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Abstract

We introduce an approach for training Variational Autoencoders (VAEs) that are
certifiably robust to adversarial attack. Specifically, we first derive actionable
bounds on the minimal size of an input perturbation required to change a VAE’s
reconstruction by more than an allowed amount, with these bounds depending
on certain key parameters such as the Lipschitz constants of the encoder and de-
coder. We then show how these parameters can be controlled, thereby providing
a mechanism to ensure a priori that a VAE will attain a desired level of robust-
ness. Moreover, we extend this to a complete practical approach for training such
VAEs to ensure our criteria are met. Critically, our method allows one to specify
a desired level of robustness upfront and then train a VAE that is guaranteed to
achieve this robustness. We further demonstrate that these Lipschitz–constrained
VAEs are more robust to attack than standard VAEs in practice.

1 Introduction

Variational autoencoders (VAEs) are a powerful method for learning deep generative models [1, 2],
finding application in areas such as image and language generation [3, 4] as well as representation
learning [5]. Yet like other deep learning methods [6], VAEs are susceptible to adversarial attacks,
whereby small perturbations of an input can induce meaningful, unwanted changes in output. For
example, VAEs can be induced to reconstruct images similar to an adversary’s target through only
moderate perturbation of the input image [7, 8, 9].
This is undesirable for two main reasons. First, VAEs have been used to improve the robustness of
classifiers [10, 11], and the encodings of VAEs are also commonly used in downstream tasks [12,
13]. Second, the susceptibility of VAEs to distortion from input perturbations challenges an original
ambition for VAEs: that they should capture “semantically meaningful [...] factors of variation in
data” [14]. If this ambition is to be fulfilled, VAEs should be more robust to spurious inputs, and so
the robustness of VAEs is intrinsically desirable.
While previous work has already sought to obtain more robust VAEs empirically [15, 16, 17], this
work lacks formal guarantees. This is a meaningful worry because in other model classes, robustifi-
cation techniques showing promise empirically but lacking guarantees have later been circumvented
by more sophisticated attacks [18, 19]. It stands to reason that existing techniques for robustifying
VAEs might be similarly ineffectual. Further, though previous theoretical work [20] can ascertain
robustness post-training, it cannot enforce and control robustness a priori, before training.
Our work looks to alleviate these issues by providing VAEs whose robustness levels can be con-
trolled and certified by design. To this end, we show how certifiably robust VAEs can be learned by
enforcing Lipschitz continuity in the encoder and decoder, which explicitly upper-bounds changes
in their outputs with respect to changes in input; we call the resulting models Lipschitz-VAEs.
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(a) Standard VAE, ||δ||2 ≤ 3. (b) Lipschitz-VAE, ||δ||2 ≤ 3.

Figure 1: A maximum damage attack (Eq. 4) on a standard VAE and Lipschitz-VAE respectively.
Unlike those of the standard VAE, the Lipschitz-VAE’s reconstructions are robust to the attack. In
Appendix E we supplement these results with latent space attacks (see Eq. 3).

We derive two different bounds on the robustness of these models, each covering a slightly dif-
ferent setting. First, we derive a per-datapoint lower bound that guarantees a certain probability of
reconstructions of distorted inputs being close to the reconstructions of undistorted inputs. More pre-
cisely, this per-datapoint lower bound is on the probability that the `2 distance between an attacked
Lipschitz-VAE’s reconstruction and its original reconstruction is less than some value r. This prob-
ability is with reference to the stochasticity of sampling in a VAE’s latent space. Using this bound
we can then obtain a margin that holds for all inputs. This second, global bound means that we can
guarantee, for any input, that perturbations within the margin induce reconstructions that fall within
an r–sized ball of the original reconstruction with at least some specified probability.
The latter margin is the first of its kind for VAEs: a margin that does not depend on the value of
the input data and can have its value specified a priori from setting a small number of network
hyperparameters. It thus enables VAEs with a chosen level of robustness.
In summary, our contributions are to develop a novel approach to inducing robustness in VAEs
through Lipschitz continuity constraints, and to show theoretically that VAEs with such constraints
are endowed with certifiable robustness properties, such that we can choose a desired level of robust-
ness upfront and then ensure it is achieved. We experimentally validate our approach (see Figure 1),
and in doing so realize the first VAEs that are certifiably robust.

2 Background

2.1 VAEs

Assume we have a collection of observations D = {x1, . . . ,xn} with x ∈ X , which is generated
according to an unknown process involving latent variables z ∈ Z . We want to learn a latent
variable model with joint density pθ(x, z) = pθ(x|z)p(z), parameterized by θ, that captures this
process. Learning θ by maximum likelihood is often intractable and variational inference addresses
this intractability by introducing inference model qφ(z|x) [14], parameterized by φ, which yields a
tractable lower bound on the marginal likelihood,

log pθ(x) ≥ Eqφ(z|x) [log pθ(x|z)]− KL (qφ(z|x)||p(z)) . (1)

Here, KL (·||·) denotes the Kullback-Leibler divergence, while θ and φ represent the parameters of
deep neural networks — the decoder and encoder network respectively — which can be optimized
using unbiased gradient estimates obtained through Monte Carlo samples from qφ(z|x).
Given a VAE, we will refer to sampling zi ∼ qφ(z|xi) on input xi as the encoding process, and —
following convention — to gθ(zi) as a reconstruction of xi, where gθ(·) denotes the deterministic
component of the decoder [21].

2.2 Adversarial Attacks on VAEs

In adversarial attacks on machine learning models, an adversary tries to alter the behavior of a
model. Although much work has focused on classifiers, adversarial attacks have also been proposed
for VAEs, whereby the model is “fooled” into reconstructing an unintended output. More formally,
given original input xo and the adversary’s target output xt, the attacker seeks a perturbation δ ∈ X
such that the VAE’s reconstruction of the perturbed input (xo + δ) is similar to xt.
The best performing attack on VAEs in the current literature is a latent space attack [7, 8, 9], where
an adversary perturbs input xo to have a posterior qφ similar to that of the target xt, optimizing

argmin
δ: ||δ||2

KL (qφ(z|xo + δ)||qφ(z|xt)) + λ||δ||2. (2)
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In Eq. (2), the first term encourages similarity between the two posterior distributions, the second
term favors smaller perturbations such that the original input xo is altered less, and λ is a hyper-
parameter controlling this trade-off. In our work we strictly constrain this norm by some constant
c ∈ R+ to ensure more consistent comparisons:

argmin
δ: ||δ||2≤c

KL (qφ(z|xo + δ)||qφ(z|xt)) . (3)

We also use another type of attack, the maximum damage attack [20], which for zδ ∼ qφ(z|xo+δ),
z¬δ ∼ qφ(z|xo), and some constant c ∈ R+ optimizes

argmax
δ: ||δ||2≤c

||gθ(zδ)− gθ(z¬δ)||2. (4)

2.3 Defining Robustness in VAEs

VAE reconstructions are typically continuous–valued, and a VAE’s encoder, qφ(z|x), is usually
chosen to be a continuous distribution. Any change to a VAE’s input will thus almost surely result
in a change in its reconstructions, since changes to the input will translate to changes in qφ(z|·), and
in turn, almost surely to changes in the reconstruction gθ(z) [20].
This observation rules out established robustness criteria that specify robustness using margins
around inputs within which model outputs are constant [22, 23]. To further complicate matters,
VAEs are probabilistic: a VAE’s outputs will vary even under the same input. To account for these
considerations, we employ the robustness criterion of [20]:1

Definition 2.1. (r-robustness) For r ∈ R+, a model f operating on a point x and outputting a
continuous random variable is r-robust to a perturbation δ if and only if

P [||f(x+ δ)− f(x)||2 ≤ r] > 0.5.

The notion of r-robustness states that a model is robust if, more likely than not, changes in the
model’s outputs induced by an input perturbation δ fall within a hypersphere of radius r about the
model’s outputs on the unperturbed input. The smaller the value of r for which r-robustness holds,
the stricter the notion of robustness which is implied. We will refer to P [||f(x+ δ)− f(x)||2 ≤ r]
as the r-robustness probability. Note that while we pick a threshold of 0.5 for notational simplicity,
r-robustness admits any threshold in [0, 1), and indeed can be made arbitrarily strong to suit the
level of robustness required.
The definition of r-robustness naturally leads to the notion of an r-robustness margin [20]:
Definition 2.2. (r-robustness margin) For r ∈ R+, a model f has r-robustness margin Rr(x) about
input x if ||δ||2 < Rr(x) =⇒ P [||f(x+ δ)− f(x)||2 ≤ r] > 0.5.

An r-robustness margin upper-bounds the norm that an input perturbation can have while r-
robustness is preserved. If a model has r-robustness margin Rr(x) for input x, we can guarantee
that the model will not be undermined by any perturbation of x with norm less than Rr(x) [20].

2.4 Lipschitz Continuity

Definition 2.3. (Lipschitz continuity) A function f : Rn → Rm is Lipschitz continuous if for all
x1,x2 ∈ Rn, ||f(x1) − f(x2)||2 ≤ M ||x1 − x2||2 for constant M ∈ R+. The least M for which
this holds is called the Lipschitz constant of f .

If a function f is Lipschitz continuous with Lipschitz constant M , we say that f is M -Lipschitz.

3 Certifiably Robust VAEs

3.1 Lipschitz-VAEs

We now introduce our approach for achieving a VAE whose robustness levels can be controlled and
certified. We do so by targeting the “smoothness” of a VAE’s encoder and decoder network, requir-
ing these to be Lipschitz continuous, since a VAE’s vulnerability to input perturbation is thought to
inversely correlate with the smoothness of its encoder and decoder. By choosing and maintaining
Lipschitz continuity with a known, set Lipschitz constant, we will be able to obtain a chosen degree
of robustness a priori.

1While we assume the `2 norm, the following notions could also be defined with respect to other norms.
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3.2 Bounding the r-Robustness Probability

We first construct an approach for guaranteeing that a VAE’s reconstructions will change only to
a particular degree under distortions. We achieve this by specifying our VAEs such that their r-
robustness probability is bounded from below. Our bounds depend on the Lipschitz constants of the
constituent networks, the magnitude of the distortion and the encoder’s standard deviation.
In the standard setting this yields an input-dependent characterization of the behavior of the VAE,
while taking the encoder standard deviation to be a hyperparameter yields global, input-agnostic
bounds. This means that for a given input perturbation norm we can guarantee similarity up to a
threshold with a particular probability. Our bounds provide the first global guarantees about the
robustness behavior of a VAE.
We use the `2 distance as our notion of similarity as it corresponds to the log probability of a
Gaussian — a frequently-used likelihood function for VAEs with continuous data — and has also
been the basis for previous theoretical work on VAE robustness [20].
The following result shows that, under the common choice of a diagonal-covariance multivariate
Gaussian encoder, a lower bound on the r-robustness probability can be provided for Lipschitz-
VAEs. We use the parameterization qφ(z|x) = N

(
z;µφ(x), diag

(
σ2
φ(x)

))
, where µφ : X →

Rdz is the encoder mean and σφ : X → Rdz≥0 is the encoder standard deviation.

Theorem 1 (Probability Bound). Assume qφ(z|x) is as above and that the deterministic component
of the Lipschitz-VAE decoder gθ(·) is a-Lipschitz, the encoder mean µφ(·) is b-Lipschitz, and the
encoder standard deviation σφ(·) is c-Lipschitz. Finally, let zδ ∼ qφ(z|x+ δ) and z¬δ ∼ qφ(z|x).
Then for any r ∈ R+, any x ∈ X , and any input perturbation δ ∈ X ,

P [||gθ(zδ)− gθ(z¬δ)||2 ≤ r] ≥ 1−min {p1(x), p2(x)} ,
where

p1(x) :=min

(
1,
a2
(
b2||δ||22 + (c||δ||2 + 2||σφ(x)||2)2

)
r2

)
and

p2(x) :=

C(dz)u(x)
dz
2 exp{−u(x)

2 }
u(x)−dz+2

(
r
a − b||δ||2

)
≥ 0; dz ≥ 2;u(x) > dz − 2

1 o.w.

for u(x) := ( ra−b||δ||2)
2

(c||δ||2+2||σφ(x)||2)2
and constant C(dz) := 1√

π
exp

{
1
2 (dz − (dz − 1) log dz)

}
.

Proof. See Appendix. �

Figure 2: An example of the rel-
ative tightness of the bounds ap-
pearing in Theorem 1, for a =
b = c = 5, dz = 5, and
||σφ(x)||2 = 0.1.

Theorem 1 tells us that a Lipschitz-VAE’s r-robustness probabil-
ity can be bounded in terms of: r; the Lipschitz constants of the
encoder and decoder; the norm of the encoder standard deviation;
the dimension of the latent space; and the norm of the input per-
turbation. The term involving the norm of the input perturbation
is most important, as it allows us to link the magnitude of input
perturbations to the probabilities of distortions in reconstructions.
The proof leverages the Lipschitz continuity of the decoder net-
work to relate the distances between reconstructed points in X
to the corresponding distances between their latents in Z . The
Lipschitz continuity of the encoder then allows the distribution of
distances between samples in latent space — from perturbed and
unperturbed posteriors qφ(z|x + δ) and qφ(z|x) respectively —
to be characterized in terms of distances between inputs.
We note that the distribution of `2 distances between these sam-
ples is a generalized χ2 distribution, which has no closed-form
CDF [24]. The proof therefore employs two tail bounds, Markov’s Inequality and a tail bound for
standard χ2 distributions, which varyingly dominate each other in tightness for different ||δ||2 (see
Figure 2) and respectively yield p1(x) and p2(x).
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(a) Lip. const. = 5 (b) Lip. const. = 7 (c) Lip. const. = 10 (d) Lip. const. = 12

Figure 3: Estimated r-robustness margins plotted against the encoder standard deviation norm on
MNIST, where ||σ||2 is a hyperparameter as in Theorem 2. We see that for multiple Lipschitz
constants ([5, 7, 10, 12]), σ has minimal influence on Rr whereas the choice of Lipschitz constant is
significant (compare the range of the y-axis in each plot). Error bars are the standard deviation over
25 data points.

3.3 Bounding the r-Robustness Margin

While Theorem 1 allows for the r-robustness probability of a Lipschitz-VAE to be lower-bounded
for a given input and input perturbation, ideally we would like to guarantee a VAE’s robustness at a
given input to all input perturbations up to some magnitude. The following result provides exactly
such a guarantee for Lipschitz-VAEs, in terms of a lower bound on the r-robustness margin.
Lemma 1.1 (Margin Bound). Given the assumptions of Theorem 1 and a Lipschitz-VAE satisfying
these assumptions, the r-robustness margin of this VAE on input x,

Rr(x) ≥ max {m1(x),m2(x)}
where

m1(x) :=

−4c||σφ(x)||2 +
√
(4c||σφ(x)||2)2 − 4 (c2 + b2)

(
4||σφ(x)||2 − 0.5

(
r
a

)2)
2 (c2 + b2)

andm2(x) := sup {||δ||2 : p2(δ,x) ≤ 0.5} , where p2(δ,x) is as defined in Theorem 1 but we make
explicit the dependence on δ.

Proof. See Appendix. �

Lemma 1.1 shows that we can lower-bound the radius Rr about x within which no input perturba-
tion can undermine r-robustness. In particular, when at least one of m1(x) and m2(x) is positive,
robustness can be certified. The proof exploits the relationship established in Theorem 1 between
the r-robustness probability and the magnitude of input perturbations, finding the largest input per-
turbation norm such that our lower bound on the r-robustness probability still exceeds 0.5.

3.4 A Global r-Robustness Margin

A global margin can now be obtained via Theorem 1. We wish to bound R(x) from below for all
x ∈ X . The only input dependence is via σφ(x), which can be lifted, however, by setting σφ(x) =
σ ∈ Rdz≥0, a chosen hyperparameter. This can be done either during training — since VAEs can be
trained with a fixed encoder standard deviation without serious degradation in performance [25] —
or after, since all that matters to the bound is the value of σ at test time2.
Theorem 2 (Global Margin Bound). Given the assumptions of Theorem 1 and a Lipschitz-VAE
satisfying these assumptions, but with σφ(x) = σ ∈ Rdz , the global r-robustness margin of this
VAE for all inputs is

Rr ≥ max {m1,m2} ,
2We trained models with the encoder standard deviation set as a hyperparameter, and found the Lipschitz

constants of the encoder and decoder networks to be most determinative for robustness, with the value of ||σ||2
having minimal impact (see Figure 3).
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where

m1 :=

√
−
(
4||σ||22 − 0.5

(
r
a

)2)
b

for
(
4||σ||22 − 0.5

(
r
a

)2)
< 0; and m2 := sup {||δ||2 : p2(δ) ≤ 0.5}, where p2 is as defined in

Theorem 1, but with u :=
( ra−b||δ||2)

2

4||σ||22
.

Proof. See Appendix. �

This result provides guarantees solely in terms of parameters we can choose ahead of training,
namely the Lipschitz constants of the networks and σ, the fixed value of the encoder standard devi-
ation. This importantly distinguishes ours from previous work, which has only provided robustness
bounds based on intractable model characteristics that must be empirically estimated after train-
ing [20].

4 Implementing Lipschitz-VAEs

In the last section we introduced guarantees on robustness given the Lipschitz constants of the VAE’s
networks. We now consider how to train a VAE in a manner that ensures these guarantees are met.
Letting F be the set of functions that can be learned by an unrestricted neural network, and LM ⊂
F be the (further restricted) subset of M -Lipschitz continuous functions associated with the sets
of neural network parameters LθM ,L

φ
M , our constraint can be thought of simply as replacing the

standard VAE objective in Eq. (1) with the modified objective

argmax
θ,φ∈LθM ,L

φ
M

Eqφ(z|x)[log pθ(x|z)]− KL (qφ(z|x)||p(z)) .

Referring to VAEs trained this way as Lipschitz-VAEs, the question becomes how to enforce this
objective. Using [26], we focus on fully-connected networks, although similar ideas extend to con-
volutional architectures [27]. First, note that if layer l has Lipschitz constant Ml, then the Lipschitz
constant of the entire network is M =

∏L
l=1Ml [6]. For an L-layer fully-connected neural network

to be M -Lipschitz, it thus suffices to ensure that each layer l has Lipschitz constant M
1
L . If we

choose the network non-linearity ϕl(·) to be 1-Lipschitz, and ensure that linear transformation Wl

is also 1-Lipschitz, then Lipschitz constant M
1
L in layer l follows from scaling the outputs of each

layer’s linear transformation by M
1
L .

Building on this, our approach to controlling the Lipschitz continuity of VAE encoders and decoders
can be seen in Algorithm 1. The key components are Björck Orthonormalization, which ensures each

Algorithm 1 The forward pass in a Lipschitz-VAE’s encoder or decoder network.
BjörckOrthonormalize

for k = 1, . . . ,K do

W
(k+1)
l ←W

(k)
l

(
I + 1

2Q
(k) + . . .+ (−1)p

(
0.5
p

)
(Q(k))p

)
where Q(k) = I −

(
W

(k)
l

)ᵀ
W

(k)
l , and K and p are hyperparameters.

Input: Data point x
Result: Network output hL
Requires: Lipschitz constant M
Forward pass

h0 ← x for l = 1, . . . , L do
Wl ← BjörckOrthonormalize(Wl)

pre-activation←M
1
LWlhl−1

hl ← GroupSort(pre-activation)
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(a) Lemma 1.1: MNIST (b) Lemma 1.1: Fashion-MNIST (c) Theorem 2: MNIST

Figure 4: Estimated r-robustness margins plotted against the lower bounds on these margins pro-
vided by Lemma 1.1 for networks trained on [left] MNIST and [center] Fashion-MNIST. [right]
The same plot for the bound in Theorem 2 for MNIST for fixed ||σ||2 ∈ {0.06, 0.13, 0.19, 0.25}
and Lipschitz constants in {5, 7, 10, 12}. We plot y = x to illustrate the correctness of the bounds.

layer’s linear transformation is 1-Lipschitz (see Appendix B for details), and the norm-preserving
GroupSort non-linearity from [26], which is 1-Lipschitz. This function groups the entries of matrix-
vector product Wlhl−1 in each layer l into some number of groups, and then sorts the entries of
each group by ascending order. It can be shown that when each group has size two, for any scalar y

(1 0)GroupSort

((
y
0

))
= ReLU(y).

5 Experiments

Our aim now is to establish that our theoretical results allow us to certify and guarantee the robust-
ness of VAEs in practice. Additionally, we would like to verify that Lipschitz continuity constraints
can endow VAEs with greater robustness to adversarial input perturbations than standard VAEs.
Experimental Setup We pick a latent space with dimension dz = 10 (unless otherwise stated)
and use the same architecture across experiments: encoder mean µφ(·), encoder standard deviation
σφ(·) and deterministic component of the decoder gθ(·) are all three-layer fully-connected networks
with hidden dimensions 512 (for more details, see Appendix F).
Assessing Certifiable Robustness We now validate that our bounds in Lemma 1.1 and Theorem
2 allow us to provide absolute robustness guarantees. In particular, for a given Lipschitz-VAE, we
compute max{m1(x),m2(x)} and max{m1,m2} for Lemma 1.1 and Theorem 2 respectively on a
randomly-selected sample from MNIST and Fashion-MNIST (see Figure 4).
This experiment highlights two notable aspects. First, it empirically validates our bounds, since in
all instances the estimated r-robustness margins (see the following section) are larger than the cor-
responding bounds on these margins provided by Lemma 1.1 and Theorem 2. Second, we see that
the bounds on the r-robustness margin are strictly positive, providing a priori guarantees of robust-
ness when choosing a fixed encoder standard deviation and encoder and decoder network Lipschitz
constants as in the setting of Theorem 2. Our results demonstrate the existence of Lipschitz-VAEs
for which meaningful robustness can be certified, a priori.
Empirically Comparing Robustness We empirically assess the r-robustness margins of
Lipschitz-VAEs using the approach of [20], leveraging maximum damage attacks as in Algorithm
2 (see Appendix). In particular, assuming no defects in the optimization of Eq. (4) and access to
infinite samples from the encoder qφ(z|·), if for a given c a maximum damage attack cannot identify
a δ∗ such that P [||gθ(zδ∗)− gθ(z¬δ∗)||2 ≤ r] ≤ 0.5, then we can rest assured that the r-robustness
margin of a VAE on input x is at least c – that is, Rr(x) ≥ c. If one VAE’s estimated r-robustness
margins are consistently larger than another’s, this strongly suggests that the former is more robust.
In Figure 5 (left), we estimate the r-robustness margins of several Lipschitz- and standard-VAEs
on a randomly-selected collection of images from the MNIST test set. On the same inputs and for
all Lipschitz constants considered, Lipschitz-VAEs exhibit larger estimated r-robustness margins on
average than a standard VAE.
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Figure 5: [left] r-robustness marginsRr(·) estimated using Algorithm 2 on a randomly-selected col-
lection of 25 images in Lipschitz and standard VAEs, for r = 8 and ||σ||2 = 0.1. For all Lipschitz
constants considered, Lipschitz-VAEs exhibit larger r-robustness margins on average than a standard
VAE, demonstrating the empirical robustness of Lipschitz-VAEs. Larger r-robustness margins also
correlate with smaller Lipschitz constants, as predicted by our theoretical bounds. [right] The em-
pirical relationship between a Lipschitz-VAE’s reconstruction performance, measured by the mean
(Continuous Bernoulli) log likelihood achieved by its reconstructions on the MNIST test set, and its
mean robustness margin, estimated on a randomly-selected collection of 25 images from the same
test set, by Lipschitz constant (in parentheses). Larger log-likelihoods imply better reconstructions.

(a) Standard VAE. (b) Lip. VAE, Lip. const. 10. (c) Lip. β-VAE, Lip. const. 10,
β=5.

Figure 6: The encoders qφ(z|x) learned by different types of VAE on MNIST. In each subfigure,
an ellipse represents qφ(z|xi) = N (z;µφ(xi),diag(σ

2
φ(xi))) for one input xi, where ellipses are

centered at the encoder mean, and cover one standard deviation. The prior, p(z) = N (z;0, I), is
overlaid in black for 1, 2 and 3 standard deviations from its mean. Lipschitz-VAEs have encoders
that are dispersed in latent space, in contrast with the learned encoder of a standard VAE. Upweight-
ing the KL term in the VAE objective in (1), as in a β-VAE [5], changes this behaviour.

The above result also allows us to verify an implication of our theory, namely that a Lipschitz-
VAE’s r-robustness margins should broadly be larger the smaller its Lipschitz constants are. Our
empirical findings exactly corroborate this, since the average r-robustness margins we estimate in
Lipschitz-VAEs monotonically increase as we decrease in their Lipschitz constants.
Hence, Figure 5 (left) demonstrates that we can manipulate the robustness levels of Lipschitz-VAEs
through judicious choices of their Lipschitz constants, fulfilling our objective to develop a VAE
whose robustness levels could be controlled a priori. Note that in these experiments (with a unit
Gaussian prior), we found the useful range of Lipschitz constants for all networks to be between
around 5 and 10. Less than this the reconstructive performance of the Lipschitz-VAE is excessively
impacted, while greater than this the Lipschitz-VAE behaves comparably to a standard VAE in terms
of robustness.
Investigating Learned Latent Spaces We previously evaluated the robustness of Lipschitz-
VAEs. We have not yet empirically explored, however, whether Lipschitz-VAEs are otherwise
different from standard VAEs as models, for example in the functions they learn. As shown in
Figure 6, the aggregate posteriors learned by Lipschitz- and standard VAEs differ in their scale. The
aggregate posterior of a standard VAE is tightly clustered about the prior p(z) = N (z;0, I), but
that of the Lipschitz-VAE disperses mass more widely over the latent space.
Though this could be an issue when generating samples from the prior, as the prior and aggregate
posterior have little overlap, the remedy to this issue is very simple. We find that upweighting the
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KL term by a hyperparameter β, as in a β-VAE [5], mitigates this scaling of the latent space (see
Figure 6c). For the details of this exploration, see Appendix C.
Choosing Lipschitz Constants Previously, we saw that the r-robustness margins of a Lipschitz-
VAE could be manipulated through its Lipschitz constants, with smaller Lipschitz constants consis-
tently affording greater robustness. In practice, however, robustness might only be one considera-
tion, alongside reconstruction performance, in choosing between VAEs.
To explore these considerations, we plot reconstruction performance against estimated robustness in
Figure 5 (right), measuring reconstruction performance as the mean log likelihood achieved, and es-
timating robustness in terms of Rr(x). Recalling that larger log likelihoods imply better reconstruc-
tions, we see that reconstruction performance is negatively correlated with estimated robustness,
with behavior on each of these dimensions determined by the Lipschitz constants.
Potential Weaknesses We note that our bounds are relatively loose (see Figures 2 and 4). This
is consistent with applications of Lipschitz continuity constraints in other settings [22]: while such
conditions enable certifiable bounds, resulting bounds are also inherently loose because Lipschitz
continuity is “stricter” than conditions of “normal” continuity (which may allow for tighter but non-
enforceable and/or non-certifiable bounds [20]). Nevertheless, our approach is useful in scenarios
where robustness must be absolutely guaranteed, even if at times that guarantee is weaker than the
practical behavior.

6 Related Work

Certifiable Robustification Prior work on robustifying models to adversarial attacks can be de-
lineated into techniques which empirically provide robustness to known types of adversarial attack,
and certifiable techniques providing provable robustness under certain assumptions. It has been ar-
gued that certifiable techniques should be favored [22], since empirical findings of robustness are
predicated on a choice of attack and thus cannot indicate effectiveness against other known or as
yet unknown attacks. Indeed, we previously noted instances where empirical techniques seemed to
induce robustness but were subsequently undone by later-developed attacks [18, 19].
Certifiable Robustness in Classifiers Given their advantages, certifiable robustification tech-
niques have already been targeted in classifiers, where approaches employing Lipschitz continuity
are particularly illustrative. In particular [28, 29, 26, 30] use Lipschitz continuity to provide certified
robustness margins for classifiers. We note, however, that in this setting one does not need to handle
the probabilistic aspects and continuous changes that one finds in VAEs.
Robustness in VAEs In the VAE context, [15] argues that the susceptibility of a VAE to ad-
versarial perturbations depends on two factors: how much the encoder qφ(z|x) can be changed
through small changes in input x, and how much reconstruction gθ(z) can be changed through small
changes in the latent variable z. Relating these factors to the “smoothness” of the encoder and de-
coder, [15] targets greater smoothness by controlling the noisiness of the VAE encoding process, so
that “nearby” inputs correspond to “nearby” latent variables and changes in qφ(z|·) induced by an
input perturbation have little effect on reconstruction gθ(z). Similarly, [17] holds that adversarial
examples are possible in VAEs due to non-smoothness in the encoding-decoding process, relating
this to dissimilarity between a VAE’s reconstructions of its reconstructions. Lastly, r-robustness is
proposed in [20], which obtains an approximate bound on the r-robustness margin of VAEs that al-
lows their robustness to be assessed. That work assumes however that input perturbations only affect
the encoder’s mean, not its standard deviation. These works only allow for the assessment of the
robustness of already trained VAEs. Unlike our methods, they do not directly enforce guaranteed
robustness.

7 Conclusion

We have introduced an approach to training VAEs that allows their robustness to adversarial attacks
to be guaranteed a priori. Specifically, we derived provable bounds on the degree of robustness of
a VAE under input perturbation, with these bounds depending on parameters such as the Lipschitz
constants of its encoder and decoder networks. We then showed how these parameters can be con-
trolled, enabling our bounds to be invoked in practice and thereby presenting an actionable way of
ensuring the robustness of a VAE ahead of training.
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A Proofs

Theorem 1 (Probability Bound). Assume qφ(z|x) = N
(
z;µφ(x), diag

(
σ2
φ(x)

))
and that the

deterministic component of the Lipschitz-VAE decoder gθ(·) is a-Lipschitz, the encoder mean µφ(·)
is b-Lipschitz, and the encoder standard deviation σφ(·) is c-Lipschitz. Finally, let zδ ∼ qφ(z|x+δ)
and z¬δ ∼ qφ(z|x). Then for any r ∈ R+, any x ∈ X , and any input perturbation δ ∈ X ,

P [||gθ(zδ)− gθ(z¬δ)||2 ≤ r] ≥ 1−min {p1(x), p2(x)} ,

where

p1(x) :=min

(
1,
a2
(
b2||δ||22 + (c||δ||2 + 2||σφ(x)||2)2

)
r2

)
and

p2(x) :=

C(dz)u(x)
dz
2 exp{−u(x)

2 }
u(x)−dz+2

(
r
a − b||δ||2

)
≥ 0; dz ≥ 2;u(x) > dz − 2

1 o.w.

for u(x) := ( ra−b||δ||2)
2

(c||δ||2+2||σφ(x)||2)2
and constant C(dz) := 1√

π
exp

{
1
2 (dz − (dz − 1) log dz)

}
.

Proof. Since gθ(·) is a-Lipschitz,

||gθ(z1)− gθ(z2)||2 ≤ a||z1 − z2||2 (5)

for all z1, z2 ∈ Z .
Now assume z1 ∼ qφ(z|x1) and z2 ∼ qφ(z|x2) for some x1,x2 ∈ X , such that gθ(z1) and gθ(z2)
are random variables. Eq. (5) then implies

{||gθ(z1)− gθ(z2)||2 ≤ r} ⊇ {a||z1 − z2||2 ≤ r} ,

which in turn implies

P [||gθ(z1)− gθ(z2)||2 ≤ r] ≥ P [a||z1 − z2||2 ≤ r] . (6)

Letting x1 = x + δ and x2 = x such that z1 = zδ and z2 = z¬δ , qφ(z|x) =

N
(
z;µφ(x), diag

(
σ2
φ(x)

))
means

zδ ∼ qφ(z|x+ δ) = N
(
µφ(x+ δ), diag

(
σ2
φ(x+ δ)

))
and

z¬δ ∼ qφ(z|x) = N
(
µφ(x), diag

(
σ2
φ(x)

))
.

Further, since samples from qφ(z|·) are drawn independently in every VAE forward pass, we also
know zδ and z¬δ are independent, and thus, because the difference of independent multivariate
Gaussian random variables is multivariate Gaussian,

zδ − z¬δ ∼ N
(
µφ(x+ δ)− µφ(x), diag

(
σ2
φ(x+ δ)

)
+ diag

(
σ2
φ(x)

))
.

Returning to (6), since ||zδ − z¬δ||2 is a continuous random variable, we can write

P [||gθ(zδ)− gθ(z¬δ)||2 ≤ r] ≥ P
[
||zδ − z¬δ||2 ≤

r

a

]
= 1− P

[
||zδ − z¬δ||2 ≥

r

a

]
. (7)

The proof now diverges, yielding p1(x) and p2(x) respectively.

Obtaining p1(x): Recall Z = Rdz , apply the definition of the `2 norm, and invoke Markov’s
Inequality to obtain

P
[
||zδ − z¬δ||2 ≥

r

a

]
= P

 dz∑
j=1

(zδ − z¬δ)
2
j ≥

( r
a

)2 ≤ E
[∑dz

j=1 (zδ − z¬δ)
2
j

]
(
r
a

)2 . (8)
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Now note that
dz∑
j=1

(zδ − z¬δ)
2
j =

dz∑
j=1

(
σ2
φ(x+ δ) + σ2

φ(x)
)
j

(zδ − z¬δ)
2
j(

σ2
φ(x+ δ) + σ2

φ(x)
)
j

,

so that by the linearity of expectations,

E

 dz∑
j=1

(zδ − z¬δ)
2
j


= E

 dz∑
j=1

(
σ2
φ(x+ δ) + σ2

φ(x)
)
j

(zδ − z¬δ)
2
j(

σ2
φ(x+ δ) + σ2

φ(x)
)
j


=

dz∑
j=1

(
σ2
φ(x+ δ) + σ2

φ(x)
)
j
E

 (zδ − z¬δ)
2
j(

σ2
φ(x+ δ) + σ2

φ(x)
)
j

 . (9)

Because zδ − z¬δ is diagonal-covariance multivariate Gaussian, the (zδ − z¬δ)j are jointly inde-
pendent for all j = 1, . . . , dz , and so we recognize that

(zδ − z¬δ)
2
j(

σ2
φ(x+ δ) + σ2

φ(x)
)
j

has a non-central χ2 distribution with one degree of freedom and non-centrality parameter

(µφ(x+ δ)− µφ(x))2j(
σ2
φ(x+ δ) + σ2

φ(x)
)
j

.

Since for a non-central χ2 random variable Y with n degrees of freedom and non-centrality param-
eter ε [31], E [Y ] = n+ ε, we have

E

 (zδ − z¬δ)
2
j(

σ2
φ(x+ δ) + σ2

φ(x)
)
j

 = 1 +
(µφ(x+ δ)− µφ(x))2j(
σ2
φ(x+ δ) + σ2

φ(x)
)
j

,

and so plugging into (9),

E

 dz∑
j=1

(zδ − z¬δ)
2
j


=

dz∑
j=1

(
σ2
φ(x+ δ) + σ2

φ(x)
)
j

1 +
(µφ(x+ δ)− µφ(x))2j(
σ2
φ(x+ δ) + σ2

φ(x)
)
j


=

dz∑
j=1

(
σ2
φ(x+ δ) + σ2

φ(x)
)
j
+

dz∑
j=1

(µφ(x+ δ)− µφ(x))2j .

Using
dz∑
j=1

(µφ(x+ δ)− µφ(x))2j = ||µφ(x+ δ)− µφ(x)||22

(the definition of the `2 norm), and

||µφ(x+ δ)− µφ(x)||2 ≤ b||δ||2,
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(since µφ(·) is b-Lipschitz), we obtain
dz∑
j=1

(µφ(x+ δ)− µφ(x))2j = ||µφ(x+ δ)− µφ(x)||22 ≤ (b||δ||2)2 = b2||δ||22. (10)

Similarly, using
dz∑
j=1

(
σ2
φ(x+ δ) + σ2

φ(x)
)
j

(11)

≤
dz∑
j=1

σ2
φ(x+ δ)j + σ2

φ(x)j + 2σφ(x+ δ)jσφ(x)j (12)

=

dz∑
j=1

(σφ(x+ δ) + σφ(x))
2
j (13)

=

√√√√ dz∑
j=1

(σφ(x+ δ) + σφ(x))
2
j

2

(14)

= ||σφ(x+ δ) + σφ(x)||22 (15)

(where the above inequality follows from σφ : X → Rdz≥0, and the last equality follows from the
definition of the `2 norm), and

||σφ(x+ δ) + σφ(x)||2
= ||σφ(x+ δ)− σφ(x) + 2σφ(x)||2
≤ ||σφ(x+ δ)− σφ(x)||2 + 2||σφ(x)||2
≤ c||δ||2 + 2||σφ(x)||2

(where the first inequality follows by the triangle inequality, and the second follows from the as-
sumption that σφ(·) is c-Lipschitz), we find

dz∑
j=1

(
σ2
φ(x+ δ) + σ2

φ(x)
)
j
≤ ||σφ(x+ δ) + σφ(x)||22 ≤ (c||δ||2 + 2||σφ(x)||2)2 . (16)

Hence, returning to (8), we see

E
[∑dz

j=1 (zδ − z¬δ)
2
j

]
(
r
a

)2
=

∑dz
j=1

(
σ2
φ(x+ δ) + σ2

φ(x)
)
j
+
∑dz
j=1 (µφ(x+ δ)− µφ(x))2j(

r
a

)2
≤ b2||δ||22 + (c||δ||2 + 2||σφ(x)||2)2(

r
a

)2
=
a2
(
b2||δ||22 + (c||δ||2 + 2||σφ(x)||2)2

)
r2

,

such that

P
[
||zδ − z¬δ||2 ≥

r

a

]
≤

E
[∑dz

j=1 (zδ − z¬δ)
2
j

]
(
r
a

)2 ≤
a2
(
b2||δ||22 + (c||δ||2 + 2||σφ(x)||2)2

)
r2

.

Noting that the right-most term is non-negative, and wanting to have a well-defined probability, we
take

p1(x) :=min

(
1,
a2
(
b2||δ||22 + (c||δ||2 + 2||σφ(x)||2)2

)
r2

)
,
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such that
P
[
||zδ − z¬δ||2 ≥

r

a

]
≤ p1(x).

Obtaining p2(x): Return to Eq. (7). By the triangle inequality,

||zδ − z¬δ||2 ≤ ||zδ − z¬δ − (µφ(x+ δ)− µφ(x)) ||2 + ||µφ(x+ δ)− µφ(x)||2,
and hence

P
[
||zδ − z¬δ||2 ≥

r

a

]
(17)

≤ P
[
(||zδ − z¬δ − (µφ(x+ δ)− µφ(x)) ||2 + ||µφ(x+ δ)− µφ(x)||2) ≥

r

a

]
(18)

= P
[
||zδ − z¬δ − (µφ(x+ δ)− µφ(x)) ||2 ≥

( r
a
− ||µφ(x+ δ)− µφ(x)||2

)]
. (19)

Then, again recalling Z = Rdz ,

P
[
||zδ − z¬δ − (µφ(x+ δ)− µφ(x)) ||2 ≥

( r
a
− ||µφ(x+ δ)− µφ(x)||2

)]
(20)

= P

 dz∑
j=1

(zδ − z¬δ − (µφ(x+ δ)− µφ(x)))2j ≥
( r
a
− ||µφ(x+ δ)− µφ(x)||2

)2
≤ P

 dz∑
j=1

(zδ − z¬δ − (µφ(x+ δ)− µφ(x)))2j(
σ2
φ(x+ δ) + σ2

φ(x)
)
j

≥
(
r
a − ||µφ(x+ δ)− µφ(x)||2

)2
(c||δ||2 + 2||σφ(x)||2)2

 , (21)

where the first equality uses the definition of the `2 norm, and the above inequality between proba-
bilities uses the inequality from (16).
Now, since

zδ − z¬δ ∼ N
(
µφ(x+ δ)− µφ(x), diag

(
σ2
φ(x+ δ)

)
+ diag

(
σ2
φ(x)

))
, (22)

it follows that
(zδ − z¬δ − (µφ(x+ δ)− µφ(x)))j√(

σ2
φ(x+ δ) + σ2

φ(x)
)
j

∼ N (0, 1).

In particular, note that since zδ − z¬δ is diagonal-covariance multivariate Gaussian, the

(zδ − z¬δ − (µφ(x+ δ)− µφ(x)))j√(
σ2
φ(x+ δ) + σ2

φ(x)
)
j

are jointly independent for all j = 1, . . . , dz . Hence, because the sum of squares of dz independent
standard Gaussian random variables has a standard χ2 distribution with dz degrees of freedom,

dz∑
j=1

(zδ − z¬δ − (µφ(x+ δ)− µφ(x)))2j(
σ2
φ(x+ δ) + σ2

φ(x)
)
j

=: Y ∼ χ2
dz .

Letting

u′(x) :=

(
r
a − ||µφ(x+ δ)− µφ(x)||2

)2
(c||δ||2 + 2||σφ(x)||2)2

and u(x) :=

(
r
a − b||δ||2

)2
(c||δ||2 + 2||σφ(x)||2)2

,

we have u′(x) ≥ u(x) by the assumption that µφ(·) is b-Lipschitz, since

||µφ(x+ δ)− µφ(x)||2 ≤ b||δ||2,
and therefore ( r

a
− ||µφ(x+ δ)− µφ(x)||2

)
≥
( r
a
− b||δ||2

)
15



(note also that (c||δ||2 + 2||σφ(x)||2)2 ≥ 0). Then, using (21) with the requirement that( r
a
− ||µφ(x+ δ)− µφ(x)||2

)
≥
( r
a
− b||δ||2

)
≥ 0

to ensure the inequality in (20) is meaningful,

P [Y ≥ u′(x)] ≤ P [Y ≥ u(x)] .

The tail bound for standard χ2 random variables in (3.1) from [32] (which requires u(x) > dz − 2
and dz ≥ 2) then yields

P [Y ≥ u(x)] ≤ C(dz)
u(x)

dz
2 exp

{
−u(x)2

}
u(x)− dz + 2

for constant C(dz) := 1√
π
exp

{
1
2 (dz − (dz − 1) log dz)

}
. Since the expression on the right-hand

side is non-negative under the above conditions, we define

p2(x) :=

C(dz)u(x)
dz
2 exp{−u(x)

2 }
u(x)−dz+2

(
r
a − b||δ||2

)
≥ 0; dz ≥ 2;u(x) > dz − 2

1 o.w.

to ensure a well-defined probability. Then, by the inequalities starting from (17),

P
[
||zδ − z¬δ||2 ≥

r

a

]
≤ p2(x).

Obtaining the final bound: Choosing the least of p1(x) and p2(x) to obtain the tighter upper
bound on P

[
||zδ − z¬δ||2 ≥ r

a

]
, we can plug in to (7), which gives

P [||gθ(zδ)− gθ(z¬δ)||2 ≤ r]

≥ 1− P
[
||zδ − z¬δ||2 ≥

r

a

]
≥ 1−min{p1(x), p2(x)}.

�

Lemma 1.1 (Margin Bound). Given the assumptions of Theorem 1 and a Lipschitz-VAE satisfying
these assumptions, the r-robustness margin of this VAE on input x,

Rr(x) ≥ max {m1(x),m2(x)}

where

m1(x) :=

−4c||σφ(x)||2 +
√
(4c||σφ(x)||2)2 − 4 (c2 + b2)

(
4||σφ(x)||2 − 0.5

(
r
a

)2)
2 (c2 + b2)

andm2(x) := sup {||δ||2 : p2(δ,x) ≤ 0.5} , where p2(δ,x) is as defined in Theorem 1 but we make
explicit the dependence on δ.

Proof. By Theorem 1, for any input perturbation δ ∈ X and any input x ∈ X ,

P [||gθ(zδ)− gθ(z¬δ)||2 ≤ r] ≥ 1−min{p1(x), p2(x)}.

Hence, for our Lipschitz VAE to be r-robust to perturbation δ on input x, by Definition 2.1 it suffices
that

1−min{p1(x), p2(x)} > 0.5.

Recalling Definition 2.2, since for a model f Rr(x) is defined by

||δ||2 < Rr(x) =⇒ P [||f(x+ δ)− f(x)||2 ≤ r] > 0.5,

16



for our Lipschitz-VAE Rr(x) is at least the maximum perturbation norm such that
1−min{p1(δ,x), p2(δ,x)} ≥ 0.5,

or equivalently,
max {sup {||δ||2 : p1(δ,x) ≤ 0.5} , sup {||δ||2 : p2(δ,x) ≤ 0.5}} (23)

(where we make explicit the dependence on δ).
Denoting m1(x) := sup {||δ||2 : p1(δ,x) ≤ 0.5} and rearranging, m1(x) becomes

sup

{
||δ||2 :

(
c2 + b2

)
||δ||22 + 4c||σφ(x)||2||δ||2 + 4||σφ(x)||22 − 0.5

( r
a

)2
≤ 0

}
.

Excluding the degenerate case of c = 0, that is assuming c > 0, this is attained at the maximum root
of the quadratic equation(

c2 + b2
)
||δ||22 + 4c||σφ(x)||2||δ||2 + 4||σφ(x)||22 − 0.5

( r
a

)2
= 0,

provided a root exists, and so by the quadratic formula,

m1(x) =

−4c||σφ(x)||2 +
√
(4c||σφ(x)||2)2 − 4 (c2 + b2)

(
4||σφ(x)||2 − 0.5

(
r
a

)2)
2 (c2 + b2)

.

The second case does not admit a closed-form solution, so we will simply write
m2(x) := sup {||δ||2 : p2(δ,x) ≤ 0.5} .

Choosing the maximum of m1(x) and m2(x) then yields
Rr(x) ≥ max {m1(x),m2(x)} .

�

Theorem 2 (Global Margin Bound). Given the assumptions of Theorem 1 and a Lipschitz-VAE
satisfying these assumptions, but with σφ(x) = σ ∈ Rdz , the global r-robustness margin of this
VAE for all inputs is

Rr ≥ max {m1,m2} ,
where

m1 :=

√
−
(
4||σ||22 − 0.5

(
r
a

)2)
b

for
(
4||σ||22 − 0.5

(
r
a

)2)
< 0; and m2 := sup {||δ||2 : p2(δ) ≤ 0.5}, where p2 is as defined in

Theorem 1, but with u :=
( ra−b||δ||2)

2

4||σ||22
.

Proof. Given a fixed encoder standard deviation, that is substituting σφ(x) = σ ∈ Rdz , we first
have to derive a lower bound on the r-robustness probability to then bound the r-robustness mar-
gin globally. We do this using the machinery of Theorem 1, which — lifting the now-redundant
requirement that the encoder standard deviation be c-Lipschitz — can be invoked without loss of
generality.
In the case of p1 (recall the two bounds in the proof of Theorem 1), plugging in σ yields

P [||gθ(zδ)− gθ(z¬δ)||2 ≤ r] ≥ 1−
E
[∑dz

j=1 (zδ − z¬δ)
2
j

]
(
r
a

)2
= 1−

∑dz
j=1

(
σ2 + σ2

)
j
+
∑dz
j=1 (µφ(x+ δ)− µφ(x))2j
( ra )

2

≥ 1− b2||δ||22 + 4||σ||22(
r
a

)2
= 1− p1
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for p1 :=
a2(b2||δ||22+4||σ||22)

r2 (where the penultimate step follows by (10) and (16)). In the case of
p2, we can directly substitute, obtaining

P [||gθ(zδ)− gθ(z¬δ)||2 ≤ r] ≥ 1− p2

for

p2 :=

C(dz)u
dz
2 exp{−u2 }
u−dz+2

(
r
a − b||δ||2

)
≥ 0; dz ≥ 2;u > dz − 2

1 o.w.

and u :=
( ra−b||δ||2)

2

4||σ||22
. Theorem 2 then follows by identical reasoning to Lemma 1.1. �

B Implementing Lipschitz-VAEs

Previously, we assumed that Lipschitz continuity could be imposed in a VAE’s encoder and decoder.
In practice, ensuring the Lipschitz continuity of a deep learning architecture is non-trivial. Using
[26] as a guide, this section outlines how to provably control the Lipschitz constants of an encoder
and decoder network.3

We define a fully-connected network with L layers as the composition of linear transformations Wl

and element-wise activation functions ϕl(·) for l = 1, . . . , L, where the output of the l-th layer

hl := ϕl(Wlhl−1).

We let network input x =: h0 and network output y := hL.

B.1 Ensuring Lipschitz Continuity with Constant 1

We would like to ensure a fully-connected network is M -Lipschitz for arbitrary Lipschitz constant
M . It has been shown that a natural way to achieve this is by first requiring Lipschitz continuity
with constant 1 [26].
As 1-Lipschitz functions are closed under composition, if we can ensure that for every layer l,
Wl and ϕl(·) are 1-Lipschitz, then the entire network will be 1-Lipschitz. Most commonly-used
activation functions, such as the ReLU and Sigmoid, are already 1-Lipschitz [33, 34], and hence we
need only ensure that Wl is also 1-Lipschitz.
This can be done by requiring Wl to be orthonormal, since Wl being 1-Lipschitz is equivalent to
the condition

||Wl||2 := sup
||x||2≤1

||Wlx||2 ≤ 1, (24)

where ||Wl||2 equals the largest singular value of Wl. The singular values of an orthonormal matrix
all equal 1, and so the orthonormality of Wl implies (24) is satisfied.
In practice, Wl can be made orthonormal through an iterative algorithm called Björck Orthonor-
malization, which on input a matrix A finds the “nearest” orthonormal matrix to A [26]. Björck
Orthonormalization is differentiable and so allows the encoder and decoder networks of a Lipschitz-
VAE to be trained using gradient-based methods, just like a standard VAE.

B.2 Ensuring Lipschitz Continuity with Arbitrary Constants

Now that we can train a 1-Lipschitz network, we would like to generalize this method to arbitrary
Lipschitz constant M . To do so, note that if layer l has Lipschitz constant Ml, then the Lipschitz
constant of the entire network is M =

∏L
l=1Ml [6].

Hence, for our L-layer fully-connected neural network to be M -Lipschitz, it suffices to ensure that
each layer l has Lipschitz constant M

1
L . This is actually simple to achieve, because if we continue

to assume ϕl(·) is 1-Lipschitz, Lipschitz constant M
1
L in layer l follows from scaling the outputs of

each layer’s linear transformation by M
1
L .

3For simplicity, we focus on fully-connected architectures, although the same ideas extend, for example, to
convolutional architectures [27].
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B.3 Selecting Activation Functions

While the above approach is sufficient to train networks with arbitrary Lipschitz constants, a result
from [26] shows it is not sufficient to ensure the resulting networks are also expressive in the space
of Lipschitz continuous functions. Informally, the result states that the expressivity of a Lipschitz-
constrained network is limited when its activation functions are not gradient norm-preserving [26] .
Since activation functions such as the ReLU and the Sigmoid do not preserve the gradient norm, the
expressivity of Lipschitz-constrained networks that use such activations will be further limited.
To address this, [26] introduces a gradient norm-preserving activation function called GroupSort,
which in each layer l groups the entries of matrix-vector product Wlhl−1 into some number of
groups, and then sorts the entries of each group by ascending order. It can be shown that when each
group has size two,

(1 0)GroupSort
((

y
0

))
= ReLU(y)

for any scalar y [26]. Unless we need to restrict a network’s outputs to a specific range, we employ
the GroupSort activation in our implementation of Lipschitz-VAEs.

C Investigated Learned Latent Spaces

While we are primarily interested in the robustness of Lipschitz-VAEs, we may also wish to under-
stand whether Lipschitz-VAEs differ from standard VAEs as models, for example in the functions
they learn.
To build our understanding in this regard, we study the latent spaces learned by Lipschitz-VAEs,
training standard and Lipschitz-VAEs with latent space dimension dz = 2 and visualizing their
learned encoders qφ(z|x). As shown in Figure 6, the encoders learned by Lipschitz and standard
VAEs differ in their scale. Whereas the encoder of a standard VAE remains tightly clustered about
the prior p(z) = N (z;0, I), the encoders of the Lipschitz-VAEs disperse mass widely in latent
space.
This apparent rescaling of the latent space in Lipschitz-VAEs has two important consequences, the
first of which is that the prior and encoder have little overlap. This is significant because it is common
to generate data points with a trained VAE by drawing samples from the prior and passing these to
the decoder. In a rescaled latent space where the prior and encoder have little overlap, many samples
from the prior will be “out-of-distribution” inputs to the decoder.
The second consequence of the latent space being rescaled is that there risks being less overlap
between qφ(z|·) for any two inputs. In the limit, the latent space then devolves into a look-up table
[35], which is undesirable because the meaning of interpolated points in latent space — that is,
points between areas of high density in terms of qφ(z|·) — is lost.
We speculate that the rescaling of latent spaces in Lipschitz-VAEs can be explained by the relative
importance of the likelihood and KL terms, log pθ(x|z) and KL (qφ(z|x)||p(z)) respectively, in the
VAE objective in (1). By Definition 2.3, a Lipschitz continuous function is one whose rate of change
is constrained, so in some sense such a function is “simpler” than others not satisfying the property.
It seems plausible then that — to achieve good input reconstructions while using simpler functions
than a standard VAE — a Lipschitz-VAE might rescale the latent space to be able to adequately
differentiate between latent samples corresponding to different inputs. This might happen even at the
expense of the encoder being distant from the prior, causing KL (qφ(z|x)||p(z)) to grow, since the
likelihood term typically dominates the KL term and so gains in the likelihood term from rescaling
the latent space might outweigh the resulting penalty from the KL term.
We test this hypothesis by training Lipschitz-VAEs with the KL term upweighted by hyperparameter
β, as in a β-VAE [5] (we term Lipschitz-VAEs trained with this modified objective Lipschitz β-
VAEs). As can be seen in Figure B.7, and as predicted by our hypothesis, we find that by increasing
the weight assigned to the KL term — that is, using β > 1 — the scaling of the latent space is
mitigated.
In sum, the experiments in this section reveal that Lipschitz-VAEs learn qualitatively different en-
coders from standard VAEs, exhibiting rescaling behavior that we link both to the challenge of
performing reconstructions using Lipschitz continuous functions and the characteristics of the VAE
objective. Our experiments also outline how possible adverse effects of Lipschitz continuity con-
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(a) Standard VAE.

(b) Lipschitz-VAE, Lipschitz const. 5. (c) Lipschitz β-VAE, Lipschitz const. 5,
β = 5.

(d) Lipschitz-VAE, Lipschitz const. 10. (e) Lipschitz β-VAE, Lipschitz const. 10,
β = 5.

Figure B.7: The encoders qφ(z|x) learned by different types of VAE. In each subfigure, an ellipse

represents qφ(z|xi) = N
(
z;µφ(xi), diag

(
σ2
φ(xi)

))
for one input xi, where ellipses are centered

at the encoder mean, and cover one standard deviation. The prior, p(z) = N (z;0, I), is overlaid in
black for 1, 2 and 3 standard deviations. Lipschitz-VAEs exhibit learned encoders that are widely
dispersed in latent space, in contrast with the learned encoder of a standard VAE. This behavior can
be altered by upweighting the KL term in the VAE objective in (1), as in a β-VAE [5].
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straints on data generation and latent space interpretability might be addressed through a small
modification of the VAE objective.

D Estimating Rr(x)

Algorithm 2 [20]’s algorithm to estimate r-robustness margin Rr(x). Starting with estimate max R
and decrementing by step size α at each iteration (until reaching 0), the algorithm performs T
maximum damage attacks with input perturbations constrained to the current estimate for the r-
robustness margin. The first time r-robustness is satisfied under all T attacks, the algorithm returns
the current estimate as the estimated r-robustness margin R̂r(x).
Inputs : x, r, starting estimate max R, step size α, number of samples S, number of random restarts

T
Output: Estimated r-robustness margin R̂r(x)
Estimation routine

1 R̂r(x)← max R while R̂r(x) > 0 do
2 probabilities← [] for t = 1, . . . , T do

// Performs a maximum damage attack according to the objective in
(4)

3 δt ← MaxDamageAttack with the constraint ||δ||2 ≤ R̂r(x), randomly initialized dis-
tances← [] for s = 1, . . . , S do

4 zδt ∼ qφ(z|x+ δt) z¬δt ∼ qφ(z|x) distances.append(||gθ(zδt)− gθ(z¬δt)||2)
// Estimates the r-robustness probability

5 probability← length(distances[distances≤ r])
S probabilities.append(probability)

// Checks that the estimated probabilities are greater than 0.5,
across random restarts

6 if length(probabilities[probabilities > 0.5])= T then
7 return R̂r(x)

8 R̂r(x)← R̂r(x)− α
// Indicates when no positive r-robustness margin is found

9 return “No positive Rr(x) found.”
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E Qualitative Evaluations of Robustness

(a) Standard VAE, ||δ||2 ≤ 1. (b) Lipschitz-VAE, ||δ||2 ≤ 1.

(c) Standard VAE, ||δ||2 ≤ 3. (d) Lipschitz-VAE, ||δ||2 ≤ 3.

(e) Standard VAE, ||δ||2 ≤ 5. (f) Lipschitz-VAE, ||δ||2 ≤ 5.

Figure E.8: Representative results from latent space attacks as in Eq. (3) on a standard VAE and a
Lipschitz-VAE with Lipschitz constant 5. Each latent space attack looks for an input perturbation
δ such that, applied to an image of a written 7, the attacked VAE reconstructs an image resembling
a written 2. From left to right in each subfigure: the original image of the written 7; a reconstruc-
tion of the original image, absent input perturbation; a reconstruction of the original image under
input perturbation; the target image for the latent space attack, a written 2. A latent space attack is
more successful when reconstructions of the original image under input perturbation more closely
resemble the target image. We see latent space attacks are more successful in both the standard and
Lipschitz-VAE as the norm of the perturbation ||δ||2 is allowed to increase (moving from top to
bottom), but for a given perturbation norm are less successful on the Lipschitz-VAE (right column)
than on the standard VAE (left column).

F Network Architectures

To properly handle reconstructions on [0, 1]-valued data, we let the likelihood in the VAE objective
be Continuous Bernoulli [36].
In the Lipschitz-VAEs we train, all activation functions bar the final-layer activations are chosen
to be the GroupSort activation (recall Section B.3), while in the standard VAEs we train, these are
chosen to be the ReLU. In both types of VAE, the final-layer activation in the encoder standard de-
viation σφ(·) uses a Sigmoid to ensure positivity, while the final-layer activation in the deterministic
component of the decoder uses a Sigmoid to restrict reconstructions for binary data. The final layer
of the encoder mean takes no activation function.
All models were trained on a 13-inch Macbook Pro from 2017 with 8GB of RAM and 2 CPUs.
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