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Abstract
We present ongoing work on a new automatic
code generation approach for supporting quan-
tized generative inference on LLMs such as
LLaMA or OPT on off-the-shelf CPUs. Our
approach is informed by the target architecture
and a performance model, including both hard-
ware characteristics and method-specific accu-
racy constraints. Results on CPU-based infer-
ence for LLaMA models show that our approach
can lead to high performance and high accu-
racy, comparing favorably to the best existing
open-source solution. A preliminary implemen-
tation is available at https://github.com/
IST-DASLab/QIGen.

1. Introduction
The impressive performance of generative large language
models (LLMs) (Black et al., 2022; Zhang et al., 2022;
Touvron et al., 2023) has led to significant interest in ex-
ecuting them on user devices with limited computational
power. Interestingly, the computational envelope of genera-
tive workloads renders this plausible: when executing the
popular one-token-at-a-time generation based on a given
cached context, the operational cost of obtaining single out-
puts is relatively small, as the computation can be mapped
onto relatively inexpensive matrix-vector products, as op-
posed to the massive matrix-matrix multiplications that are
otherwise common in deep learning.

Thus, the key challenge in personalized generative LLM
inference becomes memory: well-performing models have
extremely large parameter counts, which often exceed the
memory capacity of consumer devices, and induce high
memory transfer costs at runtime, overwhelming bandwidth.
To address this issue, a series of quantization-based methods
specialized to LLMs have been recently proposed (Dettmers
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et al., 2022; Dettmers & Zettlemoyer, 2022; Frantar et al.,
2022; Park et al., 2022; Xiao et al., 2022; Yao et al., 2022),
which work by reducing the bitwidth of data types used
for storing weights, activations, or both, with the goal of
minimizing the impact on accuracy.

Focusing specifically on generative inference, where the
size of the weights is the main bottleneck, the currently best-
performing method is GPTQ (Frantar et al., 2022), which
achieves near-lossless quantization to 4-bit weights, and can
even accurately support 2 and 3-bit weights by reducing the
granularity to smaller weight groups, e.g., by jointly quantiz-
ing blocks of 64 weights using a shared scale and zero-point.
Similar grouping techniques can also allow simpler round-
to-nearest (RTN) quantization to preserve accuracy using
4-bit weights (Dettmers & Zettlemoyer, 2022).

Given this algorithmic progress, a remaining key chal-
lenge is the efficient system support for these compressed
numerical formats, to execute LLMs on user devices ac-
curately and fast. Existing academic proposals such as
LLM.int8() (Dettmers et al., 2022), GPTQ (Frantar et al.,
2022), and SmoothQuant (Xiao et al., 2022), and open-
sourced solutions such as llama.cpp (Gerganov, 2023), man-
ually develop custom kernels for their specific target hard-
ware, such as GPUs or CPUs. Unfortunately, this approach
can be extremely time-intensive and error-prone, and re-
quires potentially re-writing kernels from scratch to support
new quantization formats and target hardware.

In this paper, we present ongoing work on a new automatic
code generation approach, called QIGen, for obtaining effi-
cient and general kernels for generative LLM inference of
varying bitwidth. At a high level, our approach provides
customized efficient implementations of the low-level ma-
trix operations required to support multiplication operations
on quantized variants of LLM weight matrices. Our ap-
proach is based on a performance model which is informed
both by hardware characteristics, e.g., cache size, and by
accuracy constraints pertaining to the quantization methods,
e.g., the use of weight grouping. We present results gen-
erating efficient low-bitwidth kernels for general purpose
CPUs supporting the popular AVX2 intrinsics, which we
interface with Pytorch (Paszke et al., 2019), and showcase
on the accurate LLaMA family (Touvron et al., 2023).

https://github.com/IST-DASLab/QIGen
https://github.com/IST-DASLab/QIGen
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2. Background
Quantization. Quantization is an efficient compression
technique for reducing memory utilization by representing
data using a limited number of values, typically integer
levels. We define a quantization function as a map Q from
real numbers to integers. Formally,

Q : (R,N) 7→ [0, 2b),

where b is the number of bits we want to use to represent
the new value. Given a vector x ∈ Rn, we define Q(x, b) as

Q(x, b) = rnd

(
x−min(x)

max(x)−min(x)
(2b − 1)

)
,

where max(x) and min(x) is the maximum and minimum
value in x, respectively, and rnd rounds to nearest. This
equation can be rewritten as xq = rnd((x− z)s(x)), with
z = min(x) and s(x) = (2b − 1)/(max(x) − min(x)).
Similarly, the corresponding dequantization function is

D(xq) = s(xqz).

As example, consider the dot-product between y ∈ Rn and
xq ∈ [0, 2b). The resulting value is given by

⟨y, s(xq − z)⟩ = s(⟨y, xq⟩ − z⟨y, 1⟩). (1)

To improve accuracy, we can increase the quantization gran-
ularity and store more s and z values for each vector. We
denote the resulting partition by groups. To compute the
dot-product using these additional values, we only need to
modify 1. In particular, we rewrite it as

P∑
i

⟨yi, si(xiq − zi)⟩ =
P∑
i

si⟨yi, xiq⟩ −
P∑
i

zi⟨yi, 1⟩, (2)

where P is the number of groups.

LLM quantization. There has been significant focus on
accurate post-training quantization (PTQ) methods (Nagel
et al., 2019) that scale and are accurate for LLMs. Early
work (Yao et al., 2022; Dettmers et al., 2022; Park et al.,
2022) used direct rounding to the nearest quantization
level (RTN), reducing group size to obtain higher accu-
racy at the cost of more space. LLM.int8() (Dettmers
et al., 2022) quantized activations as well, isolating “outlier
features” for which higher bit-width is used. These ap-
proaches induce quantization errors of 5–10% in perplexity
increase for OPT (Zhang et al., 2022) or LLaMA (Touvron
et al., 2023) models, relative to the uncompressed baseline.
GPTQ (Frantar et al., 2022) proposed a higher-accuracy
approach (e.g., 3–5% perplexity increase at 4-bit), via an
approximate solver minimizing the layer-wise squared er-
ror between the quantized and original layers. Dettmers

load(address) load from memory address
store(address,a) stores a at memory address
broadcast(a) fills a register with a
fmadd(a,b,c) returns a · b+ c

reduce add(a) returns the sum of the elements of a
srli(a,i) returns a >> i

and(a,m) returns a bitwise and m

cvt int float(a) converts a to float

Table 1: List of vector instructions used in the implementa-
tion and their semantics.

& Zettlemoyer (2022) provided an in-depth overview of
the accuracy-compression trade-offs underlying these meth-
ods, establishing that 4-bit quantization is an optimal point
for round-to-nearest-based methods, whereas higher com-
pression can be achieved via data-aware methods such as
GPTQ.

All the above methods focused on GPU inference as their
main target scenario. By contrast, there has been much less
focus on CPU-based inference; for this, the open-source
LLaMA.cpp/GGML project (Gerganov, 2023) can provide
reasonable generative performance on end devices such
as Intel/AMD/ARM CPUs, showing that running models
locally in such setups is feasible.

Notation. We simplify the names of AVX SIMD vector
instructions for readability in our exposition. The semantics
of the instructions can be seen in Table 1.

3. Code Generation
We consider CPU-based generative inference as the motivat-
ing setup for our work, although our techniques are general,
and should be extensible to other settings as well.

Data format. Our implementation of linear layers uses
quantized weights obtained via GPTQ, in which the weights
are represented using 32-bit integers to store multiple con-
secutive values. For instance, with 4-bit quantization, a
single “unit” can represent 8 values, and with 2-bit quantiza-
tion, it can represent 16 values. Some bit granularities may
require specialized implementations. For example, if we
use 3-bit, we store 32 values in three consecutive integers.

We quantize the weight matrices in a column-wise manner.
For 4-bit quantization, each entry (i, j) in the quantized
matrix contains the values at indices (8i : 8i+ 7, j) of the
uncompressed matrix. For each column j, we also store
one scale sj and one zj value. Additionally, we can also
quantize the zj value. The changes in the matrices after
quantization are illustrated in Figure 1.

The total memory used to store a weight matrix of size
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Figure 1: Reduction in matrix size due to quantization.
Given a weight matrix W of size n×m, we obtain a com-
pressed matrix Wq of size n/(32/b)×m and two one dimen-
sional vectors z and s of size m. We quantize the elements
column-wise as shown by the colors. For example, 8 values
in the red rectangle become 1 value in the red square.

N×M is thus bNM+32M+bM instead of 32NM . The
32M is for the sj stored in single-precision floating point.
We obtain a significant reduction in memory usage by a
factor of ≈ 32/b.

Computation. LLMs typically comprise a series of linear
layers, where the input is a vector. As a result, matrix-vector
multiplications (GEMV) form the core of our computations.
In Algorithm 1, we present a straightforward implementa-
tion of a 4-bit qGEMV (quantized general matrix-vector
multiply) based on the factorization in (1). The approach
involves computing the dot-products using integer represen-
tations and scaling and transposing the result once after the
final reduction. To extract eight rows from the quantized
weight matrix, considering 4-bit quantization, we utilize the
auxiliary function unpack as presented in Algorithm 2.

Algorithm 1 4-bit qGEMV routine.

1: In: W ∈ N
n
b ×m, s ∈ Rm, z ∈ Rm, x ∈ Rn, x̂ ∈ R

2: Out: y = xW
3: for j = 0 : m do
4: acc← broadcast(0)
5: for i = 0 : 8 : n do
6: w ←load(&W [i/8][j])
7: l0:8 ← unpack(w)
8: for ii = 0 : 8 do
9: xii ← broadcast(x[i+ ii])

10: acc← fmadd(xii, lii, acc)
11: end for
12: end for
13: w[j]← s[j] ∗ (reduce add(acc)− z[j] ∗ x̂)
14: end for

Algorithm 2 AVX2 4-bit Unpack Routine.
1: In: v
2: Out: l0 to l7
3: mask ← broadcast(15)
4: for i = 0 : 8 do
5: si ← srli(v, i ∗ 4)
6: ai ← and(si,mask)
7: li ← cvt int float(ai)
8: end for

Figure 2: Visual representation of data used in the Micro-
GEMV step. To store xµ, Wµ, and yµ we need mu, mutu
and tu registers, respectively. In each step of the algorithm
we multiply one element of xµ by a register containing 8
values of Wµ, to obtain 8 values of yµ. Considering the grey
cells, we have yµ,3 = yµ,3 + xµ,1 ·Wµ,1,17:24.

Mini-GEMV. To improve performance, we exploit that
weight matrices in a neural network are set at compile time.
By considering the size of the weight matrices and the cache
size of the CPU, we can store the matrices in sequential
blocks using the Z-curve order (Valsalam & Skjellum, 2002).
This approach improves spatial locality, and thus cache
usage, minimizes false sharing when using multiple threads,
and minimizes TLB misses.

We utilize a model similar to (Yotov et al., 2005) for op-
timizing cache performance by dividing the computation
into Mini-GEMVs. Specifically, we partition the input and
output vectors and the weight matrix into blocks of sizes
mb × 1 and mb × btb/32, respectively. The term btb/32
accounts for packing multiple values into a single 32-bit
integer. For temporal locality, we set the block dimensions
such that

32mb + bmbtb + 32tb ≤ γ, (3)

where γ represents the size in bits of the L1 data cache.

Micro-GEMV. In the next step aim for an efficient in-
nermost loop of the computation. In particular, we use
different instructions based on the specification of the tar-
geted CPU. The specification may include the available in-
structions (such as AVX2, AVX512, or AMX), the number
of floating-point ports, and the number of available FMA
(fused multiply-add) ports. By tailoring the instructions
to the specific CPU, we can maximize register usage and
instruction-level parallelism, leading to improved perfor-
mance during computation.

In addition, we divide the Mini-GEMVs further into Micro-
GEMVs operating on an mu-sized part xµ of x, tu-sized
part yµ of y and thus an mu× tu block Wµ of W as shown
in Fig. 2. xµ and Wµ need to load different values, while
yµ remains in registers. We show a sketch of the modified
innermost loop in Algorithm 3. We set

mu +mutu + tu ≤ η, (4)

where η is the number of vector registers, to reduce the
number of register spills. For example, AVX/AVX2 have
η = 16.
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Finally, we include mu and tu in (3) to simplify genera-
tion and reduce cleanup code. The final model equation is
therefore

32mb + bmbtb + 32tb ≤ γ,

tb mod tu = 0, mb mod mu = 0.
(5)

We find mu and tu through empirical search. With these
fixed, we maximize the left-hand side of the inequality to
maximize cache utilization.

Algorithm 3 AVX2 4-bit µqGEMV Routine.

1: y1 ← load(&y[j])
2: . . . // Load the values of y in tu registers, and use them as

vector accumulators.
3: ytu ← loadu(&y[j + tu])
4: for i = 0 : mu : m do
5: w1,1 ← load(&W [i/8][j])
6: . . . // Load the values of W in tumu registers.
7: wtu,mu ← load(&W [(i+mu)/8][j + tu])
8: x1 ← broadcast(&x[i])
9: . . . // Load the values of x in mu registers.

10: xmu ← broadcast(&x[i+mu])
11: . . . // Compute
12: end for
13: store(&y[j], y1)
14: . . . // Store back tu registers.
15: store(&y[j + tu], ytu)

Finally, we present an overview of the code generation meta-
algorithm below.

Algorithm 4 QIGen Generation Overview.
1: Fetch γ and η
2: Find mu and tu by optimizing (4) via search.
3: Find mb and tb by maximising the left-hand side of (5) using

integer-programming.
4: Generate the Micro-GEMV kernels for the CPU.

4. Evaluation
We assess the effectiveness and precision of our imple-
mentation by comparing it with the Python bindings for
llama.cpp (Gerganov, 2023)1, and by presenting the per-
plexity values on the standard wikitext2 dataset (Merity
et al., 2016). For this preliminary version, we have executed
our generator on the AVX2 instruction set. However, the
instructions that we use have equivalents on all SIMD vector
architectures.

Goals and setup. We compare our approach to llama.cpp,
both in terms of inference throughput (tokens generated
/ second) as well as in terms of accuracy of the resulting
models, measured in terms of perplexity (PPL). We
use models generated using the GPTQ quantization

1https://github.com/abetlen/llama-cpp-python

method (Frantar et al., 2022), whereas llama.cpp uses
pre-generated models using their custom q4 0 quantization
format. For performance measurements we use an
AMD EPYC 7742 64-Core processor running 64 threads.
We compile our code using gcc 9.4.0 with -O3,
-mavx, -mavx2, -mfma, -march=native,
-ffast-math, -ftree-vectorize flags, and we
parallelize using OpenMP 4.5. We compile llama.cpp
using OpenBLAS.

Accuracy. We begin by examining the accuracy (perplex-
ity) of our generated models on the wikitext2 dataset,
which is standard in this setting (Frantar et al., 2022; Yao
et al., 2022). Moreover, Dettmers and Zettlemoyer have
shown that perplexity is closely correlated with average per-
formance across zero-shot tasks (Dettmers & Zettlemoyer,
2022). The results for running GPTQ with standard parame-
ters across the LLaMA model family are shown in Table 2.

llama-7b (5.68) llama-13b (5.09) llama-30b (4.10)

Group size 4bit 3bit 2bit 4bit 3bit 2bit 4bit 3bit 2bit

128 5.81 6.43 23.58 5.19 5.51 15.88 4.21 4.63 11.13
64 5.79 6.23 14.15 5.18 5.49 11.13 4.19 4.55 9.10
32 5.77 6.11 10.24 5.15 5.40 8.37 4.18 4.47 7.22
16 5.76 5.99 8.30 5.13 5.31 7.11 4.16 4.39 6.19

Table 2: Perplexity values evaluated on the wikitext2
dataset. The perplexity of the floating point model is given
in brackets next to their name.

We observe that 4bit quantization generally preserves ac-
curacy, across all models within a few relative percentage
points, and that results improve when decreasing group size.
(The only exception is LLaMA-7b group size 32, for which
we believe some additional hyper-parameter tuning may be
beneficial.) As also noted in the original paper, the relative
accuracy drop decreases with model size, to the point where
small group sizes are nearly lossless on the larger models.

Throughput performance. Next, we compare the perfor-
mance of our generated kernels to those of llama.cpp. For a
fair comparison, we consider models quantized to a 4bit for-
mat. For llama.cpp, we specifically executed their q4 0
quantization format, which yields the best performance
among all their supported formats. (According to their
documentation, this would correspond to a group size of 32
using our implementation.)

We generate different variants for our kernels, varying the
grouping between 16 and 128 elements, as well as using full
columns, trading off accuracy for space. For full columns,
we can use Equation (1) to reduce the number of floating
point operations and loads in the innermost loop. On the
other hand, for grouped models, we need to use Equation (2).
Note that, while Equation (1) requires storing the values of
y only once, Equation (2) requires n/g additional stores,
where n is the number of rows and g is the group size.
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Figure 3: Changes in performance and perplexity between different group sizes used. In 3(a) and in 3(b) we give the
measurements for our 3bit and 4bit implementations respectively. Overall we do not notice major performance difference
between 3bit and 4bit kernels.
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Figure 4: Performance comparison in token/seconds of
our different implementations, grouped and non grouped,
vs. llama.cpp q4 0 quantization method. We notice perfor-
mance benefits arising from bigger groups.

From the results shown in Fig. 4, we observe that our ker-
nels outperform llama.cpp by up to 2.6× when using full
columns on the 13 billion parameter model, and by approx-
imately 2× when using group implementations. However,
we observed a lower performance than llama.cpp for the 30b
case for group sizes 16 and 32. We believe that this is due
to the assumptions we introduce to solve (5), and should be
improvable by further examination.

We investigate the full accuracy/performance trade-off in
Fig. 3, where we show the relationship between the perfor-
mance in tokens/seconds and the perplexity of our 3bit and
4bit models in Fig. 3(a) and Fig. 3(b) respectively. We found
that for smaller group sizes, performance decreased while
accuracy increased. It is important to note that overall, the

Version Group Size Memory (MiB)
LlaMA 7b FP32 - 26555

3 Bit 128 8072
4 Bit 128 8814

LlaMA 13b FP32 - 50712
3 Bit 128 14333
4 Bit 128 16483

LlaMA 30b FP32 - 125614
3 Bit 128 31173
4 Bit 128 37176

Table 3: Comparison of memory usage in MiB used to
generate a 128 token sentence.

performance between the two implementations is similar.

Memory consumption. Finally, we report in Table 3 the
total memory in MiB used to generate a 128 token long
sentence using floating point weights and our 3bit and 4bit
quantized kernels with a group size of 128. The results
were obtained for LlaMA models with 7, 13, and 30 billion
parameters. The 3bit kernels showed a reduction of up to
4x, while the 4bit kernels showed a reduction of up to 3.3x
times compared to the floating point implementations.

5. Discussion
We provided evidence that an automatic code generation
approach can yield strong results for quantized inference
over large language models. Our results show that one can
obtain state-of-the-art CPU inference performance using
our methods, with minimal accuracy loss when compared
to the uncompressed baseline. Our results can be extended
along several directions: improving practical performance
of existing kernels through fine-tuning, as well as targeting
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different CPU architectures and accelerator hardware.
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