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Abstract

Solving for the 3D atomic structure of unknown materials is a key problem in
materials science. Atomic electron tomography (AET) is a technique capable of
reconstructing the 3D position and chemical species of all atoms in a nanoscale
sample from a series of 2D projections from different angles. One challenge in
AET is carbon contamination that accumulates on the sample while collecting the
tomographic projections, creating an unwanted temporal dynamic that degrades
reconstruction quality when existing tomography algorithms expect a static sample.
In this work, we use an unsupervised implicit neural representation (INR) as a
space-time model to computationally remove the contamination and recover a clean
3D reconstruction, and show promising preliminary results on simulated data.

1 Introduction

Key questions in the field of materials science revolve around determining the properties and func-
tionality of engineered materials, and solving the atomic structure of a material is one crucial step to
understanding it at a fundamental level. Electron microscopy is the main tool for studying atomic
structure because it achieves resolution on the scale of individual atoms. In this paper, we work with
ptychographic atomic electron tomography (PAET), a method that can resolve 3D atomic structures
with both light and heavy atoms. PAET uses ptychography to reconstruct the complex-field (phase
and amplitude) of the sample from intensity measurements [1]. By rotating the sample and repeating
the ptychographic procedure, we obtain a set of 2D phase projections of the sample from different
angles, as shown in Fig. 1a. PAET then uses these projections to reconstruct the 3D atomic potential,
which can be used to identify atoms and solve for the atomic structure of the material [2].

Unfortunately, during the time it takes to capture projections for PAET, stray carbon atoms will be
attracted to the sample because the electron beam statically charges its surface. This accumulation of
carbon contamination causes the sample to change over time, with different projection angles seeing
different amounts of carbon, as shown in Figure 1b where a substantial amount of amorphous carbon
can be seen growing on the surface of a carbon nanotube sample in experiment. Because existing
tomography algorithms assume that the sample is static, this causes major reconstruction artifacts
that make it impossible to fully solve the sample’s atomic structure. Contamination is a factor that
affects nearly every PAET experiment, and often results in unused datasets.

In this paper, we propose a space-time algorithm to solve for the dynamic carbon contamination jointly
with the 3D reconstruction of the sample, such that the contamination can be computationally removed.
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Figure 1: (a) Ptychographic atomic electron tomography (PAET) uses 2D phase projections at many
different rotation angles (θ) to tomographically reconstruct the 3D atomic potential of a sample with
single-atom resolution. (b) During the data acquisition process, carbon contamination accumulates
on the sample, shown here in experimental data. This causes each projection to be a measurement of
a slightly different sample, which degrades reconstruction quality if we assume the sample is static.
Our neural space-time method reconstructs a full 3D video of the dynamic sample, such that we can
computationally remove the contamination (results shown on simulated data).

Even though this joint optimization is an underdetermined problem, space-time algorithms take
advantage of the redundant information shared between measurements taken at different times through
spatiotemporal priors and regularization. Examples of space-time algorithms include modeling sample
motion with smooth deformation fields between time points [3] and restricting the complexity of local
motion with low-rank constraints [4]. However, our carbon contamination problem does not fit well
into these existing models because new material appears on the sample over time. Here, we replace
matrix-based representations of the reconstruction with an implicit neural representation (INR), a
neural network trained to output the 3D atomic potential at a given input coordinate (x, y, z, t).
Instead of using explicit regularizers, the network inherently mixes information from all time points
and implicitly regularizes the reconstruction in space and time. This approach is inspired by work
on view synthesis for dynamic scenes [5, 6]. It was recently applied to structured illumination
super-resolution microscopy [7], and here we apply it to atomic tomography.

2 Methods

Our implicit neural representation (INR) serves as a continuous, implicit representation of the
reconstructed 3D video by taking in space-time coordinates (x, y, z, t) and outputting the scalar
value of the 3D atomic potential at each input coordinate. The input coordinates are encoded with a
sinusoidal input encoding to improve the network’s representation of high frequencies [8]. To get
back an explicit matrix representation of the reconstruction, we need only query the network with all
the 3D + time coordinates we are interested in.

As shown in Fig. 2, the optimization of the INR follows traditional gradient-based reconstruction
methods, with the only difference being that the estimated reconstruction is represented by a network
instead of a matrix. At each iteration, the network’s estimate of the 3D reconstruction at each time
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Figure 2: A single coordinate-based multi-layer perceptron (MLP) represents the 3D video recon-
struction by taking in (x, y, z, t) coordinates and outputting the value of the 3D atomic potential at
that coordinate. The network is optimized by querying it for its estimated 3D video reconstruction,
passing the estimates through a ray-based tomography forward model, and comparing with measured
projections. The gradient of the loss function is then backpropagated (red dashed lines) to update the
network weights. Due to memory constraints, the entire 3D video is not actually queried at once;
instead, each batch consists of the coordinates along a random set of projection rays at different times.

point is passed through the forward model and compared with measured projections, and the gradient
of the loss function is backpropagated to update the network weights. There is no additional training
data, and a new network is optimized from scratch for each new reconstruction.

The forward model we use to optimize our INR is parallel-ray linear projection: for each projection
angle, projection along each ray is modeled as a sum of the values along that ray. This is a reasonable
approximation to physical reality for some experiments, though some samples will exhibit nonlinear
effects like multiple scattering. This simplified model is also motivated by constraints on GPU
memory, since querying all 3D video coordinates at once is infeasible: each query requires saving a
copy of the entire network for backpropagation. Instead, the queries need to be split into batches, but
each batch must lead to a gradient update: it must generate a prediction that can be passed through
the forward model and used to compute the loss function. The linear projection forward model makes
it possible to compute the loss function using just the coordinates along a single ray through the 3D
volume, since each projection ray determines the value of a measurement pixel. This forward model
allows our method to not be memory-constrained by the size of the 3D video to be reconstructed, and
can easily scale to large data volumes. In practice, each batch is a random set of rays across all time
points, in order to avoid biasing the solution towards any particular time or spatial location.

3 Simulation and Results

To generate simulated carbon-contaminated phase projections, we created a simplified model of
carbon accumulating on the object over time. We started with the atomic structure from [2] as our
sample, which is a double-walled carbon nanotube encapsulating a sandwich structure of zirconium
and tellurium. Next, we generated a layer of randomly placed carbon atoms on the sample surface,
enforcing the minimum possible distance between atoms. Then, starting at t = 0 with no carbon,
we gradually added this carbon layer, proceeding from one side of the sample to the other. Though
this does not reflect how carbon accumulates in reality, it is sufficient as a test case for time-varying
algorithms. abTEM [9] was used to generate the 3D atomic potential at each time point, which was
fed into our linear forward model (Sec. 2) to generate simulated phase projections at each angle/time
point. 181 projection angles/time points were used, with angles in [0◦, 180◦] at 1◦ increments. These
parameters were selected as idealized conditions, and future work extending this work to more
realistic experimental conditions will need to account for sparser angular sampling (≈ 3◦), a more
restricted range of angles (≈ 120◦), alignment issues, noise, and a larger number of voxels.
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Figure 3: We generated simulated carbon-contaminated phase projections of a carbon nanotube
sample, shown in the top row. The reconstruction from our space-time implicit neural representation
(INR) is shown at time points t = 0 and t = 90 and compared to the uncontaminated ground truth.
We see that at both time points, the heavier atoms in the inner structure of the tube are well resolved
and the axial layers of the tube are well separated. These results demonstrate that even though the
INR only directly sees one 2D projection at each time point, its implicit data prior successfully
combined 3D information from different contaminated measurements.

Figure 3 shows preliminary results of using our space-time INR to reconstruct from these simulated
carbon-contaminated measurements. Overall, the 3D reconstruction of the carbon nanotube’s inner
structure is accurate and reasonably sharp, with clear separation between layers of the structure and
between atoms. Two 3D reconstructions at time points t = 0 and t = 90 can be used to show that
the INR captured both the uncontaminated sample structure and the temporal dynamics of carbon
contamination. The carbon atoms in the two outer walls of the carbon nanotube are not resolved by
our reconstruction, but this appears to be unrelated to dynamic contamination since it is also present
in an INR reconstruction of a static sample. It is more likely a challenge related to convergence of the
INR optimization for high spatial frequencies.

In conclusion, we have demonstrated promising preliminary results on simulated data using a space-
time INR as a flexible and computationally tractable space-time model for the carbon contamination
problem in ptychographic atomic electron tomography (PAET). The relatively simple architecture of a
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single MLP with no explicit regularization is nonetheless able to provide a high-quality reconstruction
on simulated data on this highly underdetermined inverse problem. These results show that the
implicit prior of the INR strongly influences the optimization process towards physically plausible
solutions, without the help of explicit regularizers that are so crucial to traditional space-time methods.
It is an important challenge for future work to further test the validity of this implicit prior, especially
as these methods are increasingly applied to problems of scientific discovery.
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