
A Canonicalization Perspective on
Invariant and Equivariant Learning

George Ma∗1 Yifei Wang∗2 Derek Lim2 Stefanie Jegelka3 Yisen Wang4,5†
1 School of EECS, Peking University

2 MIT CSAIL
3 TUM CIT/MCML/MDSI & MIT EECS/CSAIL
4 State Key Lab of General Artificial Intelligence,

School of Intelligence Science and Technology, Peking University
5 Institute for Artificial Intelligence, Peking University

Abstract

In many applications, we desire neural networks to exhibit invariance or equivari-
ance to certain groups due to symmetries inherent in the data. Recently, frame-
averaging methods emerged to be a unified framework for attaining symmetries
efficiently by averaging over input-dependent subsets of the group, i.e., frames.
What we currently lack is a principled understanding of the design of frames. In
this work, we introduce a canonicalization perspective that provides an essen-
tial and complete view of the design of frames. Canonicalization is a classic
approach for attaining invariance by mapping inputs to their canonical forms.
We show that there exists an inherent connection between frames and canonical
forms. Leveraging this connection, we can efficiently compare the complexity
of frames as well as determine the optimality of certain frames. Guided by this
principle, we design novel frames for eigenvectors that are strictly superior to
existing methods—some are even optimal—both theoretically and empirically.
The reduction to the canonicalization perspective further uncovers equivalences
between previous methods. These observations suggest that canonicalization
provides a fundamental understanding of existing frame-averaging methods and
unifies existing equivariant and invariant learning methods. Code is available at
https://github.com/PKU-ML/canonicalization.

1 Introduction

When designing machine learning models, incorporating data symmetry provides a strong inductive
bias that facilitates learning and generalization [55, 57, 64], as evidenced in multiple applications
like convolutional neural networks [30], graph neural networks [52], point clouds [47, 48], etc. Often
these symmetry priors require models to be invariant or equivariant to certain groups G. Among
these approaches, model-specific methods restrict every model component to respect data symmetries,
which, however, often sacrifices expressive power [68, 39]. On the other hand, model-agnostic
methods allow the use of arbitrary (non-invariant) base models, and ensure invariance or equivariance
through averaging over group actions [40, 69, 45]. This approach can attain universal expressive
power with first-order backbones, but comes with high computation cost for exponentially large
groups (e.g., permutation).

∗Equal Contribution. George Ma has graduated from Peking University, and is currently a Ph.D. student at
UC Berkeley.

†Corresponding Author: Yisen Wang (yisen.wang@pku.edu.cn).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/PKU-ML/canonicalization

To alleviate the latter challenge, frame averaging (FA) [45] has been recognized to be a general
framework that can achieve invariance and equivariance efficiently by averaging over a small (input-
dependent) subset of the group F(X) ⊂ G, known as a frame. Frame averaging can improve the
averaging complexity of orders of magnitude, and has found wide applications in multiple fields such
as graph neural networks [43], materials modeling [13], antibodies generation [38], etc. Nevertheless,
existing frames are still computationally prohibitive in many domains, in particular, exponentially
large for graphs [45] and eigenvectors [36], making it an intriguing problem to explore the design of
more efficient frames of lower complexity.

However, a key challenge in this direction is a lack of rigorous ways to characterize the complexity of
frames, since existing frames in the literature are still heuristically designed. Although it sounds like
a being only of theoretical interest, the ability to characterize the complexity and expressiveness of
algorithms has played a vital role in the development of modern algorithms and deep learning models
[27]. As an example, the WL hierarchies [65, 54, 72, 71, 73], alongside other complexity measures
[46], have been the guideline for developing expressive graph neural networks [17, 39, 74]. However,
for averaging methods, we still lack a formal language to quantify, compare, and improve different
approaches, which hinders principled development in this area.

In this paper, we propose canonicalization as an essential view of frame averaging and a practical yet
principled measure for the complexity of frames. Canonicalization is a classical technique with wide
applications in graph theory [5], algebra [41] and geometry [4], and it has also recently been explored
for learning with symmetry [36]. The key idea of a canonicalization C is to map all inputs that are
equivalent under a group G to the same canonical form C(X). With the canonical input C(X), any
(non-invariant) base neural network ϕ will give a G-invariant mapping. We show that for a given
group, the differences between any frames can be reduced to the differences of their corresponding
canonicalizations. Moreover, in contrast to frames that are generally hard to analyze, we show that
the canonicalization perspective is much more fertile, leading to a set of theoretical conditions and
practical principles for quantifying the complexity and expressiveness of different frames.

To illustrate the benefits of this canonicalization framework, we focus on the symmetries of eigenvec-
tors (sign and basis group), which covers a wide range of applications like graph learning [36, 33],
PCA methods [32] and spectral clustering [3]. In this domain, we show that the canonicalization
perspective now allows us to answer some long-standing theoretical questions and derive some
better or even optimal frames. Specifically, we reveal that for sign invariance (a major concern for
eigenvectors), any sign-invariant network, including the popular SignNet [33], can be reduced to the
same input canonicalization, equivalently. Building on this fundamental result, we easily resolve
the open problem of SignNet’s universality, by showing that it is not a universal approximator of
functions that are sign invariant and permutation equivariant; we also show how to modify SignNet
to be universal with minimal changes. Moreover, as a concrete, practical application, we develop
new canonicalizations and frames for eigenvectors, named Orthogonal Axis Projection (OAP), which
attain optimal or at least better-than-prior complexities for unconstrained and constrained scenarios.

At last, we validate our theoretical findings on the EXP dataset, showing that our canonicalization
and frames indeed yield orders of lower complexity while demonstrating expressive power beyond
1-WL for distinguishing non-isomorphic graphs. We also show that permutation-equivariant OAP
canonicalizes more eigenvectors than previous methods, resulting in better performance on the ZINC
and OGBG molecular graph tasks.

2 Preliminaries

Let f : X → Y be a function and G be a group acting on X and Y . We say f is invariant to G
(or G-invariant) if for all g ∈ G and X ∈ X , we have f(g · X) = f(X). Similarly, we say f is
equivariant to G (or G-equivariant) if for all g ∈ G and X ∈ X we have f(g ·X) = g · f(X). We
treat invariance as a special case of equivariance by letting G act on Y as the identity transformation.
Existing research has developed neural networks with specific equivariance properties, such as
permutation invariance/equivariance [70, 53], rotation invariance/equivariance [62, 60, 63], sign/basis
invariance [33], sign equivariance [32], and multi-set equivariance [75].

In the rest of the paper, we define V,W to be vector spaces with norms ∥·∥V , ∥·∥W , and G be a group.
The elements g ∈ G act on vectors in V,W with the group’s representations ρ1 : G→ GL(V) and
ρ2 : G→ GL(W), where GL(V) is the space of invertible linear maps V → V . The group G induces

2

an equivalence relation on V , such that u ∼ v if and only if there exists g ∈ G such that u = ρ1(g)v.
For each input X , we denote its orbit or equivalence class by VG(X) = {ρ1(g)−1X | g ∈ G}, and
its automorphism group as GX = {g ∈ G | ρ1(g)X = X}.

2.1 Averaging Methods

Given a network ϕ : V →W , the naïve way to achieve invariance is through group averaging:

ΦGA(X) =
1

|G|
∑

g∈G
ϕ
(
ρ1(g)

−1X
)
.

The resulting Φ is G-invariant, and preserves universal expressive power if ϕ is itself universal. Some
existing works adopt this approach [40, 69]. However, exact averaging becomes intractable if the
cardinality of G is large, for example, the permutation group of graphs. In such cases, random
sampling of the group is necessary [40, 14], at the sacrifice of exact symmetry.

Frame averaging [45] is another approach to achieve exact invariance by averaging over a subset
of the group on an input X , i.e., a frame F(X) ⊂ G that maintains G-equivariance: F(ρ1(g)X) =
gF(X) = {gh | h ∈ F(X)}. If an equivariant frame F is easy to compute, and its cardinality
|F(X)| is not too large, then the following frame averaging scheme

ΦFA(X;F , ϕ) = 1

|F(X)|
∑

g∈F(X)
ϕ
(
ρ1(g)

−1X
)

(1)

also provides the required function symmetrization. ΦFA is G-invariant, and universally approximates
G-invariant functions that are approximable by ϕ. Equivariance can be achieved similarly by multi-
plying ρ2(g) with each term. Puny et al. [45] also proposed a variant called invariant frame averaging
by averaging over the cosets F(X)/GX to achieve invariance. Since there is no established way to
find the representatives of F(X)/GX , they adopt uniform sampling from F(X) to approximate ΦFA.
In Section 3.1, the proposed canonicalization achieves the same complexity without sampling.

Kaba et al. [26] proposed to learn an equivariant canonicalization function for equivariance. They
define the canonicalization function to be h : V → G that is G-equivariant. Let ϕ be the backbone
network, then the network taking form ρ2(h(X))ϕ(ρ1(h(X))−1X) is equivariant and universal. The
canonicalization h can be seen as a frame whose output has size 1. However, such a G-equivariant h
that outputs a single group element does not exist for inputs X with non-trivial automorphism (they
introduce a relaxed version of equivariance in this case). Following the classic literature, we define
canonicalization on the input space V instead of the group space G, which also avoids the problem
above.

2.2 Symmetries of Eigenvectors

Denote the Laplacian matrix of a graph as L = I − Â, where Â is the normalized adjacency matrix.
Laplacian Positional Encoding (LapPE) uses the eigenvectors of L as positional encoding. LapPE
enjoys the benefits of having permutation equivariance and universal expressive power [36], but also
suffers from two well-known ambiguity problems. The first one, known as sign ambiguity, captures
that for a unit-norm eigenvector uλi

corresponding to eigenvalue λi, the sign flipped −uλi
is also a

unit-norm eigenvector of the same eigenvalue. The second one, termed basis ambiguity, captures that
eigenvalues with multiplicity degree di > 1 can have any orthogonal basis in its eigenspace as valid
eigenvectors. Because of these ambiguities, we can get distinct GNN outputs for the same graph,
resulting in unstable and sub-optimal performance [14, 29, 33]. Besides, sign and basis ambiguities
also exist in general eigenvectors that do not require permutation equivariance, which are also widely
used in real-world applications, such as PCA methods [32] and spectral clustering [3]. We defer more
background to Appendix D.

3 Canonicalization: A Unified and Essential View of Equivariant Learning

In this section, we reduce existing averaging methods to canonicalization and show canonicalization
can serve as a unified perspective of these methods. Then, using insights from canonicalization theory,
we show how SignNet and BasisNet—two invariant networks on eigenvectors—are equivalent to
their underlying canonicalizations, while solving the open problem regarding their expressivity.

3

3.1 A Reduction from Frames to Canonicalizations

Frame averaging reduces the number of forward passes in the averaging step compared with group
averaging. However, a major obstacle in analyzing the complexity of frames are the automorphisms
of the input: GX = {g ∈ G | ρ1(g)X = X}, which can be exponentially large and intractable to
compute. For instance, consider defining a frame of a graph as the set of all permutations that sort
its node features in increasing order. If there are m nodes in the graph with identical node features,
then the frame size is at least m!, which grows exponentially. However, all permutations in the
frame actually result in the same graph, indicating room for improvement in the efficiency of frame
averaging.

In this work, we propose an alternative view to design frames that overcome the difficulties above.
For each X ∈ V , instead of averaging over the group elements as in FA (Eq. 1), one can directly
average over the output elements of the transformations, which is not affected by the complexity of
automorphisms since all automorphisms in GX yield the same output. This converts the problem of
finding a G-equivariant subset of the group to finding a G-invariant set of inputs. In fact, in the classic
literature, this problem is known as canonicalization, that achieves invariance by mapping inputs in
the same equivalence class to the same canonical form. Formally, we define a canonicalization as a
set-valued function C : V → 2V \∅, such that it is G-invariant: C(ρ1(g)X) = C(X),∀X ∈ V, g ∈ G.
We call its output C(X) the canonical form of X . Among possible canonicalizations, we are most
interested in orbit canonicalization, where the canonical form falls back into the equivalence class:
C(X) ⊂ VG(X) for all X ∈ V . With a canonical form, one can instead perform canonical averaging
(CA) over C(X) to obtain invariant3 representations:

ΦCA(X; C, ϕ) = 1

|C(X)|
∑

X0∈C(X)
ϕ(X0). (2)

The following theorem establishes the equivalence between canonicalizations and frames.
Theorem 3.1. For any frame F there exists an orbit canonicalization CF s.t. for all X ∈ V , g ∈ G,
and backbone ϕ, we have ΦFA(X;F , ϕ) = ΦCA(X; CF , ϕ) and

|CF (X)| = |F(X)|/|GX | ≤ |F(X)|.
In turn, for any orbit canonicalization C there exists a frame FC s.t. for all X ∈ V , g ∈ G, and
backbone ϕ, we have ΦCA(X; C, ϕ) = ΦFA(X;FC , ϕ) and

|FC(X)| = |GX | · |C(X)| ≥ |C(X)|.

Theorem 3.1 reveals that frames and canonicalizations have a fundamental equivalence. In other
words, a frame is built upon a canonicalization, and a canonicalization induces a frame. Henceforth,
we can reduce the difficult problem of designing (equivariant) frames to designing canonicalizations.
This simple change of perspective also allows us to have a better theoretical characterization of the
complexity and optimality of frames. From now on, we adopt a canonicalization language and reveal
some key properties of canonicalization that provide principled guidelines for frame/canonicalization
design.

3.2 Theoretical Properties of Canonicalization: Universality, Optimality, and
Canonicalizability

Here, we examine the theoretical properties of canonicalization in terms of its expressiveness and
efficiency. Subsequently, we present unique insights provided by the canonicalization perspective
that are not found in the existing literature on frames.

For expressiveness, we define the universality of canonicalization as follows. A canonicalization
C is universal if for any G-invariant function f : V → W , there exists a well-defined function
ϕ : 2V → W such that f(X) = ϕ(C(X)) for all X ∈ V . The following theorem shows that a
canonicalization is universal iff it corresponds to an orbit canonicalization.
Theorem 3.2. A canonicalization C is universal iff there exists an orbit canonicalization Cc and an
injective mapping g : 2V → 2V such that g(C(X)) = Cc(X),∀X ∈ V .

3We can similarly achieve (relaxed) equivariance [26] by letting the canonicalization output an additional
canonizing action g0 with ρ1(g0)X = X0, and multiplying ρ2(g0) on each term.

4

For a formal analysis of efficiency, we refer to |C(X)| as the complexity of a canonicalization on
X ∈ V . A canonicalization C is superior to another canonicalization C′ if it has smaller complexity
on all elements: |C(X)| ≤ |C′(X)|,∀X ∈ V . A canonicalization C is optimal if it is superior to
any canonicalization. The proposition below establishes the universality and invariance of canonical
averaging.
Theorem 3.3. Let C be an orbit canonicalization. The canonical average ΦCA is G-invariant. As
long as the backbone network ϕ is universal, ΦCA is universal in the sense that it can approximate
any continuous G-invariant function f : V →W up to arbitrary precision.

The canonicalization size |C(X)| may differ for different inputs. In the most ideal case, an input
X admits a single canonical form with |C(X)| = 1, which we call X a canonicalizable element.
Formally, an element X ∈ V is canonicalizable if there exists an orbit canonicalization C such that
|C(X)| = 1. Otherwise, we call it uncanonicalizable, which may happen under additional constraints
on the canonicalization. For example, one cannot determine a canonical sign for [−1, 1] when the
canonicalization is required to be permutation equivariant, according to Ma et al. [36].

In fact, a major advantage of transforming frames into canonicalization lies in identifying uncanoni-
calizable inputs when additional constraints are imposed, a feature absent in existing literature on
frames. In particular, the canonicalizability of inputs offers novel insights into the expressive power
of invariant networks with equivariance constraints. As will be demonstrated in Section 3.3,
invariant networks like SignNet lose expressive power on uncanonicalizable inputs. This enables
us to prove the non-universality of SignNet, resolving an open problem in the literature [33, 32].
Canonicalizability is a property of inputs, making it sensible to describe it using canonicalization
rather than frames. We refer to Appendix A for a comprehensive discussion on the advantages of the
canonicalization perspective.

3.3 Reducing Sign-Invariant Networks to Canonicalization

In this section we show how canonicalization can be applied to the eigenvector ambiguity problem,
and solve an open question regarding the expressiveness of invariant networks.

There are two general methods to attain exact sign and basis invariance for eigenvectors: SignNet
and BasisNet [33] and Laplacian Canonicalization [36]. SignNet is parameterized as the network
f : Rn×k → Rd on eigenvectors u1, . . . ,uk as

f(u1, . . . ,uk) = ρ
(
[ϕ(ui) + ϕ(−ui)]

k
i=1

)
,

where ϕ and ρ are unrestricted neural networks and [·]i denotes concatenation of vectors. Ma et al.
[36] instead achieved sign invariance on canonicalizable input with

f(u1, . . . ,uk) = ρ
(
[MAP(ui)]

k
i=1

)
,

where MAP denotes their canonicalization algorithm MAP, which leverages the sign-invariant and
permutation-equivariant projection operator to find a canonical sign. Empirically, the two approaches
attain comparable performance in practice. Meanwhile, MAP enjoys better computational efficiency
because it only requires input pre-processing while SignNet requires two-branch encoding. Although
the two algorithms seem rather different, we prove that any permutation-equivariant and sign-invariant
function, including SignNet, is equivalent to a close variant of MAP, which we call MAP++.
Theorem 3.4. A function h : Rn → Rn×dout is permutation equivariant and sign invariant iff there
exists a permutation equivariant (w.r.t. its first input) function ϕ : Rn × {0, 1} → Rn×dout such that

h(u) = ϕ
(
MAP++(u),1u

)
,∀u ∈ Rn,

where MAP++(u) =

{
MAP(u), if u is canonicalizable,
|u|, otherwise,

and 1u ∈ {0, 1} indicates whether u

is canonicalizable. Here |u| denotes element-wise absolute value.

Theorem 3.4 indicates that any sign invariant and permutation equivariant function on a single
eigenvector can be reduced to a certain mapping based on the MAP++ canonicalization, which allows
a unified characterization for such functions. However, when taking the entire eigenvector matrix as
input, processing each eigenvector alone (as in SignNet) will take their absolute values (Theorem 3.4),

5

which inevitably loses relative position information between different eigenvectors. As a result,
both SignNet and MAP++ are not universally expressive. The same result also holds for BasisNet,
since SignNet is a special case of first-order BasisNet with multiplicity d = 1.4 The universality
of SignNet has been an open problem in the literature [33, 32] and we show that a reduction to the
canonicalization perspective can provide a fundamental solution to such problems. Concretely, we
also construct two non-isomorphic graphs that SignNet fails to distinguish in Appendix E.5.
Corollary 3.5. SignNet and BasisNet with first-order permutation equivariant ϕ [37] cannot univer-
sally approximate all permutation-equivariant and sign/basis-invariant functions.

4 Exploring Optimal Canonicalization of Eigenvectors

In this section, we delve into the sign and basis ambiguity problems of eigenvectors and graph
positional encodings. We propose novel canonicalization algorithms that are provably superior to
existing approaches and even optimal. Specifically, we aim to design a canonicalization algorithm
C operating on eigenvectors U ∈ Rn×d, that is invariant to sign/basis transformations, (possibly)
equivariant to permutation transformations, and outputs a set of eigenvectors U∗ ∈ Rn×d in the same
eigenspace as U . We consider two settings: without (Section 4.1) and with (Section 4.2) permutation
equivariance, corresponding to different problem scenarios.

4.1 Optimal Canonicalization without Permutation

First, we consider the case when we do not need to consider the permutation equivariance of
eigenvectors, for example, when samples have a specific ordering. Applications broadly include
control systems [50], image segmentation [66], source separation [42], fluid dynamics [25], etc.

Sign Invariance. Although SignNet can also be applied to such cases, we show that a simple
canonicalization that determines directions with the first non-zero entry of the eigenvector u can also
achieve sign invariance and permutation equivariance while preserving universality.

Algorithm 1 Canonicalization for eliminating sign ambiguity of eigenvectors

Require: The eigenvector u ∈ Rn

Ensure: The canonical form u∗ of u
Let i be the smallest index such that ui ̸= 0
u∗ ← u if ui > 0, u∗ ← −u otherwise

Basis Invariance. Inspired by MAP-basis [36], we design a more general and powerful canonical-
ization based on the Gram-Schmidt Orthogonalization of projection vectors, named orthogonalized
axis projection (OAP). Specifically, let U ∈ Rn×d be eigenvectors in a d dimensional eigenspace,
and let P = UU⊤ be the projection matrix onto the eigenspace span(U). Denote e1, . . . , en as the
standard axis vectors of Rn, that is, ei has 1 at the i-th entry and 0 at the other entries. The following
Algorithm 2 eliminates basis ambiguities of all eigenvectors.

Algorithm 2 OAP Canonicalization for eliminating basis ambiguity of eigenvectors

Require: The eigenvectors U ∈ Rn×d

Ensure: The canonical form U∗ of U
Let i1 < · · · < id be the smallest indices s.t. ∥Peij∥ > 0 and Peij are linearly independent,
1 ≤ j ≤ d
U∗ ← GS(Pei1 , . . . ,Peid), where GS denotes Gram-Schmidt Orthogonalization

Intuitively, Algorithm 2 finds a set of standard basis vectors with the smallest indices such that their
projection on the eigenspace is still a basis. We note that the indices i1, . . . , id can be found by
iteratively checking whether each Pei is non-zero and linearly independent with the already-found

4It is still possible to achieve universality with higher-order networks [33], but they are computationally
intractable in practice [37, 49].

6

projection vectors (i = 1, . . . , n), and adding them if they satisfy these conditions. This can be done
in O(n3) time (the same as eigendecomposition). The following theorem guarantees that we can
always find such indices.
Theorem 4.1. Given a set of eigenvectors U ∈ Rn×d, let P = UUT denote the projection matrix
of the eigenspace. Let e1, . . . , en denote the standard basis vectors. Then, there exists indices
1 ≤ i1 < · · · < id ≤ n, such that for all 1 ≤ j ≤ d, we have ∥Peij∥ > 0, and the vectors
Pei1 , . . . ,Peid are linearly independent.

Optimality. We show that Algorithm 1 and 2 are optimal, and can canonicalize all eigenvectors.
Theorem 4.2. Algorithm 1 is an optimal orbit canonicalization for all eigenvectors u ∈ Rn under
sign ambiguity. Algorithm 2 is an optimal orbit canonicalization for all eigenvectors U ∈ Rn×d

under basis ambiguity.

These algorithms eliminate ambiguities of eigenvectors, which is useful in many applications. In
Appendix D we show their application to achieve orthogonal equivariance in PCA-frame methods.

4.2 Better Canonicalization with Permutation

In this section, we further consider the constraint of permutation equivariance when pursuing sign
and basis invariance, which is important for certain data structures like graphs.

Sign Invariance. We can retain the universality of MAP and SignNet by extending them to
perform canonical averaging (Section 3.1) on uncanonicalizable inputs with the following MAP-full
canonicalization

MAPfull(u) =

{
MAP(u), if u is canonicalizable,
{u,−u}, otherwise.

(3)

Since Ma et al. [36] proved that MAP canonicalizes all sign-canonicalizable eigenvectors, and if the
eigenvector is uncanonicalizable, then the optimal size |C(u)| is 2. Thus, MAP-full is optimal.

Basis Invariance. Contrary to the sign case, basis invariance is harder to obtain and MAP-basis
proposed by Ma et al. [36] is known to be not optimal. Here, we propose a permutation-equivariant
basis canonicalization that is provably superior to MAP-basis. Notice that in OAP (Algorithm 2), the
way that we construct smallest indices i1, . . . , id is not permutation equivariant. This motivates us
to extend OAP with a permutation equivariant procedure to determine the indices. Specifically, we
adopt the following permutation-equivariant hash function to rank axis projections:

αi = hash(pii, {{pij}}j ̸=i), i = 1, . . . , n. (4)
where pi = Pei. According to the number of distinct values in {αi} (denoted as k), we divide all
standard basis vectors {ei} into k disjoint groups Bi, in descending order of αi. Then we define a
summary vector xi for each group Bi as xi =

∑
ej∈Bi

ej + c, where c is a tunable constant. In this
way, we arrive at a permutation-equivariant version of OAP for LapPE in Algorithm 3. The summary
vectors {xij} are now permutation equivariant (Appendix B.1), in contrast to {eij} in Algorithm 2.

Algorithm 3 OAP Canonicalization for eliminating basis ambiguity of Laplacian positional encoding

Require: The Laplacian eigenvectors U ∈ Rn×d

Ensure: The canonical form U∗ of U
Let i1 < · · · < id be the smallest indices s.t. ∥Pxij∥ > 0 and Pxij are linearly independent,
1 ≤ j ≤ d
U∗ ← GS(Pxi1 , . . . ,Pxid), where GS denotes Gram-Schmidt Orthogonalization

In contrast to Algorithm 2, the indices i1, . . . , id may not always exist. The existence and values of
these indices can be determined in O(n2d2) time (c.f., Appendix B.3).

4.3 OAP as a Unified Canonicalization for Eigenvectors

Another interesting aspect of OAP is that with a flexible choice of hashing values αi and indices ij ,
OAP can serve as a unified framework that encompasses many existing canonicalization algorithms
for eigenvectors (as well as graphs).

7

First, it is easy to see that the sign canonicalizations (Algorithm 1 and MAP-sign) are special cases of
their basis versions with d = 1. For basis canonicalization, there are two existing methods. One is
MAP-basis [36] which also utilizes axis projection but a different construction of basis. Another is
proposed in Puny et al. [45] as a way to construct frames for graphs which, according to Theorem 3.1,
corresponds to a canonicalization for graphs and can also be adapted to canonicalize LapPE (we defer
technical details to Appendix E.8). We call it FA-lap. The following theorem reveals that both MAP
and FA-lap are special cases of OAP with degenerated hash functions.

Theorem 4.3. Let αi (i = 1, . . . , n) be the outputs of the hash function in the OAP algorithm defined
in Equation 4, and let ij (j = 1, . . . , d) be the indices found in Algorithm 3. Then, the MAP algorithm
[36] is equivalent to the OAP algorithm that takes αi = ∥Pi∥ for all 1 ≤ i ≤ n and ij = j for all
1 ≤ j ≤ d. The FA-lap algorithm [45] is equivalent to the OAP algorithm that takes αi = Pii for
all 1 ≤ i ≤ n.

From this connection, we can see that the hashes of MAP and FA-lap are not as distinctive as OAP
with Eq. 4. As a result, OAP can canonicalize more eigenvectors and is strictly superior to MAP and
FA-lap. There is no superiority between MAP and FA-lap. It remains an open problem whether the
permutation-equivariant OAP (Algorithm 3) is optimal.

Similarly, these canonicalizations can be adapted to canonicalize graphs (which we call MAP-graph,
FA-graph, OAP-graph), and have the same complexity hierarchy (more details in Appendix E.8). We
summarize them as follows.

Corollary 4.4. For eigenvectors, OAP is strictly superior to MAP and FA-lap. For graphs, OAP-graph
is strictly superior to MAP-graph and FA-graph.

5 Experiments

In this section, we evaluate the expressive power and efficiency of CA on the EXP dataset; we apply
our canonicalization to the n-body problem for orthogonal equivariance; we also evaluate OAP for
LapPE on graph regression tasks.

5.1 Expressive Power and Frame Size

Table 1: Accuracy on EXP.

Model Accuracy

GCN 50%
GAT 50%
GIN 50%
ChebNet 82%
FA-GIN+ID 100%
CA-GIN+ID 100%

To validate the universal expressiveness of CA in Theorem 3.3, we
conduct experiments on EXP [1], which is designed to explicitly
evaluate the expressiveness of GNNs. It consists of pairs of graphs
that are non-isomorphic but 1-WL indistinguishable. We follow the
setup of Balcilar et al. [7]. As baselines, we use GCN [67], GAT
[61], GIN [68] and ChebNet [59], all of which are permutation
equivariant. We also equip GIN with unique node IDs and apply
FA/CA on them, which we denote as FA-GIN+ID and CA-GIN+ID.
Note that node IDs endow GIN with universality [40] while also
breaking permutation equivariance, and FA/CA restore permutation
equivariance while preserving universality. Results are shown in
Table 1. All MP-GNNs achieve trivial performance since their expressive power is limited by 1-WL
[68]. Both FA and CA achieve perfect accuracy, showing expressiveness beyond 1-WL.

To evaluate the efficiency of different methods, we also compare their average frame size |F(X)|
or canonicalization size |C(X)| on EXP. As shown in Table 2, OAP-graph is more efficient than
FA-graph, verifying Corollary 4.4. Since |C(X)| < |F(X)|, CA is more efficient than FA, validating
Theorem 3.1. We note that although the numbers are still very large in Table 2 and we still need
sampling, a smaller frame/canonicalization size would lead to faster convergence rate towards the
true average. This is proven in Appendix C.

5.2 Graph Regression and Classification

We evaluate OAP on ZINC [24]. We measure the ratio of non-canonicalizable5 eigenvectors among all
eigenvectors by FA-lap, MAP, and OAP. As shown in Table 3, they are equivalent in addressing sign

5Here “non-canonicalizable” means that the canonicalization algorithm fails to canonicalize the eigenvectors.

8

Table 2: The average frame size (F) and canonicalization size (C) on EXP with two canonicalization
algorithms: FA-graph and OAP-graph.

Method Avg |F(X)| Avg |C(X)| F/C Ratio

FA-graph 2.10× 1024 5.84× 1021 360×
OAP-graph 2.55× 1022 7.57× 1019 337×
FA/OAP Ratio 82× 77×

ambiguity, while OAP has the least ratio of non-canonicalizable eigenvectors under basis ambiguity,
aligning with Corollary 4.4.

We conduct experiments on ZINC [24] and OGBG [22] (c.f., Appendix H). We use GatedGCN
[9] and PNA [12] as backbones and apply different PE methods: (1) No positional encoding; (2)
Laplacian PE combined with random sign (RS) that randomly flips the signs of eigenvectors [14]; (3)
SignNet [33]; (4) MAP [36]; (5) OAP; (6) OAP with LSPE layers [15]. On ZINC, we also evaluate
the FA-GIN+ID model in Section 5.1, as well as GIN with edge features (i.e., GINE) [21]. Methods
implemented by ourselves are marked with *. The results are reported in Table 4, 5 and 6.

Table 3: Ratio of non-canonicalizable eigenvec-
tors on ZINC.

Canonicalization FA-lap MAP OAP

Sign 5.4% 5.4% 5.4%
Basis 2.2% 1.0% 0.2%

Table 4: Results on ZINC with 500K parameter
budget. All scores are averaged over 4 runs with
4 different seeds.

Model PE k #Param MSE ↓
GIN ID + FA 0 495K 0.613 ± 0.023
GINE ID + FA 0 495K 0.546 ± 0.048

GatedGCN

None 0 504K 0.251 ± 0.009
LapPE + RS 8 505K 0.202 ± 0.006
SignNet 8 495K 0.121 ± 0.005
MAP 8 486K 0.120 ± 0.005
OAP 8 473K 0.118 ± 0.0006
OAP + LSPE 8 491K 0.098 ± 0.0009

PNA

None 0 369K 0.141 ± 0.004
LapPE + RS 8 474K 0.132 ± 0.010
SignNet 8 476K 0.105 ± 0.007
MAP 8 462K 0.101 ± 0.005
OAP 8 462K 0.098 ± 0.0008
OAP + LSPE 8 549K 0.095 ± 0.004

Table 5: Results on MOLTOX21. All scores are
averaged over 4 runs with 4 different seeds.

Model PE k #param ROCAUC ↑

GatedGCN

None 0 1004K 0.772 ± 0.006
LapPE + RS 3 1004K 0.774 ± 0.007
SignNet* 3 1367K 0.773 ± 0.003
MAP 3 1505K 0.784 ± 0.005
OAP 3 1542K 0.787 ± 0.005

PNA

None 0 5245K 0.755 ± 0.008
LapPE + RS 16 2453K 0.756 ± 0.009
SignNet* 16 1754K 0.750 ± 0.009
MAP 16 1951K 0.761 ± 0.002
OAP 16 1950K 0.768 ± 0.002

Table 6: Results on MOLPCBA. All scores are
averaged over 4 runs with 4 different seeds.

Model PE k #param AP ↑

GatedGCN

None 0 1008K 0.262 ± 0.001
LapPE + RS 3 1009K 0.266 ± 0.002
SignNet* 3 2415K 0.260 ± 0.002
MAP 3 2658K 0.268 ± 0.002
OAP 3 2658K 0.270 ± 0.002

PNA

None 0 6551K 0.279 ± 0.003
LapPE + RS* 16 6423K 0.275 ± 0.004
SignNet* 16 4493K OOM
MAP 16 4612K 0.281 ± 0.003
OAP 16 4612K 0.279 ± 0.002

In Table 4, we observe that FA achieves the lowest performance since it breaks permutation equiv-
ariance. The results presented in Tables 4, 5 and 6 demonstrate that incorporating LapPE leads to
improved performance across nearly all cases compared to no PE, highlighting the advantages of
leveraging expressive PEs. Notably, SignNet, MAP, and OAP show significant performance gains
over LapPE, emphasizing the benefits of addressing ambiguities of Laplacian eigenvectors. OAP
performs best among these methods, consistent with our theoretical expectations of its superiority over
MAP and SignNet. Additionally, SignNet experiences memory issues even with fewer parameters in
Table 6, underscoring the increased memory demands associated with incorporating invariant network
architectures. Furthermore, in Table 4, we find that LSPE enhances the performance of OAP across
all models.

9

We compare the time and memory of canonicalization methods with their non-FA backbone on ZINC
in Table 7. Using canonicalization algorithms only increases the pre-processing time of the backbone,
which is negligible compared to the training time. On the other hand, the two-branch architecture of
SignNet increases the training time and memory.

Table 7: Comparison of time and memory of canonicalization methods with their non-FA backbone
on ZINC. For the backbone models, the node features are first concatenated with positional encodings
and fed to a positional encoding network (we use masked GIN in our experiments), then the outputs
of the positional encoding network are used as input for the main network (GatedGCN or PNA).
For the SignNet models, the positional encoding network is substituted with SignNet, which has a
two-branch architecture. For models with MAP and OAP, the positional encodings are canonicalized
before fed to the positional encoding network.

Model Pre-processing time Training time Total time Memory

GatedGCN backbone - 3h26min 3h26min 1860MiB
GatedGCN + SignNet 30.03s 4h13min 4h13min 2124MiB
GatedGCN + MAP 133.67s 3h20min 3h22min 1850MiB
GatedGCN + OAP 186.38s 3h25min 3h28min 1860MiB
PNA backbone - 16h31min 16h31min 2242MiB
PNA + SignNet 30.03s 18h1min 18h1min 2570MiB
PNA + MAP 133.67s 16h47min 16h49min 2244MiB
PNA + OAP 186.38s 14h54min 14h57min 2312Mib

6 Conclusion and Discussion

In this paper, we illustrated canonicalization as a useful view of frames. From this perspective, we
established concrete theoretical conditions for determining the complexity of frames, as well as
deriving better and even optimal frames. We believe that the canonicalization perspective has the
potential to unify different invariant and equivariant learning approaches for a unified characterization.

One limitation of this work lies in that we do not fully resolve the optimality of eigenvector canon-
icalization under permutation equivariance. It is still yet unknown whether the proposed OAP
canonicalization is optimal for Laplacian eigenvectors, and there is still much to explore in terms of
canonicalization algorithms across other domains.

Acknowledgement

Yisen Wang was supported by National Key R&D Program of China (2022ZD0160300), National Nat-
ural Science Foundation of China (92370129, 62376010), and Beijing Nova Program (20230484344,
20240484642). Derek Lim was supported by an NSF Graduate Fellowship. Yifei Wang and Stefanie
Jegelka were supported by NSF AI Institute TILOS (NSF CCF-2112665), NSF award 2134108, and
the Alexander von Humboldt Foundation.

References
[1] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The Surprising

Power of Graph Neural Networks with Random Node Initialization. In IJCAI, 2021.

[2] Rohith Agaram, Shaurya Dewan, Rahul Sajnani, Adrien Poulenard, Madhava Krishna, and
Srinath Sridhar. Canonical Fields: Self-Supervised Learning of Pose-Canonicalized Neural
Fields. arXiv preprint arXiv:2212.02493, 2022.

[3] Eleonora Andreotti, Dominik Edelmann, Nicola Guglielmi, and Christian Lubich. Measuring
the stability of spectral clustering. Linear Algebra and its Applications, 610:673–697, 2021.

[4] Nima Arkani-Hamed, Yuntao Bai, and Thomas Lam. Positive geometries and canonical forms.
Journal of High Energy Physics, 2017(11):1–124, 2017.

10

[5] László Babai and Eugene M Luks. Canonical labeling of graphs. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 171–183, 1983.

[6] László Babai, D Yu Grigoryev, and David M Mount. Isomorphism of Graphs with Bounded
Eigenvalue Multiplicity. In Proceedings of the fourteenth annual ACM symposium on Theory of
computing, pages 310–324, 1982.

[7] Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the Limits of Message Passing Graph Neural Networks. In ICML, 2021.

[8] Rémi Bardenet and Odalric-Ambrym Maillard. Concentration inequalities for sampling without
replacement. Bernoulli, 21(3):1361–1385, 2015.

[9] Xavier Bresson and Thomas Laurent. Residual Gated Graph ConvNets. arXiv preprint
arXiv:1711.07553, 2017.

[10] Rasmus Bro, Evrim Acar, and Tamara G Kolda. Resolving the Sign Ambiguity in the Singular
Value Decomposition. Journal of Chemometrics: A Journal of the Chemometrics Society, 22(2):
135–140, 2008.

[11] Ward Cheney and David Kincaid. Linear Algebra: Theory and Applications. The Australian
Mathematical Society, 110:544–550, 2009.

[12] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
Neighbourhood Aggregation for Graph Nets. In NeurIPS, 2020.

[13] Alexandre Agm Duval, Victor Schmidt, Alex Hernández-Garcıá, Santiago Miret, Fragkiskos D
Malliaros, Yoshua Bengio, and David Rolnick. FAENet: Frame Averaging Equivariant GNN
for Materials Modeling. In ICML, 2023.

[14] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking Graph Neural Networks. arXiv preprint arXiv:2003.00982, 2020.

[15] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph Neural Networks with Learnable Structural and Positional Representations. In ICLR,
2022.

[16] Nadav Dym, Hannah Lawrence, and Jonathan W Siegel. Equivariant Frames and the Impossi-
bility of Continuous Canonicalization. In ICML, 2024.

[17] Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding
and Extending Subgraph GNNs by Rethinking Their Symmetries. In NeurIPS, 2022.

[18] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. SE(3)-Transformers: 3D
Roto-Translation Equivariant Attention Networks. In NeurIPS, 2020.

[19] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal
of the American Statistical Association, pages 13–30, 1963.

[20] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer Feedforward Networks are
Universal Approximators. Neural Networks, 2(5):359–366, 1989.

[21] W Hu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, and J Leskovec. Strategies for Pre-training
Graph Neural Networks. In ICLR, 2020.

[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs.
arXiv preprint arXiv:2005.00687, 2020.

[23] Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and
Pan Li. On the Stability of Expressive Positional Encodings for Graph Neural Networks. arXiv
preprint arXiv:2310.02579, 2023.

11

[24] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman.
ZINC: A Free Tool to Discover Chemistry for Biology. Journal of chemical information and
modeling, 52(7):1757–1768, 2012.

[25] Aaron Jones, Joann Kuchera-Morin, and Theodore Kim. Seeing and Hearing the Eigenvectors
of a Fluid. In Proceedings of Bridges 2017: Mathematics, Art, Music, Architecture, Education,
Culture, pages 305–312, 2017.

[26] Sékou-Oumar Kaba, Arnab Kumar Mondal, Yan Zhang, Yoshua Bengio, and Siamak Ravan-
bakhsh. Equivariance with Learned Canonicalization Functions. In NeurIPS Workshop on
Symmetry and Geometry in Neural Representations, 2022.

[27] Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the Compu-
tational Complexity of Self-Attention. In International Conference on Algorithmic Learning
Theory, 2023.

[28] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
Relational Inference for Interacting Systems. In ICML, 2018.

[29] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. In NeurIPS, 2021.

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. In NeurIPS, 2012.

[31] Rongjie Lai and Hongkai Zhao. Multiscale Nonrigid Point Cloud Registration Using Rotation-
Invariant Sliced-Wasserstein Distance via Laplace-Beltrami Eigenmap. SIAM Journal on
Imaging Sciences, 10(2):449–483, 2017.

[32] Derek Lim, Joshua Robinson, Stefanie Jegelka, and Haggai Maron. Expressive Sign Equivariant
Networks for Spectral Geometric Learning. In NeurIPS, 2023.

[33] Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and Basis Invariant Networks for Spectral Graph Representation Learning.
In ICLR, 2023.

[34] Yuchao Lin, Jacob Helwig, Shurui Gui, and Shuiwang Ji. Equivariance via Minimal Frame
Averaging for More Symmetries and Efficiency. In ICML, 2024.

[35] Jiangyan Ma, Emmanuel Bengio, Yoshua Bengio, and Dinghuai Zhang. Baking Symmetry into
GFlowNets. In NeurIPS AI for Science: from Theory to Practice, 2023.

[36] Jiangyan Ma, Yifei Wang, and Yisen Wang. Laplacian Canonization: A Minimalist Approach
to Sign and Basis Invariant Spectral Embedding. In NeurIPS, 2023.

[37] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the Universality of
Invariant Networks. In ICML, 2019.

[38] Karolis Martinkus, Jan Ludwiczak, Wei-Ching Liang, Julien Lafrance-Vanasse, Isidro Hotzel,
Arvind Rajpal, Yan Wu, Kyunghyun Cho, Richard Bonneau, Vladimir Gligorijevic, et al.
AbDiffuser: Full-Atom Generation of in-vitro Functioning Antibodies. In NeurIPS, 2024.

[39] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-order Graph
Neural Networks. In AAAI, 2019.

[40] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational
Pooling for Graph Representations. In ICML, 2019.

[41] Richard S Palais and Chuu-Lian Terng. A General Theory of Canonical Forms. In Transactions
of the American Mathematical Society, 1987.

[42] Lucas Parra and Paul Sajda. Blind Source Separation via Generalized Eigenvalue Decomposition.
The Journal of Machine Learning Research, 4:1261–1269, 2003.

12

[43] Saro Passaro and C Lawrence Zitnick. Reducing SO(3) Convolutions to SO(2) for Efficient
Equivariant GNNs. In ICML, 2023.

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An Imperative
Style, High-Performance Deep Learning Library. In NeurIPS, 2019.

[45] Omri Puny, Matan Atzmon, Heli Ben-Hamu, Ishan Misra, Aditya Grover, Edward J Smith, and
Yaron Lipman. Frame Averaging for Invariant and Equivariant Network Design. In ICLR, 2022.

[46] Omri Puny, Derek Lim, Bobak Kiani, Haggai Maron, and Yaron Lipman. Equivariant Polyno-
mials for Graph Neural Networks. In ICML, 2023.

[47] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep Learning on Point
Sets for 3D Classification and Segmentation. In CVPR, 2017.

[48] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep Hierarchical
Feature Learning on Point Sets in a Metric Space. In NeurIPS, 2017.

[49] Siamak Ravanbakhsh. Universal Equivariant Multilayer Perceptrons. In ICML, 2020.

[50] Joost Rommes. Modal Approximation and Computation of Dominant Poles. In Model Order
Reduction: Theory, Research Aspects and Applications, pages 177–193. Springer, 2008.

[51] Rahul Sajnani, Adrien Poulenard, Jivitesh Jain, Radhika Dua, Leonidas J Guibas, and Srinath
Sridhar. ConDor: Self-Supervised Canonicalization of 3D Pose for Partial Shapes. In CVPR,
2022.

[52] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

[53] Nimrod Segol and Yaron Lipman. On Universal Equivariant Set Networks. In ICLR, 2019.

[54] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 12,
2011.

[55] Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel Rodrigues. Generalization error of
invariant classifiers. In Artificial Intelligence and Statistics, pages 1094–1103. PMLR, 2017.

[56] Weiwei Sun, Andrea Tagliasacchi, Boyang Deng, Sara Sabour, Soroosh Yazdani, Geoffrey
Hinton, and Kwang Moo Yi. Canonical Capsules: Self-Supervised Capsules in Canonical Pose.
In NeurIPS, 2021.

[57] Behrooz Tahmasebi and Stefanie Jegelka. The Exact Sample Complexity Gain from Invariances
for Kernel Regression. In NeurIPS, 2023.

[58] Edric Tam and David Dunson. Multiscale Graph Comparison via the Embedded Laplacian
Discrepancy. arXiv preprint arXiv:2201.12064, 2022.

[59] Shanshan Tang, Bo Li, and Haijun Yu. ChebNet: Efficient and Stable Constructions of Deep
Neural Networks with Rectified Power Units using Chebyshev Approximations. arXiv preprint
arXiv:1911.05467, 2019.

[60] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point
clouds. arXiv preprint arXiv:1802.08219, 2018.

[61] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. In ICLR, 2018.

[62] Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and Stable Positional
Encoding for More Powerful Graph Neural Networks. In ICLR, 2022.

13

[63] Yifei Wang, Zhengyang Geng, Feng Jiang, Chuming Li, Yisen Wang, Jiansheng Yang, and
Zhouchen Lin. Residual relaxation for multi-view representation learning. In NeurIPS, 2021.

[64] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric
cross entropy for robust learning with noisy labels. In ICCV, 2019.

[65] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

[66] Yair Weiss. Segmentation using eigenvectors: a unifying view. In ICCV, 1999.

[67] Max Welling and Thomas N Kipf. Semi-Supervised Classification with Graph Convolutional
Networks. In ICLR, 2017.

[68] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In ICLR, 2019.

[69] Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. Constructive
Approximation, 55(1):407–474, 2022.

[70] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep Sets. In NeurIPS, 2017.

[71] Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A Complete Expressiveness
Hierarchy for Subgraph GNNs via Subgraph Weisfeiler-Lehman Tests. In ICML, 2023.

[72] Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the Expressive Power of
GNNs via Graph Biconnectivity. In ICLR, 2023.

[73] Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond Weisfeiler-
Lehman: A Quantitative Framework for GNN Expressiveness. In ICLR, 2024.

[74] Bohang Zhang, Lingxiao Zhao, and Haggai Maron. On the Expressive Power of Spectral
Invariant Graph Neural Networks. In ICML, 2024.

[75] Yan Zhang, David W Zhang, Simon Lacoste-Julien, Gertjan J Burghouts, and Cees GM Snoek.
Multiset-Equivariant Set Prediction with Approximate Implicit Differentiation. In ICLR, 2021.

14

Appendix

Table of Contents
A Advantages of the canonicalization perspective 16

B Implementation and verification of MAP 17
B.1 The Gram-Schmidt process . 17
B.2 Complete pseudo-code of Algorithm 2 . 19
B.3 Complete pseudo-code of Algorithm 3 . 19
B.4 Verifying the correctness of Algorithm 2 . 20
B.5 Verifying the correctness of Algorithm 3 . 21

C Concentration inequality for drawing without replacement 22

D PCA-frame methods for orthogonal equivariance 23
D.1 PCA-frame methods . 23
D.2 Experiments on the n-body problem . 23

E Proofs 24
E.1 Proof of Theorem 3.1 . 24
E.2 Proof of Theorem 3.2 . 25
E.3 Proof of Theorem 3.3 . 26
E.4 Proof of Theorem 3.4 . 26
E.5 Proof of Corollary 3.5 . 28
E.6 Proof of Theorem 4.1 . 30
E.7 Proof of Theorem 4.2 . 30
E.8 Proof of Theorem 4.3 and Corollary 4.4 . 31

F Augmentations of the OAP algorithm 32
F.1 Incorporating node features . 32
F.2 Incorporating information from other eigenvectors 32
F.3 Learnable canonicalization . 33

G Related work 33
G.1 Equivariant learning . 33
G.2 Canonicalization . 33
G.3 Canonical forms . 34
G.4 Sign invariance . 34
G.5 Basis invariance . 35

H Dataset details 35

I Hyper-parameter settings 35
I.1 EXP experiment . 36
I.2 n-body experiment . 36
I.3 ZINC experiment . 36
I.4 OGBG experiment . 36

15

A Advantages of the canonicalization perspective

In this paper, we introduced canonicalization as a new perspective to learning with symmetry. We
demonstrated how shifting from frames to canonicalization could offer valuable new perspectives,
enabling us to address the open problem of the universality of SignNet and BasisNet. Theorem 3.1
establishes an equivalence between frames and canonicalization, prompting the question: why should
we favor canonicalization over frames? We put forward three primary reasons:

1. Frames encounter challenges with symmetric inputs, i.e. those with non-trivial automor-
phism, like graphs. In such cases, the automorphism group of an input could grow expo-
nentially, consequently expanding the frame size exponentially as well. However, in theory,
each graph has a single canonicalization, highlighting the potential for improvement in
frames when dealing with invariance. Here we provide a concrete example concerning node
features of graphs. As illustrated in Figure 1, each node in the graph possesses a unique
node ID and a color representing its feature. Suppose we define the frame of this graph as
the set of all permutations sorting the node features in the order of grey, blue, and green. For
instance, one permutation might yield the sorted node IDs: 0, 1, 4, 6, 8, 3, 5, 2, 7. Although
the frame size for this graph is calculated as 5!× 2!× 2! = 480, applying elements of the
frame results in the same graph. Consequently, the frame size exceeds the canonicalization
size by a factor of 480.

0

1
2

3

4

5

6

7
8

Figure 1: An example where the frame size exceeds the canonicalization by a factor of 480.

2. Frames must adhere to G-equivariance: F(ρ1(g)X) = gF(X), posing a stringent re-
quirement. Consequently, constructing frames becomes challenging. While one approach
involves constructing a canonicalization first and then inducing its corresponding frame, a
preferable option is to directly utilize canonicalization. The presence of input automorphism
complicates the analysis and improvement of existing frames. An optimal canonicalization
maintains a size of 1 for all inputs, irrespective of input symmetry. In contrast, the size of
even optimal frames depends on input automorphism.

3. The principal advantage of canonicalization over frame lies in the presence of uncanonical-
izable inputs, offering intriguing theoretical insights. Sign invariance serves as a notable
example. According to Ma et al. [36], an eigenvector u ∈ Rn is uncanonicalizable with
respect to sign iff there exists a permutation matrix P such that u = −Pu. In Theorem 3.4,
we further demonstrated that invariant networks applied to Laplacian eigenvectors lose
expressive power on such inputs. Since canonicalizability pertains to the input space V
rather than G, analyzing the expressiveness of invariant networks through their underlying
canonicalization is considerably more convenient.
We aim to delve deeper into this insight by exploring the concept of canonicalizability as
introduced in Ma et al. [36]. As demonstrated therein, uncanonicalizable inputs emerge
when equivariance constraints are imposed on an already invariant canonicalization while
ensuring its universality is maintained. It is the trilemma of invariance, equivariance, and
universality that gives rise to uncanonicalizable inputs. A frame possesses equivariance
inherently, and examining the frame alone suggests that imposing additional equivariance
constraints would not result in conflicts, as observed in the input space.

16

B Implementation and verification of MAP

B.1 The Gram-Schmidt process

The Gram-Schmidt process is heavily used in our canonicalization algorithms; we discuss it in this
subsection. The Gram-Schmidt process is a method of constructing an orthonormal basis from a
set of vectors in an inner product space, most commonly the Euclidean space Rn equipped with the
standard inner product. Specifically, the Gram-Schmidt process takes a finite, linearly independent set
of vectors {x1,x2, . . . ,xm} in an inner product space V with m ≤ n, and generates an orthogonal
set of vectors {v1,v2, . . . ,vm that spans the same m-dimensional subspace of Rn, where

v1 = x1,

v2 = x2 −
⟨x2,v1⟩
∥v1∥2

v1,

v3 = x3 −
⟨x3,v1⟩
∥v1∥2

v1 −
⟨x3,v2⟩
∥v2∥2

v2,

...

vi = xi −
i−1∑
k=1

⟨xi,vk⟩
∥vk∥2

vk,

...

vm = xm −
m−1∑
k=1

⟨xm,vk⟩
∥vk∥2

vk.

The Gram-Schmidt process can be implemented in PyTorch [44] using QR decomposition.

def orthogonalize(U: Tensor) -> Tensor:
Q, R = torch.linalg.qr(U)
S = torch.sign(torch.diag(R))
return Q * S

If the input matrix U ∈ Rn×d has full rank (in our case it does because U is a matrix of eigenvectors),
and if we require the diagonal elements of R to be positive, then Q and R are unique, and (column
vectors of) Q ∈ Rn×d gives the Gram-Schmidt orthogonalization of (column vectors of) U . The
matrix S in the above code is to ensure that diagonal elements of RS are positive.

Proof for the correctness of this method can be found in common linear algebra textbooks [11]. Here
we are mainly interested in the equivariance properties of this method. In particular, we prove that it
is permutation equivariant and orthogonally equivariant.

Theorem B.1. The Gram-Schmidt process is permutation equivariant and orthogonally equivariant.

Proof. We first prove the permutation equivariance of GS by induction. Let P ∈ Rn×n be an
arbitrary permutation matrix. Let {x′

1,x
′
2, . . . ,x

′
m} be defined by x′

i = Pxi for 1 ≤ i ≤ m,
and let {v′

1,v
′
2, . . . ,v

′
m} be the orthogonal basis generated from {x′

1,x
′
2, . . . ,x

′
m} by GS. Clearly

v′
1 = x′

1 = Px1 is permutation equivariant. Suppose v′
1, . . . ,v

′
k−1 are all permutation equivariant,

then

v′
k = x′

k −
k−1∑
j=1

⟨x′
k,v

′
j⟩

∥v′
j∥2

v′
j = Pxk −

k−1∑
j=1

⟨Pxk,Pvj⟩
∥vj∥2

Pvj = Pvk,

where the last equality holds because the inner product operator is invariant under permutation. Thus
vk is also permutation equivariant, and by induction we conclude that GS is permutation equivariant.

The orthogonal equivariance of GS can be proved similarly. Let Q ∈ Rn×n be an arbitrary orthogonal
matrix. Let {x′

1,x
′
2, . . . ,x

′
m} be defined by x′

i = Qxi for 1 ≤ i ≤ m, and let {v′
1,v

′
2, . . . ,v

′
m}

be the orthogonal basis generated from {x′
1,x

′
2, . . . ,x

′
m}. Clearly v′

1 is orthogonally equivariant.

17

Suppose v′
1, . . . ,v

′
k−1 are all orthogonally equivariant, then

v′
k = x′

k −
k−1∑
j=1

⟨x′
k,v

′
j⟩

∥v′
j∥2

v′
j = Qxk −

k−1∑
j=1

⟨Qxk,Qvj⟩
∥vj∥2

Qvj = Qvk

is also orthogonally equivariant, where the last equality holds because orthogonal transformations
preserve the inner product. Thus GS is also orthogonally equivariant.

Recall that in Algorithm 3, we first defined a set of values αi = hash(pii, {{pij}}j ̸=i) for i = 1, . . . , n,
where pi = Pxi is the projection of standard basis vectors onto the eigenspace V . Suppose there
are k distinct values in {αi}, i.e., |{αi}| = k. Then according to the values of αi we divided the
standard basis vectors {ei} into k disjoint groups Bi (arranged in descending order of the values of
αi), and defined a summary vector xi for each group Bi as the sum of standard basis vectors in that
group. Consider the projections of these k summary vectors, Pxi. Let i1 < i2 < · · · < id be the
smallest d indices such that ∥Pxij∥ > 0 and Pxij are linearly independent, 1 ≤ j ≤ d. In the final
step, we applied the Gram-Schmidt process to Pxi1 , . . . ,Pxid to obtain the resulting canonical
form. These steps can be summarized as follows.

1. Compute αi = hash(pii, {{pij}}j ̸=i), 1 ≤ i ≤ n.

2. Define summary vectors xi =
∑

ej , where the summands ej share the same αj value, and
the summary vectors are arranged in descending order of these values.

3. Find the smallest indices i1 < · · · < id such that ∥Pxij∥ > 0 and Pxij are linearly
independent, 1 ≤ j ≤ d.

4. Apply GS to {Pxi1 , . . . ,Pxid} to obtain the final canonical form.

In this algorithm we mainly make use of the permutation equivariance property of GS to construct an
overall permutation equivariant canonicalization, while the basis invariance of this canonicalization
relies on the basis invariance of projections themselves. We prove that Algorithm 3 is permutation
equivariant.

Theorem B.2. The OAP canonicalization in Algorithm 3 is permutation equivariant.

Proof. Consider the canonical forms of U and U ′ = PU , where P is an arbitrary permutation
matrix. We analyze each step of this algorithm. The permutation P acts on the eigenspace by
P ′ = PPP⊤, as well as on the standard basis vectors by e′i = Pei.

1. In step 1, since each projection p′
i = P ′e′i = PPP⊤Pei = Ppi is permutation

equivariant, the value vector α = (α1, . . . , αn) is also permutation equivariant.

2. In step 2, we summed vectors ei with the same corresponding αi to get the summary vectors,
while the summary vectors themselves are arranged in descending order of the corresponding
αi. If we arrange the entries of α in descending order as

αi1 ≥ αi2 ≥ · · · ≥ αin ,

then the indices vector i = (i1, . . . , in) would be “almost” permutation equivariant, except
that indices corresponding to equal entries could have any ordering. However, as we summed
up all ei with equal corresponding αi, the summary vectors xi would be exactly permutation
equivariant for 1 ≤ i ≤ k, in the sense that x′

i = P (
∑

ej∈Bi
ej) = Pxi.

3. The projections Pxij are themselves permutation equivariant. Since the norm operator
∥ · ∥ and the linear independence of vectors are not affected by permutation, the indices
i1 < · · · < id are permutation invariant.

4. Using the permutation equivariance of the Gram-Schmidt process (Theorem B.1), we
conclude that the whole algorithm is permutation equivariant.

18

B.2 Complete pseudo-code of Algorithm 2

In Algorithm 2, we proposed the OAP-eig canonicalization to address the basis ambiguity of eigen-
vectors without permutation equivariance. The complete pseudo-code of OAP-eig, along with a
detailed time complexity analysis, is shown in Algorithm 4.

Algorithm 4 OAP-eig canonicalization for eliminating basis ambiguity without permutation equivari-
ance
Require: The eigenvectors U ∈ Rn×d

Ensure: The canonical form U∗ of U
P ← UU⊤ ▷ O(n2d) complexity
Uspan ← empty matrix of shape n× 0
r ← 0 ▷ rank of Uspan

for [doO(n2d2) complexity]i = 1, . . . , n
u← normalize(Pi) ▷ O(n) complexity
if ∥u∥ < ε then ▷ floating-point errors are considered

continue
end if
Utmp ← [Uspan,u

⊤]
if rank(Utmp) = r + 1 then ▷ u is linearly independent with Uspan, O(nd2) complexity

Uspan ← Utmp

r ← r + 1
if r = d then ▷ found indices i1, . . . , id

break
end if

end if
end for
U∗ ← GS(Uspan) ▷ O(nd2) complexity
return U∗

The overall time complexity of Algorithm 4 is O(n2d2). Since in real-world datasets the value of d
is usually small (Figure 2 in Ma et al. [36]), Algorithm 4 is more efficient than eigendecomposition
itself whose time complexity is O(n3).

In the for loop of Algorithm 4, we aim to find indices i1, . . . , id such that ∥Peij∥ = ∥Pij∥ > 0 and
Pij are linearly independent for 1 ≤ j ≤ d. We look for these indices in a iterative fashion. The
matrix Uspan contains all the already-found indices. We initialize Uspan to be an empty matrix of
shape n×0, and every time we find an index i such that ∥Pi∥ > 0 and Pi is linearly independent with
the already-found columns vectors of Uspan, we concatenate the normalized Pi to Uspan. Once we
have found a total of d indices (denoted as r in Algorithm 4), we break out of the loop and return the
Gram-Schmidt orthogonalization of Uspan. By the properties of GS, U∗ is still a set of orthonormal
basis in the eigenspace. However, as we iterate through Pe1,Pe2, . . . ,Pen, the algorithm is not
permutation equivariant (the standard basis vectors {ei} are permuted by permutations).

B.3 Complete pseudo-code of Algorithm 3

In Algorithm 3, we proposed the OAP-lap canonicalization to address the basis ambiguity of Laplacian
eigenvectors while respecting permutation equivariance. The complete pseudo-code of OAP-lap,
along with a detailed time complexity analysis, is shown in Algorithm 5.

The overall time complexity of Algorithm 5 is O(n2d2), which is also more efficient than eigende-
composition itself. Although Algorithm 5 need to be applied to every eigenspace of the graph, we
note that the number of multiple eigenvalues (eigenvalues with multiplicity greater than 1 and thus
have basis ambiguity) are usually small in real-world datasets (Table 9 in Ma et al. [36]).

Algorithm 5 consists of two parts. In the first part, we try to divide the standard basis vectors
{ei}1≤i≤n into disjoint groups {Bi}1≤i≤k. To do that, we first calculate a set of values αi, 1 ≤ i ≤ n
for each standard basis vector. Any set of permutation-equivariant αi would guarantee the correctness
of the algorithm, but to ensure the algorithm canonicalizes as many eigenvectors as possible (i.e., the
superiority of canonicalization), we would like the values of αi to have enough “distinguishability”

19

Algorithm 5 OAP-lap canonicalization for eliminating basis ambiguity with permutation equivariance

Require: The Laplacian eigenvectors U ∈ Rn×d

Ensure: The canonical form U∗ of U
P ← UU⊤ ▷ O(n2d) complexity
α←

(
hash(P11, {{P1j}}j ̸=1), . . . ,hash(Pnn, {{Pnj}}j ̸=n)

)
▷ O(n2) complexity

val , ind ← sort(α) ▷ O(n log n) complexity
val ← unique(val) ▷ unique values in {αi}, O(n) complexity
k ← |val |
if k < d then

break ▷ impossible to find d indices
end if
for i = 1, . . . , k do ▷ O(n) complexity

xi ←
∑

j eind[j] such that αind[j] = val [i] ▷ sum of standard basis vectors in group Bi
xi ← xi + c1 ▷ the summary vector of group Bi

end for
Uspan ← empty matrix of shape n× 0
r ← 0 ▷ rank of Uspan

for i = 1, . . . , k do ▷ O(n2d2) complexity
u← normalize(Pxi) ▷ O(n) complexity
if ∥u∥ < ϵ then ▷ floating-point errors are considered

continue
end if
Utmp ← [Uspan,u

⊤]
if rank(Utmp) = r + 1 then ▷ u is linearly independent with Uspan, O(nd2) complexity

Uspan ← Utmp

r ← r + 1
if r = d then ▷ found indices i1, . . . , id

break
end if

end if
end for
U∗ ← GS(Uspan) ▷ O(nd2) complexity
return U∗

(i.e., the values of αi divide the standard basis vectors into more fine-grained groups, in Babai et al.
[6] this is called refinement). In Algorithm 5 we define αi = hash(Pii, {{Pij}}j ̸=i). We proved the
permutation equivariance of such αi in Appendix B.1, and in Appendix E we will prove that they are
more fine-grained than previous methods, such as αi = Pii in Puny et al. [45] and αi = ∥Pi∥ in
Ma et al. [36].

Once we have the values of αi, we can divide {ei} into disjoint groups Bi accordingly. Each value
αi corresponds to a standard basis vector ei. Two standard basis vectors belong to the same group if
and only if their corresponding αi are equal, and different groups are arranged in descending order of
the values of αi. For each group, we define its summary vector xi to be the sum of standard basis
vectors in that group, for 1 ≤ i ≤ k. In the second part of Algorithm 5, we use the same method as
Algorithm 4 to find the indices i1, . . . , id, except that the vectors {Pei}1≤i≤n are substituted with
{Pxi}1≤i≤k. Note that in contrast to Algorithm 4, now these vectors are permutation-equivariant
by construction.

B.4 Verifying the correctness of Algorithm 2

The correctness of Algorithm 1 is obvious and we skip that part. In this subsection we verify the
correctness of Algorithm 2 through random simulation. Here “correctness” refers to two things: for
any eigenvectors U ∈ Rn×d the indices i1, . . . , id can always be found; and that the whole algorithm
is basis-invariant as desired. The verification program is shown in Algorithm 6. Let U ∈ Rn×d

be a random orthonormal matrix representing the eigenvectors, and let Q ∈ O(d) be a random
orthonormal matrix that rotates the eigenvectors in their corresponding eigenspace. We pass U and

20

UQ to Algorithm 2 (denoted as canonicalize) and compare the results. If our algorithm is correct,
U and UQ should produce identical outputs.

Algorithm 6 Verify the correctness of Algorithm 2

correct ← 0, total ← 0
for i = 1, 2, . . . , trials do

n← a random positive integer (greater than 1)
d← a random positive integer (less than n)
U ← a random orthonormal matrix in Rn×d

U0 ← canonicalize(U)
Q← a random orthonormal matrix in Rd×d

W ← UQ
W0 ← canonicalize(W)
correct ← correct + 1 if |U0 −W0| < ε ▷ test basis invariance
total ← total + 1

end for
print the values of correct and total

We conduct 1000 trials. The results are correct = total = 1000, showing the basis invariance of
Algorithm 2. The function canonicalize will throw an error and terminate if the indices i1, . . . , id
(and thus the canonical form) cannot be found, so the successful execution of this program also shows
that we can always find such indices on random eigenvectors. This aligns with the conclusion of
Theorem 4.1.

We can also modify Algorithm 6 to verify the orthogonal equivariance of canonical averaging in the
n-body problem. Let model denote the model with canonical averaging. The program is shown in
Algorithm 7. The results show that canonical averaging achieves exact orthogonal equivariance.

Algorithm 7 Verify the orthogonal equivariance of canonical averaging in the n-body problem

correct ← 0, total ← 0
for i = 1, 2, . . . , trials do

X ← node features in the dataset, representing the inital location of particles
X0 ← model(X)
Q← a random orthonormal matrix in Rd×d, where d is the dimension of node features
W ←XQ
W0 ← model(W)
correct ← correct + 1 if |X0Q−W0| < ε ▷ test orthogonal equivariance
total ← total + 1

end for
print the values of correct and total

B.5 Verifying the correctness of Algorithm 3

In this subsection we verify the correctness of Algorithm 3. Here “correctness” refers to the permuta-
tion equivariance and basis invariance of the canonicalization algorithm. The verification program is
shown in Algorithm 8. Let U ∈ Rn×d be a random orthonormal matrix representing the Laplacian
eigenvectors, P ∈ Rn×n be a random permutation matrix that permutes the rows of U , and let
Q ∈ O(d) be a random orthonormal matrix that rotates the Laplacian eigenvectors in their corre-
sponding eigenspace. We pass U ,PU ,UQ,PUQ to Algorithm 3 (denoted as canonicalize) and
compare the results. If our algorithm is correct, UQ should produce invariant outputs, while PU
and PUQ should produce equivariant outputs.

We conduct 1000 trials. The results are p_correct = q_correct = pq_correct = total = 1000,
showing the permutation equivariance and basis invariance of Algorithm 3. The function canonicalize
will throw an error and terminate if it could not find a canonical form for U . While for LapPE
uncanonicalizable eigenvectors do exist [36], the successful execution of this program show that
empirically the probability for random Laplacian eigenvectors to be uncanonicalizable is 0. Ma et al.
[36] has a more rigorous discussion on this in Appendix H of their paper.

21

Algorithm 8 Verify the correctness of Algorithm 3

p_correct ← 0, q_correct ← 0, pq_correct ← 0, total ← 0
for i = 1, 2, . . . , trials do

n← a random positive integer (greater than 1)
d← a random positive integer (less than n)
U ← a random orthonormal matrix in Rn×d

U0 ← canonicalize(U)
P ← a random permutation matrix
V ← PU
V0 ← canonicalize(V)
p_correct ← p_correct + 1 if |PU0 − V0| < ε ▷ test permutation equivariance
Q← a random orthonormal matrix in Rd×d

W ← UQ
W0 ← canonicalize(W)
q_correct ← q_correct + 1 if |U0 −W0| < ε ▷ test basis invariance
Y ← PW
Y0 ← canonicalize(Y)
pq_correct ← pq_correct + 1 if |PU0 − Y0| < ε ▷ test both
total ← total + 1

end for
print the values of p_correct , q_correct , pq_correct and total

C Concentration inequality for drawing without replacement

In the EXP experiment the frame or canonicalization size is very large (Table 2), so we need to
randomly sample from the frame or canonicalization. We use the average of model outputs on the
sampled graphs to approximate the true average value on all graphs. In this section we prove that
a smaller frame/canonicalization size will lead to faster convergence rate towards the true average.
Thus, according to Table 2, CA is more sample efficient than FA, and OAP is more sample efficient
than FA-graph.

Denote by F a frame averaging scheme, and by C the canonicalization induced by F . Let VF (X) =
{{ρ1(g)−1X | g ∈ F(X)}} be all graphs generated by the frame F(X) from the input X (in our EXP
experiment, X would be a graph in the dataset). Note that VF (X) is a multi-set, so if k group actions
in F(X) result in the same graph when applied to X , then this graph is counted k times in VF (X).
Let C(X) be the canonicalization of input X . Let ϕ be the backbone neural network. Sampling from
frame/canonicalization works as follows:

1. If the frame size F(X) is large, then the exact averaging 1
|F(X)|

∑
g∈F(X) ϕ

(
ρ1(g)

−1X
)

is
intractable. In this case, we randomly sample n graphs X1, . . . , Xn from VF (X) and use
the empirical average 1

n

∑n
i=1 ϕ(Xi) as an approximation to the true average.

2. Similarly, if the canonicalization size C(X) is large, then the exact averaging
1

|C(X)|
∑

X0∈C(X) ϕ(X0) is intractable. In this case, we randomly sample n graphs
X1, . . . , Xn from C(X) and use the empirical average 1

n

∑n
i=1

∑n
i=1 ϕ(Xi) as an approxi-

mation to the true average.

When we sample from VF (X) or C(X), there are two approaches: drawing with replacement and
drawing without replacement. However, it is well-known that drawing without replacement is
preferable, as illustrated in the following theorem.

Theorem C.1 (Hoeffding [19]). Let X = (x1, . . . , xN) be a finite population of N real points,
X1, . . . , Xn denote a random sample without replacement from X and Y1, . . . , Yn denote a random
sample with replacement from X . If f : R→ R is continuous and convex, then

Ef

(
n∑

i=1

Xi

)
≤ Ef

(
n∑

i=1

Yi

)
.

22

In Theorem C.1, we can understand f as the error between the empirical average and the true average,
and X as the outputs of ϕ on the frame or canonicalization. Then we should adopt drawing without
replacement since it leads to smaller approximation error and thus faster concentration rate.

When drawing without replacement, we compare the concentration rate between frame averaging F
and the corresponding canonicalization C. By Theorem 3.1 we have |VF (X)| = |C(X)| · |GX |, where
GX is the stabilizer of X in group G. In fact VF (X) is just C(X) repeated for |GX | times. To see
this, we can divide F(X) into equivalence classes F(X)/GX , and denote by ∼ the corresponding
equivalence relation. For two group actions g1, g2 ∈ F(X), g1 ∼ g2 if and only if there exists
g0 ∈ GX such that g1 = g0g2. Since X = ρ1(g0)X by definition, group actions in the same
equivalence group will result in the same graph when applied to X . Since each equivalence group
has size |GX |, the multi-set of graphs generated by the frame VF (X) is just the repetition of C(X)
for |GX | times.

Intuitively, the frame size |VF (X)| is |GX | times larger than the canonicalization size |C(X)|, thus
drawing without replacement on VF (X) would concentrate slower than on C(X). This is shown in
the following theorem.
Theorem C.2 (Bardenet and Maillard [8]). Let X = (x1, . . . , xN) be a finite population of N > 1
real points, and (X1, . . . , Xn) be a list of size n < N sampled without replacement from X . Then
for all ε > 0, the following concentration bounds hold:

Pr

[
max

n≤k≤N−1

∑k
t=1(Xt − µ)

k
≥ ε

]
≤ exp

(
− 2nε2

(1− n/N)(1 + 1/n)(b− a)2

)
,

where a = min1≤i≤N xi, b = max1≤i≤N xi, and µ = 1
N

∑N
i=1 xi.

In Theorem C.2, let µ be the true average and let X1, . . . , Xn be the outputs of ϕ on the sampled
graphs from the frame or canonicalization. The upper bound in Theorem C.2 decreases as the
frame/canonicalization size N decreases, indicating faster concentration rate. Since |C(X)| <
|VF (X)|, we conclude that CA is more sample efficient than FA; and since the frame size of OAP-
graph is smaller than that of FA-graph, we conclude that OAP-graph is more sample efficient than
FA-graph.

D PCA-frame methods for orthogonal equivariance

D.1 PCA-frame methods

We can achieve orthogonal equivariance by using PCA-frame methods [32]. Given input X ∈ Rn×k,
we compute orthonormal eigenvectors RX ∈ O(k) of the covariance matrix cov(X) = (X −
1
n11

⊤X)⊤(X − 1
n11

⊤X), where O(k) is the group of orthogonal matrices in Rk×k. Then we
transform X into its canonical form XRX and feed it into a network h. Finally, we apply R⊤

X to
the output of the network to transform it back to its original orientation. The whole process can be
described as a neural network model

f(X) = h(XRX)R⊤
X .

See Figure 2 for an illustration. Intuitively, this first transforms X by RX into a nearly canonical
orientation that is unique up to sign flips; this can be seen as writing the points in the principal
components basis, or aligning the principal components of X with the coordinate axes. Then we
process XRX using the model h, and finally incorporate orientation information back into the output
by post-multiplying by R⊤

X .

However, due to the ambiguities of eigenvectors, the canonical form XRX is not unique, and f
cannot achieve exact orthogonal equivariance without addressing these ambiguities. Puny et al. [45]
averages over all possible sign choices for RX , which requires 2k forward passes through the base
model h. Lim et al. [32] resolves these ambiguities with special sign equivariant architectures for h.
In Section 4.1, we propose to address them using optimal canonicalization.

D.2 Experiments on the n-body problem

We use canonicalization to achieve exact orthogonal equivariance with PCA-frame methods, as
introduced in Appendix D. We consider simulating n-body problems Fuchs et al. [18]. For baselines

23

f(): R h R⊤

f(): R h R⊤

Figure 2: Using PCA-frame methods to achieve orthogonal equivariance, described as a neural
network model f(X) = h(XRX)R⊤

X , where RX is a choice of principal components for the point
cloud X ∈ Rn×k. We first transform X via RX into an orientation that is unique up to sign flips,
then process XRX using a network h, and finally reintegrate orientation information back into the
output via R⊤

X . Figure reproduced with permission from Lim et al. [32].

we consider FA over signs of eigenvectors and sign-equivariant models [32]. We also evaluate CA
based on Algorithm 2 (OAP-eig) and Algorithm 3 (OAP-lap) on this task. We scale the dimension d
of the problem and report the training time and MSE of different models. In Figure 3a, we observe
that the training time of FA scales exponentially, since it needs to average 2d sign choices. FA runs
out of memory on a 32GB V100 GPU for d = 11. Both sign-equivariant model and CA have almost
constant training time as d increases, while CA is slightly more efficient since it enforces no extra
equivariance restraint on the model. In Figure 3b, we observe comparable performance between these
methods. CA achieves much better scalability than FA with a small loss in accuracy.

3 5 7 9 11

Dimension

2

4

6

8

Se
co
nd
s/

ep
oc
h

FA
Sign
OAPeig
OAPlap

(a) Training time.

3 5 7 9 11

Dimension

0.000

0.002

0.004

0.006

M
SE

FA
Sign
OAPeig
OAPlap

(b) Test MSE.

Figure 3: The training time and test MSE of models in the n-body problem. Results are averaged
over 4 runs with different seeds.

E Proofs

E.1 Proof of Theorem 3.1

Proof. Let F be a frame. Consider the following set-valued function CF : V → 2V \∅ defined by

CF (X) = {ρ1(g)−1X | g ∈ F(X)}.
Then CF is G-invariant because for any g′ ∈ G,

CF
(
ρ1(g

′)X
)
=
{
ρ1(g)

−1ρ1(g
′)X | g ∈ F

(
ρ1(g

′)X
)}

= {ρ1(g)−1ρ1(g
′)X | g ∈ g′F(X)}

= {ρ1(g)−1ρ1(g
′)−1ρ1(g

′)X | g ∈ F(X)}
= {ρ1(g)−1X | g ∈ F(X)}
= CF (X).

24

Thus CF is a canonicalization. Clearly it is also an orbit canonicalization since CF (X) ⊂ VG(X) for
all X .

Let g1, g2 ∈ F(X). We claim that ρ1(g1)−1X = ρ1(g2)
−1X if and only if there exists g0 ∈ GX

such that g1 = g0g2, where GX = {g ∈ G | ρ1(g)X = X} is the stabilizer of X . On the one
hand, if g1 = g0g2, then ρ1(g1)

−1X = ρ1(g2)
−1ρ1(g0)

−1X = ρ1(g2)
−1X . On the other hand,

if ρ1(g1)−1X = ρ1(g2)
−1X , then X = ρ1(g1)ρ1(g2)

−1X , which means g1g
−1
2 ∈ GX . Denote

g1g
−1
2 = g0, then g1 = g0g2.

Thus, we can divide the frame into equivalence classes F(X)/GX . Group actions in the same
equivalence class result in the same element when applied to X , while group actions in different
equivalence classes result in different elements. The total number of elements obtained by applying
F(X) to X is |F(X)|/|GX |, i.e., |CF (X)| = |F(X)|/|GX | ≤ |F(X)|. If X has non-trivial
automorphism, then |CF (X)| < |F(X)|, meaning canonicalization is strictly more efficient than the
frame.

Similarly, let C be an orbit canonicalization. Consider the following set-valued function FC : V →
2G\∅ defined by

FC(X) = {g ∈ G | ρ1(g)−1X ∈ C(X)}.
Since C(X) ⊂ VG(X), FC(X) is well-defined. It is also G-equivariant, since for any g′ ∈ G,

FC
(
ρ1(g

′)X
)
=
{
g ∈ G | ρ1(g)−1ρ1(g

′)X ∈ C
(
ρ1(g

′)X
)}

= {g ∈ G | ρ1(g′−1g)−1X ∈ C(X)}
= {g ∈ g′G | ρ1(g)−1X ∈ C(X)}
= g′FC(X).

ThusFC is a frame. We can also see that the canonicalization induced byFC is just C itself. Repeating
the arguments in the first part of this proof, we conclude that |FC(X)| = |GX | · |C(X)| ≥ |C(X)|. If
X has non-trivial automorphism, then canonicalization is strictly more efficient than the frame.

Corollary E.1. A frame F is optimal iff the canonicalization that it induces is optimal.

Proof. Corollary E.1 immediately follows from the definition of optimality and the relation |F(X)| =
|GX | · |C(X)|, where F and C induce each other.

E.2 Proof of Theorem 3.2

We first show that an orbit canonicalization itself is universal.

Lemma E.2. An orbit canonicalization C : V → 2V \∅ is universal.

Proof. Recall universality means that for any G-invariant function f : V →W , there exists a well-
defined function ϕ : 2V → W such that f(X) = ϕ(C(X)) for all X ∈ V . Since f is G-invariant,
all inputs in the same equivalence class induced by G produce the same output when fed to f . This
means that for fixed X , f(X ′) is constant for all X ′ ∈ VG(X). We can simply take the ϕ function to
be ϕ = f . Since C(X) ⊂ VG(X), we have ϕ(C(X)) = f(C(X)) = f(X) for all X , which proves
the universality of C.

Then we give the proof of Theorem 3.2.

Proof. Sufficiency. If g(C(X)) = Cc(X) for some orbit canonicalization Cc and all X ∈ V , we
prove C is universal. By Lemma E.2, for any G-invariant function f : V → W , there exists a
well-defined function ϕc such that f(X) = ϕc(Cc(X)) for all X ∈ V . Letting ϕ = ϕc ◦ g, we have
f(X) = ϕc(g(C(X))) = ϕ(C(X)) for all X ∈ V , hence C is universal.

Necessity. If C is universal, we construct g : 2V → 2V such that it maps C(X) to any subset of
VG(X), for all X ∈ V . Since C is invariant, this mapping is well-defined; and since the equivalence
classes {VG(X)} are disjoint, this mapping is also injective. Clearly, the canonicalization defined by
Cc(X) := g(C(X)) is an orbit canonicalization.

25

E.3 Proof of Theorem 3.3

Proof. The invariance of ΦCA is derived from the invariance of C (in fact this does not rely on C to
be an orbit canonicalization). For all g ∈ G and X ∈ V ,

ΦCA

(
ρ1(g)X; C, ϕ

)
=

1

|C(ρ1(g)X)|
∑

X0∈C(ρ1(g)X)

ϕ(X0)

=
1

|C(X)|
∑

X0∈C(X)

ϕ(X0) = ΦCA(X; C, ϕ).

For universality, the G-invariance of f implies that the value of f is constant on each equivalence
class VG(X). Since C is an orbit canonicalization, this further implies that f is constant on each
canonicalization C(X). Thus f(X) = ΦCA(X; C, f) for all X . For an arbitrary G-invariant function
f , the approximation error of ΦCA is bounded by

∥f(X)− ΦCA(X; C, ϕ)∥W = ∥ΦCA(X; C, f)− ΦCA(X; C, ϕ)∥W

=

∥∥∥∥∥∥ 1

|C(X)|
∑

X0∈C(X)

f(X0)−
1

|C(X)|
∑

X0∈C(X)

ϕ(X0)

∥∥∥∥∥∥
W

≤ 1

|C(X)|
∑

X0∈C(X)

∥f(X0)− ϕ(X0)∥W

≤ max
X∈V

∥f(X)− ϕ(X)∥W .

Thus the approximation error of ΦCA is bounded by that of ϕ, and the universality of ϕ implies the
universality of ΦCA.

A direct corollary is that we can universally approximate any G-invariant function using MLPs under
mild conditions.

Corollary E.3. Let V,W be compact normed linear spaces. For any continuous G-invariant f : V →
W and any ε > 0, there exists an MLP network ϕ : V →W such that ∥f(X)− ΦCA(X; C, ϕ)∥ ≤ ε
holds for all X ∈ V .

Proof. Since MLP is universal in approximating continuous functions f : V → W [20], it also
universally approximates such f that is G-invariant. Corollary E.3 immediately follows from
Theorem 3.3.

E.4 Proof of Theorem 3.4

Notice that in Theorem 3.4, the function ϕ have two inputs. Apart from the canonical form
MAP++(u), it also takes an indicator 1u as input, which indicates whether u is canonicalizable.
Thus our proof will be divided into two parts, for canonicalizable and uncanonicalizable eigenvectors
respectively.

Lemma E.4. A function h : Rn → Rn×dout is permutation equivariant and sign invariant on all
canonicalizable inputs u ∈ Rn iff there exists a permutation equivariant function ϕ : Rn → Rn×dout

such that h(u) = ϕ(MAP++(u))).

Proof. Sufficiency. If ϕ is permutation equivariant, since MAP++ is also permutation equivariant,
so is ϕ(MAP++(u)). Since MAP++ is a canonicalization for sign, ϕ(MAP++(u)) is also sign-
invariant.

Necessity. Given a permutation equivariant and sign invariant function h, we simple take ϕ = h, where
ϕ is defined on all canonical forms output by MAP++. Since MAP++ is universal on canonical
inputs (because it is an orbit canonicalization), by Theorem 3.3, such ϕ exists and ϕ(MAP++(u)) is
sign invariant, while ϕ does not have to be sign invariant. Since h is permutation equivariant, so is ϕ;
and since MAP++ is itself permutation equivariant, so is the entire function ϕ(MAP++(u)).

26

Before moving on to the second part, we first introduce some lemmas about the structure of uncanon-
icalizable eigenvectors under sign ambiguity.

Lemma E.5. If u is uncanonicalizable, then all non-zero values in u are paired opposite values, i.e.,
the multi-set of all non-zero values in u takes the form {{a1,−a1, a2,−a2, . . . , ak,−ak}} for some k.

Proof. Because Pu = −u, all non-zero values in u have to be permuted by P . For any orbit of the
permutation n1 → n2 → · · · → nk → n1, from the fact Pu = −u, we know

un2 = −un1 , un3 = −un2 = u1, . . . , unk
= (−1)k+1u1 = −un1 .

Thus, k has to be even, and all values in the same orbit of the permutation are paired opposite values
of the same magnitude, e.g., {{u1,−u1}}. Applying it to all orbits of the permutation finishes the
proof.

Lemma E.6. For any uncanonicalizable eigenvector u, there exists a pairwise permutation matrix
P (which only sweeps two non-zero opposite numbers) such that Pu = −u.

Proof. Since the non-zero values in u appear in pairs, we simply choose P such that it sweeps these
pairs and keeps all 0’s unmoved.

Now for the second part.

Lemma E.7. A function h : Rn → Rn×dout is permutation equivariant and sign invariant on all
uncanonicalizable inputs u ∈ Rn iff there exists a permutation equivariant function ϕ : Rn →
Rn×dout such that h(u) = ϕ(|u|).

Proof. Sufficiency. First, it is obvious that for any u, h(u) = ϕ(|u|) is sign invariant. It is also
permutation equivariant because for any permutation matrix P , h(Pu) = ϕ(|Pu|) = ϕ(P |u|) =
Pϕ(|u|) = Ph(u).

Necessity. Let h be a permutation equivariant and sign invariant function, then for any uncanoni-
calizable eigenvector u with Pu = −u, we have h(Pu) = h(−u) = h(u). Following the proof
of Corollary E.6, for any two permuted values ui and uj with ui = −uj , there exists a pairwise
permutation matrix P such that (Pu)i = uj = −ui. Further combined with h(Pu) = h(u), we
have h(u)i = h(Pu)i = (Ph(u))i = h(u)j . Thus, two opposite numbers in u always have the
same output on their corresponding rows of h(u).

Given this property, we can choose random opposite signs for equal numbers in |u| (i.e., a flipping),
denoted as ũ = rand_flip(|u|). Let ϕ(|u|) = h(rand_flip(|u|)). It is easy to verify that ϕ(|u|) is
well-defined as different flipping leads to the same output. Specifically, this is because:

1. Opposite numbers in u leads to the same output on their corresponding rows of h(u);

2. ũ’s produced by different flippings differ only by a permutation;

3. h is permutation equivariant.

Thus numbers in u with the same absolute value lead to the same outputs, and these outputs are
consistent for different flippings.

Then we prove Theorem 3.4.

Proof. We construct ϕ as follows. If 1u = 1, meaning u is canonicalizable, we let ϕ as in Lemma E.4;
and if 1u = 0, meaning u is uncanonicalizable, we let ϕ as in Lemma E.7. Combining the sufficiency
and necessity of these two lemmas gives the proof of Theorem 3.4.

27

E.5 Proof of Corollary 3.5

Before proving Corollary 3.5, we first give some intuition about why SignNet is non-universal. In
Theorem 3.4 we have already seen that, on uncanonicalizable eigenvectors, the inner ϕ function of
SignNet is equal to some other function that only takes in the absolute value of the input eigenvector.
This may not be a problem if we are only considering one eigenspace, since a permutation equivariant
and sign invariant function is supposed to behave that way; there is no loss of information. The
problem occurs when SignNet is applied to multiple eigenvectors, where each eigenvector is passed
to the ϕ function separately before concatenated and fed to ρ. We can imagine that taking the absolute
value of one uncanonicalizable eigenvector would lose some relative positional information about
which elements are positive and which elements are negative, with respect to other eigenvectors. This
loss of information makes SignNet non-universal.

For instance, we may try to construct a simple counterexample where taking the absolute value loses
some information and as a result, SignNet fails to distinguish two non-isomorphic matrices. Drawing
from the intuition above, here is our first try:

U1 = [u11,u12] =

(
1 −1 1 −1
2 3 4 5

)⊤

,

U2 = [u21,u22] =

(
−1 1 1 −1
2 3 4 5

)⊤

.

Suppose the first column eigenvector of U1 and U2 corresponds to eigenvalue λ1 = 1, the second
column eigenvector of U1 and U2 corresponds to eigenvalue λ2 = 2, and other eigenvectors
not shown corresponds to eigenvalue 0 (so we safely ignore them). Then the Laplacian matrices
corresponding to U1 and U2 are:

L1 = λ1u11u
⊤
11 + λ2u12u

⊤
12 =

 9 11 17 19
11 19 23 31
17 23 33 39
19 31 39 51

 ,

L2 = λ1u21u
⊤
21 + λ2u22u

⊤
22 =

 9 11 15 21
11 19 25 29
15 25 33 39
21 29 39 51

 .

L1 and L2 are clearly non-isomorphic, as there does not exist a permutation matrix P such that
L1 = PL2P

⊤. However, the second eigenvector of U1 and U2 are the same; the first eigenvector of
U1 and U2 are uncanonicalizable and according to Theorem 3.4, SignNet will treat them as the same.
Therefore, SignNet fails to distinguish these two non-isomorphic matrices, and consequently it cannot
approximate any permutation equivariant and sign invariant function that assigns different outputs
to these matrices. However, as you may already notice, this example is not really legal, since the
eigenvectors in U1 and U2 are not orthogonal (they are also not normalized, but whether normalizing
or not does not affect our claims, so for simplicity we will just keep them unnormalized).

Next, we give a valid example with orthogonal eigenvectors, and show how SignNet fails to distinguish
two non-isomorphic matrices in this case:

U1 = [u11,u12] =

(
−1 1 −1 1 2 2 −2 −2 0 0
1 −1 1 −1 1 1 0 0 −1 −1

)⊤

,

U2 = [u21,u22] =

(
1 1 −1 −1 2 2 −2 −2 0 0
1 −1 −1 1 1 −1 0 0 −1 1

)⊤

.

28

We still assume λ1 = 1, λ2 = 2. Their corresponding Laplacian matrices are:

L1 =

3 −3 3 −3 0 0 2 2 −2 −2
−3 3 −3 3 0 0 −2 −2 2 2
3 −3 3 −3 0 0 2 2 −2 −2
−3 3 −3 3 0 0 −2 −2 2 2
0 0 0 0 6 6 −4 −4 −2 −2
0 0 0 0 6 6 −4 −4 −2 −2
2 −2 2 −2 −4 −4 4 4 0 0
2 −2 2 −2 −4 −4 4 4 0 0
−2 2 −2 2 −2 −2 0 0 2 2
−2 2 −2 2 −2 −2 0 0 2 2

,

L2 =

3 −1 −3 1 4 0 −2 −2 −2 2
−1 3 1 −3 0 4 −2 −2 2 −2
−3 1 3 −1 −4 0 2 2 2 −2
1 −3 −1 3 0 −4 2 2 −2 2
4 0 −4 0 6 2 −4 −4 −2 2
0 4 0 −4 2 6 −4 −4 2 −2
−2 −2 2 2 −4 −4 4 4 0 0
−2 −2 2 2 −4 −4 4 4 0 0
−2 2 2 −2 −2 2 0 0 2 −2
2 −2 −2 2 2 −2 0 0 −2 2

.

L1 and L2 are non-isomorphic. In fact, there are 24 0’s in L1 but only 16 0’s in L2, so there is no
way they are isomorphic. However, we can verify three things:

1. The eigenvectors are legal, i.e., u⊤
11u12 = u⊤

21u
⊤
22 = 0;

2. All four eigenvectors u11,u12,u21,u22 are uncanonicalizable;
3. u11 and u21 have the same absolute value, u12 and u22 have the same absolute value.

Therefore, by Theorem 3.4, SignNet would give identical output for U1 and U2. Thus it cannot
approximate permutation equivariant and sign invariant functions that assign different outputs to
these matrices. Unconvinced readers could implement a randomly initialized SignNet themselves and
verify our claim (we have already done that).

Next we discuss BasisNet. We first introduce BasisNet. Let Ui ∈ Rn×di be an orthonormal basis of
a di dimensional eigenspace. Then BasisNet is parameterized by

f(U1, . . . ,Ul) = ρ
(
[ϕdi(UiU

⊤
i)]li=1

)
,

where each ϕdi
is shared amongst all subspaces of the same dimension di, and l is the number of

eigenspaces. Since higher-order permutation equivariant networks are intractable, here we mainly fo-
cus on using first-order permutation equivariant ϕdi

. This means ϕdi
(PUiU

⊤
i P⊤) = Pϕdi

(UiU
⊤
i)

for all permutation matrix P .

As a special case, if di = 1, by letting ϕ(u) = ϕ1(uu
⊤), BasisNet is reduced to SignNet:

f(u1, . . . ,ul) = ρ
(
[ϕ(ui)]

l
i=1

)
.

Since SignNet is not universal, there exists a permutation equivariant and sign invariant function
acting on matrices whose eigenvalue multiplicity is no more than 1, and SignNet is not able to
approximate it. Since BasisNet is reduced to SignNet when di = 1, BasisNet is also incapable of
approximating this function. Therefore BasisNet is not universal either.

In fact Theorem 3.4 can be extended to basis, showing loss of information in higher dimension
eigenspaces as well. By Ma et al. [36], eigenvectors U ∈ Rn×d are uncanonicalizable under basis
ambiguity iff there exists a permutation matrix P such that U ̸= PU and U = PUQ for some
orthogonal matrix Q. We have the following theorem.
Theorem E.8. If a function h : Rn×d → Rn×dout is permutation equivariant and basis invariant on
any uncanonicalizable eigenvectors U with U = PUQ, then for any i ̸= j such that Ui = UjQ,
we have

h(U)i = h(U)j .

That is, the rows of h(U) are constant on every orbit of the permutation P .

29

Proof. Let h : Rn×d → Rn×dout be a permutation equivariant and basis invariant function, and let
U = PUQ be any uncanonicalizable eigenvectors. For any i ̸= j such that Ui = UjQ, we claim
that there exists a permutation matrix P ′ such that U = P ′UQ and P ′ permutes the i-th row to the
j-th row. We prove this claim as follows.

Denote the permutation induced by P as P : i 7→ σ(i), and the permutation induced by P ′ as
P ′ : i 7→ σ′(i). We wish to prove that there exists P ′ such that U = P ′UQ and j = σ′(i). We
construct P ′ as follows.

• If σ(i) = j, we could simply let P ′ = P .

• Otherwise, if σ(i) = j′ ̸= j, denote j = σ(i′) where i′ ̸= i. We let σ′(i) = j, σ′(i′) = j′,
and σ′(k) = σ(k) for all other k ̸= i, i′. Then clearly U = P ′UQ still holds.

By the claim above and observing h(U) = h(P ′UQ) = h(P ′U), we have

h(U)j = h(P ′U)j =
(
P ′h(U)

)
j
= h(U)i.

Theorem E.8 indicates loss of information when BasisNet is applied to multiple eigenspaces with
uncanonicalizable eigenvectors.

E.6 Proof of Theorem 4.1

Proof. It suffices to show that the projections {Pei}1≤i≤n of the standard basis vectors {ei}1≤i≤n

onto the eigenspace still has full rank. Then since the dimension of the eigenspace is d, we can select
d projection vectors such that they remain linearly independent.

This is easy to prove. For any vector a ∈ Rn, there exists a set of coefficients a1, . . . , an such that
a = a1e1 + · · ·+ anen. In particular, this holds for vectors in the eigenspace V . Thus multiplying
both sides by P we have a = Pa = a1Pe1 + · · ·+ anPen for all a ∈ V . Thus the projections
{Pei}1≤i≤n are still a set of basis in the eigenspace, and Theorem 4.1 follows.

E.7 Proof of Theorem 4.2

Proof. When permutation equivariance is not required, all eigenvectors are canonicalizable. Thus
“optimal” here means Algorithm 1 and Algorithm 2 can canonicalize all eigenvectors. Algorithm 1 is
clearly an optimal orbit canonicalization since:

1. It outputs either u or −u and is an orbit canonicalization;

2. Every eigenvector has at least one non-zero element, so Algorithm 1 always succeeds;

3. It is sign invariant, since u and −u gives the same output (i.e., the one such that its first
non-zero entry is positive).

Algorithm 2 is also an optimal orbit canonicalization since:

1. The Gram-Schmidt orthogonalization of a set of basis in a subspace is still a set of basis in
that subspace (but orthogonalized), so Algorithm 2 is an orbit canonicalization;

2. By Theorem 4.1, Algorithm 2 always succeeds in finding the indices i1 < · · · < id and
orthogonalizing them;

3. It is basis invariant, since the projections {Pei} are basis invariant, and all procedures that
follow remain basis invariant.

30

E.8 Proof of Theorem 4.3 and Corollary 4.4

We strongly recommend the readers to read Appendix B first to get some intuition about our algorithm.
Before proving its superiority, we note that Algorithm 3 is an orbit canonicalization, and is basis
invariant and permutation equivariant:

1. The Gram-Schmidt orthogonalization of a set of basis in a subspace is still a set of basis in
that subspace (but orthogonalized), so Algorithm 3 is an orbit canonicalization;

2. It is basis invariant, since the projections {pi} = {Pei} are basis invariant, and all
procedures that follow remain basis invariant;

3. The permutation equivariance of Algorithm 3 is more technical, which is proved in Theo-
rem B.2 in Appendix B.1.

We prove the superiority of OAP-lap over MAP.

Proof. OAP is strictly superior to MAP in two aspects. Firstly, we notice that the computation of
summary vectors xi in these two algorithms is almost the same, except with different values for
αi. In OAP, the αi is defined by αi = hash(Pii, {{Pij}}j ̸=i), while in MAP, their α′

i = ∥Pi∥ is a
special case of ours. Thus:

• If αi = αj , then Pii = Pjj and {{Pik}} = {{Pjk}}. This indicates α′
i = ∥Pi∥ =

∥Pj∥ = α′
j .

• However, if α′
i = α′

j , this does not necessarily mean αi = αj . For instance, let P1 =
P2 = (1, 0), then α′

1 = α′
2 but α1 ̸= α2.

This means αi is more “distinctive” than α′
i, and as a result we will have a better chance finding

indices i1 < · · · < id such that Pxi1 , . . . ,Pxid is a basis of the eigenspace. This is because, more
“distinctive” αi would lead to more “refined” (smaller) groups Bi, and as a result, the rank of the
projections {Pxi} will not decrease (and possibly increase). By splitting the group Bi into several
smaller groups, the original summary vector can be expressed as a linear combination of all new
summary vectors, thus the rank of projections of summary vectors does not decrease.

Secondly, OAP is superior to MAP by allowing flexible choices of i1 < · · · < id. In fact, after
working out the summary vectors, the rest of the MAP algorithm is equivalent to Algorithm 3 except
that they restrict i1 = 1, . . . , id = d. Recall that in MAP, given u1, . . . ,ui−1 already found, they
look for ui in the orthogonal complementary space of ⟨u1, . . . ,ui−1⟩ in V by projecting xi onto
that space; and if xi is orthogonal to that space, their algorithm fails. This is exactly what Gram-
Schmidt process does to the projection vectors {Pxi}. Except in our algorithm, instead of looking
at projections Px1, . . . ,Pxd, we look for all projections Px1, . . . ,Pxk and try to select a subset
of them such that the algorithm succeeds. This is obviously strictly superior, since there may be cases
where Px1, . . . ,Pxd is not a basis of the eigenspace but another subset of Px1, . . . ,Pxk is.

Next we prove the superiority of OAP-graph over FA-graph.

FA-graph works as follows. Assume the graph has k eigenspaces with projection matrices
P1, . . . ,Pk. Let s1, . . . , sk be the diagonals of these projection matrices, and let S =
[s1, . . . , sk] ∈ Rn×k. Then the frame of the graph is defined to be all permutations that sort
the rows of S in column lexicographic order, and the canonical form of the graph is the set of graphs
produced by these permutations (by applying them to the original graph). We call this canonicalization
FA-graph.

Next we introduce OAP-graph. Let αℓ
i be defined in the same way as αi, except that ℓ = 1, . . . , k

denotes that αℓ
i is computed from the projection matrix of the ℓ-th eigenspace Pℓ. Let S′ ∈ Rn×k be

a matrix with Siℓ = αℓ
i . The frame of the graph is the set of all permutations that sort the rows of S′

in column lexicographic order, and the canonicalization of the graph is the set of graphs produced by
these permutations. We name this canonicalization OAP-graph. FA-graph in Puny et al. [45] works in
a similar fashion except with different definition for αℓ

i . Since the αℓ
i used in OAP-graph is stronger

than in FA-graph, OAP-graph is also superior to FA-graph.

31

We will show that FA-graph is equivalent to our algorithm that takes αi = Pii, which is weaker than
our definition αi = hash(Pii, {{Pij}}).

Proof. OAP-graph is almost identical to FA-graph, except that instead of sorting α′
i = Pii as in

FA-graph, we sort values of αi = hash(Pii, {{Pij}}j ̸=i).

1. If αi = αj , clearly α′
i = Pii = Pjj = α′

j .

2. However, if α′
i = α′

j , this does not necessarily mean αi = αj . For instance, let P1 = (1, 1)
and P2 = (2, 1), then α′

1 = α′
2 but α1 ̸= α2.

This means αi is more “distinctive” than α′
i. We know that the frame obtained by FA-graph or

OAP-graph consists of all permutations that sort the values of αi in lexicographic order. Thus, a
strictly more distinctive αi will lead to strictly less repeating elements and strictly less number of
permutations (i.e., strictly smaller frame size).

Finally, we prove the superiority of OAP-lap over FA-lap.

Proof. FA-lap is almost identical to OAP-lap, except that it uses a less distinctive αi = Pii. When
proving the superiority of OAP-graph over FA-graph, we proved that αi used by FA-lap is strictly
less distinctive than αi used by OAP-lap, and when proving the superiority of OAP-lap over MAP we
proved more distinctive αi would lead to higher chance of finding indices i1 < · · · < id. Combining
these facts gives the proof of the superiority of OAP-lap over FA-lap.

F Augmentations of the OAP algorithm

In this section, we present three variations of the OAP algorithm. The first two variants enhance the
original OAP algorithm (Algorithm 5) through straightforward augmentations, while the third variant
extends the OAP algorithm to render it trainable by neural networks.

F.1 Incorporating node features

Recall in Algorithm 5 we defined the permutation-equivariant vector α with

αi = hash(Pii, {{Pij}}j ̸=i), 1 ≤ i ≤ n,

and used the values of αi to split the standard basis vectors into different groups. From the proof of
Theorem B.2, we can see that the permutation equivariance of OAP is guaranteed by the permutation
equivariance of α, which is respected as long as the indices of αi are permutation equivariant, i.e.,

ασ(i) = hash(Pσ(i)σ(i), {{Pσ(i)σ(j)}}j ̸=i), 1 ≤ i ≤ n

for all permutation σ. This indicates that we can incorporate any permutation-equivariant features
into αi, as long as it preserves the permutation equivariance of i. If the input graph has node features
X ∈ Rn×d, where n is the number of nodes, then the node features X would be permutation
equivariant. Using this property, we propose the following variant of OAP, by incorporating X into
αi:

αi = hash(Pii, {{Pij}}j ̸=i,Xi), 1 ≤ i ≤ n,

where Xi is the node feature of the i-th node. It is easy to see that this variant is superior to the
original OAP algorithm.

F.2 Incorporating information from other eigenvectors

Another example of permutation equivariant feature is the projection matrices of other eigenspaces.
Suppose there are ℓ eigenspaces in total, with corresponding projection matrices P(1), . . . ,P(ℓ).
For each 1 ≤ i ≤ n, we can calculate a value of αi for each of these eigenspaces:

α
(k)
i = hash(P

(k)
ii , {{P(k)

ij }}j ̸=i), 1 ≤ k ≤ ℓ,

32

then coalesce them into a single value

αi = hash(α
(s)
i , {{α(j)

i }}j ̸=s),

where s is the index of the eigenspace that we are trying to canonicalize. In this way, we can
canonicalize eigenvectors from one eigenspace using information from all ℓ eigenspaces, instead of
this eigenspace alone. Clearly this variant is also superior to the original OAP canonicalization.

F.3 Learnable canonicalization

We can also adopt learnable networks to substitute certain components of the OAP canonicalization.
For example, the hash function in the definition of αi can be made learnable:

αi = h(Pii, {{Pij}}j ̸=i), 1 ≤ i ≤ n,

where h is a neural network that is invariant to the ordering of {{Pij}}j ̸=i. We can also replace the
Gram-Schmidt orthogonalization with a learnable network:

U∗ = h′(Pxi1 , . . . ,Pxid),

where h′ is a permutation-equivariant neural network. The output vectors may not be orthogonal, but
since h′ almost certainly preserves the rank of (Pxi1 , . . . ,Pxid), it does not lose expressive power.

G Related work

G.1 Equivariant learning

There are four main approaches in the mainstream to achieve equivariance. The first approach, as
used in Yarotsky [69], Murphy et al. [40], is group averaging. This approach involves averaging
over the entire group, which becomes impractical when dealing with large groups. For example,
the permutation group on graphs and the sign transformation group on single eigenvectors have an
exponential number of elements, while the orthogonal transformation group has an infinite number of
elements. In such cases, random sampling becomes necessary. For instance, relational pooling can be
used for the permutation group [40], or random sign sampling can be used for the sign transformation
group [14].

The second approach is frame averaging, which was proposed by Puny et al. [45]. This method
involves averaging over a smaller frame instead of the entire group. However, a drawback of this
approach is that it requires the frame to be equivariant, which is a strong assumption and often
difficult to fulfill. Duval et al. [13] also suggested stochastic frame averaging by randomly sampling
from the frame. They applied this method to a frame of size 8, given by the set {1,−1}3.

The third approach is learned canonicalization, proposed by Kaba et al. [26], which can be viewed as
frame averaging with a frame size of 1. However, such canonicalization is not possible if the input
has non-trivial automorphism. Additionally, even for non-automorphic inputs, the assumption of
equivariance makes constructing such canonicalization challenging.

The fourth approach involves designing equivariant network architectures tailored to specific equiv-
ariant constraints. For example, Fuchs et al. [18] introduced the SE(3)-transformer, which exhibits
equivariance to the SE(3) group. Additionally, Zaheer et al. [70] and Segol and Lipman [53] pro-
posed networks that are permutation invariant and equivariant. Furthermore, Lim et al. [33] and Lim
et al. [32] presented networks that maintain sign invariance, basis invariance, and sign equivariance.
However, this approach’s downside lies in the increased complexity and training cost associated with
enforcing equivariance at the network level. Moreover, its applicability is limited to specific groups
and cannot be extended to arbitrary ones.

In our paper, we introduce a different theoretical framework for canonicalization that unifies previous
approaches while achieving the highest efficiency.

G.2 Canonicalization

There have been several related works using canonicalization to achieve equivariance. Apart from
Kaba et al. [26] discussed in Section 2.1, Dym et al. [16] proved the impossibility of continuity for

33

canonicalizations with single canonical forms, which explains the subpar performance of some current
canonization methods. Since in our framework, the canonical form is defined more generally as a set
rather than a single element, it allows for more flexibility and continuity with weighted averaging. Lin
et al. [34] proposed a framework of canonicalization that assumes a single canonical form, so their
framework is essentially a special case of our framework by taking |C(X)| = 1. The “minimal frame”
in their paper is just the induced frame of an optimal canonicalization in our framework. However,
the assumption of a single canonical form has the following key limitations:

• Theoretical Impossibility. A single canonical form may be theoretically impossible under
some constraints. For instance, canonicalization of LapPE requires permutation equivariance,
in this case it is theoretically impossible to find a single canonical form for some eigenvectors
[36].

• Computational Intractability. A single canonical form may be computationally intractable
to find. For instance, computing graph canonicalization is NP-hard [5]. In this case, we
have to adopt an approximate approach that admits a set of canonical forms, as in our EXP
experiment in Section 5.1.

Even if we could find a single canonical form for all inputs, as pointed out by Dym et al. [16] such
canonicalizations are still not continuous, which hurts their performance.

In summary, compared to previous canonicalization works that only consider single-element canoni-
calization that may be unrealizable, we take canonicalizability into account throughout the analysis
and thus gives a more rigorous and general framework that works for both canonicalizable (single
canonical form) and uncanonicalizable (no single canonical form) inputs.

G.3 Canonical forms

Canonical forms, a extensively studied topic in mathematics [41], have found applications in various
domains, including machine learning. While limited theoretical discussions have been conducted
regarding its application in equivariant learning, several practical implementations of canonical forms
have been proposed in prior research. For example, ConDor, a self-supervised method introduced
by Sajnani et al. [51], focuses on learning to canonicalize the 3D orientation and position of 3D
point clouds. Another approach, known as Canonical Field Network (CaFi-Net), was presented by
Agaram et al. [2], employing self-supervision to canonicalize the 3D pose of instances represented
by neural fields, such as neural radiance fields (NeRFs). Additionally, Sun et al. [56] proposed
an unsupervised capsule architecture specifically designed for 3D point clouds. Furthermore, Ma
et al. [35] uses canonicalization to achieve state and action invariance in generative models. In this
paper, we contribute rigorous theoretical foundations for canonicalization, specifically addressing the
eigenvector canonicalization problem, which holds significant practical implications.

G.4 Sign invariance

Several approaches have been proposed in prior research to tackle the issue of sign ambiguity. One
commonly used heuristic is Random Sign (RS), which randomly flips the signs of eigenvectors during
training to promote insensitivity to different signs [14]. However, this approach still requires the
network to learn these signs, resulting in slower convergence and a more challenging curve fitting
task. Another method developed by Bro et al. [10] is a data-dependent approach that selects signs
for each singular vector of a singular value decomposition. Nevertheless, in the worst case scenario,
the chosen signs can be arbitrary, and this method does not handle rotational ambiguities in higher
dimensional eigenspaces. Additionally, Kreuzer et al. [29] introduced the use of relative Laplacian
embeddings of two nodes, but their approach encounters a significant computational bottleneck with
a complexity of O(n4). Another proposal, known as SignNet [33], feeds both u and −u to the same
network, combines the outputs, and then passes them to another network. However, since the outputs
for both u and −u need to be computed, this approach increases the training cost. Furthermore,
Ma et al. [36] proposed MAP canonicalization to address the ambiguities of Laplacian eigenvectors
during pre-processing. However, their method cannot be applied to general eigenvectors.

34

G.5 Basis invariance

Lim et al. [33] introduced BasisNet, which is basis invariant. However, achieving universality with
BasisNet necessitates utilizing higher-order tensors in Rnk

, where k can reach values as high as n
[37, 49], making BasisNet impractical. Huang et al. [23] extended BasisNet with SPE, which is both
basis-invariant and resistant to perturbations in the Laplacian matrix. However, SPE still encounters
exponential complexity akin to BasisNet. Zhang et al. [74] theoretically discussed the expressive
power of spectral invariant networks, which include BasisNet. While Ma et al. [36] proposed the
MAP canonicalization to tackle ambiguities in Laplacian eigenvectors during pre-processing, their
approach is limited to specific eigenvectors, and their canonicalization on basis is relatively weak. In
our work, we propose the OAP canonicalization, which is strictly superior to previous methods while
incurring negligible computational overhead.

Beyond GNN, there exists literature exploring Laplacian eigenvectors of graphs and addressing the
sign/basis ambiguity issues. Lai and Zhao [31] presented a solution employing optimal transport
theory to tackle sign/basis ambiguities, involving the resolution of a non-convex optimization problem.
However, this approach may be less efficient compared to canonicalization methods. In a similar
vein, Tam and Dunson [58] proposed symmetrizing the embedding using a heuristic measure called
ELD, which bears resemblance to the structure of SignNet.

H Dataset details

EXP [1] (GPL-3.0 License) is a dataset designed to explicitly evaluate the expressiveness of GNN
models, and consists of a set of graph instances {G1, . . . ,Gn,H1, . . . ,Hn}, such that each instance
is a graph encoding of a propositional formula. The classification task is to determine whether the
formula is satisfiable (SAT). Each pair (Gi,Hi) respects the following properties:

1. Gi andHi are non-isomorphic;
2. Gi andHi have different SAT outcomes, that is, Gi encodes a satisfiable formula, whileHi

encodes an unsatisfiable formula;
3. Gi andHi are 1-WL indistinguishable, so are guaranteed to be classified in the same way by

standard MPNNs;
4. Gi andHi are 2-WL distinguishable, so can be classified differently by higher-order GNNs.

The n-body problem dataset [28, 18] (MIT License) consists of a collection of n = 5 particles
systems. Five particles each carry either a positive or a negative charge and exert repulsive or
attractive forces on each other. The input to the network is the position of a particle in a specific time
step, its velocity, and its charge. The task of the algorithm is then to predict the relative location
and velocity 500 time steps into the future. The original problem is conducted in dimension d = 3.
To test the scalability of different methods we also extend this experiment to higher dimensions
d = 5, 7, 9, 11, as practiced in Lim et al. [32].

ZINC [24] (MIT License) consists of 12K molecular graphs from the ZINC database of commercially
available chemical compounds. These molecular graphs are between 9 and 37 nodes large. Each
node represents a heavy atom (28 possible atom types) and each edge represents a bond (3 possible
types). The task is to regress constrained solubility (logP) of the molecule. The dataset comes with a
predefined 10K/1K/1K train/validation/test split.

OGBG-MOLTOX21 and OGBG-MOLPCBA [22] (MIT License) are molecular property prediction
datasets adopted by OGB from MoleculeNet. These datasets use a common node (atom) and edge
(bond) featurization that represent chemophysical properties. OGBG-MOLTOX21 is a multi-mask
binary graph classification dataset where a qualitative (active/inactive) binary label is predicted
against 12 different toxicity measurements for each molecular graph. OGBG-MOLPCBA is also
a multi-task binary graph classification dataset from OGB where an active/inactive binary label is
predicted for 128 bioassays.

I Hyper-parameter settings

All (preliminary, failed and main) experiments are run on NVIDIA 3090 GPUs with 24GB memory.

35

I.1 EXP experiment

In the EXP experiment, the hyper-parameters are not tuned. We use the same hyper-parameters
as in Puny et al. [45]. Additionally, we also use the code base on EXP to test FA-GIN+ID and
FA-GINE+ID on the ZINC dataset. For both models we use a 16-layer GNN, with the hidden
dimension set to 176. The output of the GNN is then fed to a 2-layer MLP to produce the final
regression output. On both EXP and ZINC the frame or canonicalization of graphs are computed
during pre-processing time (using the pre_transform argument of the dataset class). On EXP, since
the frame or canonicalization size for some graphs is large shown in Table 2 (because the EXP dataset
is highly symmetric), we randomly sample from the frame or canonicalization, with the sampling
size being 64. All experiments results are averaged over 4 runs with different random seeds.

I.2 n-body experiment

In the n-body experiment, we tune the number of layers L and the hidden dimension h of our
canonical averaging models. Other hyper-parameters such as learning rate are kept the same with
Puny et al. [45]. The hyper-parameter settings for different methods with dimension d = 3 are
reported in Table 8. For higher dimensions, we slightly adjust the hidden dimension h (±3) such that
h is a multiple of d.

Table 8: Hyper-parameter settings of different methods in the n-body experiment with dimension
d = 3.

Method L h #param

Frame Averaging 4 60 92103
Sign Equivariant 5 45 201555
OAP-eig 4 63 117817
OAP-lap 4 63 117817

I.3 ZINC experiment

In the ZINC graph regression experiment, We follow the same settings as in Dwivedi et al. [15] for
models with no PE, LapPE or LSPE, and the same settings as in Lim et al. [33] for models with
SignNet, MAP or OAP. We implement FA-GIN+ID and FA-GINE+ID on ZINC by ourselves (their
hyper-parameters are already reported above); all other baseline scores reported in Table 4 are taken
from the original papers. The main hyper-parameters in our experiments are listed as follows.

• k: the number of eigenvectors used in the PE.
• L1: the number of layers of the base model.
• h1: the hidden dimension of the base model.
• h2: the output dimension of the base model.
• λ: the initial learning rate.
• t: the patience of the learning rate scheduler.
• r: the factor of the learning rate scheduler.
• λmin: the minimum learning rate of the learning rate scheduler.
• L2: the number of layers of SignNet or the normal GNN6 (when using canonicalization as

PE).
• h3: the hidden dimension of SignNet or the normal GNN (when using canonicalization as

PE).

The values of these hyper-parameters in our experiments are listed in Table 9.

I.4 OGBG experiment

In the OGBG-MOLTOX21 experiment, the values of these hyper-parameters are listed in Table 10.
6We substitute SignNet with a normal GNN (Masked GIN) when using canonicalization as the PE method.

36

Table 9: Hyper-parameter settings of different models with different PE methods on ZINC.
Model PE k L1 h1 h2 λ t r λmin L2 h3

GatedGCN

None 0 16 78 78 0.001 25 0.5 1e-6 - -
LapPE + RS 8 16 78 78 0.001 25 0.5 1e-6 - -
SignNet 8 16 67 67 0.001 25 0.5 1e-6 8 67
MAP 8 16 69 67 0.001 25 0.5 1e-5 6 69
OAP 8 16 68 68 0.001 25 0.5 1e-5 6 68
OAP + LSPE 8 13 59 59 0.001 25 0.5 1e-5 6 59

PNA

None 0 16 70 70 0.001 25 0.5 1e-6 - -
LapPE + RS 8 16 80 80 0.001 25 0.5 1e-6 - -
SignNet 8 16 70 70 0.001 25 0.5 1e-6 8 70
MAP 8 16 70 70 0.001 25 0.5 1e-6 6 70
OAP 8 16 70 70 0.001 25 0.5 1e-6 6 70
OAP + LSPE 8 13 60 60 0.001 25 0.5 1e-6 6 60

Table 10: Hyper-parameter settings of different models with different PE methods on MOLTOX21.
Model PE k L1 h1 h2 λ t r λmin L2 h3

GatedGCN

None 0 8 154 154 0.001 25 0.5 1e-5 - -
LapPE + RS 3 8 154 154 0.001 25 0.5 1e-5 - -
SignNet* 3 8 150 150 0.001 22 0.14 1e-5 6 150
MAP 3 8 150 150 0.001 22 0.14 1e-5 8 150
OAP 3 8 160 150 0.001 22 0.14 1e-5 6 160

PNA

None 0 8 206 206 0.0005 10 0.8 2e-5 - -
LapPE + RS 16 8 140 140 0.0005 10 0.8 2e-5 - -
SignNet* 16 8 110 110 0.0005 10 0.8 8e-5 6 110
MAP 16 8 115 113 0.0005 10 0.8 8e-5 7 115
OAP 16 8 115 113 0.0005 10 0.8 8e-5 7 115

In the OGBG-MOLPCBA experiment, the values of these hyper-parameters are listed in Table 11.

Table 11: Hyper-parameter settings of different models with different PE methods on MOLPCBA.
Model PE k L1 h1 h2 λ t r λmin L2 h3

GatedGCN

None 0 8 154 154 0.001 25 0.5 1e-4 - -
LapPE + RS 3 8 154 154 0.001 25 0.5 1e-4 - -
SignNet* 3 8 200 200 0.001 25 0.5 1e-5 6 200
MAP 3 8 200 200 0.001 25 0.5 1e-5 8 200
OAP 3 8 200 200 0.001 25 0.5 1e-5 8 200

PNA

None 0 12 600 600 0.0005 10 0.8 2e-5 - -
LapPE + RS 16 12 600 600 0.0005 10 0.8 2e-5 - -
SignNet* 16 4 300 300 0.0005 10 0.8 2e-5 8 300
MAP 16 4 304 304 0.0005 10 0.8 2e-5 8 304
OAP 16 4 304 304 0.0005 10 0.8 2e-5 8 304

37

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction are supported by our
theoretical discussions and experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the work are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

38

Justification: The full set of assumptions are included in the statements of theorems, while
the complete proof is included in Appendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed to reproduce the experimental results of the paper
is included in Section 5 and Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open Access to Data and Code

39

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The link to our code is attached in the abstract. All datasets used are accessible
to the public.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the training and test details are included in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

40

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The type of compute workers and memory are reported in Appendix I. The
running time and GPU memory of our experiments are reported in Table 7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As a general framework for learning with symmetry, we do not foresee
immediate positive or negative societal outcomes.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

41

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data and models in the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of assets are properly cited in the main text and the licenses are
mentioned in Appendix H.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

42

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

43

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

44

	Introduction
	Preliminaries
	Averaging Methods
	Symmetries of Eigenvectors

	Canonicalization: A Unified and Essential View of Equivariant Learning
	A Reduction from Frames to Canonicalizations
	Theoretical Properties of Canonicalization: Universality, Optimality, and Canonicalizability
	Reducing Sign-Invariant Networks to Canonicalization

	Exploring Optimal Canonicalization of Eigenvectors
	Optimal Canonicalization without Permutation
	Better Canonicalization with Permutation
	OAP as a Unified Canonicalization for Eigenvectors

	Experiments
	Expressive Power and Frame Size
	Graph Regression and Classification

	Conclusion and Discussion
	 Appendix
	Advantages of the canonicalization perspective
	Implementation and verification of MAP
	The Gram-Schmidt process
	Complete pseudo-code of Algorithm 2
	Complete pseudo-code of Algorithm 3
	Verifying the correctness of Algorithm 2
	Verifying the correctness of Algorithm 3

	Concentration inequality for drawing without replacement
	PCA-frame methods for orthogonal equivariance
	PCA-frame methods
	Experiments on the n-body problem

	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proof of Theorem 3.4
	Proof of Corollary 3.5
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3 and Corollary 4.4

	Augmentations of the OAP algorithm
	Incorporating node features
	Incorporating information from other eigenvectors
	Learnable canonicalization

	Related work
	Equivariant learning
	Canonicalization
	Canonical forms
	Sign invariance
	Basis invariance

	Dataset details
	Hyper-parameter settings
	Exp experiment
	n-body experiment
	ZINC experiment
	OGBG experiment

