied to IPs. Most existing methods still require dense sampling, which continues to pose speed
challenges.

Contributions: In this paper, we: (i) identify key issues in accelerating DMs for IPs, (ii) propose
three conditions that could fully leverage the information from the measurements and the pre-
trained diffusion model to effectively address these issues, and (iii) present a new optimization-
based method in the pixel space that satisfies these conditions. We refer to our accelerated sam-
pling method as Step-wise Triple-Consistent Sampling (SITCOM). We evaluate our method on
several image restoration tasks: Super Resolution, Box In-painting, Random In-painting, Motion
Deblurring, Gaussian Deblurring, Non-linear Deblurring, High Dynamic Range, and Phase Re-
trieval. Compared to leading baselines, our approach consistently achieves either state-of-the-art
or highly competitive quantitative results, while also reducing the number of sampling steps and,
consequently, the computational time. See Figure 1 for examples.

2. Background: Diffusion Models & Their Usage in Solving IPs
Pre-trained DiffusionModels (DMs) generate images by applying a pre-defined iterative denoising
process [8]. In the Variance-Preserving Stochastic Differentiable Equations (SDEs) setting [9, 16],
DMs are formulated using the forward and reverse processes

dxt = −βt

2
xtdt+

√
βtdw , dxt = −βt

[1
2
xt +∇xt

log pt(xt)
]
dt+

√
βtdw̄ , (2)

where β : {0, . . . , T} → (0, 1) is a pre-defined function that controls the amount of additive per-
turbations at time t, w (resp. w̄) is the forward (resp. reverse) Weiner process [17], pt(xt) is the
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distribution of xt at t, and ∇xt log pt(xt) is the score function that is replaced by a neural network
(typically a time-encoded U-Net [18]) s : Rn × {0, . . . , T} → Rn, parameterized by θ. In practice,
given the score function sθ, the SDEs in (2) can be discretized as in (3) where ηt,ηt−1 ∼ N (0, I).

xt =
√

1− βtxt−1 +
√
βtηt−1 , xt−1 =

1√
1− βt

[
xt + βtsθ(xt, t)

]
+

√
βtηt . (3)

When employed to solve inverse problems, the score function in (2) is replaced by a conditional
score function which, by Bayes’ rule, is ∇xt

log pt(xt|y) = ∇xt
log pt(xt) +∇xt

log pt(y|xt). Solving
the SDE in (2) with the conditional score is referred to as posterior sampling [10]. As there doesn’t
exist a closed-form expression for the term ∇xt

log pt(y|xt) (which is termed as the measurements
matching term in [19]), previous works have explored different approaches, which we will briefly
discuss below. We refer the reader to the recent survey in [19] for an overview on DM-based meth-
ods for solving IPs.

A well-known method is Diffusion Posterior Sampling (DPS) [10], which uses the approximation
p(y|xt) ≈ p(y|x̂0) where x̂0(xt) (or simply x̂0) is the estimated image at time t as a function of the
pre-trained model and xt (Tweedie’s formula [20]), given as

x̂0(xt) =
1√
ᾱt

[
xt −

√
1− ᾱtϵθ(xt, t)

]
=: f(xt; t, ϵθ) , (4)

where ᾱt =
∏t

j=1 αj and αt = 1 − βt. We call the function f , defined in (4), as ‘Tweedie-network
denoiser’ (also termed as ‘posterior mean predictor’ in [21]). Here, ϵθ(xt, t) = −

√
1− ᾱtsθ(xt, t)

[22] outputs the noise in xt. Tweedie’s formula, like in our method, is also adopted in other DM-
based IP solvers such as [23–25]. The drawback of thesemethods is that they require a large number
of sampling steps.

The work in ReSample [14], solves an optimization problem on the estimated posterior mean in
the latent space for many steps to enforce measurement consistency, requiring many sampling and
optimization steps.

The work in [26] introduced RED-Diff, a variational Bayesian method that fits a Gaussian distribu-
tion to the posterior distribution of the clean image conditional on themeasurements. This approach
involves solving an optimization problem using stochastic gradient descent (SGD) to minimize a
data-fitting term while maximizing the likelihood of the reconstructed image under the denoising
diffusion prior (as a regularizer). However, the SGD process requires multiple iterations, each in-
volving evaluations of the pre-trained DM on a different noisy image at some randomly selected
time, making it quite computationally expensive.

Recently, Decoupling Consistency with Diffusion Purification (DCDP) [1] proposed separating dif-
fusion sampling steps from measurement consistency by using DMs as diffusion purifiers [3, 27],
with the goal of reducing the run-time. However, DCDP requires tuning the number of forward
diffusion steps for purification. Shortly after, Decoupled Annealing Posterior Sampling (DAPS)
[12] introduced another decoupled approach, incorporating gradient descent noise annealing via
Langevin dynamics. DAPS, similar to DPS and RED-Diff, also requires a large number of sampling
and optimization steps. Under measurement noise, DCDP achieves SOTA run-time across various
linear restoration tasks, while DAPS sets the SOTA in restoration quality. Both will serve as primary
baselines in our experiments.

3. SITCOM: Step-wise Triple-Consistent Sampling
3.1. Motivation: Addressing the Challenges in Applying DMs to IPs
Most inverse problems are ill-conditioned and undersampled. DMs, when trained on a dataset
that closely resembles the target image, can provide critical information to alleviate ill-conditioning
and improve recovery. Despite various previous efforts, a key challenge remains: How to efficiently
integrate DMs into the framework of inverse problems? We will now elaborate on this challenge in
detail.
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The standard reverse sampling procedure in DMs consists of applying the backward discrete steps
in (3) for t ∈ {T, T−1, . . . , 1}, forming the standard diffusion trajectory forwhichx0 is the generated
image. To incorporate themeasurement y into these steps, a common approach adopted in previous
works that demonstrate superior performance (e.g., [1, 12, 14]) is to the x̂0 computed via (4) as
follows:

x̂′
0(xt) = argmin

x
∥A(x)− y∥2 + λ∥x− x̂0(xt)∥2 , (5)

where λ ∈ R+ is a regularization parameter. The x̂′
0(xt) obtained from (5) is close to x̂0(xt) while

also remaining consistent with the measurements. When using x̂′
0(xt) to sample xt−1, the second

formula in (3) can be rewritten as in (6), where the derivation is provided in Appendix A.

xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x̂0(xt) +

√
βtηt . (6)

By substituting x̂0(xt) into (6) with the measurement-consistent x̂′
0(xt), the modified sampling for-

mula becomes:
xt−1 =

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x̂′
0(xt) +

√
βtηt . (7)

While this approach effectively ensures data consistency at each step, it inevitably causes x̂′
0 to de-

viate from the diffusion trajectory2, leading to two major issues:

(I1) The image x̂0(xt), initially constructed through Tweedie’s formula, usually appears quite natu-
ral (e.g., columns 3 to 5 of Figure 2 ); however, the modified version, x̂′

0(xt), is likely to exhibit
severe artifacts (e.g., columns 6 to 8 of Figure 2).

(I2) Since the DM network, ϵθ, is trained via minimizing the objective function Ex0,ϵ∥ϵ−ϵθ(
√
ᾱtx0+√

1− ᾱtϵ, t)∥2 (denoising score matching [20]) on a finite dataset, it performs best on noisy
images lying in the high-density regions of the training distribution N (xt;

√
ᾱtx0, (1 − ᾱt)I),

x0 ∼ p(x0). We define an algorithm as forward-consistent if it likely applies ϵθ only to in-
distribution inputs (i.e., those from the same distribution used for training). For example, if the
forward diffusion used to train ϵθ adds Gaussian noise, the in-distribution input to ϵθ should
ideally be sampled from a Gaussian with specific parameters. If Poisson noise is used in the
forward process, inputs drawn from suitable Poisson distributions are more likely to fall within
the well-trained region of the network. In summary, forward consistency requires that inputs
to ϵθ during sampling align with the forward process. While the xt−1 generated from (6) is
forward-consistent by design, the one generated from the modified formula (7) is not. There-
fore, in the latter case, the DM network, ϵθ, may be applied to many out-of-distribution inputs,
leading to degraded performance.

We pause to verify our claimed Issue (I1) through a box-inpainting experiment. Columns 3 to 5
of Figure 2 show x̂′

0(xt) at various t. The results clearly demonstrate successful enforcement of
data consistency, as the region outside the box aligns with the original image. However, this en-
forcement compromises the natural appearance of the image, introducing significant artifacts in the
reconstructed area inside the box. Details about the setting of the results in Figure 2 are given in
Section C.

Issue (I2)was previously observed in [13], which proposed a remedy known as ‘resampling’. In this
approach, the sampling formula in (7) is replaced by

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1ηt . (8)

Provided x̂0 is close to the ground truth x0, xt−1 generated this way will stay in-distribution with
high probability. For a more detailed explanation of the rationale behind this remedy, we refer the
reader to [13]. This method has since been adopted by subsequent works, such as [12, 14], and we
will also employ it to address (I2).

2Diffusion trajectory refers to the path that leads to an in-distribution image, where the distribution is the
one learned by the DM from the training set.
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Figure 2: Effects of enforcing backward-consistency in box-inpainting: Results of using Tweedie’s formula
without measurement consistency (columns 3 to 5), enforcing measurement-consistency via (5) (columns 6
to 9), and enforcing both measurement-consistency and backward-consistency via (12) (columns 10 to 12) at
different time steps t′. Experimental details are given in Appendix C.

3.2. Network Regularization & Backward Diffusion Consistency
Previous studies, such as [12, 14], mitigate issue (I1) by using a large number of sampling steps,
which inevitably increases the computational burden. In contrast, this paper proposes employing a
network regularization to resolve issue (I1). This approach not only accelerates convergence but also
enhances reconstruction quality. Let’s first clarify the underlying intuition.

It is widely observed that the U-Net architecture or trained transformers exhibit an effective image
bias [28–31]. From columns 3 to 5 of Figure 2, we observe that without enforcing data consistency,
the reconstructed x̂0, derived directly from Tweedie-network denoiser f(xt; t, ϵθ) for each time t,
exhibits natural textures. This indicates that the reconstruction using the combination of Tweedie’s
formula and the DM network has a natural regularizing effect on the image.

By definition, the output of f(xt; t, ϵθ) in (4) represents the denoised version of xt at time t using
the Tweedie’s formula and the DM denoiser ϵθ. Due to the implicit bias of ϵθ, this denoised image
tends to align with the clean image manifold, even if xt does not correspond to a training image, as
shown in columns 3 to 5 of Figure 2. We refer to this regularization effect of f(xt; t, ϵθ), which arises
from network bias, as “network regularization”.

By employing network regularization, we can address (I1) by ensuring that the data-consistent x̂′
0

is also network-consistent. We refer the latter condition as Backward Consistency and define it
formally as follows.
Definition 1 (Backward Consistency). We say an x̂′

0 is backward-consistent with Tweedie’s formula and
the DM neural network ϵθ at time t if there exists some vt such that x̂′

0 = f(vt; t, ϵθ). In other words,
backward consistency requires x̂′

0 to be a ‘denoised version’ of some noisy image vt via the Tweedie-network
denoiser f at time t.

The subset of images that are in the range of the function f (i.e., backward-consistent) is denoted
by Ct and defined as

Ct := {f(vt; t, ϵθ) : vt ∈ Rn} . (9)
Enforcing x̂′

0 to be both measurement- and backward-consistent involves solving the following op-
timization problem

x̂′
0, v̂t := argmin

v′
t,x

′
0

{
∥A

(
x′
0

)
− y∥22 subject to x′

0 = f(v′
t; t, ϵθ)

}
. (10)

However, (10) may violate forward consistency, as v̂t could possibly be far from xt. Therefore, we
propose adding a regularization term, for which (10) becomes

x̂′
0, v̂t := argmin

v′
t,x

′
0

{
∥A

(
x′
0

)
− y∥22 + λ∥xt − v′

t∥22 subject to x′
0 = f(v′

t; t, ϵθ)
}
. (11)

During the reverse sampling process, at each time t, with the given xt, we seek a v′
t in the nearby

region (i.e., ∥xt − v′
t∥ is small), such that v′

t can be denoised by f to produce a clean image x′
0 (i.e.,

x′
0 = f(v′

t; t, ϵθ)), which is also consistent with the measurements y (i.e., ∥A
(
x′
0

)
− y∥22 is small).

We need to identify such a v′
t because xt itself cannot be directly denoised by f to yield an image

consistent with the measurements. By substituting the constraint into the objective function, the
optimization problem in (11) is reduced to

v̂t := argmin
v′
t

{
∥A

(
f(v′

t; t, ϵθ)
)
− y∥22 + λ∥xt − v′

t∥22
}
, x̂′

0 = f(v̂t; t, ϵθ). (12)
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The benefit of the considered backward consistency constraint is shown in columns 6 to 8 of Figure
2. After obtaining x̂′

0, the resampling formula in (8) is used to obtain xt−1.

3.3. Triple Consistency Conditions
We now summarize the three key conditions that apply at each sampling step.

C1 Measurement Consistency: The reconstruction x̂′
0 is consistent with the measurements This

means that A(x̂′
0) ≈ y.

C2 Backward Consistency: The reconstruction x̂′
0 is a denoised image produced by the Tweedie-

network denoiser f . More generally, we define the backward consistency to include any form of DM
network regularization (e.g., using the DM probability-flow (PF) ODE [32]) applied to x̂′

0.

C3 Forward Consistency: The pre-trained DM network ϵθ is provided with in-distribution inputs
with high probability. To ensure this, we apply the resampling formula in (8) and enforce that v̂t

remains close to xt.

We emphasize that C1-C3 aim to ensure that all intermediate reconstructions x̂′
0(xt) (with t > 0)

are as accurate as possible, allowing us to effectively reduce the number of sampling steps. If reduc-
ing sampling steps is not necessary, these conditions become less critical, as the final reconstruction
at t = 0 can still be accurate with a large number of sampling steps, even if the intermediate recon-
structions are less precise.

Previous works, such as [12, 14], enforce measurement consistency by applying A(x̂0) = y exactly,
whereas DPS [10] does not ensure consistency along the diffusion trajectory.

3.4. The Proposed Sampler
Given xt, ϵθ, and towards satisfying the above conditions, our method, at sampling time t, consists
of the following three steps:

v̂t := argminv′
t

∥A
(

1√
ᾱt

[
v′
t −

√
1− ᾱt ϵθ(v

′
t, t)

] )
− y∥22 + λ∥xt − v′

t∥22 (S1)

x̂′
0 = f(v̂t; t, ϵθ) ≡ 1√

ᾱt

[
v̂t −

√
1− ᾱt ϵθ(v̂t, t)

]
(S2)

xt−1 =
√
ᾱt−1x̂

′
0 +

√
1− ᾱt−1ηt , ηt ∼ N (0, I) . (S3)

The minimization in the first step optimizes over the input v′
t of the pre-trained diffusion model

at time t, where the first term of the objective enforces measurement consistency for the posterior
mean estimated image, satisfying condition C1. The second term serves as a regularization term,
implicitly promoting closeness between v̂t and xt (i.e., condition C3), with λ > 0 acting as the reg-
ularization parameter. The argument of the forward operator in (S1) and the second step in (S2)
enforce that v̂t and x̂′

0, respectively, maintain the diffusion trajectory through obeying Tweedie’s for-
mula, thereby satisfying the backward consistency condition,C2. After obtaining themeasurement-
consistent estimate, x̂′

0, as given in (S2), it must be mapped back to time t− 1 to generate xt−1. This
is achieved through the forward diffusion step in (S3) as outlined in the forward consistency con-
dition, C3. A diagram of SITCOM procedure is provided in Figure 3 (left).
Remark 1. Obtaining the estimated image at time 0 given some xt using the standard DM PF-ODE [32]
is more accurate compared to the one-step Tweedie’s formula. However, since PF-ODE is an iterative proce-
dure, it requires more computational time. In SITCOM, PF-ODE could replace Tweedie’s formula in (S2).
Nevertheless, we chose not to use it, as this would increase the run time, and our empirical results are already
highly competitive using Tweedie’s formula.
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Figure 3: Illustrative diagram of the proposed procedure in SITCOM (left). Conceptual illustration of SIT-
COM, whereMt is the DM generative manifold at time t and Ct is the subset of images that are backward-
consistent, defined in (9) (right). Step (1) (solid arrow), Step (2) (dotted arrow), and Step (3) (dashed arrow)
correspond to (S1), (S2), and (S3), respectively.

A conceptual illustration of SITCOM is shown in Figure 3 (right). The DM generative manifold,
Mt, is defined as the set of all xt sampled from q(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I), and x0 ∼ p0(x).

This set coincides with the entire space Rn equipped with the probability measure induced by the
distribution of xt, which we denote as Pt. In Figure 3 (right), the variation of color around eachMt

indicates the concentration of themeasurePt, with darker colors representing higher concentration.
SITCOM’s Step (1) and Step (2) enforce measurement consistency and backward consistency, thus
map xt to x̂′

0 = f(v̂t; t, ϵθ)which lies within the intersection of (i) measurement-consistent set {x̂′
0 :

A(x̂′
0) ≈ y} (the shaded black line) and (ii) the backward-consistent set Ct (the yellow ellipsoid)

defined in (9). Subsequently, xt−1 is generated by inserting x̂′
0 into the resampling formula, which

enforces the forward consistency.

Handling Measurement Noise: To avoid the case where the first term of the objective in (S1)
reaches small values yielding noise overfitting (i.e., when additive Gaussian noise in (1) is consid-
ered, σy > 0), we propose refraining from enforcing strict measurement fitting A(x) = y. Instead,
we use the stopping criterion

∥∥A(
1√
ᾱt

[
v′
t −

√
1− ᾱt ϵθ(v

′
t, t)

])
− y

∥∥2
2
< δ2 , where δ ∈ R+ is a

hyper-parameter that indicates the level of tolerance for noise and helps prevent overfitting. This is
equivalent to enforcing an ℓ2 constraint, and is in spirit similar to [33]. Since the noise level cannot
be accurately estimated, in our experiments, we use δ that is slightly larger than the actual level of
noise in the measurements, i.e., δ > σy

√
m.

3.5. SITCOMwith Arbitrary Stepsizes

In this subsection, we explain how to apply SITCOM with a large stepsize and present the final
algorithm. The pre-trainedDM is trainedwith T diffusion steps. Given that ourmethod is designed
to satisfy measurement and diffusion consistency, SITCOM requires N ≪ T sampling iterations,
using a step size of ∆t := ⌊ T

N ⌋. Thus, we introduce the index i instead of twith a relation t = i∆t.

The procedure of SITCOM is outlined in Algorithm 1. As inputs, SITCOM takes y, A(·), ϵθ, the
number of sampling steps N , ᾱi for all i ∈ {1, . . . , N}, the number of optimization steps K per
sampling step, stopping criteria δ, and the learning rate γ.

Starting with initializing v
(0)
i as xi (satisfying condition C3), lines 3 through 6 correspond to the

first step of SITCOM, where (S1) is solved via either gradient descent (as shown in the algorithm),
or the ADAM optimizer [34]. In lines 5 and 6, the stopping criterion is applied to prevent strict data
fidelity (avoiding noise overfitting). Following the gradient updates in the inner loop, v̂i is obtained
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Algorithm 1 Step-wise Triple-Consistent Sampling (SITCOM).
Input: Measurements y, forward operator A(·), pre-trained DM ϵθ(· , ·), number of diffusion steps N , DM
noise schedule ᾱi for i ∈ {1, . . . , N}, number of gradient updatesK, stopping criterion δ, learning rate γ, and
regularization parameter λ.
Output: Restored image x̂.
Initialization: xN ∼ N (0, I),∆t = ⌊ T

N
⌋

1: For each i ∈ {N,N − 1, . . . , 1}. (Reducing diffusion sampling steps)

2: Initialize v(0)
i ← xi. (Initialization to ensure Closeness: C3 )

3: For each k ∈ {1, . . . ,K}. (Gradient updates for measurement & backward consistency: C1, C2)

4: v
(k)
i = v

(k−1)
i − γ∇vi

[∥∥A( 1√
ᾱi

[
vi −

√
1− ᾱi ϵθ(vi, i∆t)

])
− y

∥∥2

2
+ λ∥xi − vi∥22

]∣∣∣
vi=v

(k−1)
i

.

5: If
∥∥A( 1√

ᾱi

[
v
(k)
i −

√
1− ᾱi ϵθ(v

(k)
i , i∆t)

])
− y

∥∥2

2
< δ2 . (Stopping criterion)

6: Break the For loop in step 3. (Preventing noise overfitting)

7: Assign v̂i ← v
(k)
i . (Backward diffusion consistency of v̂i: C2)

8: Obtain x̂′
0 = f(v̂i; t, θ) =

1√
ᾱi

[
v̂i −

√
1− ᾱi ϵθ(v̂i, i∆t)

]
. (Backward consistency of x̂′

0: C2)

9: Obtain xi−1 =
√
ᾱi−1x̂

′
0 +
√
1− ᾱi−1ηi, ηi ∼ N (0, I) . (Forward diffusion consistency: C3)

10: Restored image: x̂ = x0.

in line 7, which is then used in line 8 to obtain x̂′
0 as specified in (S2), satisfying condition C2. Note

that line 8 requires no additional computation, as the x̂′
0 calculated here was already obtainedwhile

checking the stopping condition in line 6. After obtaining the double-consistent x̂′
0, the resampling

is applied to map the image back to time t−1while ensuring xt−1 to be in-distribution, as indicated
in line 9 of the algorithm. In the next iteration, the requirement that v̂t−1 is close to xt−1 ensures that
the input v̂t−1 to the DMnetwork, ϵθ, is also in-distribution, thus satisfying the forward-consistency
(condition C3).

The computational requirements of SITCOM are determined by (i) the number of sampling steps
N and (ii) the number of gradient steps K required for each sampling iteration. Given the pro-
posed stopping criterion, this results in at most NK Number of Function Evaluations (NFEs) of
the pre-trained model (forward pass), NK backward passes through the pre-trained model, and
NK applications each for the forward operator and its adjoint to solve the optimization problem in
(S1). With early stopping, the computational cost is lower. For example, for a linear operatorAwith
dimensions m × n, the cost of applying it (or its adjoint) to a vector is O(mn). For a network with
widthM and depth L, the cost for making a forward pass is O(LM2). The gradients are computed
w.r.t. the input of the DM network, requiring an additional backward pass. This backward pass
has the same computational cost as the forward pass. Consequently, this procedure is significantly
more efficient than network training, where the network weights are updated instead of the input.

3.6. Relation with Existing Approaches

While SITCOM and DPS [10] both use Tweedie’s formula, there are two major differences. First,
DPS does not enforce backward consistency. Specifically, it only considers one gradient descent
step of the optimization in (S1), whereas our method perform multiple steps, initializing with xt.
Second, DPS does not enforce the forward diffusion consistency, namely, it does not use resampling
(S3). This means that DPS does not enforce a step-wise C1-C3.

Both SITCOM and the works in [12, 14] are optimization-based methods that modify the sampling
steps to enforce measurement consistency, and both involve mapping back to time t−1 (as in step 3
of SITCOM). However, there is a major difference between them: The optimization variable in these
works is the estimated image at time t (the output of the DM network), whereas in SITCOM, it is
the noisy image at time t (the input of the network). This means that these studies enforce C1 and
C3, but not C2.
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4. Experimental Results
Tasks: Our experimental setup for IPs and noise levels used largely follows DPS [10]. For linear
IPs, we evaluate five tasks: super resolution, Gaussian deblurring, motion deblurring, box inpaint-
ing, and random inpainting. For Gaussian deblurring andmotion deblurring, we use 61×61 kernels
with standard deviations of 3 and 0.5, respectively. In the super-resolution task, a bicubic resizer
downscales images by a factor of 4. For box inpainting, a random 128×128 box is applied to mask
image pixels, and for random inpainting, themask is generatedwith each pixel maskedwith a prob-
ability of 0.7, as described in [14]. For nonlinear IP tasks, we consider three tasks: phase retrieval,
high dynamic range (HDR) reconstruction, and nonlinear (non-uniform) deblurring. For phase
retrieval, an oversampling rate of 2 is applied in frequency domain, and we report the best result
out of four independent samples, consistent with [10, 12] (see Appendix D for more discussion on
phase retrieval). In HDR reconstruction, the goal is to restore a higher dynamic range image from
a lower dynamic range image (with a factor of 2). Nonlinear deblurring follows the setup in [35].
For measurement noise, we use σy ∈ {0.01, 0.05} for all tasks.

Baselines & Datasets: For baselines, in this section, we use DPS [10], DDNM [25], DCDP [1],
and DAPS [12]. The selection criteria is based on these baselines’ competitive performance on sev-
eral linear and non-linear inverse problems under measurement noise. Additionally, we provide
comparison results with three other baselines in Table 3 of Appendix E. We evaluate SITCOM and
baselines using 100 test images from the validation set of FFHQ [36] and 100 test images from the
validation set of ImageNet [37] for which the FFHQ-trained and ImageNet-trained DMs are given
in [10] and [38], respectively, following the previous convention. For evaluation metrics, we use
PSNR, SSIM [39], and LPIPS [40].

SITCOM Settings: For Algorithm 1, we set N = 20 and K = 30 for most tasks. We show the
impact of N and K in Appendix F.1. The parameter λ is set to 0 for all tasks other than phase
retrieval where we use λ = 1, following the ablation study in Appendix F.2. The impact of the
stopping criterion under the noisy setting is given in Appendix F.3. The learning rate for (S1) is set
to γ = 0.01 across all measurements noise levels, datasets, and tasks. Table 6 in Appendix F.4 lists
all the hyper-parameters used for every task. We note that the exact set of hyper-parameters is used
for the FFHQ and ImageNet datasets. Our code is available online3.

Main Results: In Table 1, we present the quantitative results in terms of the average PSNR, SSIM,
LPIPS, and run-time (minutes). Columns 3 to 6 correspond to the FFHQ dataset, while columns
7 to 10 reflect results for the ImageNet dataset. The table covers 8 tasks, 4 evaluation metrics, and
2 datasets, totaling 64 results. Among these, SITCOM reports the best performance in 58 out of 64
cases.

On average, SITCOM demonstrates strong reconstruction capabilities across most tasks. For the
FFHQ dataset, SITCOM reports a PSNR improvement of over 1 dB in Super Resolution, random In-
painting, andGaussian Deblurring compared to the second-best method. On ImageNet, we observe
more than a 1 dB improvement in random In-painting. Other than ImageNet Gaussian Deblurring
and ImageNet Phase Retrieval, for which we under-perform by 0.66 dB and 0.31 dB, respectively,
our PSNR improvement when compared to the second-best results are less than 1 dB. However,
in terms of run-time, SITCOM consistently requires less computational time across all tasks. For
FFHQ, SITCOM is over 3× faster in Box In-painting andmotionDeblurring, andmore than 2× faster
in the remaining tasks, whereas on ImageNet, the run-time improvement ranges from 36 seconds
(for HDR) to 62.4 seconds (for Super Resolution), when compared to DPS, DDNM, and DAPS.

For linear tasks, SITCOM requires slightly less run-time than DCDP on both datasets. However,
across the two datasets, SITCOM achieves PSNR improvements of more than 1 dB, 2 dB, and 3 dB
for the tasks of super resolution, box in-painting, and random in-painting (and Gaussian Deblur-
ring), respectively, as compared to DCDP. For non-linear tasks, SITCOM not only provides PSNR
improvements over DCDP but also significantly reduces run-time.

3
https://github.com/sjames40/SITCOM
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Task Method FFHQ ImageNet
PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓) PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓)

Super Resolution 4×

DPS 24.44±0.56 0.801±0.032 0.26±0.022 1.26±0.52 23.86±0.34 0.76±0.041 0.357±0.069 2.38±1.02
DAPS 29.24±0.42 0.851±0.024 0.135±0.039 1.24 ±0.22 25.67±0.73 0.802±0.045 0.256±0.067 2.16±0.45
DDNM 28.02±0.78 0.842±0.034 0.197±0.034 1.07±0.42 23.96±0.89 0.767±0.045 0.475±0.044 1.27±0.55
DCDP 27.88±1.34 0.825±0.07 0.211±0.05 0.52±0.34 24.12±1.24 0.772±0.000 0.351±0.00 1.45±0.00

SITCOM (ours) 30.68±1.02 0.867±0.045 0.142±0.056 0.45±0.58 26.35±1.21 0.812±0.021 0.232±0.038 1.12±0.52

Box In-Painting

DPS 23.20±0.89 0.754±0.023 0.196±0.032 1.57±0.55 19.78±0.78 0.691±0.052 0.312±0.025 2.28 ±1.02
DAPS 24.17±1.02 0.787±0.032 0.135±0.032 1.35±0.45 21.43±0.40 0.736±0.020 0.218±0.021 2.54±1.02
DDNM 24.37±0.45 0.792±0.024 0.232±0.026 1.02±0.032 21.64±0.66 0.732±0.028 0.319±0.015 1.45±1.02
DCDP 23.66±1.67 0.762±0.07 0.144±0.05 0.56±0.25 20.45±1.22 0.712±0.07 0.298±0.04 1.127±0.25

SITCOM (ours) 24.68±0.78 0.801±0.042 0.121±0.08 0.35±0.25 21.88±0.92 0.742±0.032 0.214±0.021 1.12±0.35

Random In-Painting

DPS 28.39±0.82 0.844±0.042 0.194±0.021 1.52±0.30 24.26±0.42 0.772±0.02 0.326±0.034 2.27±0.25
DAPS 31.02±0.45 0.902±0.015 0.098±0.017 1.56±0.40 28.44±0.45 0.872±0.024 0.135±0.052 2.14±0.45
DDNM 29.93±0.67 0.889±0.032 0.122±0.056 1.45±0.35 29.22±0.55 0.912±0.034 0.191±0.048 1.54±0.52
DCDP 28.59±0.95 0.852±0.06 0.202±0.04 0.55±0.25 26.22±1.13 0.791±0.06 0.289±0.03 1.44±0.34

SITCOM (ours) 32.05±1.02 0.909±0.09 0.095±0.025 0.45±0.50 29.60±0.78 0.915±0.028 0.127±0.039 1.14±0.45

Gaussian Deblurring

DPS 25.52±0.78 0.826±0.052 0.211±0.017 1.50±0.50 21.86±0.45 0.772±0.08 0.362±0.034 2.55±0.45
DAPS 29.22±0.50 0.884±0.056 0.164±0.032 1.40±0.52 26.12±0.78 0.832±0.092 0.245±0.022 2.23±0.52
DDNM 28.22±0.52 0.867±0.056 0.216±0.042 1.56±0.45 28.06±0.52 0.879±0.072 0.278±0.089 1.75±0.63
DCDP 26.67±0.78 0.835±0.08 0.196±0.04 0.56±0.23 23.24±1.18 0.781±0.06 0.343±0.04 1.34±0.43

SITCOM (ours) 30.25±0.89 0.892±0.032 0.135±0.078 0.46±0.25 27.40±0.45 0.854±0.045 0.236±0.039 1.10±0.42

Motion Deblurring
DPS 23.40±1.42 0.737±0.024 0.270±0.025 2.40±0.55 21.86±2.05 0.724±0.022 0.357±0.032 2.56±0.40
DAPS 29.66±0.50 0.872±0.027 0.157±0.012 1.86±0.12 27.86±1.20 0.862±0.032 0.196±0.021 2.3±0.45

SITCOM (ours) 30.34±0.67 0.902±0.037 0.148±0.041 0.5±0.45 28.65±0.34 0.876±0.021 0.189±0.036 1.48±0.35

Phase Retrieval
DPS 17.34±2.67 0.67±0.045 0.41±0.08 1.50±0.34 16.82±1.22 0.64±0.08 0.447±0.032 2.17±0.24
DAPS 30.67±3.12 0.908±0.041 0.122±0.084 1.34±0.78 25.76±2.33 0.797±0.045 0.255±0.095 2.24±0.25
DCDP 28.52±2.50 0.892±0.19 0.167±0.92 3.30±0.45 24.25±2.25 0.778±0.14 0.287±0.089 3.49±0.52

SITCOM (ours) 30.97±3.10 0.915±0.064 0.112±0.102 0.52±0.34 25.45±2.78 0.808±0.065 0.246±0.088 1.40±0.40

Non-Uniform Deblurring
DPS 23.42±2.15 0.757±0.042 0.279±0.067 1.55±0.44 22.57±0.67 0.778±0.067 0.310±0.102 2.35±0.45
DAPS 28.23±1.55 0.833±0.052 0.155±0.041 1.42±0.41 27.65±1.2 0.822±0.056 0.169±0.044 2.14±0.45
DCDP 28.78±1.44 0.827±0.08 0.162±0.04 3.30±0.45 26.56±1.09 0.803±0.06 0.182±0.05 3.70±0.36

SITCOM (ours) 30.12±0.68 0.902±0.042 0.145±0.037 0.52±0.45 28.78±0.79 0.832±0.056 0.16±0.048 1.25±0.45

High Dynamic Range
DPS 22.88±1.25 0.722±0.056 0.264±0.089 1.45±0.34 19.33±1.45 0.688±0.067 0.503±0.132 2.42±0.46
DAPS 27.12±0.89 0.825±0.056 0.166±0.078 1.25±0.35 26.30±1.02 0.792±0.046 0.177±0.089 2.18±0.55

SITCOM (ours) 27.98±1.06 0.832±0.052 0.158±0.032 0.52±0.30 26.97±0.87 0.821±0.045 0.167±0.052 1.54±0.35

Table 1: Average PSNR, SSIM, LPIPS, and run-time (minutes) of SITCOM and baselines using 100 test images
from the FFHQ dataset (columns 3 to 7) and 100 test images from the ImageNet dataset with ameasurement
noise level of σy = 0.05. The results for the σy = 0.01 case are given in Table 2 of Appendix E. The first five
tasks are linear, while the last three tasks are non-linear (underlined). For each task and dataset combination,
the best results are bolded, and the second-best results are underlined. Values after ± represent the standard
deviation. All results were obtained using a single RTX5000 GPU machine. For phase retrieval, the run-time
is reported for the best result out of four independent runs. This is applied for SITCOM and baselines. More
discussion about phase retrieval is given in Appendix D.

In summary, the results in Table 1 demonstrate that SITCOMeither provides a notable improvement
in restoration quality (e.g., cases where we report PSNR improvements of over 1 dB) or delivers
comparable results to the baselines, all while significantly reducing computation time.

In Appendix E, we present the results with σy = 0.01 case (Table 2). Additionally, Table 3 includes
quantitative results for three more baselines. In addition to the FFHQ restored images in Figure 1,
we also provide additional samples from both datasets in the figures found in Appendix H.

5. Conclusion

In this paper, we proposed three conditions to achieve measurement- and diffusion-consistent tra-
jectories for linear and non-linear inverse imaging problems using diffusion models (DMs) as pri-
ors. These conditions form the basis of our unique optimization-based sampling method, which
optimizes the input of the diffusion model at each step. This approach allows for greater control
over the diffusion process and enhances data consistency with the given measurements. Through
extensive experiments across eight image restoration tasks, we evaluated the effectiveness of our
method. The results showed that our sampler consistently delivers improved or comparable quan-
titative performance against state-of-the-art baselines, even with measurement noise. Notably, our
method is efficient, requiring significantly less run-time than leading baselines, making it practical
for real-world applications.
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Appendix

In the Appendix, we start by showing the equivalence between the second formula in (3) and (6)
(Appendix A). Then, we discuss the known limitations and future extensions of SITCOM (Ap-
pendix B). Subsequently, we present experiments to highlight the impact of the proposed backward
consistency (Appendix C). This is followed by a discussion on phase retrieval (Appendix D). In Ap-
pendix E, we provide further comparison results, and in Appendix F, we perform ablation studies
to examine the effects of the stopping criterion and other components/hyper-parameters in SIT-
COM. Appendix G covers the implementation details of tasks and baselines, followed by examples
of restored images (Appendix H).

A. Derivation of (6)
From [22], we have

sθ(xt, t) = − 1√
1− ᾱt

ϵθ(xt, t) . (13)

Rearranging the Tweedie’s formula in (4) to solve for ϵθ(xt, t) yields

ϵθ(xt, t) =
xt −

√
ᾱtx̂0(xt)√

1− ᾱt
. (14)

Now, we substitute into the recursive equation for xt−1:

xt−1 =
1√

1− βt

[xt + βtsθ(xt, t)] +
√

βtηt (15)

=
1√

1− βt

[
xt + βt

(
− 1√

1− ᾱt
ϵθ(xt, t)

)]
+

√
βtηt (16)

=
1√

1− βt

[
xt −

βt√
1− ᾱt

ϵθ(xt, t)

]
+
√

βtηt (17)

=
1√

1− βt

[
xt −

βt√
1− ᾱt

(
xt −

√
ᾱtx̂0(xt)√

1− ᾱt

)]
+
√

βtηt (18)

=
1√

1− βt

[
xt −

βt

1− ᾱt

(
xt −

√
ᾱtx̂0(xt)

)]
+

√
βtηt (19)

=
1√

1− βt

[(
1− βt

1− ᾱt

)
xt +

√
ᾱtβt

1− ᾱt
x̂0(xt)

]
+

√
βtηt (20)

=
(1− ᾱt − βt)√
1− βt (1− ᾱt)

xt +

√
ᾱtβt√

1− βt (1− ᾱt)
x̂0(xt) +

√
βtηt (21)

=
(αt − ᾱt)√
αt (1− ᾱt)

xt +

√
ᾱtβt√

αt (1− ᾱt)
x̂0(xt) +

√
βtηt (22)

=

(√
αt −

√
αtᾱt−1

)
1− ᾱt

xt +

√
ᾱt−1βt

1− ᾱt
x̂0(xt) +

√
βtηt (23)

=

√
αt (1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x̂0(xt) +

√
βtηt , (24)

which is equivalent to the second formula in (3).

B. Limitations & Future Work
In SITCOM, the stopping criterion parameter is set slightly higher than the level of measurement
noise, determined by σy. As a result, our method requires access to (or estimation of) the measure-
ment noise prior to the restoration process. Knowledge of noise level is also assumed in other works
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such as DAPS [12]. In practice, classical approaches, such as [41, 42], can be used to estimate the
noise.

Additionally, the stated conditions and proposed sampler are limited to the non-blind setting, as
SITCOM assumes full access to the forward model, unlike works such as [43], which perform both
image restoration and forward model estimation.

For future work, in addition to addressing the aforementioned limitations, we aim to extend SIT-
COM to the latent space and explore its applicability in medical image reconstruction.

C. Impact of the proposed Backward Consistency
Here, we demonstrate the impact of the proposed backward diffusion consistency in SITCOMusing
two experiments.

GT

𝑡′ = 800

Optimizing over the output of the DM network at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Optimizing over the input of the DM network (ours) at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Degraded Image

Task: Gaussian Deblurring

𝑡′ = 600𝑡′ = 400𝑡′ = 200

GT Degraded Image

𝑡′ = 800𝑡′ = 600𝑡′ = 400𝑡′ = 200

Task: Box Inpainting

Optimizing over the output of the DM network at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Optimizing over the input of the DM network (ours) at 𝑡 = 𝑡′ for 𝐾 = 20 iterations. 

Figure 4: Results of applying optimization-based measurement consistency, for which the optimization vari-
able is the DM output (resp. input), are shown in the first (resp. second) row for each task: Box Inpainting
(top) and Gaussian Deblurring (bottom).
First, for the box-painting task, we compare optimizing over the input to the DM (as in SITCOM)
with optimizing over the output of the DM network (as is done in DCDP [1] and DAPS [12]) at
time steps t′ ∈ {200, 400, 600}. For each case (selection of t′), we start from t = T and run SIT-
COM with a step size of ⌊ T

N ⌋. At t = t′, given xt′ , we perform two separate optimizations with
intializing the optimization variable as xt′ : one iteratively over the DM network input (ours) and
another iteratively over the DM network output (i.e., (5) but without the regularization), both run-
ning until convergence (i.e., when the loss stops decreasing). For our approach, the result of the
optimization from (S1) is used as input to Tweedie’s formula in (S2) to compute the posterior mean
x̂′
0 = x̂0(vt). For the case of optimizing over the DM output, we use (5) without regularization.

Figure 2 shows the results at different time steps. The consistency between the ground truth and
the unmasked regions of the estimated images suggest the convergence of the measurement con-
sistency. As observed, SITCOM produces significantly less artifacts in the masked region when
compared to optimizing over the output. This is evident both at earlier time steps (t′ = 600) and
later steps (t′ = 400 and t′ = 200).
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For the second experiment, the goal is to show that SITCOM requires much smaller number of op-
timization steps to remove the noise as compared to the case where the optimization variable is
the output of the DM network. The results are given in Figure 4, where we repeat the above ex-
periment with two tasks: Box-inpainting (top) and Gaussian Deblurring (bottom), this time using a
fixed number of optimization steps for both SITCOM, and optimizing over the DM output. Specif-
ically, we run SITCOM from t = T to t = t′ + 1. Then, we apply K = 20 iterations (the setting in
SITCOM) in (S1), and K = 20 when optimizing (5) (without regularization) where measurement
noise is σy = 0.05. As shown, compared to optimizing over the DM output, SITCOM significantly
reduces noise across all considered t′, underscoring the effect of the proposed backward diffusion
consistency when optimizing over the DM input.

D. Discussion on Phase Retrieval

As discussed in our experimental results section, for the phase retrieval task, we report the best
results from 4 independent runs, following the convention in [10, 12]. For the phase retrieval results
of Table 1 and Table 2 (given in Appendix E), we use this approach across all baselines where the
run-time is reported for one run.

Ground Truth Ground Truth

DPS

DAPS

SITCOM (Ours)

Figure 5: Results of Phase Retrieval on two images (top row) from the FFHQ dataset. Rows 2, 3, and 4
correspond to the results of DPS, DAPS, and SITCOM (ours), respectively.

The forward model for phase retrieval is adopted from DPS where the inverse problem is generally
more challenging compared to other image restoration tasks. This increased difficulty arises from
the presence of multiple modes that can yield the same measurements [12].

In Figure 5, we present two examples comparing SITCOM, DPS, and DAPS. For each ground truth
image, we show four results from which the best one was selected. In the first column, SITCOM
avoids significant artifacts, while DAPS produces one image rotated by 180 degrees. In the second
column, both SITCOM and DAPS exhibit one run with severe artifacts. However, the last image
from SITCOM does exhibit more artifacts compared to the second worst-case result from DAPS.
Additionally, the DPS results show severe perceptual differences in both cases, with artifacts being
particularly noticeable in the second column.
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E. Additional Comparison Results

In Table 2, we present the average PSNR, SSIM, LPIPS, and run-time (minutes) of DPS, DAPS,
DDNM, and SITCOM using the FFHQ and ImageNet datasets for which the measurement noise
level is set to σy = 0.01 (different from Table 1). The goal of these results is to evaluate our method
and baselines under less noisy settings.

Task Method FFHQ ImageNet
PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓) PSNR (↑) SSIM (↑) LPIPS (↓) Run-time (↓)

Super Resolution 4×
DPS 25.20±1.22 0.806±0.044 0.242±0.102 1.31±0.44 24.45±0.89 0.792±0.052 0.331±0.089 2.33±0.40
DAPS 29.6±0.67 0.871±0.034 0.132±0.088 1.24±0.43 25.98±0.74 0.794±0.09 0.234±0.089 2.10±1.02
DDNM 28.82±0.67 0.851±0.043 0.188±0.13 1.07±0.35 24.67±0.78 0.771±0.06 0.432±0.34 1.38±0.55
Ours 30.95±0.89 0.872±0.045 0.137±0.046 0.50±0.34 26.89±0.86 0.802±0.057 0.224±0.056 1.34±0.45

Box In-Painting
DPS 23.56±0.78 0.762±0.034 0.191±0.087 1.52±0.43 20.22±0.67 0.69±0.034 0.297±0.077 1.55±0.44
DAPS 24.41±0.67 0.791±0.034 0.129±0.067 1.33±0.42 21.79±0.34 0.734±0.045 0.214±0.034 2.44±0.34
DDNM 24.67±0.067 0.788±0.024 0.229±0.055 1.02±0.42 21.99±0.54 0.737±0.034 0.315±0.022 1.42±0.45
Ours 24.97±0.55 0.804±0.045 0.118±0.022 0.37±0.34 22.23±0.44 0.745±0.034 0.208±0.023 1.23±0.44

Random In-Painting
DPS 28.77±0.56 0.847±0.034 0.191±0.023 1.55±0.34 24.57±0.45 0.775±0.023 0.318±0.26 2.12±0.30
DAPS 31.56±0.45 0.905±0.013 0.094±0.012 1.42±0.45 28.86±0.67 0.877±0.021 0.131±0.044 2.01±0.34
DDNM 30.56±0.56 0.902±0.013 0.116±0.023 1.25±0.42 30.12±0.45 0.917±0.012 0.124±0.032 1.89±0.23
Ours 33.02±0.44 0.919±0.012 0.0912±0.013 0.47±0.34 30.67±0.45 0.918±0.013 0.118±0.012 1.40±0.34

Gaussian Deblurring
DPS 25.78±0.68 0.831±0.034 0.202±0.014 1.33±0.44 22.45±0.42 0.778±0.067 0.344±0.041 2.12±0.44
DAPS 29.67±0.45 0.889±0.045 0.163±0.033 2.15±0.37 26.34±0.55 0.836±0.034 0.244±0.023 2.22±0.43
DDNM 28.56±0.45 0.872±0.024 0.211±0.034 1.24±0.34 28.44±0.021 0.882±0.021 0.267±0.00 1.76±0.33
Ours 32.12±0.34 0.913±0.024 0.139±0.045 0.45±0.25 28.22±0.45 0.891±0.014 0.216±0.021 1.34±0.25

Motion Deblurring
DPS 23.78±0.78 0.742±0.042 0.265±0.024 1.65±0.34 22.33±0.727 0.726±0.034 0.352±0.00 2.21±0.40
DAPS 30.78±0.56 0.892±0.034 0.146±0.023 1.44±0.34 28.24±0.62 0.867±0.023 0.191±0.017 2.12±0.44
Ours 32.34±0.44 0.908±0.028 0.135±0.028 0.52±0.34 29.12±0.38 0.882±0.025 0.182±0.025 1.45±0.31

Phase Retrieval
DPS 17.56±2.15 0.681±0.056 0.392±0.021 1.52±0.42 16.77±1.78 0.651±0.076 0.442±0.037 2.18±0.38
DAPS 31.45±2.78 0.909±0.035 0.109±0.044 1,85±0.32 26.12±2.12 0.802±0.023 0.247±0.034 2.32±0.35
Ours 31.88±2.89 0.921±0.067 0.102±0.078 0.54±0.45 25.76±1.78 0.813±0.032 0.238±0.067 1.31±0.45

Non-Uniform Deblurring
DPS 23.78±2.23 0.761±0.051 0.269±0.064 1.56±0.45 22.97±1.57 0.781±0.023 0.302±0.089 2.34±0.44
DAPS 28.89±1.67 0.845±0.057 0.150±0.056 1.41±0.37 28.02±1.15 0.831±0.082 0.162±0.034 2.23±0.56
Ours 31.09±0.89 0.911±0.056 0.132±0.45 0.56±0.37 29.56±0.78 0.844±0.045 0.147±0.042 1.34±0.44

High Dynamic Range
DPS 23.33±1.34 0.734±0.049 0.251±0.078 1.34±0.42 19.67±0.056 0.693±0.034 0.498±0.112 2.34±0.41
DAPS 27.58±0.829 0.828±0.00 0.161±0.067 1.26±0.44 26.71±0.088 0.802±0.032 0.172±0.066 2.12±0.32
Ours 28.52±0.89 0.844±0.045 0.148±0.035 0.51±0.42 27.56±0.78 0.825±0.037 0.162±0.046 1.45±0.41

Table 2: Average PSNR, SSIM, LPIPS, and run-time (minutes) of SITCOM and baselines using 100 test images
from FFHQ and 100 test images from ImageNet with a measurement noise level of σy = 0.01. The first five
tasks are linear, while the last three tasks are non-linear (underlined). For each task and dataset combination,
the best results are bolded, and the second-best results are underlined. Values after ± represent the standard
deviation. All results were obtained using a single RTX5000 GPU machine. For phase retrieval, the run-time
is reported for the best result out of four independent runs. This is applied for SITCOM and baselines.

Overall, we observe similar trends to those discussed in Section 4 for Table 1. On the FFHQ dataset,
SITCOM achieves higher average PSNR values compared to the baselines across all tasks, with im-
provements exceeding 1 dB in 5 out of 8 tasks. For the ImageNet dataset, we observe more than 1
dB improvement on the non-linear deblurring task, while for the remaining tasks, the improvement
is less than 1 dB, except for Gaussian deblurring (where SITCOM underperforms by 0.22 dB) and
phase retrieval (underperforming by 0.36 dB).

In terms of run-time, generally, SITCOM significantly outperforms DDNM, DPS, and DAPS, with
all methods evaluated on a single RTX5000 GPU. For the FFHQ dataset, SITCOM is at least twice as
fast when compared to baselines. On ImageNet, SITCOM consistently requires much less run-time
compared to DPS and DAPS. When compared to DDNM, SITCOM’s run-time is similar or slightly
lower. For example, on the super-resolution task, both SITCOM and DDNM average 1.34 minutes,
but SITCOM achieves over a 2 dB improvement.

In Table 3, we report the average PSNR and LPIPS results using threemore baselines: DenoisingDif-
fusion RestorationModels (DDRM) [44], Plug-and-Play (PnP) ADMM [45] (a non diffusion-based
solver), and Regularization by Denoising with Diffusion (RED-Diff) [26]. The results of DDRM,
PnP-ADMM, and RED-Diff are sourced from [12]. DDRM and PnP-ADMM present results for lin-
ear tasks whereas RED-Diff is used for the non-linear tasks. The results of SITCOM are as reported
in Table 1.
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Task Method FFHQ ImageNet
PSNR (↑) LPIPS (↓) PSNR (↑) LPIPS (↓)

Super Resolution 4×
DDRM [44] 27.65 0.210 25.21 0.284

PnP-ADMM [45] 23.48 0.725 22.18 0.724
SITCOM (ours) 30.68 0.142 26.35 0.232

Box In-Painting
DDRM [44] 22.37 0.159 19.45 0.229

PnP-ADMM [45] 13.39 0.775 12.61 0.702
SITCOM (ours) 24.68 0.121 21.88 0.214

Random In-Painting
DDRM [44] 25.75 0.218 23.23 0.325

PnP-ADMM [45] 20.94 0.724 20.03 0.680
SITCOM (ours) 32.05 0.095 29.60 0.127

Gaussian Deblurring
DDRM [44] 23.36 0.236 23.86 0.341

PnP-ADMM [45] 21.31 0.751 20.47 0.729
SITCOM (ours) 30.25 0.235 27.40 0.236

Motion Deblurring PnP-ADMM [45] 23.40 0.703 24.23 0.684
SITCOM (ours) 30.34 0.148 28.65 0.189

Phase Retrieval RED-Diff [26] 15.60 0.596 14.98 0.536
SITCOM (ours) 30.97 0.112 25.45 0.246

Non-Uniform Deblurring RED-Diff [26] 30.86 0.160 30.07 0.211
SITCOM (ours) 30.12 0.145 28.78 0.160

High Dynamic Range RED-Diff [26] 22.16 0.258 22.03 0.274
SITCOM (ours) 27.98 0.158 26.97 0.167

Table 3: Average PSNR and LPIPS results of ourmethod and other baselines over 100 FFHQ and 100 ImageNet
test images. The measurement noise setting is σy = 0.05. The results of DDRM and PnP-ADMM (resp. RED-
Diff) are sourced from Tables 1 and 3 (resp. 2 and 4) in [12]. The remaining results are as given in Table 1 of
Section 4.

When compared to DDRM and PnP-ADMM, SITCOM demonstrates notable improvements in both
PSNR and LPIPS across all tasks and datasets. For instance, SITCOM achieves over a 5 dB improve-
ment in random in-painting on both datasets. Compared to RED-Diff, SITCOM outperforms by 5
dB on FFHQ and more than 10 dB on ImageNet for phase retrieval. A similar trend is observed
in the High Dynamic Range task. For non-linear non-uniform deblurring, although SITCOM per-
forms better in terms of LPIPS, it reports approximately 1 dB (FFHQ) and 2 dB (ImageNet) less
PSNR than RED-Diff, all without requiring external denoisers.

F. Ablation Studies

F.1. Effect of the number of Optimization steps K, & the number of Sampling
steps N

In this subsection, we perform an ablation study on the number of optimization steps, K, and the
number of sampling steps, N . Specifically, for the tasks of Super Resolution, Motion Deblurring,
and Random In-painting, we run SITCOM using combinations from N ∈ {10, 20, 30} and K ∈
{20, 30, 40}. The average PSNR results over 20 test images from the FFHQ dataset are presented
in Table 4. As shown, for the first three tasks, SITCOM consistently achieves strong PSNR scores
across all (N,K) pairs, demonstrating that its performance is not very sensitive to variations in
(N,K) within these ranges as the results vary by nearly 1 dB. For High Dynamic Range tasks, we
observe that the best results are obtained with (N,K) = (20, 40). The selected (N,K) values for our
main results are listed in Table 6 of Appendix F.4.

F.2. Effect of the Regularization Parameter λ

In this subsection, we performan ablation study to assess the impact of the regularization parameter,
λ, in SITCOM. Table 5 shows the results across four tasks using various λ values. Aside from phase
retrieval, the effect of λ is minimal. We hypothesize that initializing the optimization variable in
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(N,K) (10, 20) (10, 30) (10, 40) (20, 20) (20, 30) (20, 40) (30, 20) (30, 30) (30, 40)

Super Resolution 4× 29.654 29.771 29.815 29.913 29.952 29.961 30.009 30.027 30.033
Motion Deblurring 29.976 30.820 31.264 31.259 31.380 30.452 31.282 30.624 30.438
Random Inpainting 33.428 34.444 34.699 34.546 34.558 34.574 34.619 34.634 34.639
High Dynamic Range 25.902 26.290 27.873 26.957 27.104 27.874 27.171 27.127 26.806

Table 4: Effect of the number of sampling steps (N) and optimization steps per sampling iteration (K) on the
tasks listed in the first column for SITCOM. The reported PSNR values are averaged over 20 FFHQ test images.

(S1) with xt is sufficient to enforce forward diffusion consistency in C3. Therefore, we set λ = 1 for
phase retrieval and λ = 0 for the other tasks.

Additionally, for all tasks other than phase retrieval, we observed that when λ = 0, the restored
images exhibit enhanced high-frequency details. For visual examples, see the results of λ = 0 versus
λ = 1 in Figure 6.

λ 0 0.05 0.5 1 1.5

Super Resolution 4× 29.952 29.968 29.464 29.550 29.288
Motion Deblurring 31.380 31.393 31.429 31.382 31.150
Random Inpainting 34.559 34.537 34.523 34.500 34.301
Phase Retrieval 31.678 31.892 32.221 32.342 32.124

Table 5: Ablation Study on the impact of the regularization parameter λ.

Ground Truth Degraded Image 𝜆 = 0 𝜆 = 0.01 𝜆 = 1

PSNR = 28.99 PSNR = 28.97 PSNR = 27.47
Figure 6: Results of running SITCOM using different regularization parameters in (S1) for the task of Motion
deblurring.

F.3. Impact of the Stopping criterion For Noisy Measurements

In this subsection, we demonstrate the impact of applying the stopping criterion in SITCOM when
handling measurement noise. For the tasks of super resolution and motion deblurring, we run
SITCOMwith andwithout the stopping criterion for the case of σy = 0.05. The results are presented
in Figure 7. As shown, for both tasks, using the stopping criterion (i.e., δ > 0) not only improves
PSNR values compared to the case of δ = 0, but also visually reduces additive noise in the restored
images. This is because, without the stopping criterion , the measurement consistency enforced by
the optimization in (S1) tends to fit the noise in the measurements.

F.4. Complete List of hyper-parameters in SITCOM

Table 6 summarizes the hyper-parameters used for each task in our experiments, as determined
by the ablation studies in the previous subsections. Notably, the same set of hyper-parameters is
applied to both the FFHQ and ImageNet datasets.
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GT

Degraded Image

Super Resolution

Degraded Image

PSNR = 27.267

𝛿 = 0

PSNR = 30.62

𝛿 > 0

PSNR = 22.819

𝛿 = 0

PSNR = 31.911

Motion Deblurring
𝛿 > 0

Figure 7: Impact of the stopping criterion in preventing noise overfitting. For the most right column, δ is set
as in Table 6.

Task Sampling Steps N Optimization Steps K Regularization λ Stopping criterion δ for σy ∈ {0.05, 0.01}
Super Resolution 4× 20 20 0 {0.051√mSR ,0.011√mSR}

Box In-Painting 20 20 0 {0.051
√
m ,0.011

√
m}

Random In-Painting 20 30 0 {0.051
√
m ,0.011

√
m}

Gaussian Deblurring 20 30 0 {0.051
√
m ,0.011

√
m}

Motion Deblurring 20 30 0 {0.051
√
m ,0.011

√
m}

Phase Retrieval 20 30 1 {0.051√mPR ,0.011√mPR}
Non-Uniform Deblurring 20 30 0 {0.051

√
m ,0.011

√
m}

High Dynamic Range 20 40 0 {0.051
√
m ,0.011

√
m}

Table 6: Hyper-parameters of SITCOM for every task considered in this paper. The same set of hyper-
parameters is used for FFHQ and ImageNet. The learning rate in Algorithm 1 is set to γ = 0.01 for all tasks,
datasets, andmeasurement noise levels. For the stopping criterion column,mSR = 64×64×3,m = 256×256×3,
and mPR = 384× 384× 3.

G. Detailed Implementation of tasks and Baselines
The forward models of all tasks are adopted from DPS. We refer the reader to Appendix B of [10]
for details. For baselines, we used the codes provided by the authors of each paper: DPS4, DDNM5,
DAPS6, and DCDP7. Default configurations are used for each task.

H. Qualitative results
Figure 8 presents results with SITCOM, DPS, and DAPS using ImageNet. See also Figure 9, Fig-
ure 10, Figure 11, and Figure 12 for more images.

4
https://github.com/DPS2022/diffusion-posterior-sampling

5
https://github.com/wyhuai/DDNM

6
https://github.com/zhangbingliang2019/DAPS

7
https://github.com/Morefre/Decoupled-Data-Consistency-with-Diffusion-Purification-for-Image-Restoration
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PSNR = 22.09
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Figure 8: Qualitative results on the ImageNet dataset for five linear tasks and three non-linear tasks under
measurement noise of σy = 0.05. The PSNR and LPIPS values are given below each restored image.

Super Resolution

Ground Truth Measurements SITCOM (ours) DAPS DPSGround Truth Measurements SITCOM (ours) DAPS DPS

Figure 9: Super resolution (left) and box inpainting (right) results. First (resp. last) three rows are for the
FFHQ (resp. ImageNet) dataset.
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Ground Truth Measurements SITCOM (ours) DAPS DPS Ground Truth Measurements SITCOM (ours) DAPS DPS

Figure 10: Motion deblurring (left) andGaussian deblurring (right) results. First (resp. last) three rows are
for the FFHQ (resp. ImageNet) dataset.

Ground Truth Measurements SITCOM (ours) DAPS DPS Ground Truth Measurements SITCOM (ours) DAPS DPS

Figure 11: Random inpainting (left) and non-linear (non-uniform) deblurring (right) results. First (resp.
last) three rows are for the FFHQ (resp. ImageNet) dataset.
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Phase Retrieval

Ground Truth Measurements SITCOM (ours) DAPS DPS Ground Truth Measurements SITCOM (ours) DAPS DPS

Figure 12: Phase retrieval (left) and high dynamic range (right) results. First (resp. last) three rows are for
the FFHQ (resp. ImageNet) dataset.
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