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ABSTRACT

Pretraining data of large language models composes multiple domains (e.g., web
texts, academic papers, codes), whose mixture proportions crucially impact the
competence of outcome models. While existing endeavors rely on heuristics or
qualitative strategies to tune the proportions, we discover the quantitative pre-
dictability of model performance regarding the mixture proportions in function
forms, which we refer to as the data mixing laws. Fitting such functions on sample
mixtures unveils model performance on unseen mixtures before actual runs, thus
guiding the selection of an ideal data mixture. Furthermore, we propose nested
use of the scaling laws of training steps, model sizes, and our data mixing laws to
predict the performance of large models trained on massive data under various mix-
tures with only small-scale training. Experimental results verify that our method
effectively optimizes the training mixture of a 1B model trained for 100B tokens in
RedPajama, reaching a performance comparable to the one trained for 48% more
steps on the default mixture. Extending the application of data mixing laws to
continual training accurately predicts the critical mixture proportion that avoids
catastrophic forgetting and outlooks the potential for dynamic data schedules.

1 INTRODUCTION

Pretraining data for large language models (LLMs) are typically a mixture of multiple domains,
varying from English to minority languages (Doddapaneni et al., 2021; Li et al., 2023), from casual
dialogs to formal academic writings (Taylor et al., 2022), and from texts to modalities like images and
speeches (Zhan et al., 2024), among others. These data interplay with each other, showing complex
relationships including facilitation, being unrelated, or conflict (Guo et al., 2024). This necessitates
adjusting the mixture proportions of training data to balance the model capabilities while harnessing
synergies across domains, thus enhancing the competence of the outcome models, as highlighted by
extensive practices (Gururangan et al., 2020; Zhou et al., 2023; Xie et al., 2024a; Fan et al., 2024).

Nonetheless, it remains elusive to figure out an ideal training data mixture. Most existing practices
tune the mixture through heuristics to upsample a proportion of high-quality or underrepresented data
without disclosing the concrete criteria in detail (Gao et al., 2020; Touvron et al., 2023a; Bai et al.,
2023; Bi et al., 2024). While some studies propose automatic algorithms to qualitatively optimize data
mixture (Xie et al., 2024a; Fan et al., 2024), it is hard to predate the effect of these strategies before
the actual training run. In contrast, encouraged by advances in scaling laws that show model losses
on a given set of evaluation data are quantitatively predictable for a wide range of variables (Kaplan
et al., 2020; Hoffmann et al., 2022), we wonder whether this also holds for mixture proportions, so
that we can estimate the outcome model performance given any mixture before actually training
on them, including the desired one that reaches minimum loss.
In this paper, we answer this proposition affirmatively. The intuition is that predicting the performance
of unseen data mixture only involves interpolating among seen mixtures because the proportions are
bounded between 0 and 1. For this reason, numerous function forms can lead to descent prediction
accuracy, among which we try to find a simple one. In particular, we find that, given a mixture of M
domains, an exponential function over the linear combination of the proportions, i.e.,

Li(r1...M ) = ci + ki exp

 M∑
j=1

tijrj

, (1)
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Small Steps, Small Models, Seen Mixture

Large Steps, Small Models, Seen Mixture

Large Steps, Large Models, Seen Mixture

Large Steps, Large Models, Unseen Mixture

① Training Step Laws;② Model Size Laws; 
③ Data Mixing Laws (ours)

①

②

③

Observed	samples
① Training	Step	Laws

② Model	Size	Laws

Observed	Samples ① Training	Step	Laws

② Model	Size	Laws

③ Data	Mixing	Laws

× "mixtures

Minimum	Loss

Training Steps

Figure 1: Illustration on our pipeline to optimize data mixture. Left: Our pipeline takes three steps.
Starting from small-scale training results, the three steps use the scaling laws of training steps, model
sizes, and data mixing laws to predict model performance on large steps, large models, and unseen
mixtures, respectively. Right: Visualization of the three-step pipeline to predict model performance
on the target model size, training step, and mixtures.

can predict the validation loss Li on any of the training domains i accurately under a fixed model
size and amount of training data, where r1...M are the proportions of the M domains and ci, ki, tij
are parameters to fit. Fitting such functions on all the evaluated domains and calculating the weighted
sum according to their proportions in the validation data leads to the prediction of final validation
loss. Further, treating the validation proportions as learnable parameters allows fitting the estimated
losses on a validation set end-to-end without explicitly decomposing it into known domains.

Despite the predictability, fitting the function between mixture proportions and validation loss, or the
data mixing laws for simplicity, requires samples of numerous runs with different mixtures. Running
these experiments with the same model size and the amount of training data as the target model is
unreasonably expensive. Fortunately, fruitful research on scaling laws demonstrates impressive results
that fitting power laws with small models and small data effectively predicts the losses on larger
models and data over orders of magnitudes (Kaplan et al., 2020; Henighan et al., 2020; Hoffmann
et al., 2022; Alabdulmohsin et al., 2022; OpenAI, 2023; Muennighoff et al., 2024; Bi et al., 2024).
On this basis, we propose a pipeline to nested utilize the scaling laws of training steps, model sizes,
and our data mixing law, so that we can study the impact of mixture proportions for the target model
sizes and data amount with only experiments at the affordable scales, illustrated in Fig. 1.

Experimental results verify the reliability of our data mixing law and prediction pipeline. By
predicting the overall validation loss, we optimize the training mixture of RedPajama for a 1B model
trained on 100B tokens and achieve performance comparable to a model trained on default mixture
for 48% more steps. The prediction on domain-specific validation sets also offers plausible references
to the balance of model capabilities. Further applying our data mixing law to continual pretraining
can accurately find the proportion that avoids catastrophic forgetting (French, 1999; Kirkpatrick et al.,
2017; Luo et al., 2023), revealing the prospect of applying data mixing laws to guide a multi-stage
pertaining, and thus a dynamic data schedule.

Overall, our contributions and findings are as follows:
• We discover the quantitative predictability of model performance regarding data mixture, and

summarize this into a functional relationship, namely the data mixing laws.
• We propose a pipeline to predict model performance of large-scale training on different mixture

proportions but only experiments on small models with few training data through nested use of
scaling laws of training steps, model sizes, and data mixing laws.

• We experiment to verify the reliability of our data mixing laws and prediction pipeline, show-
ing its effectiveness in optimizing model performance, balancing model capabilities, and the
prospects of guiding the design of the data schedule.

2 BACKGROUND

We briefly review the pretraining process of large language models and summarize key findings from
neural scaling laws, then we formalize the problem we study. Further related works are in App. A.
Pretraining large language models. We consider the task of pretraining an autoregressive language
model pθ via next-token predictions (Radford et al., 2018). The training dataset Dtrain = {Di}Mi=1

composes M domains with mixture proportions r ∈ ∆M−1. In each training step, the task first
samples a batch of domain indices according to the mixture proportions and then sample sequences

2
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of L tokens from the sampled domains. Using the sampled data, it learns to optimize the negative
log-likelihood of sampled data, i.e.,

Lθ = Ei∼r,x0...L∼Di

− L∑
j=1

logPθ(xj |x0...j−1)

 . (2)

To evaluate the learned model, we compute the loss on validation data Dval.

Scaling laws. For a wide range of factors x, scaling laws (Kaplan et al., 2020; Henighan et al., 2020;
Hoffmann et al., 2022) show that their effect on the losses L follows power laws

L = c+ kxα, (3)

where c, k, and α are parameters to fit and x can be model sizes, numbers of training data, training
steps, and the amount of computation. Previous experience (Alabdulmohsin et al., 2022; OpenAI,
2023; Bi et al., 2024; Su et al., 2024) highlights the impressive predictability of scaling laws.
Specifically, Eqn. 3 fitted on a collection of small models, training data, or computation can extrapolate
to precisely predict the test loss of larger cases over orders of magnitudes. This enables practitioners to
estimate the performance of a pretrained large language model without actually finishing the expensive
runs. Recent development further shows various functional relationships between the performance of
language models and a broader range of factors, including transfer learning (Hernandez et al., 2021),
sparse architectures (Frantar et al., 2023), and repeated data (Muennighoff et al., 2024), consolidating
the predictability of language model performance.

Problem formalization. We study optimizing the mixture proportions of pretraining data for large
language models. Motivated by the impressive predictability of existing scaling laws, we try to tackle
mixture optimization by establishing a quantitative framework that predicts the loss given any mixture
proportion. Formally, for a training dataset comprising M domains, we parameterize the function

L = fθ(r), (4)

under the fixed model sizes and number of training steps, where r = r1...M is the proportion of
the M domains. Harnessing this function, we seek a mixture that achieves the desired performance.
Without loss of generality, we search for the mixture that reaches minimum validation loss, i.e.,

r∗ = argminrfθ(r). (5)

3 THE PROPORTIONS OF DATA MIXTURES INFLUENCE MODEL LOSSES IN A
QUANTITATIVELY PREDICTABLE WAY

In this section, we present our findings on the predictability of model losses regarding data mixtures,
which boils down to functional relationships we refer to as the data mixing laws.

To discover the data mixing laws, we encounter two challenges posed by their characteristics.
(i) Multi-variables. For a data mixing law for K domains, we should consider K − 1 degrees

of freedom in the mixture proportions and, correspondingly, K − 1 variables in the target
function. The increase of variables considerably enlarges the scope of potential functions
thereby complicating the identification of the function form.

(ii) Nonmonotonicity. A monotonic relationship between losses and the proportion of any domain
indicates that a lopsided mixture can achieve minimum loss without endeavors to balance domain
proportions, which contradicts the practice. Therefore, differing from existing scaling laws that
loss monotonically decreases with the scale of concerning factors, the data mixing law we study
should accommodate non-monotonic functions. This nonmonotonic nature adds another layer
of complexity to our analysis.

To navigate these challenges, we initially simplify the problem by studying a scenario where the
relationship between loss and mixture proportions fits into a univariate monotonic function then
retracts the simplifications progressively. In specific, we begin our study on the case where we only
train on two domains thus avoiding multi-variables, and only consider the validation data coming
from one of the training domains to circumvent the non-monotonicity (Sec. 3.1). Subsequently,
we broaden our framework to encompass training on multiple domains (Sec. 3.2) and explore the
predictability of losses on general validation data that also comprises various domains (Sec. 3.3).

3
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3.1 PILOT STUDY ON DOMAIN LOSSES UNDER TWO-DOMAIN MIXTURES

We begin our exploration with the simplest case where we only learn on mixtures of two domains
and evaluate our model on the two domains respectively.

Figure 2: Quantitative predictability of domain
losses on two domains, which are Github and Pile-
CC. We train on the mixtures of these two domains
and validate the outcome models on them sepa-
rately. We train 70M and 160M models on five
different mixtures of Github and Pile-CC and ob-
tain the reducible losses by subtracting the original
losses with a constant shared across models of the
same sizes and trained for the same number of
steps. The reducible losses in log scale show linear
correlations to the domain proportions.

Setups We train 70M and 160M language mod-
els on the mixture of Github and Pile-CC subset
from the Pile dataset (Gao et al., 2020) with five
different mixture proportions, which are {0.25,
0.375, 0.5, 0.625, 0.75} for Github. We train all
models with a batch size of 1M tokens for 30k
steps, which is 30B tokens in total, and evaluate
checkpoints at different steps on the validation
set of GitHub and Pile-CC.

Findings Results in Fig. 2 reveal the quanti-
tative predictability of domain losses given the
domain proportions. We encouragingly find that,
for checkpoints with the same size and trained
with the same number of steps, after subtracting
a shared constant1, their domain losses in the
log scale demonstrate a linear relationship to the
domain proportion. This holds for both domains
in our experiments. The result indicates that
with other factors fixed, the domain losses of a
pretrained language model regarding the domain
proportion precisely fit into an exponential law2

Li(ri) = ci + ki exp (tiiri), (6)

where Li and ri are validation loss and training mixture proportion of domain i, respectively, while
ci, ki, and tii are learnable parameters 3.

3.2 EXTENSION TO DOMAIN LOSSES TRAINED ON MULTI-DOMAIN MIXTURES

To accommodate real-world pretraining data that mostly contains more than two domains, we extend
our investigation into multiple domains. For simplicity and the ease of visual aids, we start with the
case of three domains.

Setups We train on the mixtures of GitHub, Pile-CC, and Books3 subset from the Pile for a total of
30B tokens and evaluate the model on the three domains, respectively. For specific mixtures, we grid
search from {0, 0.125, 0.25, . . . , 0.875, 1}3 and retain valid ones in which three proportions sum up
to 1 and do not use up all tokens in any of the domains, which results in 32 mixtures in total.

We utilize the losses on these experimented mixtures to identify the function forms between losses
and mixture proportions through conjecture and then verification. In specific, we base our conjecture
of possible forms on the following two principles.

• Compatibility. The form can reduce to Eqn. 6 if the number of domains M = 2.
• Symmetry. Any exchanging of variables should not change the functional form as we should not

incorporate any domain-specific bias.
Together, the two principles lead to candidate functions that replicate the exponential term in Eqn. 6
for each training domain and combine them through operations that adhere to commutative law.

1The constant term, known as irreducible loss, arises from finite training data and the entropy of the evaluation
data theoretically (Bishop, 2006; Henighan et al., 2020).

2While power laws are more common in existing studies on scaling laws (Kaplan et al., 2020; Hoffmann
et al., 2022), we do not consider it for its ill-posed properties that the function value blows up when the variable,
mixture proportion in our case, approaches 0. This contradicts the observations that the losses remain low (e.g.,
no more than 10) with the generalization between domains.

3Despite a simple case, our findings on two domains have practical applications to continue pretraining (Gu-
rurangan et al., 2020), where we aim to enhance a pretrained model on a given domain by training it on a mixture
of the original pretraining data and upcoming domain data. Please see Sec. 5 for details.
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Table 1: Mean absolute errors (MAE) of different candidate functions for predicting the target domain
losses. We also include random guesses that randomly predict between the maximum and minimum
loss of the training samples for reference. In specific, we report the MAE of the expectation of this
random guess which predicts the median of the maximum and minimum loss. The training data
contain M = 3 domains and we fit each function with the same 24 mixtures and validate on 8 other
mixtures. The split is random. The lowest error for each target domain are in bold while the second
lowest are underlined.

GitHub Books3 Pile-CC

Method # Coeff. Train Validation Train Validation Train Validation

Random - 0.8895 0.8758 0.1291 0.1331 0.0768 0.1045
M1 2M+1 0.0292 0.0312 0.0082 0.0121 0.0045 0.0050
M2 M+2 0.1558 0.3327 0.0114 0.0119 0.0072 0.0083
M3 M+2 0.3389 0.2177 0.0914 0.0465 0.0746 0.0947
M4 M+2 0.0298 0.0365 0.0062 0.0074 0.0036 0.0078

According to the two principles, we experiment with the following candidate functions:

M1: Li(r) =ci +

M∑
j=1

[kij exp (tijrj)] , M2: Li(r) =ci + ki

M∑
j=1

exp (tijrj) ,

M3: Li(r) =ci + ki exp

 M∏
j=1

tijrj

 , M4: Li(r) =ci + ki exp

 M∑
j=1

tijrj

 .

We summarize their fitting errors on three target domains in Tab. 1.
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Figure 3: Prediction results on the domain losses
and overall losses in the three-domain experiment.
The domain losses are fitted with Eqn. 7 and we
obtain the total losses through explicit domain ag-
gregation of Eqn. 8.

Findings The results in Tab. 1 suggests both
M1 and M4 gives reliable predictions while M4
has fewer coefficients. Therefore we adopt M4

Li(r1...M ) = ci + ki exp

 M∑
j=1

tijrj

 (7)

as the function forms of our data mixing law,
where Li is the validation loss on i-th validation
domain, rj is the proportion of the j-th training
domain, and ci, ki, tij are learnable parameters.
The fitting results are in Fig. 5 and Fig. 3 demon-
strates the prediction accuracy. The results indi-
cate that Eqn. 7 fits the given samples well and
estimates the unseen ones accurately.

Meanings of the coefficients. To provide more
intuition, we discuss the meanings of the coef-
ficients in Eqn. 7. In general, ki > 0, thus the
exponential term is always positive and the pre-
diction loss is strictly greater than the constant
c. Hereby, ci represents losses that are not re-
ducible by adjusting the data mixture. tij , depending on both training domain i and validation domain
j, shows the interaction between them. A negative tij indicates that training data of domain j helps
reduce validation loss on domain i and vice versa.

Patterns of the coefficients. We visualize normalized tij of training and validating on the 5 domains
mixture of the Pile4 in Fig. 4. The relationship between domains can be categorized into 3 types.

4The Pile contains 22 fine-grained domains which are collected into five coarse-grained domains, i.e.,
academic, internet, prose, dialogues, and misc, where misc include Github and the DeepMind Mathematics
Dataset which are symbolic content. We do not experiment on fine-grained domains for their limited number of
tokens available.
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min loss

(A) (B) (C) (D)

Proportion of Books3 Proportion of GithubProportion of Pile-CC

Proportion of Pile-CC

Proportion of Books3
Proportion of Books3

Proportion of Github

Proportion of Github

Losses on Github Losses on Books3 Losses on Pile-CC Total Losses

Figure 5: Quantitative predictability of domain losses on three domain mixtures, Github, Books3,
and Pile-CC. We train on the mixture of these three domains and validate the outcome models on
them as well. The surfaces show the predicted losses on (A) Github; (B) Books3; (C) Pile-CC; and
(D) the overall validation set mixed with the three domains. ×: validation samples. ⋆: the predicted
minimum loss on the overall validation set.

Academic Prose Dialogue Symbolic Internet
Training Domain

Ac
ad

em
ic

Pr
os

e
Di

alo
gu

e
Sy

m
bo

lic
In

te
rn

et
Va

lid
at

ion
 D

om
ain

1.0

0.5

0.0

0.5

1.0

Figure 4: The interaction between dif-
ferent training and validation domains
on the Pile. Each boxes are fitted nor-
malized tij from Eqn. 7. We normalize
the value by tij with the maximum abso-
lute value for each validation set i (i.e.,
tij/ti,argmaxj |tij |), to compare the val-
ues intuitively. A larger value (greener)
indicates the training domain helps learn
the validation domain more.

Being unrelated: The figure shows a highly sparse pattern
where most of the domains have little relationship to each
other and the validation performance of a domain is domi-
nated by training data of the same domain, which supports
the intuitive progressive mixture tuning strategy that adds
data for underperforming capability during training (Team,
2023). Meanwhile, we also observe facilitation (e.g.,
training dialogue for the internet) and conflict (e.g., train-
ing symbolic data for prose) between domains, which
indicates the room for leveraging domain interaction to
enhance model performance.

3.3 PREDICTING LANGUAGE MODELING
PERFORMANCE OF ANY VALIDATION MIXTURE

We further loosen constraints in Sec. 3.1 and Sec. 3.2 that
the validation data are from one of the training domains.
We first consider the validation set to be a known composi-
tion of the training domains and then free this requirement
for more general cases of arbitrary validation sets. These
correspond to the two strategies we fit the data mixing
laws, which we elaborate on as follows.

Explicit domain aggregation. Considering a validation set made up of K domains with the propor-
tions as s1...K , the validation loss can be written into the weighted sum of domain losses. Thanks to
the discovery of Eqn. 7, we can apply the equation to predict domain losses herein given a training
mixture. Therefore, the functional relationship of the overall validation loss to the training mixture
proportions expands into

L(r1...M ) =

K∑
i=1

siLi(r1...M ) =

K∑
i=1

si

ci + ki exp

 M∑
j=1

tijrj

 . (8)

Using Eqn. 8, we can fit the loss on each validation domain Li and sum them up to obtain the
prediction of overall loss.

Implicit domain aggregation. A remaining limitation is that we still need to acquire the components
of validation data s1...K in advance. This can be inconvenient if the validation set is collected
separately from the training ones. For instance, the validation data may come from real-world user
queries that cover unknown compositions of various domains. To remove the constraint on validation
components, we assume that we can decompose the validation data into K implicit domains whose
losses are predictable with Eqn. 7, and we treat their proportions in the validation data s1...K as

6
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learnable parameters, leading to the final form of our data mixing laws5. With this perspective, we fit
a data mixing law with the overall losses end to end.

Introducing implicit domains may draw concerns about the number of fitting samples exploding with
the number of parameters to fit and questions on deciding the number of implicit domains without
knowing the oracle. We study and discuss their impact, respectively.

8 10 12 14 16 18 20
# fitting samples
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rs 3 domains

5 domains
7 domains

Figure 6: The mean absolute validation errors of
Eqn. 8 fitted with different numbers of samples for
training mixtures containing different numbers of
training domains. For each number, we resample
and select the batch of fitting mixtures that reach
lowest errors.

Do we need quadratic number of samples to fit
Eqn. 8 as the number of domain grows? No.
The parameters in Eq.8 scale as O(M × K),
where M and K represent training and implicit
validation domains. Nevertheless, as shown in
Fig.6, the quadratic growth in the number of pa-
rameters does not translate to quadratic growth
in sample requirements. We attribute this to
the high sparsity in the parameters as fig.4 re-
veals, which allows us to fit the equation with
substantially fewer samples when using appro-
priate regularization. While using more samples
decreases prediction errors, the number of sam-
ples that reach a similar precision level does not
grow dramatically. This may pave the way for
applying implicit domain aggregations for cases with more training domains. Although concluding
the exact number of samples required can be challenging due to the differences among training data,
we can tune the fitting mixtures on the smallest experimented models, which is cheap and works well
in practice (see Sec. 4.2 and App. D.3).

Figure 7: Prediction errors of the five-domain data
mixing laws fitted with explicit and implicit do-
main aggregation. Explicit domain aggregation:
we fit Eqn. 7 for five domains respectively and
sum them up according to their weight in the over-
all validation sets. Implicit domain aggregation:
we fit the losses on overall validation with Eqn. 8,
assuming different numbers of implicit domains
K and treating the proportion of different implicit
domains as learnable parameters.

How to choose the number of implicit do-
mains? Set it larger than the oracle one. Fig. 7
shows our experiments where we train language
models on the 5 coarse-grained domains of Pile
and evaluate a validation set mixed with these
5 domains. We compare the errors obtained by
implicit domain aggregation with different num-
bers of implicit domains to those obtained by
explicit domain aggregation. We find that apply-
ing implicit domain aggregation and setting the
number of implicit domains no smaller than the
actual one (5 in the experimented case) results
in lower errors than explicit domain aggregation.
Moreover, the error remains low as we set the
number of implicit domains much larger. This
verifies the prediction accuracy of our implicit
domain aggregation strategy for data mixing law
and the number of implicit domains K can be a
large number without careful tuning6.

4 NESTED SCALING LAWS PREDICT LOSSES TRAINED ON VARIOUS MIXTURES
USING ONLY SMALL-SCALE EXPERIMENTS

4.1 A PIPELINE FOR LOSS PREDICTIONS

While data mixing laws enable us to predict the performance of models trained on unseen mixtures,
fitting the laws directly on target scales is unaffordably expensive. Firstly, fitting the laws involves
training multiple models across diverse mixtures with model sizes and token counts identical to the

5We note that the final forms of our data mixing law resemble a multilayer perception (see the computation
graph Fig. 14). We include further discussion and implementation details in Appendix E.

6We set K = 30 if not stated in later experiments.
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Algorithm 1 A pipeline to predict losses of different mixture proportions on large models trained on
massive data through small-scale training

Input: Validation data Dval, training data of M domains {Dm}Mm=1, target training steps Starget, target
model size Ntarget, target mixture to predict rtarget, training steps to fit the step laws S0, model sizes to fit
the size laws {Nj}Kj=1, and N data mixtures {ri}Ni=1 to fit.
Output: The validation loss of a Ntarget model trained for Starget steps on mixture rtarget, i.e.,
L(Ntarget, Starget, rtarget).

1: for Each mixture ri do
2: for Each model size Nj do
3: Train model of size Nj on mixture ri for S0 steps to obtain L(Nj , S < S0, ri)
4: Fit training step scaling law L(S) with L(Nj , S < S0, ri)
5: Predict L(Nj , Starget, ri)← L(S = Starget)
6: end for
7: Fit model size scaling law L(N) with L(N1...K , Starget, ri)
8: Predict L(Ntarget, Starget, ri)← L(N = Ntarget)
9: end for

10: Fit the data mixing law L(r) with L(Ntarget, Starget, r1...N )
11: predict L(Ntarget, Starget, rtarget)← L(rtarget

target ones. Furthermore, we must repeat this process for each target model size and training dataset7.
Such expensive costs hinder the practical value of our data mixing laws.

We thus wonder whether we can obtain the losses of different mixture proportions without training at
large scales. Fortunately, this idea gains endorsement from existing experiences that verify the im-
pressive extrapolation of scaling laws of training steps and model sizes. In particular, OpenAI (2023)
predicts the loss of the target model with merely 1, 000×–10, 000× less compute. Consequently, we
can train small models with few training steps on different mixtures, and fitting scaling laws on them
to estimate the losses of the target model size and the target number of training steps. We can then
use the predicted losses to fit a data mixing law and search for the optimal mixture.

We illustrate the proposed pipeline in Fig. 1 with details depicted in Alg. 1. Scaling laws in our
pipeline are largely based on the function forms of Chinchilla Scaling Laws (Hoffmann et al., 2022),
i.e., L(N,D) = E + A

Nα + B
Dβ , where N is the model size and D is the number of training data.

Under fixed batch sizes, we can treat the number of training data as the number of training steps S
as well. Notably, we do not directly fit the complete Chinchilla Scaling Law with two variables as
we find it practically unstable to fit such many parameters simultaneously in our preliminary study,
similar to the findings in Besiroglu et al. (2024). Instead, we decompose the law into two power laws
for training steps L(S) = E1 +

B
S and model sizes L(N) = E2 +

A
N , respectively. We first fit power

laws of training steps to predict model performance with more training data then fit power laws of
model sizes to predict the performance when scaling up models. We empirically find this routine
stable.8.

4.2 EXPERIMENT

We verify the effect of our pipeline with an experiment to minimize the validation loss of a 1B model
trained on 100B tokens.

Setups. We train our models on the mixture of RedPajama and validate the validation set of the Pile
to mimic the scenario where validation data are collected separately from the training data. To fit the
scaling laws of training steps and model sizes, we train a series of 70M, 160M, 305M, and 410M
models for 30B tokens. For all the models, we set the batch size as 1M tokens thus translating into

7An idea is to transfer the optimized training mixture on small models trained with few tokens to the training
of large models and large volumes of training data. Nevertheless, as recent studies (Goyal et al., 2024; Kang
et al., 2024; Covert et al.) highlight, the rankings of the data mixture vary as the model size and number of
trained tokens change (Appendix C). Therefore, the optimal mixture at experimented scales can be suboptimal at
the target scale.

8See Appendix D.2 for our preliminary verification. We notice some recent efforts try to investigate
democratizing the implementation of predictions with scaling laws to facilitate applications (Su et al., 2024;
Porian et al., 2024). While we illustrate our pipeline with the nested use of scaling laws, other implementations
of scaling law predictions are also feasible and complementary to our method.
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Figure 8: The validation perplexity on the Pile validation set for 1B models trained on the default
mixture and the optimized mixture of RedPajama for 100B tokens. Our optimized mixture achieves
the performance of the default mixture only using 0.73 of the original number of training steps and
eventually achieves a performance comparable to a default mixture trained with 1.48 times more
tokens (estimated by the scaling law of training steps, shown as the dashed line). The specific mixture
proportions are in the right table.

100k steps for the 1B models and 30k steps for small models. We apply a cosine learning rate decay
with a warmup of 2k steps which decays to 0.1 of the maximum learning rate at the 100k-th steps.

To reach low prediction errors with a limited number of experiment runs, we select the mixtures for
experimentation by leveraging the fact that mixture proportion terms are represented as exponential
functions within our data mixing law. Specifically, we enumerate candidate mixtures by double-
diminishing the proportion for each training domain, starting from the maximum available one that
does not use up all the domain tokens. In this way, the losses of each (implicit) validation domain
are distributed evenly. We then sample 40 mixtures from all the candidates and train the smallest
70M models. We resample groups of 20 mixtures from them to fit the data mixing law and select the
group that reaches minimum prediction errors on all 40 samples as our final set of mixtures to run our
pipeline. For more details, please refer to Appendix D.3.

Results. Our pipeline optimizes language modeling performance effectively. Fig. 8 shows

Default DoGE
(Universal)

DoGE
(OOD)

DoReMi
(RedPajama)

DoReMi
(Pile)

Ours
2.75

2.79

2.83

Lo
ss

Figure 9: Comparisons of the language mod-
eling performance of different data mixtures.
All models are 1B models trained for 100B
tokens with the same hyperparameters and
validated on the validation set of the Pile. Spe-
cific proportions are in Fig. 21.

the default mixture of RedPajama (Touvron et al.,
2023a) in and the optimized mixture obtained from
Alg. 1 with their performance on the validation data.
The model trained on the optimized mixture can
achieve a performance comparable to the one trained
on the default mixture with only 73% steps. It even-
tually attains a performance that requires 48% more
steps if trained using the default mixture. This in-
dicates the effectiveness of our pipeline in mixture
optimization9.

We also compare our optimized data mixture to pre-
vious optimization algorithms, which provide qualita-
tive optimization. Specifically, we compare our method to DoGE (Fan et al., 2024) and DoReMi (Xie
et al., 2024a). For DoGE, we compare both their universal generalization setting which assumes i.i.d.
between training and validation data, and the OOD setting which optimizes for a given validation set,
similar to ours. For DoReMi, which only works for universal optimization that ignores the validation
data, we experiment on both a mixture optimized exactly on RedPajama and a mixture adapted from
the one optimized on the Pile using the domain overlap between RedPajama and the Pile. More
specific details on obtaining these data mixtures are in Appendix F.4. As shown in Fig. 9, our method
finds the mixture that reaches the lowest losses for the same model sizes trained with the same data
budgets. This further verifies the effectiveness of our method.

9The loss predictions are in Fig. 22, which shows the predictions are plausibly accurate and are consistent
with the rankings of actual runs.
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Figure 10: Loss predictions and the training curve of continual pretraining Pythia-70M on a mixture
of the Pile and python code. (A) Loss prediction on the Pile; (B) Loss prediction on python; (C)
training curves with losses on the Pile; (D) training curves with losses on python. We predict final
losses with Eqn. 6. The law accurately finds the critical mixture proportion that maintains model
performance on the original domain (i.e., the Pile).

5 DATA MIXING LAWS HELP AVOID CATASTROPHIC FORGETTING IN
CONTINUAL PRETRAINING

We are also interested in applying our data mixing laws to continual pretraining, which shares the
same paradigm as pertaining but begins the model with pretrained parameters instead of random
initialization. Generally, continual pretraining is a common technique to enhance existing pre-
trained models. It injects up-to-date knowledge into the model, avoiding performance degradation
due to distribution shifts (Gururangan et al., 2020; Xiong et al., 2023). In addition, researchers
also apply continual pretraining to reuse existing model parameters to build models of a different
architecture (Komatsuzaki et al., 2022).

We experiment on a typical scenario of continual pretraining, where we train the model on the mixture
of original pretraining data and upcoming data of a target domain to enhance. For instance, we
continually pretrain Pythia-70M models with a mixture of the Pile and Python codes, where the
former is the original pretraining data of the base model. To verify whether our data mixing laws
apply to continual pretraining, we train the models for 10B tokens on 4 mixtures and fit the Eqn. 6
on losses of the Pile and python codes. Results in Fig. 10 confirm that Eqn. 6 fits into the losses of
continual pretraining.

During continual pretraining, a too-large proportion of the target data can hurt the performance of the
original data. A representative mixture optimization target is to maintain the general-purpose ability
(losses on the Pile) unchanged. To this end, using the fitted data mixing laws, we predict the critical
proportion leading to the same loss as before continual pretraining. Fig. 10 demonstrates the success
of our prediction where the proportion we find results in similar performance compared to the model
before continual pretraining while gaining improvement in the target domain.

Remarks. We suggest continual pretraining is significant for its connection to the design of data
schedules (Albalak et al., 2023; Chen et al., 2024b). Usually, continual pretraining applies to a
pretrained model, while it is natural to further continually pretrain the continual pretrained models,
i.e., multi-stage pretraining (Chen et al., 2024b). In each stage, the mixture proportions or even the
domain components of training data can be different. This becomes a dynamic data schedule as the
number of training stages approaches the infinite limit. Therefore, the successful application of our
data mixing laws on continual training signifies a promising prospect for using it to design dynamic
data schedules, a more comprehensive data curating paradigm.

6 DISCUSSIONS
In this work, we discover the quantitative predictability of model losses regarding the mixture
proportions of training data, which boils down to the data mixing laws. Using data mixing laws
allows practitioners to quantitatively estimate the model performance on unseen mixture proportions
before the actual training, allowing low-cost tuning of data mixture together with scaling laws.
Given the burgeoning interest in data engineering, we hope that our study paves the way for further
quantitative inquiries and theoretical analyses in this research area.
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A RELATED WORK

Curating pretraining data for LLMs. Training massive transformer architecture on trillions
of tokens, a.k.a. pretraining, is the primary step to building modern large language models that
exhibit impressive human-like generalist abilities (Brown et al., 2020; OpenAI, 2023; Jiang et al.,
2023; Touvron et al., 2023b)). It takes up most of the computation resources for model training
and researchers believe it endows almost all the knowledge in LLMs (Zhou et al., 2024). Such
critical impact motivates the development of data curating strategies to reduce computation costs and
enhance knowledge (Longpre et al., 2023). The efforts can be categorized into two steps. The first
step focuses on obtaining a high-quality training dataset. A typical procedure includes selecting data
sources to constitute different domains, deduplication, and the most intricate filtering (Wenzek et al.,
2019; Penedo et al., 2023). A mass of endeavors in existing practice has involved multifarious filters,
scoring the documents with from superficial features on characters (Rae et al., 2021; Xie et al., 2024b;
Raffel et al., 2020) to semantics including similarity to the high-quality reference corpus (Wenzek
et al., 2019) and toxicity (Longpre et al., 2023; Friedl, 2023). With a dataset on hold, the second step
aims to make the best use of it. This includes tuning the data mixture (Du et al., 2022; Touvron et al.,
2023a; Xie et al., 2024a) and devising data schedules (Mindermann et al., 2022; Albalak et al., 2023;
Chen et al., 2024b; Fan et al., 2024). Our work is among those tune data mixtures and our extension
to continue pretraining signifies our prospect of guiding the schedule design. Different from existing
attempts that rely on intuition or qualitative targets, our study seeks a quantitative solution.

Scaling laws are functional relationships between the properties of interests (e.g., test loss or other
performance metrics) and the scales of controllable factors regarding the optimization process or
architecture (e.g., model sizes and numbers of training samples) (Villalobos, 2023). Along with
the development of machine learning, characterizing scaling behaviors has garnered great research
interest under the context of learning theories, bounding the generalization error given the number of
training samples in the form of power laws (Vapnik & Chervonenkis, 1971; Valiant, 1984; Haussler,
1988; Amari et al., 1992). Nevertheless, overly strict assumptions hinder their practical applications.
In recent years, statistical estimation on scaling gained fast progress for deep neural networks and
spawns the introduction of scaling laws. Hestness et al. (2017) pioneers the trend and demonstrates
power-law generalization error scaling across a breadth of factors but the power-law exponents differ
from previous theoretical analysis. Kaplan et al. (2020); Hoffmann et al. (2022); Henighan et al.
(2020) conduct more comprehensive investigations on Transformer architecture (Vaswani et al., 2017),
further highlighting the power-law relationship on test loss regarding model sizes, the amount of
training data and computation across orders of magnitudes. These findings foretell the performance
gain with scaling quantitatively and guide the trade-off between larger models and more training
data, directing to the later development of large language models (Brown et al., 2020; Hoffmann
et al., 2022; OpenAI, 2023). Lately, progressive investigations propose amendments to existing
scaling laws (Caballero et al., 2022; Alabdulmohsin et al., 2022), seeking theoretical explanations on
the empirical formulas Bahri et al. (2021); Hutter (2021); Michaud et al. (2024), and exploring the
functional relationships in broader scenarios (Hernandez et al., 2021; Frantar et al., 2023; Liu et al.,
2023). The most relevant study to ours is Hashimoto (2021) which explores performance prediction
under multiple data sources but is limited to small-scaled supervised learning tasks.

B LIMITATIONS AND DISCUSSIONS

How data mixtures affect model training is far from fully understood. Our study makes preliminary
attempts at a quantitative framework while leaving several limitations.

On the clarification of domains. The concept of domains is not well-defined. In this paper, similar
to related studies (Xie et al., 2024a; Chen et al., 2024b; Albalak et al., 2023; Fan et al., 2024), we
directly adopt the predefined domains in the open-source training data. Nevertheless, we suppose
that more operationally defined training domains, e.g., clustering (Gururangan et al., 2023; Shao
et al., 2024), could further benefit the prediction accuracy of data mixing laws and the performance
of outcome models. For the validation domains, our implicit domain aggregation method obviates
the necessity of explicitly aligning validation data with training domains. This requirement is often
encountered, given that validation data typically comprises trustworthy datasets rather than mere
compilations from training domains. However, we acknowledge that implicit domain aggregation
may be less interpretable compared to the explicit approach and may raise concerns regarding its
accuracy, as elaborated subsequently.
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On the error analyses. Leveraging scaling laws requires experiments to provide samples to fit the
functions. Consequently, it requires careful design of experiments (Mead, 1990) to decide the number
of fitting samples to experiment with and how to distribute these samples to reduce prediction errors
to the greatest extent. In this study, we decide the number according to our affordable budget and
leverage the simple rule that evenly distributes the losses of the data samples but considering more
theoretically justified rules should be necessary. Additionally, our nested use of scaling laws can
introduce errors in each step. Therefore, further analyses to mitigate the error accumulation are also
demanding. In Fig. 22, we notice our predictions are smaller than the actual loss, which we attribute
to the underestimation from the step laws and model size laws we fit. Further practical experience
demystifies the technical details of scaling laws (Su et al., 2024) can help eliminate the errors.

On joint laws of multiple factors. We propose the nested use of scaling laws for circumventing the
difficulties in finding a joint law of training steps, model sizes, and mixture proportions. Although
we can predict the losses with our pipeline, a joint law unveils clear synergies of different factors. For
instance, previous studies indicate the power-law exponent in the scaling laws of model sizes and
training data are insensitive to training and validation data (Hestness et al., 2017; Kaplan et al., 2020;
Hashimoto, 2021; Hoffmann et al., 2022; Frantar et al., 2023). Figuring out their joint laws with data
mixture can further confirm this surmise. Moreover, a joint law also implements coefficient-sharing
of separate laws, reducing the number of required fitting samples.

On dynamic data curating. Our study presents a pipeline to decide on a group of fixed mixture pro-
portions for pretraining. More sophisticated data curating can include dynamic proportions (Albalak
et al., 2023) and even a curriculum that changes data domains (Chen et al., 2024b). The application of
our data mixing laws in continual pretraining (Sec. 5) implies the prospect of extending our findings
to these settings. On top of this, we believe that it is promising to incorporate further analysis to
pursue a dynamic data mixing law.

On theoretical understandings. Our data mixing laws, similar to most scaling laws, are empirical
findings. We believe a theoretical understanding of the training dynamics that form the laws provides
a more solid justification. A potential perspective is understanding the target of tuning mixture
proportion through gradient estimation (Guo et al., 2024; Gu et al., 2024). Specifically, the mixture
proportions weight data from different domains, whose effect boils down to the weight for the
linear combination of gradients from different domains during training. This perspective turns the
target of tuning mixture proportions into finding an ideal gradient direction (Gu et al., 2024) and the
relationship between data samples is formalized with their gradient directions (Guo et al., 2024).

We believe that further investigation into these issues could facilitate more sophisticated quantitative
methods for data engineering. We leave them as future work.
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C THE RANKING OF DATA MIXTURES DEPEND ON MODEL SIZES AND
TRAINING STEPS.

Figure 11: The rankings of the relative performance of
20 sample mixtures trained on RedPajama and validate
on the Pile. (A) The rankings of models of different
sizes all trained for 30k steps. (B) The rankings for 70M
models trained for different steps.

One may wonder whether we can find the
optimal data mixtures on small models and
few numbers of steps, and then transfer the
found mixture proportions to large-scale
training. To answer this question, we com-
pare the relative performance of models in
different sizes and trained with different
numbers of steps in Fig. 11.

Results show that the relative performance
fluctuates despite a relatively consistent
trend across sizes and training steps. This
indicates that a mixture is better at small
scales but does not always perform better
at large scales, consistent with findings of
Goyal et al. (2024); Covert et al.; Kang et al.
(2024). The longest common sequence of
the partial orders among the 20 mixtures
in Fig. 11(A) and Fig. 11(B) only reaches
lengths of 10 and 11, respectively.

D IMPLEMENTATION DETAILS

D.1 MODEL TRAINING

Throughout this study, we employ the Pythia Suit (Biderman et al., 2023) as our model architectures,
the specific configurations are in Tab. 2. The maximum sequence length is 4096 for pretraining from
scratch and 2048 for continual pretraining, where the latter aligns with the setting of the original
pretrained models. In all our experiments, we train the model with a batch size of 1M tokens and a
maximum learning rate of 1e-4. We warm up the learning rates for 2000 steps and decay it to 0.1
of the maximum at the last training step with a cosine decay schedule. For continual pretraining,
we initialize the models with the 20k-step checkpoint of the Pythia 70M model and do not apply a
learning rate warmup. For the costs of our experiments, it takes around 3.5/8/16/21 hours to train a
70M/160M/305M/410M model for 30B tokens on 8 A100 GPUs on our infrastructure.

Table 2: Model architectures for experiments in this paper.
70M 160M 305M 410M 1B

Vocabulary Size 50304 50304 50304 50304 50304
Non-embedding Params 18,915,328 85,056,000 201,541,632 302,311,424 805,736,448
Layers 6 12 16 24 16
Model Dimension 512 768 1024 1024 2048
Heads 8 12 16 16 8

For datasets, we mainly experiment with the Pile and RedPajama. For the Pile, we find duplicates in
the raw data, so deduplication is performed before training with it. The Pile contains 5 coarse-grained
domains, which are further decomposed into 22 fine-grained domains. Our experiment in Sec. 3.1
is on Github and Pile-CC domains while the experiment in Sec. 3.2 is on Github, Pile-CC, and the
Books. All these are fine-grained domains. For our experiments with 5 domains in Sec. 3.3 we adopt
the five coarse-grained domains, i.e., academic, internet, prose, dialogues, and misc, where misc
include Github and the DeepMind Mathematics Dataset which are symbolic content. We use the
coarse-grained domains because it is hard to find five fine-grained domains with sufficient tokens.
For the RedPajama, we download the version produced and shared by Chen et al. (2024a).
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D.2 PREDICTING LANGUAGE MODELING PERFORMANCE WITH SCALING LAWS

In our prediction pipeline in Sec. 4, we adopt nested use scaling laws of training steps and model
sizes, which are both power laws, to predict language modeling performance at scale. To fit the laws,
we follow Hoffmann et al. (2022) to search over a set of initialized parameters and fit the samples by
minimizing the Huber errors between predictions and observations with LBFGS.

We present our results on verifying the feasibility of applying scaling laws to predict language
modeling performance. Our prediction pipeline (described in Sec. 4) employs two scaling laws:
one related to training steps and another to model sizes, to extrapolate performance with increased
training data and larger models. We evaluate the precision of predictions for each of these scaling
laws, respectively.

Scaling laws of training steps. Fig. 12 shows the training curve 70M models on three different data
mixtures. We fit power laws within 30k steps (marked with circles) and extrapolate to predict model
performance to as many as 100k steps (marked with stars). On all validation sets, the fitted curves
give descent prediction precision, with a low mean absolute error of 0.02.
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Figure 12: Verification on predicting language modeling performance with scaling laws of training
steps. We train 70M models on three different mixtures up to 100k steps and validate them on 5
validation domains as well as the overall validation mixture. All curves are fitted within 30k steps (•)
and and extrapolated to predict model performance to 100k steps (⋆)

Scaling laws of model sizes. Fig. 13 shows the results where we fit power laws on 70M, 160M, and
305M models (marked with circles) and extrapolate the curve to predict 410M model performance
(marked with stars) at different training steps and under different data mixtures. The results are
positive, showing that we can precisely predict the 410M model performance at different training
steps, with a mean absolute error of 0.003.
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Figure 13: Verification on predicting language modeling performance with scaling laws of model
sizes. We train models of 70M, 160M, and 406M on three different mixtures and validate them on
5 validation domains as well as the overall validation mixture. All curves are fitted with models of
70M, 160M, and 305M (•) and extrapolated to predict the performance of 410M models (⋆). We
verify the predictability at different numbers of training steps.

Overall, we consider fitting power laws to predict model performance for more training steps and
larger models are feasible. Therefore we adopt them to implement the scaling law predictions in our
pipeline (Sec. 4).
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Algorithm 2 Sampling mixture proportions for fitting mixture laws.
Input: Maximum proportions of M domains rmax = [rmax,1, . . . , rmax,M ], where rmax,i = Di

Dtarget

with Di and Dtarget being numbers of available tokens in i-th domain and target number of training tokens,
respectively, sorted in descending orders (i.e., rmax,1 ≥ rmax,2 ≥ · · · ≥ rmax,M ), minimum proportion
grid size δ, number of mixture to run experiment N .
Output: A set of N mixtures to experiment {rn}Nn=1.

1: Candidate mixtures C ← GETALLCANDIDATES(1, [])
2: Split mixtures with 0 proportion in C into C0 and the others into C1
3: Samples {rn}⌊N/4⌋

n=1 from C0 and {rn}Nn=⌈N/4⌉ from C1
4:
5: procedure GETALLCANDIDATES(domain index i, proportions of first i− 1 domains r1...i−1)
6: Candidate mixtures C = ∅
7: if i = M then
8: if 0 ≤ 1−

∑i−1
j=1 rj ≤ rmax,i then

9: r1...i ← [r1...i−1, 1−
∑i−1

j=1 rj ]
10: C ← C

⋃
{r1...i}

11: end if
12: else
13: Γ← δ ∗ ⌊ rmax,i

δ
⌋

14: for s = 0 To ⌈log2 Γ
δ
⌉ do

15: ri ← max(0, Γ
2s
)

16: C ← C
⋃

GETALLCANDIDATES(i+ 1, [r1...i])
17: end for
18: end if
19: return C
20: end procedure

D.3 FITTING DATA MIXING LAWS

Fitting the mixture law requires us to first experiment on a few mixtures and obtain their losses. The
sample mixture chosen for fitting could largely affect the prediction accuracy. Consider an extreme
case where all sample mixtures have proportions around a small region, it is hardly possible to fit a
law that reliably predicts the whole proportion space.

In this paper, we intuitively try evenly allocating the mixture proportions regarding their losses.
Specifically, we enumerate candidate mixtures by double-diminishing the proportion of each domain
so that the losses are distributed evenly among these mixtures. Then, according to the available
computation budget, we sample a certain number of mixtures from the candidates to run experiments.
During sampling, we find candidate mixtures with a 0 domain proportion in any of the training
domains take up a majority of the candidates. To avoid these candidates making up all our samples,
we specifically down-sample them. The concrete algorithms are in Alg. 2. Additionally, we employ
AdaBoost Regressor (Drucker, 1997) for fitting the mixture laws to stabilize the predictions and
improve their accuracy. We encourage future studies to dive into a more careful design of candidate
mixture selection with theoretical support.

E CONNECTIONS BETWEEN IMPLICIT DOMAIN AGGREGATION AND MLP

We first repeat our final mixture law (Eqn. 8) here for convenience:

L(r1...M ) =

K∑
i=1

siLi(r1...M ) =

K∑
i=1

si

ci + ki exp

 M∑
j=1

tijrj

 ,

where r1...M are mixture proportions on M training domains, Li are validation loss on K implicit
domains with si as their weight in the overall validation set, and ci, tij are other parameters to fit.

The mixture law boils down to a computation graph in Fig. 14, which contains two layers.
The first layers predict the domain losses, while the second sums up the domain losses to ob-
tain the overall validation loss. In this way, the mixture law becomes a multilayer perception
(MLP) with an exponential activation function. In practice, we fit the mixture laws with implicit
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Figure 14: The computation graph of mixture law
with implicit domain aggregation. We take an case
of 3 training domains and 4 implicit validation
domains as example. The parameters correspond
to the notations in Eqn. 8.

domain aggregation by fitting a multilayer per-
ception with exponential activation and applying
softmax to the output layer weights. Addition-
ally, considering the high variance of MLP, we
further employ AdaBoost Regressor (Drucker,
1997) for fitting the mixture laws to stabilize the
predictions and improve their accuracy.

Inspired by this perspective, we attribute the suc-
cessful fitting of data mixing laws to two aspects.
First, the MLP with a sufficiently large hidden
dimension is a universal approximator (Hornik
et al., 1989) thus being able to fit the relation-
ships between losses and mixture proportions.
Second, the mixture proportions are bounded
between 0 and 1. For this reason, predicting
an unseen mixture is an interpolation problem,
which is usually easier than extrapolation.
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F SUPPLEMENTED RESULTS

F.1 PREDICTION RESULTS ON MORE DOMAINS

To further consolidate the efficacy of data mixing laws and show that they are general for different
data, we experiments on domains different from those in Sec. 3.2.

We train and validate on Wikipedia, ArXiv, and StackExchange of RedPajama, which are three
domains different from those in Sec. 3.2. All samples are from 70M models trained for 10k steps. The
prediction accuracy is in Fig. 15. The result shows the predicted and observed losses are consistent
for different mixtures. This confirms that our data mixing laws also work on domains besides those
in the main experiments.
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Figure 15: Prediction results on domain losses with Eqn. 7. We train 70M models on mixtures of
Wikipedia, ArXiv, and StackExchange for 10k steps. We fit on 7 mixtures and validate on 3 other
mixtures.

F.2 DATA MIXING LAWS MAKE NO DOMAIN-INDEPENDENT ASSUMPTIONS

Although our data mixing laws combine the terms with the proportion of different domains through
linear combination, we make no domain-independent assumption that different domain affects the
losses independently. This is because the linear combination serves as an exponent in Eqn. 6 and
Eqn. 7. Specifically, by Taylor expansion, we have

Li(r1...M ) = ci + ki exp

 M∑
j=1

tijrj

 = ci + ki

1 +

M∑
j=1

tijrj +
1

2

M∑
j=1

M∑
k=1

tijtikrjrk + o2

 ,

where there exists interaction terms rjrk(j ̸= k) of different mixture proportions.
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Figure 16: Data mixing laws can model the lan-
guage modeling performance of mixing correlated
domains with different proportions. We train 70M
models on the mixtures of "Wikipedia+ Common-
Crawl" and "Wikipedia+ArXiv" for 15k steps. We
validate on the two domains separately and fit the
relationship between mixture proportions and vali-
dation losses with Eqn. 6.

Empirically, we evaluate the effectiveness of
our data mixing laws in modeling domain in-
teractions by examining their ability to predict
language modeling performance when mixing
two correlated domains. Specifically, we con-
struct two synthetic data domains with deliber-
ate overlap. The first domain consists of 50%
Wikipedia and 50% CommonCrawl data, while
the other domain comprises 50% Wikipedia and
50% ArXiv content. In this case, increasing the
proportion of one domain necessarily increases
the shared Wikipedia component. Therefore,
the contribution of a training domain on target
losses is coupled with the proportion of the other
domain given their joint contribution through
Wikipedia. As demonstrated in Fig.16, our pro-
posed mixing law (Eqn.6) successfully models
the language modeling performance across var-
ious mixing ratios of these correlated domains.
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F.3 EXTRA VALIDATION ON SCALING LAWS PREDICTION
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Figure 17: The scaling law of training steps ac-
curately extrapolates to 6.25x more steps. We fit
L(S) = E + B/Sβ with 40k training steps of a
1B model and validate the prediction on language
modeling performance up to 250k steps.

We discuss the computation that our prediction
method with nested scaling laws requires. In
particular, the cost primarily depends on how
much scaling laws can accurately extrapolate.

Specifically, we need to train N different data
mixtures on model sized N1, N2, . . . , NK for
S0 steps to predict the model performance of dif-
ferent data mixtures trained with a model with
Ntarget parameters for Starget steps. The to-
tal extra computational overhead relative to di-
rect training is N S0

∑K
i=1 Ni

StargetNtarget
, where the frac-

tion S0
∑K

i=1 Ni

StargetNtarget
represents computation saved

through scaling law predictions. State-of-the-
art scaling law prediction demonstrates that this
fraction can be 1/100 to 1/1000 (OpenAI, 2023; Bi et al., 2024). Together with the typical value of
N , which is 20 in our experiments, the overall method should require an extra 1/5 to 1/50 training
computation expectedly.

106 107 108 109 1010

Model size (N)

2.5

3.0

3.5

4.0

Lo
ss

(4.183e+14/N)^0.073 + 0.00
Fitting Samples
Validation, N=1.51B
Validation, N=7.25B

Figure 18: The scaling law of model sizes accu-
rately extrapolates to 70x larger models. We fit
language modeling performance at convergence
following (Kaplan et al., 2020) with L(N) =
B/Nα + E. The language modeling performance
of 1.5B and 7.25B models are predicted with L(S).

Given that achieving accurate scaling law predic-
tions remains a developing area, we would like
to provide our preliminary investigation to sup-
port 100x to 1000x scaling. Fig. 17 shows the
scaling prediction of training steps with the scal-
ing law of training steps L(S), where we fit with
the first 40k steps and predict the model perfor-
mance up to 250k steps. This shows that fitting
with 40k steps accurately predicts the language
modeling performance on 250k steps, which
is 6.25x scaling. Additionally, Fig. 18 shows
the scaling prediction of model sizes with L(N),
where we fit with models smaller than 100M and
find it accurately predicts model performance
up to 7.25B, which is 72.5x scaling. Combining
L(S) and L(N), we may achieve 450x scaling.

F.4 COMPARISON TO OTHER DATA MIXING METHODS

We compare our method to representative data mixing methods, DoGE (Fan et al., 2024) and
DoReMi (Xie et al., 2024a). As our experiment in Sec. 4.2, we train on RedPajama and validation on
the Pile.
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Figure 19: The evolution of mixture proportions
when training the proxy model with the updating
rule in the OOD setting of DoGE.

DoGE (Fan et al., 2024) contains a universal
generalization setting, which assumes validat-
ing on the same data as training, and an OOD
setting which targets any validation data. We
experiment with both of them. For universal
generalization, we refer to the data mixture pro-
vided by Fan et al. (2024). For the OOD setting,
we follow the original paper to train a small
proxy model (160M) for 10k steps and apply
their online updating rule to adjust the data mix-
ture, shown in Fig. 19. We also follow Fan et al.
(2024) to calculate the average proportions along the training steps of the proxy model as the final
optimized mixture.

For DoReMi (Xie et al., 2024a), which is only designed for general optimiza-
tion without awareness of the validation data, we experiment on both its mix-
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ture proportion optimized with RedPajama and the Pile. For the mixture opti-
mized with RedPajama, we adopt the result of DoReMi10k from Fan et al. (2024).

Default DoGE
(Universal)

DoGE
(OOD)

DoReMi
(RedPajama)

DoReMi
(Pile)

Ours
2.75

2.79

2.83

Lo
ss

Figure 20: Comparisons of the language modeling perfor-
mance of different data mixtures. All models are 1B models
trained for 100B tokens with the same hyperparameters and
validated on the validation set of the Pile. Default: original
data mixture from Touvron et al. (2023a). DoGE (Univer-
sal): DoGE for universal generalization, obtained from Fan
et al. (2024). DoGE (OOD): OOD generalization setting of
DoGE optimized with validation set of the Pile. DoReMi
(RedPajama): DoReMi mixture optimized by training proxy
model on RedPajama. DoReMi (Pile): DoReMi mixture op-
timized by training proxy model on the Pile and adapted
for our training on RedPajama through the domain overlaps
between two dataset. Specific proportions are in Fig. 21.

For the mixture optimized on the Pile,
we refer to the optimized Pile mix-
ture in the original paper (Xie et al.,
2024a) and adapt the mixture to the
one for RedPajama according to the
domain overlap. Specifically, for
ArXiv, Wikipedia, Github, and Stack-
Exchange, we directly borrow the mix-
ture proportion. CommonCrawl and
C4 equally share the proportion of
Pile-CC. The proportion of Books is
obtained as the sum of Books3 and
BookCorpus2 in the Pile. We renor-
malize the proportions of these do-
mains to ensure they sum up to 1.

Fig. 21 summarizes the final mixture
proportion we use for different setups.
We train all models for 100B tokens at
the model size 1B. The outcome per-
formance is in Fig. 20 which shows
the mixture provided by our data mix-
ing law indeed archives the lowest validation loss.
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Figure 21: Specific mixture proportions on Redpajama from different data mixture optimization
methods.
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G LOSS PREDICTION RESULTS WITH NESTED SCALING LAWS

Fig. 22 shows the prediction results of nested use of scaling laws in Sec. 4.2. The result demonstrates
plausible reference on the relative scale of losses on both the overall validation data and different
validation domains. The optimized mixtures perform better in most domains. While the overall
loss helps optimize the overall performance, losses on different domains show model capabilities in
various aspects. Our result indicates that, by tuning data mixtures, it is possible to improve specific
model capabilities without sacrificing others, consistent with the findings of Xie et al. (2024a).

Figure 22: Results of our loss prediction pipelines for the overall validation loss and domain losses.
Fitting data are from 70M to 410M models trained for 30B tokens, while the extrapolated points are
from the default and optimized mixture for 1B models and 100B tokens.
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