
Baba Is AI: Break the Rules to Beat the Benchmark

Nathan Cloos 1 Meagan Jens 1 Michelangelo Naim 1 Yen-Ling Kuo 2 Ignacio Cases 1

Andrei Barbu∗ 1 Christopher J. Cueva∗ 1

Abstract
Humans solve problems by following existing
rules and procedures, and also by leaps of creativ-
ity to redefine those rules and objectives. To probe
these abilities, we developed a new benchmark
based on the game Baba Is You where an agent
manipulates both objects in the environment and
rules, represented by movable tiles with words
written on them, to reach a specified goal and
win the game. We test three state-of-the-art multi-
modal large language models (OpenAI GPT-4o,
Google Gemini-1.5-Pro and Gemini-1.5-Flash)
and find that they fail dramatically when general-
ization requires that the rules of the game must be
manipulated and combined.

1. Introduction

Plan: break[wall is stop], make[door is win], goto[door]

Figure 1. Environment based on the puzzle game Baba Is You.

Humans demonstrate remarkable abilities in rapid learning
and adaptive behavior when faced with novel environments
- not only learning and following rules dictated by the en-
vironment but altering these rules to enable new outcomes.
These abilities leverage two key components that we explore
in this paper:

*Equal senior authors 1MIT 2Department of Computer Sci-
ence, University of Virginia, USA. Correspondence to: Nathan
Cloos <nacloos@mit.edu>, Andrei Barbu <abarbu@mit.edu>,
Christopher J. Cueva <ccueva@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

1) The ability to identify and manipulate relevant stimuli in
the environment while ignoring distractor objects and rules.

2) The ability to combine previously seen rules in novel
ways.

The ability to study how an agent explicitly learns rules,
composes them, and crucially, makes or breaks these rules
to alter how the environment and agent behaves, prompted
us to develop a new benchmark environment based on the
puzzle game Baba Is You. In this game, the player often con-
trols a character named “Baba” and must navigate through
the grid-based world filled with blocks, objects, and textual
rules. We can think of this game as a dynamic environment
where the player interacts with various objects and rules
to achieve specific goals. A remarkable aspect of Baba Is
You is that the rules of the game can be manipulated and
rearranged by the player.

, {object} =

{noun} {object}

, {property} =

{property} {object}

the agent wins when on {object}

the agent controls {object}

the agent is blocked by {object}

Rule: {noun} is {property} refers to

modifies

{noun} =

Example:

Figure 2. Active rules in the environment modify the properties
of the objects. A rule is active when it is horizontally aligned and
has the form {noun} is {property}.

Figure 1 shows an example game environment. The text
blocks [baba is you] indicate the player is controlling the
white triangle, i.e. the [baba] object, and can now move this
object through the environment. Now let’s look for the text
blocks that specify how to win the game. The [is win] text
blocks in the upper right of the environment are incomplete
and so the agent must recognize that there is currently no
way to win the game until the winning condition is specified.
This is accomplished by moving one of the available text

1

Baba Is AI: Break the Rules to Beat the Benchmark

No distractor
(in-context)

Object
distractor
(test)

Rule
distractor
(test)

Object & Rule
distractor
(test)

Win rule
distractor
(test)

0

25

50

75

100

Single-room Environment

Ac
cu
ra
cy

Plan: goto[ball] Plan: goto[door] Plan: goto[key] Plan: goto[ball] Plan: goto[ball]

No distractor (in-context) Object distractor (test) Rule distractor (test) Object & Rule distractor
(test) Win rule distractor (test)

gemini-1.5-pro
gemini-1.5-flash
gpt-4o

Figure 3. Accuracy of LLMs across 5 environments testing the ability to generalize in the presence of distractors. The task is to go
to the winning object specified by the text box in the active win rule. Accuracy drops substantially on the final task where both an object
and an active rule distractor are present. In this final task the irrelevant win rule does not refer to any of the objects in the environment.

block such as [door] or [ball] to create a rule for winning the
game. With this specific environmental layout, a winning
strategy is to push the [door] block to create the rule, [door
is win], and then move the agent onto the door block, shown
in green, to win the game. However, the text blocks [wall
is stop] are aligned and so this rule is active and the player
cannot move baba through the vertical wall of gray squares
to carry out this plan. The player must first push one of the
blocks in this rule out of alignment to deactivate the rule
[wall is stop]. The final plan to win the game is to first break
the rule [wall is stop], then make the rule [door is win], and
finally move onto the door object.

As this example illustrates, this is a dynamic environment
where the agent must identify the relevant objects and rules
in the environment and then manipulate the environment
to change or create rules for success (Figure 2). We imple-
mented a simplified version of Baba Is You (Baba Is AI)
based on the Gymnasium Minigrid environment (Chevalier-
Boisvert et al., 2023).

The goal of the Baba Is AI benchmark is to evaluate the role
of systematic compositionality in rule-based generalization.
The core component of this benchmark is that the written
commands are not only grounded in an environment, but
the grounding itself can be manipulated via changing the
rules of the environment. This dynamic design allows us to
explore a broader notion of generalization compared to the
current benchmarks.

We show results for three large language models (LLMs):
GPT-4o, Gemini-1.5-Pro (May 2024), and Gemini-1.5-Flash
(May 2024) (Team, 2024). We chose GPT-4o and Gemini-
1.5-Pro as these models occupy the top two spots on the
Chatbot Arena Leaderboard (May 2024) (Chiang et al.,
2024). We also include Gemini-1.5-Flash as this model
occupies an intriguing spot in the LLM ecosystem with both
excellent performance and affordable price, making it an
attractive option for many applications. Previous work often
convert visual inputs into text before evaluating LLMs (Yao
et al., 2023; Carta et al., 2023; Momennejad et al., 2023;
Valmeekam et al., 2023a). Here we leverage the multi-modal

ability of these models to evaluate them directly on visual
inputs of the game.

2. Method
We first prompt LLMs with general text instructions to play
the game. This includes a description of the possible objects
and textual rule blocks in the environment, and how active
rules can change object properties (as illustrated in Figure
2, with the exact prompt in Appendix A). Importantly, we
specify that a rule is active only if it follows the form “object
is property” and that the three rule blocks must be aligned
horizontally in the environment.

Following previous work on LLM-based agents and plan-
ners (Ichter et al., 2022; Huang et al., 2022; Park et al.,
2023; Valmeekam et al., 2023b; Song et al., 2023; Wang
et al., 2024), we ask LLMs to operate at a higher level than
the low-level control of actions in the environment. Specif-
ically, we ask LLMs to produce high-level textual plans
consisting of the following primitives: breaking an active
rule, making a rule active, or moving to a specific object
in the environment (see an example plan in Figure 1). We
instruct LLMs that these actions can only be taken if the
relevant objects and rule blocks are present in the current
environment. To generate their plan, LLMs receive as vi-
sual input a static image of the initial configuration of the
environment.

After providing the game instructions, we present LLMs
with 10 example images and corresponding winning plans
for in-context learning (Brown et al., 2020). For each exam-
ple, LLMs are asked to generate reasoning steps to derive the
target plan from the given image. Following the in-context
examples, LLMs are prompted to describe a general algo-
rithm to solve the environments and to apply it to unseen test
environments. The test environments are specifically cho-
sen to assess different type of generalization. We measure
accuracy as the exact match between the final response of
LLMs and the winning plan of the test environment. LLMs
are evaluated on 5 samples for each test environment.

2

Baba Is AI: Break the Rules to Beat the Benchmark

No distractor
(in-context)

Object
distractor
(test)

Rule
distractor
(test)

Object & Rule
distractor
(test)

Win rule
distractor
(test)

0

25

50

75

100

Two-room Environment

Ac
cu
ra
cy

Win rule distractor (test)

No distractor (in-context)

Plan: goto[ball] Plan: goto[ball]

Object distractor (test)

Object & Rule distractor (test)Rule distractor (test)

Plan: goto[ball]Plan: goto[key] Plan: goto[door]

gemini-1.5-pro
gemini-1.5-flash
gpt-4o

Figure 4. The mean accuracy for all three models is lower when asked to generalize to distractors in a more complex environment.
This environment introduces a central vertical wall. However, the rule [wall is stop] is initially always inactive and so the wall has no
practical impact on the movement of the agent. The task is to go to the object referred to by the active win rule (same as in Figure 3).

This entire process is repeated for 5 random seeds, each
corresponding to different in-context and test examples.

3. Results
Our first tests assess the LLMs’ ability to extract the most
basic rule of the game from in-context examples, namely,
go to the winning object, and then apply this rule in novel
environments where distractors are present. Complex envi-
ronments contain not only relevant stimuli but also irrelevant
objects or rules; identifying the relevant from irrelevant is a
crucial ability that we probe in this set of experiments.

Figure 3 shows the accuracy of the LLMs in five different
environments: 1) Environments without a distractor, i.e.
new random variations of the environment used during in-
context learning. 2) Environments where there are now
two objects but one of them is a distractor. In order to
win the game, the agent must go to the object specified in
the text box with the win rule, e.g. [door is win] requires
the agent to go to the door. 3) Environments contain a
noun block that is distracting from the active win rule. 4)
Environments contain both a distractor object and noun
block. 5) Environments contain both a distractor object and
a noun block that is part of an active rule. The distractor
rule is not relevant for the environment and so should be
ignored. For example, the rightmost panel in Figure 3 shows
the distractor rule [door is win] but there is no door object
in the environment and so the winning strategy is to follow
the other rule [ball is win] and navigate to the ball.

Impressively, GPT-4o performs with perfect accuracy on
the first four environments, and as a reminder, this is while
receiving visual and not textual inputs about the game. Sur-
prisingly, Gemini-1.5-Flash outperforms Gemini-1.5-Pro,
with all models showing the same trend downwards in accu-
racy on the final task that includes both an object and a rule

distractor.

The sequence of environments used to test the LLMs in
Figure 4 includes the same distractors as in Figure 3, but now
all the environments include a gray vertical wall that runs
down the center of the environment. The environments are
always initialized with the rule [wall is stop] inactive, as the
three blocks that form this rule are not horizontally aligned,
and so the wall has no practical impact on the movement
of the agent. However, these environments now all contain
the extra distractor blocks that compose the inactive wall,
and blocks about the wall rule. The mean accuracy for all
three models is lower under this increased distractor load
(compare Figures 3 and 4).

Compositional generalization has been studied in many con-
texts (Lake et al., 2017; Lake & Baroni, 2017; Ruis et al.,
2020), for example, if an agent has learned to solve a task
with red circles and green keys then it should generalize to
red keys and green circles. In the Baba Is AI environment
we can not only study these traditional forms of generaliza-
tion but probe models under scenarios where the very rules
of the game must be manipulated and combined. Figure 5
shows one example scenario where the LLMs are shown
environments that each highlight three winning strategies
and then are asked to solve a new set of environments that
require a novel composition of these previously learned
rules.

In-context:

 goto{object}
make{rule}, goto{object}
break{rule}, goto{object}

Test: break{rule}, make{rule}, goto{object}

The accuracy for all three LLMs is low. We have also
alternated the four strategies shown in Figure 5 so a different
three are used for in-context training and the remaining is

3

Baba Is AI: Break the Rules to Beat the Benchmark

No distractor
(test)

Object
distractor
(test)

Rule
distractor
(test)

Object & Rule
distractor
(test)

0

25

50

75

100

Ac
cu
ra
cy

gemini-1.5-pro
gemini-1.5-flash
gpt-4o

Plan: break[wall is stop], make[ball is win], goto[ball]Plan: break[wall is stop], goto[key]

Plan: goto[ball] Plan: make[door is win], goto[door]

break-make-gotobreak-goto

goto make-goto

In-context: goto, make-goto, break-goto
Test: break-make-goto + distractors

Figure 5. LLMs generalize poorly under scenarios where the rules of the game must be manipulated and combined. LLMs
are shown environments that each highlight three winning strategies: goto{object}; make{rule} then goto{object}; break{rule} then
goto{object}. Then they are asked to solve a new set of environments that require a novel composition of these previously learned rules:
break{rule} then make{rule} then goto{object}.

Plan:
make[key is you], make[door is win], goto[door]

Plan:
break[wall is stop], make[wall is win], goto[wall]

Plan:
break[wall is stop], make[door is win], goto[door]

Figure 6. Despite superficial similarities and identical objects, each environment requires distinct winning solutions, illustrating
further challenges in rule manipulation and compositional generalization.

used for testing (not shown), and accuracy remains low.

These aspects of compositional generalization across rules
are particularly unique to the Baba Is AI benchmark, and
the poor performance indicates that this benchmark creates
meaningful generalization challenges for LLMs.

Model Accuracy (mean ± std)
gemini-1.5-flash 20.0 ± 29.28
gemini-1.5-pro 14.67 ± 20.66
gpt-4o 17.33 ± 28.15

Table 1. Model accuracies for the environments shown in Figure 6.

4. Discussion
In order for agents to have human-like interactions with the
world, they should not only be able to interact with objects
but also have the capacity to understand and manipulate
the rules of their environment. By defining a static set of
rules that an agent must follow, many games and bench-
marks have overlooked a critical capability: the ability to
understand rules via rule manipulation. Therefore, the Baba
Is AI benchmark explores compositional generalization un-

der conditions in which agents can modify the rules of the
environment. Figure 6 illustrates some of the further chal-
lenges in these environments. All three environments are
superficially similar and contain the same objects, yet the
winning solutions are different in each case (see text at the
top of the figures). For example, the center environment
requires the agent to break the [wall is stop] rule, then move
the [wall] block to create the rule [wall is win], and finally
go to one of the wall blocks to win the game. As a second
example, in the environment shown in the rightmost panel
of Figure 6 the rule [wall is stop] is located in the corner of
the environment and so there is no way to push these blocks
out of alignment and break this rule; the agent is initially
trapped in the leftmost room of the environment. The agent
must break the currently active rule [baba is you] and create
[key is you] in order to control the key on the other side of
the wall. Then the agent can use the key to create the rule
[door is win] and move to the door. The accuracy on these
challenging environments is low as shown in Table 1.

The errors that LLMs make in solving the Baba Is AI en-
vironments are instructive about future opportunities for

4

Baba Is AI: Break the Rules to Beat the Benchmark

improvements (see Appendix B). LLMs make grounding
mistakes: the LLM refers to an object that does not exist in
the environment. LLMs make path planning mistakes: the
LLM incorrectly asserts that the path to a specific object is
blocked by another object, despite the path being clear in
the environment.

5

Baba Is AI: Break the Rules to Beat the Benchmark

References
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020.

Carta, T., Romac, C., Wolf, T., Lamprier, S., Sigaud, O.,
and Oudeyer, P.-Y. Grounding large language models in
interactive environments with online reinforcement learn-
ing. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., and Scarlett, J. (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp.
3676–3713. PMLR, 23–29 Jul 2023.

Chevalier-Boisvert, M., Dai, B., Towers, M., de Lazcano,
R., Willems, L., Lahlou, S., Pal, S., Castro, P. S., and
Terry, J. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented
tasks. CoRR, abs/2306.13831, 2023.

Chiang, W.-L., Zheng, L., Sheng, Y., Angelopoulos, A. N.,
Li, T., Li, D., Zhang, H., Zhu, B., Jordan, M., Gonza-
lez, J. E., and Stoica, I. Chatbot arena: An open plat-
form for evaluating llms by human preference. ArXiv,
abs/2403.04132, 2024.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting action-
able knowledge for embodied agents, 2022.

Ichter, B., Brohan, A., Chebotar, Y., Finn, C., Hausman,
K., Herzog, A., Ho, D., Ibarz, J., Irpan, A., Jang, E.,
Julian, R., Kalashnikov, D., Levine, S., Lu, Y., Parada,
C., Rao, K., Sermanet, P., Toshev, A. T., Vanhoucke,
V., Xia, F., Xiao, T., Xu, P., Yan, M., Brown, N., Ahn,
M., Cortes, O., Sievers, N., Tan, C., Xu, S., Reyes, D.,
Rettinghouse, J., Quiambao, J., Pastor, P., Luu, L., Lee,
K.-H., Kuang, Y., Jesmonth, S., Jeffrey, K., Ruano, R. J.,
Hsu, J., Gopalakrishnan, K., David, B., Zeng, A., and Fu,
C. K. Do as i can, not as i say: Grounding language in
robotic affordances. In 6th Annual Conference on Robot
Learning, 2022.

Lake, B. M. and Baroni, M. Generalization without sys-
tematicity: On the compositional skills of sequence-to-
sequence recurrent networks. In International Conference
on Machine Learning, 2017.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behavioral and Brain Sciences, 40:e253, 2017.
doi: 10.1017/S0140525X16001837.

Momennejad, I., Hasanbeig, H., Vieira Frujeri, F., Sharma,
H., Jojic, N., Palangi, H., Ness, R., and Larson, J. Evaluat-
ing cognitive maps and planning in large language models
with cogeval. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Advances in
Neural Information Processing Systems, volume 36, pp.
69736–69751. Curran Associates, Inc., 2023.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and
Technology. Association for Computing Machinery, 2023.

Ruis, L., Andreas, J., Baroni, M., Bouchacourt, D., and
Lake, B. M. A benchmark for systematic generalization
in grounded language understanding. In Proceedings of
the 34th International Conference on Neural Information
Processing Systems, 2020.

Song, C., Sadler, B. M., Wu, J., Chao, W., Washington, C.,
and Su, Y. Llm-planner: Few-shot grounded planning for
embodied agents with large language models. In 2023
IEEE/CVF International Conference on Computer Vision
(ICCV). IEEE Computer Society, 2023.

Team, G. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context, 2024.

Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S.,
and Kambhampati, S. Planbench: An extensible bench-
mark for evaluating large language models on planning
and reasoning about change. In Thirty-seventh Confer-
ence on Neural Information Processing Systems Datasets
and Benchmarks Track, 2023a.

Valmeekam, K., Marquez, M., Sreedharan, S., and Kamb-
hampati, S. On the planning abilities of large language
models - a critical investigation. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023b.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-ended
embodied agent with large language models. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-
8856.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models, 2023.

6

Baba Is AI: Break the Rules to Beat the Benchmark

A. Prompt

You will be playing a gridworld game. In this game you can change the rules of the game by moving blocks around. Blocks in
the grid can be objects or rules.
A rule is active if the rule blocks are aligned horizontally and they form a valid rule. A valid rule has the form "<object> is
<prop>", where <object> is the object to which the rule applies, and <prop> is the property that the object gains. Activated rules
modify the rules of the objects in the grid.
- Objects: the possible objects are "baba" (white triangle), "wall", "key", "door", "ball". Objects are recognizable by their shape
and color.
- Rule blocks: the rule blocks are "is", "win", "you", "stop", and rule blocks with the names of the objects. Rule blocks are
represented by white boxes with white text inside.

Rule properties:
- "is": the rule block that connects the object and the property.
- "win": the rule block that indicates the object that the agent needs to reach to win the game.
- "you": the rule block that indicates the object that the agent controls.
- "stop": the rule block that indicates the object that blocks the agent from moving through it.

By default objects are not blocking, but if the rule "object is stop" is active, the object will block the agent from moving through it.
Rule blocks are always pushable by the agents.
The game is always solvable and there is always a unique winning plan to solve the game.

A winning plan is composed of one or more actions (comma separated). An action can be one of the following:
- goto[<obj>]: move the agent towards the object <obj>.
- make[<obj> is <prop>]: create a rule that makes the object <obj> have the property <prop>. This action can only be taken if
both the object rule block and the property rule block are in the grid and the rule is not already active.
- break[<obj> is <prop>]: remove the rule that makes the object <obj> have the property <prop>. This action can only be taken if
the rule is active in the environment (i.e. the rule blocks <obj>, is, <prop> are horizontally aligned).

Example:
<image>
Winning plan: goto[door]

Explain what are the reasoning steps to find the winning plan based on the given gridworld. Be as concise as possible
and avoid unnecessary details.

Based on the examples and the reasoning steps you have given, describe an algorithm to find the winning plan for a given
gridworld. It's really important that another person can understand your algorithm and apply it to find the winning plan. Be as
concise as possible and avoid unnecessary details.

Apply the algorithm steps by steps to the following gridworld.
<image>

Give your final answer using exactly this format: 'Winning plan: <your plan>'.

N x

Model: [...]

Model: [...]

Model: [...]

Model: [...]

Figure 7. Prompt template. The first part of the prompt includes general instructions describing the game and the task for the LLMs.
After providing the game instructions, we present LLMs with N = 10 example grid images and corresponding winning plans, and ask
LLMs to generate reasoning steps to derive the plan from the grid image. We then ask LLMs to describe an algorithm to solve the
environments and to apply to new environments that systematically differ from the in-context environments.

7

Baba Is AI: Break the Rules to Beat the Benchmark

B. Error cases

Let's apply the algorithm step by step to the given gridworld.

Step 1: Identify the Agent
- Scan the grid for the rule "baba is you".
- The rule "baba is you" is active, indicating that the white triangle (baba) is the agent
controlled by the player.
- Position of baba: (5, 4).

Step 2: Identify the Winning Condition
- Scan the grid for any active rule of the form "<object> is win".
- There are two active rules: "door is win" and "ball is win".
- Positions:
- Door (red square): (0, 0).
- Ball (blue circle): (3, 2).

Step 3: Plan the Movement
- Check if there are any obstacles between the agent and the winning objects.
- The path to the door (red square) is blocked by the key (blue key) at (1, 1).
- The path to the ball (blue circle) is clear.

Step 4: Execute the Plan
- Since the path to the ball is clear, plan a direct path to the ball.

Generate the Plan
- The action to achieve the winning condition is to move the agent towards the ball.

Output the Plan
- Winning plan: `goto[ball]`.

[...]
Apply the algorithm steps by steps to the following gridworld.

Model:

Prompt:

Correct plan: goto[door]

Figure 8. Two common types of mistakes observed in the reasoning of LLMs, illustrated here for GPT-4o when tested on the single-
room environment with an additional win rule distractor. (i) Grounding mistake: the LLM refers to an object that does not exist in the
environment. In this example, the LLM mentions a ball (Step 3, third bullet point in the model’s answer), specifying that is it a blue circle
in parenthesis, even though no such ball is present. (ii) Path planning mistake: the LLM incorrectly asserts that the path to a specific
object is blocked by another object, despite the path being clear in the environment. In this instance, the LLM claims that the path to the
door is blocked by the key, even though it is not the case.

8

