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ABSTRACT

Foundational models with billions of parameters which have been trained on large
corpora of data have demonstrated non-trivial skills in a variety of domains. How-
ever, due to their monolithic structure, it is challenging and expensive to augment
them or impart new skills. On the other hand, due to their adaptation abilities,
several new instances of these models are being trained towards new domains and
tasks. In this work, we study the problem of efficient and practical composition
of existing foundation models with more specific models to enable newer capa-
bilities. To this end, we propose CALM—Composition to Augment Language
Models—which introduces cross-attention between models to compose their rep-
resentations and enable new capabilities. Salient features of CALM are: (i) Scales
up LLMs on new tasks by ‘re-using’ existing LLMs along with a few additional
parameters and data, (ii) Existing model weights are kept intact, and hence pre-
serves existing capabilities, and (iii) Applies to diverse domains and settings. We
illustrate that augmenting PaLM2-S with a smaller model trained on low-resource
languages results in an absolute improvement of up to 13% on tasks like trans-
lation into English and arithmetic reasoning for low-resource languages. Simi-
larly, when PaLM2-S is augmented with a code-specific model, we see a relative
improvement of 40% over the base model for code generation and explanation
tasks—on-par with fully fine-tuned counterparts.

1 INTRODUCTION

Large Language Models (LLMs) have shown to encompass a range of foundational capabilities
such as commonsense and factual reasoning, world knowledge, and coherent language generation
(Bubeck et al., 2023; Google et al., 2023). Leveraging these foundational capabilities, a number of
efforts in the community have fine-tuned these models to enable domain-specific capabilities such as
code generation, copy editing, and mathematical problem solving (Lewkowycz et al., 2022; Singhal
et al., 2023). This has resulted in the development of several specialized large models with domain-
specific capabilities. For example, there are models that do well on standard code generation but
are not as proficient in general logical reasoning and vice-versa. Presence of such a large number
of domain-specific models leads to a natural question: Can we compose an anchor model with
a domain-specific augmenting model to enable new capabilities? For example, can we compose
an augmenting model’s code understanding capability with an anchor LLM’s language generation
capability to enable code-to-text generation capability?

The typical approach for this problem is to further pre-train or (efficiently) fine-tune the anchor
model on the data that was originally used to train the augmenting model (Hu et al., 2021; Kessler
et al., 2022). However, many a times such solutions are not feasible since training large models is
computationally expensive, especially since the augmenting model itself may be an LLM trained
on a massive corpora. Further, processing data from multiple sources might not be feasible due
to privacy concerns and organizational boundaries. Working with multiple distinct models is also
desirable since it allows the reuse of existing models with established capabilities, providing better
control and avoiding catastrophic forgetting that is prevalent in conventional approaches.
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Figure 1: Overview of CALM. To augment an anchor LLM (mB) with new capabilities through
composition with a specialized augmenting model (mA). Figure illustrates three mA with differ-

ent capabilities: key-value mapping (left), low-resource languages (center), and code (right). Mod-
els mA and mB remain unchanged (^) during composition. A few additional parameters are learnt
over models’ layer representations. Leftmost plot shows an mA trained on a set of string-integer
mappings, e.g., {x1 : 10, . . . , xn : 2}. mB is a large LM with arithmetic capabilities. CALM com-
poses these two frozen models to solve the task of arithmetic on keys which either models could not
solve on their own (§4.1). Notably, CALM generalizes to the entire key-value set despite training
with arithmetic examples spanning only 20% of the keys.

To address the training and the data challenges mentioned above, we propose and study a practical
setting for model composition: (i) we are given access to one (or more) augmenting model(s) and an
anchor model, (ii) we are not allowed to modify the weights of either models, and (iii) we only have
access to a small amount of data, representing the “combined skills” of the given models, e.g., code
generation with complex logical reasoning.

Prior work has largely approached the question of composition from either a routing or a merging
standpoint, neither of which provide an effective solution to capture this setting. Routing between the
given models, i.e., choosing an output of one model over the other (Ma et al., 2019), or performing a
soft ensemble (Muqeeth et al., 2023) is not effective when neither of the models can demonstrate the
desired capability. Another body of work creates a combined model by an arithmetic combination
of base model parameters (Wortsman et al., 2022; Ilharco et al., 2022; Matena & Raffel, 2022).
However, these settings are naturally restrictive and their efficacy is unclear when combining models
with different sizes and pre-training objectives (Yadav et al., 2023).

In this work, we propose a novel Composition to Augment Language Models (CALM) framework
to address the general model composition setting mentioned above. Rather than a shallow combi-
nation of the augmenting and anchor LMs (Wortsman et al., 2022; Ilharco et al., 2022), CALM
introduces a small number of trainable parameters over both augmenting and anchor models’ inter-
mediate layer representations. CALM finds an effective combination of the given models to perform
new challenging tasks more accurately than either of the models alone, while preserving the capa-
bilities of individual models. Figure 1 highlights few motivating scenarios for CALM.

We study key practical applications of CALM: language inclusivity and code generation. For lan-
guage inclusivity (§4.2), we use a model that has been trained on a set of low-resource languages.
We observe that composing this model with the LLM allows us to borrow its generation and reason-
ing capabilities to achieve significantly better performance on translation and arithmetic reasoning
tasks for low-resource languages (Tables 2 and 3). This composed model outperforms not only the
two base models but also versions of the LLM that have been further pre-trained or LoRA (Hu et al.,
2021) fine-tuned for the set of low-resource languages. For code generation (§4.3), we use a model
that has been trained on open-source code across a variety of programming languages. Compos-
ing this model with the LLM—hence borrowing its low-level logic and generation capabilities—
outperforms the two base models (Table 4) on code explanation and code completion tasks.

2



2 RELATED WORKS

Parameter efficient fine-tuning: A large body of prior work focuses on parameter efficient ways
of fine-tuning models for new tasks by introducing a small number of trainable parameters, keeping
the original model intact (Houlsby et al., 2019; Wang et al., 2020; Pfeiffer et al., 2021; Hu et al.,
2021; Kessler et al., 2022). Since this paradigm allows a small set of new parameters to be trained,
it is challenging to use these approaches to augment novel domains and knowledge sources that are
entirely absent from the original training corpus. In contrast, CALM enables a model to be adapted
to new domains using augmenting models. In Section 4.4, we draw empirical comparisons between
CALM and LoRA (Hu et al., 2021), a representative parameter efficient fine-tuning method.

Model Merging: Merging different expert models with simple techniques like task vector aver-
aging provides a way of recombining different capabilities of these models (Ilharco et al., 2022;
Matena & Raffel, 2022). However, these methods are only relevant when the original models are
well aligned. Other related approaches are also applicable only when the models are derived from
the same model (Matena & Raffel, 2022) or they are of same size (Muqeeth et al., 2023). In contrast,
CALM is more generic and is applicable to any set of models.

Model and Task Compositionality: The modular encoder-decoder based method in Dalmia et al.
(2022) adapts components of encoder-decoder models to allow flexible re-usability of different en-
coders, each with their own capabilities. Several past studies explore compositionality of modality-
specific encoders with language models to serve multi-modal use-cases (Ziegler et al., 2019; Alayrac
et al., 2022). Typically, they introduce cross-attention parameters across a language model in order
to attend to representations from an image encoder and show an effective transfer of modalities
across models. In this work, we extend the ideology of model re-use and modularity to composition
of capabilities in large language models.

Models as Tools: Another interesting direction for using multiple language models to solve a
downstream task has been to perform composition in the models’ input text space (Zeng et al.,
2022; Shen et al., 2023). Schick et al. (2023) have demonstrated how a model can be taught to use
external tools—there might be an opportunity to investigate if other models can be called as a part
of the same framework. Since these approaches require a large amount of prompt engineering, in
this work we focus on composition through representations that can be learnt automatically.

3 COMPOSITION TO AUGMENT LANGUAGE MODELS (CALM)

Given an anchor model mB and an augmenting model mA, CALM aims to compose the two models
(mA⊕B) to enable new capabilities as a composition of capabilities of the two individual models.

As discussed in the introduction, we study this composition in a practical setting with the following
assumptions: i) we can access weights, run forward and backward pass, and access intermediate
representations of both mB and mA, ii) we are not allowed to change weights of both the models,
iii) we do not have access to the training data, hyperparameters, training states of both the base
models, iv) we are provided a few examples from the target composition domain.

The goal is to learn a composition mA⊕B = f (mA, mB, ΘC, DC) to achieve some joint task C. The
weights of mA and mB are frozen. ΘC is the additional set of trainable parameters introduced to
learn the composition and DC refers to the set of examples that are used to learn this composition.

3.1 LEARNING TO COMPOSE (ΘC)

As outlined in Figure 1, we operate over a selected set of layers from mB and mA at all times. We
learn two sets of additional parameters over these layers: (i) A simple set of linear transformations,
fproj(.) that maps an ith layer representation from mA to the dimensionality of representations from
mB, and (ii) A set of cross-attention layers, fcross(.,.) that cross-attend between this transformed
layer representation and a jth layer representation from mB.

Compositional Layers: Let the augmenting model mA and the anchor model mB have NA and
NB layers, respectively. Also, let DA and DB be the token dimensionality of the two models. We
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first choose a set of compositional layers—LA and LB—for both models, over which the set of new
learnable parameters are introduced during composition. nA = |LA| and nB = |LB |. For simplicity,
we set nA = nB = n and the gap between two contiguous selected layers is kept uniform based
on the number of selected layers—that is, (l2 − l1) = · · · = (ln − l(n−1)) = N/n. Further, HA

∈ {HA1,HA2, . . . ,HAnA
} denote the layer representation of a given input after each layer in LA.

Learned Projections: Next we map representations from mA to that of mB via a projection layer.
In particular, for each layer in LA, we learn a projection function fproj : RDA → RDB , that projects
representations from these layers to the desired representation size of mB. Let,

fproj(HA)←− {fproj(HA1), fproj(HA2), . . . , fproj(HAnA
)}

This transformation enables cross-attention across models, and also performs an alignment of rep-
resentations from mA and mB despite frozen weights of the base models.

Cross-attention Layers: Similar to the multi-headed cross-attention in encoder-decoder models
(for example Vaswani et al. (2017) and Raffel et al. (2020))—we introduce cross-attention between
representations of the anchor and the augmenting model. In particular, we use fproj(HAi) from the
augmenting model as the key and value vectors for each head in cross-attention. We use the vector
HBj from the anchor model as the query vector, which leads to the following cross-attention setup:

fcross(fproj(HAi),HBj) = Concat.k (headk)WO ∀k ∈ NH

where, headk = Attn.(QB ,KA,VA),

and, QB = HBjW
Q
k ,

KA,VA = fproj(HAi)W
K
k , fproj(HAi)W

V
k

Here, NH represents the number of attention heads used for cross-attention which, in our case, is
typically the same as the number of heads used for self-attention in mB. Each of WO ∈ RDB×DB ,
WQ

k , WK
k , and WV

k ∈ RDB×DB//NH are learnable weight matrices, where k ∈ {1..NH}.
Finally, the cross-attention output is added as a residual connection to the layer representations of
mB. The resultant output vector, in-turn, is the input to the succeeding layer in mB:

HA⊕Bj = HBj + fcross(fproj(HAi),HBj)

Here, HA⊕Bj denotes the input to the (j + 1)th layer of the composed model. All layers in LA and
LB are utilized in a similar manner. Propagating over the remaining layers in mB gives us a final
output token yt decoded for the tth timestep. Akin to usual auto-regressive decoding, the output
token for each time-step is appended to the input: xt+1 = xt ⊕ yt, Since the updated input at each
time step is passed to both models, all representations for the two models are refreshed.

3.2 COMPOSITION TRAINING DATA (DC)

Since the target model mA⊕B involves a composition over the two models mA and mB, we construct
the set of training examples DC to depict a “combined skill” that enables ΘC to attend over the two
models appropriately for the target task.

Ideally, if the set of tasks involved in composition task are distinguished as t1 and t2 respectively,
then we design DC to depict a joint task C. For example, with respect to our synthetic key-value
setup: our final task (C) is to perform arithmetic over a set of keys. The augmenting model mA is
trained to learn the given key-value pairs (notated as task, t1) and the anchor model mB is generic
model that can perform numeric arithmetic well (task t2). For learning the set of parameters ΘC for
composition, we consider DC to be arithmetic over a held-in set of keys (task C), encompassing
combined skills from the two models. In contrast to fine-tuning approaches like LoRA (Hu et al.,
2021) that would require the entire knowledge source (here, key-values) during training time, we
find that training composition on only a fraction of the keys can generalize to the full set.

In other real world settings, a clear distinction in specializing tasks for each model might be difficult
to formulate and hence defining a task that captures the combined skills can be challenging. We find
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that using a set of examples that capture certain capabilities of the two models suffices, i.e., some
rough notion of tA∪B . For our language inclusivity task, we use a mixture of examples containing
a small amount of low-resource language and high-resource language data.

Composing multiple models: Finally, we note that while the method has been presented for a
setting with one anchor model and only one augmenting model, CALM is applicable to multiple
augmenting models as well. In particular, CALM would require learning similar projection and
cross-attention components between the anchor and each of the augmenting model. We leave a
thorough investigation of this as a topic of future work.

4 EXPERIMENTS

We demonstrate the following in three domains: (a) an anchor LLM (mB) can be composed with an
augmenting model (mA) trained on mappings between string keys and number values to solve arith-
metic expressions over those keys requiring both, knowledge of the KV mappings and arithmetic
capabilities (§4.1); (b) how CALM can be used to expand the language coverage of an anchor LLM
(mB) to low-resource languages it has not seen during pre-training. We show that an augmenting
model (mA) pre-trained on low-resource languages can be composed with such an anchor model to
significantly improve translation and math-word problem solving capabilities in low-resource lan-
guages (§4.2); (c) how code completion and explanation can be improved by composing an anchor
LLM with an augmenting model (mA) specializing in the code domain (§4.3).

In all experiments, we start with a PaLM2-XXS model and further train it on domain-specific data to
arrive at an augmenting model (mA) that is then kept frozen during composition. Note that no task
specific training data was used to train CALM. We use PaLM2-XS or PaLM2-S models as the anchor
LLM (mB) that is also kept frozen during composition training. For all our experiments, we set
NA/n = 4, i.e., we perform composition using every 4th layer output from mA. Correspondingly,
layers from mB (LB) are chosen such that nB = nA = n, hence nB = NB/4.

4.1 KEY-VALUE ARITHMETIC

We first study the setting where we have a small augmenting LM that has been trained to memorize
string-to-integer key-value (KV) mappings, and a large anchor LM that is capable of performing
arithmetic over integers. We wish to use CALM to compose them and enable a new capability of
solving arithmetic expressions containing those keys.

Key-Value Domain Knowledge We first generate a repository of KV pairs containing NKV = 25K
pairs by sampling English strings of 2−6 characters from the vocabulary of the PaLM2-XXS model
and randomly assigning them unique integer values in the range [1,NKV]. This constitutes the knowl-
edge artifact, DKV. We further generate a collection of arithmetic expressions (DKV-EXP) containing
addition (+), subtraction (−), and multiplication (×) operations between 3 − 6 keys by randomly
sampling keys from DKV and operations to perform between them. We generate three datasets:

(i) KV-Substitution (DKV-SUBS): This dataset maps each expression in DKV-EXP, to an expression
where the keys are replaced by their corresponding values. For example, this dataset contains exam-
ples of the form (<K1> + <K2>− <K3>, 10 + 22− 24).

(ii) KV-Arithmetic (DKV-MATH): This dataset maps each expression in DKV-EXP to the numeric value
arrived at by solving the arithmetic expression when the keys would be replaced by the correspond-
ing values. For example, examples in this dataset look like (<K1> + <K2>− <K3>, 8).

(iii) Numeric-Arithmetic (DNUM-MATH): This dataset maps the value substituted version of each
expression in DKV-EXP to the numeric value arrived at by solving the arithmetic expression. For
example, examples in this dataset look like (10 + 22− 24, 8).

Models We obtain augmenting model mA by further training a pre-trained PaLM2-XXS model on
DKV-SUBS to make it memorize the KV pairs in DKV. Note that, training on DKV-SUBS does not teach
this augmenting model how to solve arithmetic expressions. Next, we use a pre-trained PaLM2-XS
model as the anchor model mB. This model is capable of solving numeric expressions with decent
performance (see Table 1). Note that, this model has no knowledge of the KV pairs in DKV.
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We now take examples from the KV-Substitution dataset DKV-SUBS that only span 20% of the keys in
DKV to form the training data for composition (DC). We use DC to compose the augmenting model
(mA) having knowledge of DKV and the pre-trained anchor model mB by training the composition
parameters (ΘC) using CALM as explained in §3. Both mA and mB are kept unchanged.

Evaluation Task We evaluate the composed model mA⊕B for its ability to solve arithmetic ex-
pressions containing keys from DKV. Specifically, we evaluate on the subset of DKV-MATH dataset
that does not contain expressions used in DC during training. This way, we are able to measure the
composed model’s ability to generalize to keys beyond what was observed during training.

mA mB
CALM
(mA⊕B)

DKV-SUBS 98.1 0.0 92.9
DNUM-MATH 4.2 73.7 72.0

DKV-MATH 0.7 0.0 84.3

Table 1: Evaluation (accuracy (%)) for
a synthetic key-value (KV) task. mA
is trained to memorize the KV mappings
while mB excels at arithmetic We see that
a composition mA⊕B is able to perform
arithmetic over held-out keys.

Results Table 1 shows the performance of the three
models: mA, mB, and mA⊕B across the aforemen-
tioned datasets. First, we observe that the augmenting
model mA achieves 98.1% at the KV-Substitution task
showing that memorizes DKV well. Next, we see that
it performs poorly (4.2%) at the Numeric-Arithmetic
task showing that it does not have arithmetic capabili-
ties. As a result, this model is not able to solve arith-
metic expressions containing keys from DKV.

As expected, the anchor model mB gets 0% accuracy
on the KV-Substitution and KV-Arithmetic tasks as it
has not seen any data from DKV. However, it performs
well (73.7%) on the Numeric-Arithmetic task demon-
strating capability of arithmetic over numerals.

Lastly, we see that the composed model mA⊕B is able
to solve all tasks with high accuracy, especially the KV-
Arithmetic task (84.3%) for which both the underlying
models fail. This shows that the composed model is able to leverage the relevant capabilities from
both the augmenting and anchor model to solve a complex task.

4.2 LOW-RESOURCE LANGUAGE INCLUSIVITY

FLORES-200 (XX to En; chrF1)
Model lij mr taq nn su ban pl th min acm avg.

PaLM2-XXS 24.0 16.5 21.6 33.3 20.6 2.1 5.3 63.2 44.0 59.8 29.0
+ NTL (mA) 32.0 21.6 46.9 50.0 40.6 4.1 4.0 63.8 47.8 61.1 37.2

PaLM2-S (mB) 32.6 24.2 44.6 50.8 50.9 5.4 9.5 69.0 61.0 68.6 41.7

CALM (mA⊕B) 44.1 30.4 55.1 54.6 54.4 11.8 11.3 69.4 61.1 68.9 46.1
mB+NTL (mNTL

B ) 48.1 39.1 59.2 57.5 57.3 11.4 9.9 69.4 61.4 69.0 48.2

Table 2: Translation performance for XX to English direction on the FLORES-200 dataset (Costa-
jussà et al., 2022): We show results for a subset of 10 low-resource languages. Note that the com-
posed model mA⊕B significantly outperforms both mA and mB. On the complete language list,
mA⊕B outperforms both the underlying models for 175 of 192 languages (Appendix A; Figure 2).
mNTL

B represents a skyline where mB has been further pre-trained on DNTL. The composed model
achieves similar performance for a tiny fraction of the training cost.

In this section, we study if we can compose such a large anchor LM mB with a smaller augmenting
LM mA that has been pre-trained on low-resource languages, to perform translation and math-word
problem solving tasks presented in these low-resource languages.

Low-resource Language Corpora We use the long-tail language set and the associated corpora
from the Next Thousand Languages (NTL) effort (Caswell et al., 2020; Bapna et al., 2022) as the
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GSM8K (Low-resource Languages; Accuracy)
Model meo mfa pcm efi min ilo ady mai nso mzn avg.

PaLM2-XXS 5.2 6.8 6.8 4.0 5.6 7.2 6.0 3.6 7.2 6.8 5.9
+ NTL (mA) 7.6 4.0 4.4 3.2 6.0 4.8 6.4 3.2 6.0 4.8 5.0

PaLM2-S (mB) 28.8 14.0 34.4 14.8 25.2 14.8 30.0 22.8 8.4 31.6 22.5

CALM (mA⊕B) 34.0 17.6 33.6 18.0 23.6 16.8 36.4 24.8 8.4 36.4 25.0
mNTL

B 33.2 20.4 31.6 14.0 24.8 14.0 29.2 21.2 9.6 27.6 22.6

(High-resource Languages)
Model en te bn sw ja zh th fr es de avg.

PaLM2-XXS 5.6 4.0 2.0 7.6 2.0 4.4 6.0 6.8 5.6 9.2 5.3
+ NTL (mA) 4.8 3.6 3.2 4.8 3.2 7.6 6.4 9.2 5.6 7.2 5.6

PaLM2-S (mB) 36.8 19.2 23.2 16.0 2.0 39.2 29.6 38.0 32.4 43.2 28.0

CALM (mA⊕B) 37.2 28.0 27.2 18.0 2.4 43.6 33.2 42.8 36.0 49.2 31.8
mNTL

B 36.0 17.6 18.4 14.4 0.8 33.6 27.2 34.8 31.2 42.0 25.6

Table 3: Evaluations for grade-school mathematics (GSM) problems on low-resource (LRL) and
high-resource (HRL) languages. We observe that CALM yields significant gains for both evaluation
sets. Gains on the HRL set suggests that CALM avoids catastrophic forgetting.

domain data DNTL. This large-scale corpora contains web-crawled monolingual sentences and trans-
lation pairs for ∼1000 languages. The dataset has been used for language expansion in translation
systems and language models (Garcia et al., 2021; Siddhant et al., 2022).

Models Akin to §4.1, we obtain augmenting model mA by training the PaLM2-XXS model on
DNTL to impart knowledge about these low-resource languages to the model. For mB, we use the
pre-trained PaLM2-S model. We use ∼ 5% of the same low-resource language corpora DNTL as
the training data DC to compose mA and mB via CALM. Since both models are untrained during
composition, the anchor model mB is not trained on any of the low-resource language data.

Evaluation Tasks We evaluate the composed model mA⊕B on two tasks:
(i) Translating text from a non-English language to English: We carry out these evaluations in a
5-shot in-context learning paradigm on the FLORES-200 (Costa-jussà et al., 2022) dataset. This
dataset contains examples for 200 high- and low-resource languages.
(ii) Performing grade school math word problems expressed in a non-English language: We evaluate
on the multilingual version of the GSM-8K dataset (Shi et al., 2023) containing math word problems
for English and 9 other high-resource languages. We further generated a silver-standard GSM-8K
dataset for low-resource languages by automatically translating the English examples in GSM-8K
to 25 low-resource languages supported by Google Translate.1

Results Table 2 shows results on the FLORES-200 dataset (Costa-jussà et al., 2022), where the
input is a low-resource (XX) language sentence and the output should be the corresponding English
translation. For 10 low-resource languages shown in the Table, we see that both the underlying
models mA and mB are outperformed by our composed model mA⊕B. We find that the composed
model mA⊕B outperforms mB on 175 of the complete set of 192 languages (Appendix A).

Table 3 shows the performance of these models on the grade-school math word problems from the
GSM8K task (Cobbe et al., 2021) on low-resource languages (top) and high-resource languages (Shi
et al. (2023); bottom). Firstly, we observe that the augmenting model mA does not perform well on
this task due to its limited mathematical reasoning capabilities. On the other hand, the anchor model
mB does much better given its mathematical reasoning capabilities and transfer-learning from high-
resource languages. Finally, we observe that mA⊕B outperforms both mA and mB on 18 of 25
low-resource and 9 of 10 high-resource languages, demonstrating effective composition of models.

1We perform quality evaluations in Appendix 7.
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Model CC (P@1) T2C (P@1) C2T (chrF1)

HumanEval MBPP Python PHP Go Java JS Ruby

PaLM2-XXS
+ Code (mA) 19.5 28.0 28.0 34.7 32.6 29.6 26.5 26.0

PaLM2-S (mB) 16.4 28.6 30.4 35.5 40.4 31.0 28.8 27.9

CALM (mA⊕B) 22.5 32.2 30.5 35.8 40.6 31.4 29.3 29.0
mCode

B 24.3 43.0 18.9 35.0 41.1 31.1 20.2 27.6

Table 4: Evaluations for code generation and understanding across three tasks: Code Completion
(CC), Text-to-Code (T2C), and Code-to-Text (C2T). Augmenting code understanding to mB using
mA significantly improves performances across all datasets. mCode

B represents a skyline where mB
further pretrained on the DCode, which shows catastrophic forgetting of text generation task.

See Table 6 (Appendix A.2) for a complete set of evaluations. Note that the last row in Table 3 shows
that mB when fine-tuned on DNTL leads to worse performance than the pre-trained mB indicating
forgetting. Composing domain-specific model mA with mB using CALM avoids this.

4.3 CODE UNDERSTANDING AND GENERATION

Code understanding and generation require two distinct types of capabilities: (a) knowledge of the
syntax and semantics of code, and (b) knowledge of the world that the code is manipulating. While
LLMs have a wealth of world knowledge, they could often lack the specific knowledge of code
syntax due to a skewed representation of code data in their pretraining corpora. Conversely, small
models trained specifically on code data could exhibit a good understanding of code syntax, but they
may lack broad world knowledge and reasoning. CALM can enable best of both worlds.

Code Domain Data Here, we use the code-specific corpus, DCode, consisting of open-source code
extracted from GitHub heads for a variety of programming languages to train mA.

Models Similar to §4.1, a version of the PaLM2-XXS model has been further pre-trained on DCode
is used as mA, while the base pre-trained PaLM2-S model acts as mB. We build mA⊕B by training
CALM with only 7% of the same code data (data used for mA) to have a data parity.

Evaluation Tasks We evaluate the efficacy of CALM on three different tasks:

(i) Code-Completion (CC): Given an initial set of lines of a code, the model is prompted to complete
the code snippet. Here the aim is to evaluate the model for code syntax. We perform zero-shot eval-
uations on HumanEval benchmark dataset (Chen et al., 2021) and report the Pass@1 (P@1) metric.

(ii) Text-to-Code (T2C): Given a textual context, the model is prompted to generate the correspond-
ing code snippet. Here, the evaluation indicates language understanding and code generation capa-
bilities. We perform 3-shot inference on the MBPP dataset (Austin et al., 2021) and report P@1.

(iii) Code-to-Text (C2T): Given a code snippet, the goal is to generate a natural language explanation
of the code. This task evaluates code understanding and text generation. We perform 3-shot evalua-
tions on the CodeXGlue benchmark (Lu et al., 2021) and report chrF1 scores across languages.

Results Table 4 reports comparative performance for the individual models mA and mB, the com-
posed version mA⊕B, and a fine-tuned anchor baseline mCode

B . Firstly, evaluations on the HumanEval
dataset suggest that mA has a superior understanding of code syntax as a result of its additional train-
ing on DCode. While, due to the larger scale and general purpose pre-training of mB, it excels at
general language understanding and hence performs better on the T2C and C2T tasks.

When employing CALM to compose the two models, we observe a clear transfer and composition
of capabilities through significant performance improvements: 6.1% and 3.6% absolute gains over
mB on the CC and T2C tasks, respectively. We observe that fine-tuning mB on DCode leads to a
significant decline in the C2T performance due to catastrophic forgetting. CALM retains the perfor-
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FLORES-200
(XX-En)

GSM-8K
(LRL)

GSM-8K
(HRL) CC T2C C2T

chrF1 #(>mB) acc. #(>mB) acc. #(>mB) P@1 P@1 chrF1

mA⊕B 60.5 175 21.4 20 33.1 11 22.5 32.2 32.6
Vanilla mA 59.2 115 19.0 15 29.7 8 20.0 28.0 32.2
Random mA 58.8 43 17.8 9 28.5 4 20.1 27.0 32.1

mA as an
encoder 59.3 102 19.1 12 29.1 6 16.0 27.0 32.0

LoRA 59.2 82 20.9 15 31.2 9 18.3 28.7 32.6

Table 5: Comparative performance of CALM (mA⊕B) across various possible ablations. The metric
“#(>mB)” depicts the number of languages for which the corresponding model is better than the
base for NTL, mB—out of 192, 25, and 11 languages for the three tasks respectively.

mance and is marginally better than mB across all languages. We also study qualitative examples
on the C2T task and observe interesting common patterns that are discussed in Appendix B.

4.4 ABLATIONS

Influence of mA We first study the influence of mA by replacing it with vanilla and random
variants during composition. Table 5 shows the variation of performance across NTL and Code tasks
when the specialized mA is replaced with a vanilla PaLM2-XXS checkpoint or an untrained version
of the model, i.e., a random model. We see that there is a considerable drop of performance with
these variants across all tasks. On FLORES-200 XX-En task, languages improved with composition
drop to 115 and 43 with vanilla and random, respectively. A slight improvement of the vanilla model
over mB indicates that an un-specialized model (with a different training regime than mB) might
have orthogonal capabilities leading to an enhanced model. This finding validates that performance
gains seen with CALM is a result of utilizing mA and not just the additional ΘC parameters.

Influence of iterative decoding We also investigate a variation where we use mA as an encoder,
i.e., an output token decoded at a given timestep is not amended to mA’s input. In this case, only the
prefix representations of mA are used. This setting eludes to past work for image and text models
(Alayrac et al., 2022) where encoder and decoder models are composed. We observe a significant
decline in performance across our various tasks when employing this setting.

Comparision with LoRA Finally, we evaluate a parameter efficient fine-tuning approach by train-
ing LoRA (Hu et al., 2021) layers to adapt mB. For all experiments, we set the LoRA rank such
that the number of added parameters is equal to the number of parameters introduced with CALM.
We also train LoRA on the same data as CALM, i.e., DC. We see a considerable difference in
performance between the two approaches across all tasks and metrics.

5 CONCLUSION

The proposed CALM framework composes an anchor LLM with specialized augmenting models to
enable new tasks not achievable by either models individually. CALM does not require updating the
individual models and learns a dense interaction between the models through a few trainable cross-
attention parameters. Our experiments present consistent evidence that CALM learns to utilize the
expertise from the two models. That is, when composed with relevant augmenting models, we
observe a significant uptick in the anchor model’s performance across multiple challenging tasks,
such as low-resource translation, reasoning, and code explanation/generation.

That is, CALM is especially useful in scenarios where proprietary data and knowledge is stored in
parametric models. With CALM, a foundational LLM could be augmented with such proprietary
models to extend a variety of foundational capabilities such as reasoning, world knowledge, and
coherent generation over the target proprietary domains. Finally, extensions of CALM could be
used to acquire distinct knowledge from multiple augmenting models.
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A SUPPLEMENTARY MATERIAL FOR NTL

A.1 FLORES-200

Figure 2 depicts the gains over the anchor PaLM2-S model when augmented with a model that has
been trained on DNTL. We see a positive gain through CALM for 175 of 192 languages. The highest
gains are seen for low-resource languages since they are the most underrepresented in the original
model. Diminishing returns with higher resource languages is seen and this trend is similar to the
trend seen for mNTL

B .

Low to High Resource Languages (#languages = 192)
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Figure 2: Gains seen by the composed model mA⊕B over the anchor model, mB, for the complete
set of FLORES-200 languages. The languages are sorted from low to high-resource.

mA mB
mA⊕B
(CALM) mNTL

B

meo 7.6 28.8 34.0 33.2
mfa 4.0 14.0 17.6 20.4
pcm 4.4 34.4 33.6 31.6
efi 3.2 14.8 18.0 14.0

min 6.0 25.2 23.6 24.8
ilo 4.8 14.8 16.8 14.0
ady 6.4 30.0 36.4 29.2
mai 3.2 22.8 24.8 21.2
nso 6.0 8.4 8.4 9.6
mzn 4.8 31.6 36.4 27.6
bew 4.4 33.6 34.8 33.6
ts 4.8 7.2 10.0 11.6
dv 2.8 11.2 14.8 13.2

mA mB
mA⊕B
(CALM) mNTL

B

bho 4.0 23.6 29.2 22.8
cv 6.0 17.6 16.4 20.4

mni 3.6 2.8 4.4 6.0
or 2.4 9.6 12.4 12.0
kri 5.6 12.4 18.8 20.0
tk 5.2 27.2 29.2 28.8

gom 4.8 22.4 25.2 22.8
ug 6.0 23.2 29.2 26.4
ckb 3.2 25.6 28.0 27.2
as 1.2 5.2 9.2 4.0
doi 3.6 17.2 22.4 21.6
dz 4.4 0.8 0.4 0.0

avg. 4.5 18.6 21.4 19.8

Table 6: Performance evaluations on the complete set of low-resource languages for GSM-8K.
Augmenting mA with mB as mA⊕B improves performance over mB across a majority of languages.
On average, we see an improvement of 2.8%.
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meo mfa pcm efi min ilo ady
Overlap 83.17 75.54 81.28 78.35 77.90 77.80 76.21

Delta 1.15 1.25 1.18 1.22 1.23 1.24 1.28
mai nso mzn bew ts dv bho

Overlap 76.63 69.58 71.32 71.37 61.62 55.18 73.67
Delta 1.26 1.40 1.38 1.37 1.55 1.70 1.30

cv mni or kri tk gom ug
Overlap 58.52 58.94 68.03 77.18 66.06 71.21 57.66

Delta 1.62 1.60 1.45 1.27 1.48 1.36 1.65

Table 7: Quality evaluation for the LRL GSM-8K dataset across languages. We created the dataset
by translating the original English sentences of GSM-8K to the target language using the Google
Translate API. We measure quality by back-translating the obtained examples back to English and
measuring: (i) The overlap between the back-translated and the original English sentence, and (ii)
The delta change in performance when PaLM2-S is evaluated on this back-translated version of
GSM-8K as compared to the original version.

A.2 GSM-8K

Quality evaluation for LRL GSM-8K As described in Section 4.2, we created the GSM-8K
dataset (Cobbe et al., 2021) for low-resource languages by using the Google Translate API to obtain
silver translations in the target language from the source English sentence in the original dataset. We
perform a quality evaluation of these examples by back-translating them back to English using the
same translation API and defining two metrics over it:
(i) Overlap: The BLUE score measure between the actual example and the back-translated example,
(ii) Delta: The change in performance of the PaLM2-S model when evaluated on the original GSM-
8K set as compared to the back-translated version.

Table 7 shows the values for these metrics across the various languages. We see that a decently
high overlap value is seen across all languages. At the same time, the delta in performance is also
minimal indicating that key attributes in the GSM-8K examples are not affected by translation.

Results on the complete language set Table 6 shows the comparative evaluations on the complete
set of 25 low-resource languages for which GSM evaluations are performed. We see an improvement
over the anchor model mB for 20 of 25 languages. We also compare against the fully continued pre-
trained version mNTL

B and observe that mA⊕B outperform it for 18 of 25 languages.

B QUALITATIVE ANALYSIS

Table 8 depicts a few qualitative examples for the code-to-text, or the code explanation task, for
Python. These examples depict examples for the three broader bucket of examples that we observe
in cases when CALM yields the correct responses:

1. When neither of mA or mB generates the correct response but mA⊕B correctly attends over
their latent representations to yield the correct output,

2. When either of mA or mB is seen to give the correct response while the other one is incor-
rect and mA⊕B generates the correct response that matches the generation from the correct
model of mA and mB, and

3. When both mA and mB generate the correct response and mA⊕B reproduces those genera-
tions.

We also observed similar qualitative patterns with other tasks for language inclusivity.

C OVERHEAD WITH CALM

In this section, we include a detailed computation of the expected parametric and training overhead
while composing given models using our proposed CALM framework.
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def ConsumeBool(self):

try :

result = ParseBool(self.token)

except ValueError as e :

raise self. ParseError(str(e))

self.NextToken()

return result

⇒ Consumes a boolean
mA: Consumes a boolean
mB: The object is not a member
CALM: Consumes a boolean

def value(self):

if self.has value:

return self. impl[OBJ].get val(K)

else:

raise ValueError("Not found")

return

⇒ Print an error message and exit.
[a part of the given model prefix]
Exit with error message
Print an error message and exit

def get positions(url):

data = get resource(url)

positions = [x for x in data[’p’]]

return positions

⇒ Returns a list of positions.
Positions of specified instruments.
Get all positions.
Returns a list of positions .

def distance(x0, y0, x1, y1):

return (

sqrt(pow(x1−x0,2) + pow(y1−y0,2)
)

⇒ Returns the distance between two points
Calculates the distance between two points
Return the distance between two points
Calculates the distance between two points

Table 8: Cherry-picked qualitative examples for the code-to-text task on Python that depict examples
that fall into a set of larger bucket of patterns that we observe across examples. CALM does well
in various settings: (i) when mAproduces the correct output but not mB, (ii) vice-versa—when mB
does well, and (iii) when neither of the two base models do well but a combination of intermediate
representations allow the composed model to give the correct output. This shows that composition
implicitly learns to do both: routing across models and a combination, based on a given input.
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C.1 PARAMETRIC OVERHEAD

Building from the notations in §3.1, let’s say the two models mA and mB have NA and NB number
of standard transformer layers, respectively, with each layer of output dimensionality DA and DB .
As mentioned, we choose n = nA = nB number of layers to perform the composition.

# params per fproj layer = (DA ∗DB)
# params per fcross layer = (3 ∗D2

B)
# total added params = n ∗ (DA ∗DB + 3 ∗D2

B)
# params in mB = NB ∗ (VB ∗DB

+3 ∗D2
B

+2 ∗DB ∗DB ∗KB)

where, VB and KB depict the vocabulary size and hidden multiplication factor, respectively.

Let’s consider some standard transformer configurations to understand the parameter overhead. As
an example, consider the layer configurations of standard BERT models: BERT-small (mA) and
BERT-large (mB). That is: NA = 4, DA = 512, NB = 24, DB = 1024, VB = 30K, KB = 4.
Assuming that we select all layers of mB, the value of n = 4. Then:

# params for CALM = 4 ∗ (512 ∗ 1024
+3 ∗ 10242)
≈ 1.5× 107 ≈ 15M

# params in mB = 24 ∗ (30K ∗ 1024
+3 ∗ 10242

+2 ∗ 10242 ∗ 4) ≈ 1B
%age added parameters = (15M/1B) ∗ 100 = 1.5%

Hence, number of parameters added during composition is approximately 1.5% of those in mB.

C.2 TRAINING OVERHEAD

Although learning the new parameters during CALM training requires back propagating over mB,
the total training costs are still significantly lesser than fine-tuning mB, owing to the significantly
lesser training examples.

Firstly, as discussed in the previous section, the additional number of parameters introduced during
composition is ∼1.5% of those in mB—hence, a negligible parametric addition. Further, since only
∼5-7% of the total mB fine-tuning data is required to train CALM, the training cost of CALM is
minimal with respect to that of fine-tuning mB.

Let’s assume that (i) the number of parameters in mB is PB and the number of examples required
to fine-tune mB is DB , (ii) the cost (in FLOPS), C(.), of training scales linearly with parameters
and data, i.e., C(mB) = O(PB ∗DB) (iii) the number of parameters in mA is 10% of those in mB,
(iv) the number of parameters added for CALM is 2% of those on mB, and (v) the amount of data
required to train CALM is 5% of mB training. Then:

PmA⊕B = PA + PB + PΘC

= 0.10 ∗ PB + PB + 0.02 ∗ PB

= 1.12 ∗ PB

DmA⊕B = 0.05 ∗DB

C(mA⊕B) = O(PmA⊕B ∗DmA⊕B)
= O((1.12 ∗ PB) ∗ (0.05 ∗DB))
= O(0.056 ∗ PB ∗DB)
= 5.6% ∗O(PB ∗DB)
= 5.6% ∗ C(mB)

Hence, the cost of training CALM is a significantly lesser (<10%) than that of fine-tuning mB.
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