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Abstract

Routing, including global routing and detailed routing, has been a critical step in
the design of integrated circuits. Most of the existing global routers will firstly use
techniques like pattern routing and layer assignment to quickly generate a routing
solution and optimize total wirelength and via usage. Then rip-up and reroute
(RRR) scheme will be applied to iteratively reduce the number of overflows in the
whole design. However, compared with initial routing stage, RRR will be much
more time consuming. It will rip up all the nets that pass through overflowed area
and reroute them sequentially. Even if the routing resources in one routing cell
is overused by 1, the router will rip up all the nets that are routed on the routing
cell, as it does not know which net will be the best choice to rip up. In this way,
RRR may be doing a lot of redundant work. Besides, some initial routing solutions
that are optimal in terms of wirelength will also be wasted when they are ripped
up, causing a loss of routing quality. Therefore, in this project, we propose to use
reinforcement learning to help decide which nets to rip up in each RRR iterations.
An actor-critic based Proximal Policy Optimization (PPO) agent is trained for this
task. Experimental results show that the proposed approach can successfully reduce
the number of rerouted nets with little loss of routing quality on the ICCAD’19
global routing contest benchmarks, which demonstrate the effectiveness of our
model. The presentation link can be found here1.

1 Introduction

Routing has been an important problem in the field of very large scale integration (VLSI) physical
design for several decades. After floorplanning and placement, routing will decide the path to
interconnect pins of the same signal net. Due to the complexity of routing problem, it is usually
decomposed into two sub-problems, namely global routing and detailed routing. By global routing, a
coarse-grained routing plan will be generated, minimizing total wire length, number of overflows, or
other objectives. After that, based on the result of global routing, detailed routing will be conducted
to assign routes to specific routing tracks while honoring various complicated design rules.

1https://drive.google.com/file/d/1b94l5C6tZHlhvVleAMannV7LdyzYloxQ/view?usp=sharing
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Figure 1: Gcell to grid graph conversion.

In the global routing problem, the whole circuit is divided into many small rectangular regions by
predefined grid lines that are evenly distributed, like Figure 1(a) shows. As the routing is done in
a 3D routing spacing, we can assume there are R × C × L regions, where L refers to the number
of routing layers. Those small regions are called global routing cells (Gcells). It is worth noticing
that each layer has its own preferred routing direction, which can be either horizontal or vertical
(H or V). In-layer routing must follow the preferred routing direction. By considering each Gcell
as a vertex and creating edges between adjacent Gcells, we can obtain a 3D grid graph. Here we
consider two Gcells adjacent to each other if (1) they have the same (row, col) number and they
are in adjacent layer or (2) they are on the same layer and adjacent to each other in the preferred
direction. We call edges created under condition (1) via edges and those created under condition (2)
wire edge. The capacity of a wire edge equals to the number of nets that can go through the edge
while the capacity of a via edge is normally handled in different ways. Figure 1(b) gives an example
of the edge modeling on a layer whose preferred routing direction is horizontal.

The global routing problem is usually defined as, given a grid graph G(V,E) and a set of nets N to
be connected, find a path for each net such that the total wirelength is minimized and the number
of overflows is minimized. Here the overflow on an edge e is calculated as max(0, demand(e)−
supply(e)), which measures the overuse of routing resource. Figure 2 shows an example routing
result for one net on a grid graph, where pins are connected by edges marked in red.

Then comes to the definition of rip-up and reroute (RRR) problem in this global routing context.
Originally in the initial routing, routing paths are normally generated to minimize the total wirelength
and the number of vias. Therefore, overflows will inevitably appear after the initial routing stage.
The term “rip up” refers to the action that we discard the routing solution of certain net and reclaim
the routing resources that have been used by the net. In this way, we can first make those overflows
disappear by ripping up some nets and later replan the routing solution for those rip-upped nets.
Formally, after all the nets in N have been routed by initial routing, we will start the RRR stage,
which may consist of several iterations, each of which can be defined as the following:

1. Check each edge in E and define all the nets that pass through overflowed edges as Nvio.

2. Choose the nets to be ripped up and define them as Nrip.

3. Decide the net ordering for nets in Nrip and reroute them with different reroute schemes,
which can be either in one-by-one manner or in rip-up-all manner.

In the one-by-one manner, nets will be ripped up and rerouted one by one. Meanwhile, in the
rip-up-all manner, all the nets in Nrip will be ripped up first and then rerouted sequentially. During
RRR, nets will normally be rerouted using maze routing, which tends to produce routing solutions
with less overflow but larger wirelength.
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Figure 2: An example routing solution for one net on a grid graph.

In almost all the implementations of RRR, the Nrip in step two equals Nvio. In this way, RRR will
iteratively reduce the total number of overflows while increasing wirelength. The final goal of RRR is
to minimize a metric considering both the total routed wirelength and the total number of overflows.
The metric Score can be described by,

Score = α ·WLwire + β ·WLvia + γ · shortArea, (1a)

WLwire =
∑
n∈N

wirelength(n), (1b)

WLvia =
∑
n∈N

numvia(n), (1c)

where Score is a weighted sum of WLwire,WLvia and shortArea. Weights are represented by
α, β, and γ respectively. In the above, shortArea refers to the expected short area in the routing
solution, which is calculated by CUGR [2] and is positively correlated with the number of overflows.
wirelength(n) and numvia(n) denote the routed wirelength and the number of via edge used by
net n separately.

It is observed that the traditional RRR flow may involve a lot of unnecessary computation, which
will be discussed in Section 2. Therefore, in this project, we explore a reinforcement learning-based
RRR scheme, which is in the one-by-one manner, aiming to reduce the total number of rerouted nets
without causing much routing quality loss.

2 Related Works

Various RRR techniques exist as an important component in most of the existing global routers[1, 2,
3, 7], most of which are inspired by the negotiation-based RRR scheme introduced in PathFinder[4].
For instance, NTHU-Route 2.0[1] adopts a new net ordering scheme for RRR after finding all the
nets that pass through overflowed area while NCTU-GR 2.0[3] adopts a collision-aware RRR scheme
to improve the effectiveness of multi-threaded maze routing. However, those works either focus on
the net ordering or cost scheme for maze routing. Another potential to improve the RRR scheme may
lie in the strategy for deciding whether to rip up a net or not. Based on the fact that the wirelength
produced by initial routing is always shorter than that produced by maze routing, ripping up all the
nets in Nvio may lead to considerable increase in total wirelength than simply rip up part of the nets
in Nvio.
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Figure 3: The environment overview. Note that “Iter” represents “Iteration”.

3 Environment Setup

To enable the interaction between our reinforcement learning and a global router, we build an
environment called Global Routing Environemnt (GRE), where necessary APIs like reset(), step()
are defined. Adapted from CUGR [2], which is the state-of-the-art academic global router, our
environment can finish a complete flow of global routing and report the final score to evaluate the
performance of the trained agents. Figure 3 illustrates the overview of GRE.

3.1 Environment Initialization

Like a typical environment for reinforcement learning, GRE will be initialized before the agent can
get observations and take actions. The initialization corresponds to the initial routing stage in CUGR.
When “reset()” is called, GRE will parse the corresponding benchmark and perform the built-in initial
routing algorithm to construct a routing solution for all nets. After that, the environment will be in a
state after intial routing and before the first round of RRR.

3.2 Agent

The task of an agent is to decide whether to rip up and reroute current net ncur or not, based on the
observations related to ncur. It is worth noting that both RRR iteration number and ncur will be
maintained in GRE such that each net in current Nvio can be processed by the agent.

3.3 State and Observation

The state of the environment can quite complicated, which consists of (1) current routing solution
for all nets, (2) the supply and demand for all edges, (3) Nvio in current RRR iteration and (4)
current net to be considered n. Thus, it might not practical to directly show the state to our agent,
for many unrelated information in the usage of edges and complex graph topology of the routing
solution. Instead, from the current state, we will extract representative information and use them as
the observation.
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In each step, we will consider one net only. Thus the observation will correspond to n and can be
described by,

O =< wirelength(n), Dovfl(n), Dcomp(n) >, (2a)

Dovfl(n) =
∑
e∈En

EstOverflow(e), (2b)

Dcomp(n) =

∑
n′∈N Area(BBox(n) ∩BBox(n′))

Area(BBox(n))
, (2c)

where O denotes the observation (feature vector) for net n. In Equation (2), Dovfl(n), namely the
overflow degree, measures the total number of estimated overflows associated with net n in current
routing solution. If a net has large overflow degree, it may pass through a lot of highly congested
edges and has also made its contribution to the congestion. Meanwhile, Dcomp(n), namely the
competition degree, measures how intense the routing resource competition can be between net n
and the rest of the nets. BBox(n) denotes the 2D bounding box of net n, which is determined by
net’s pin locations. A larger competition degree may indicate that the net will have less abundant
resources to use. It is worth noting that the observation O only contains information about net n in
its local region, which is designed in this way as nets that are far away will not influence each other.

3.4 Action

After initialization, GRE will internally find the set of nets that pass through overflowed edges and
store them as Nvio. Nets in Nvio will be processed sequentially. At the beginning of each RRR
iteration, n will be assigned as the first net in Nvio. After observations related to net n are fed into
the agent, the action will be to rip up and reroute net n or skip it, which corresponds to the “step()”
part in Figure 3.

3.5 Reward

We use scoret, viot to denote the Score which is defined in Equation (1a) and the summation of
Dovfl(n) for all nets after step t. We then define score0, vio0 to be the state right after environment
initialization, that is, after initial routing and before the first round of RRR. Let at be the action at
step t. The reward after step t will be denoted as rt,

rt = (scoret−1 − scoret) + 100× (viot−1 − viot) + 10× 1(at == skip), (3a)

where 1 ∈ {0, 1} is the indicator function.

4 Proposed Approach

We propose to use policy gradient methods, since the large number of nets to be chosen for rip-up
results in high dimensional action spaces, it is tedious to learn the action-value function while
using action-value methods. A parameterized policy can be learnt based on the observation on
congestion map, current routing solution for certain net and the routing solution for the rest of nets,
or some features extracted from the current routing solution, like some vectors of scores calculated
for the solution using heuristics. To improve training stability, we propose to use proximal policy
optimization (PPO)[6]. The reward may take the number of nets to rip-up, overflows, via edges, and
total wirelength into account.To reduce action space, we may decide the net ordering first by pin
numbers and process those nets one-by-one following this order.

We summarize the steps to train our actor-critic network, which is shown in Algorithm 1.

The goal of our actor-critic network is to maximize the discounted overall rewards in an episode which
consists of a number of RRR iterations. A full episode is finished when either reaching maximum
number of RRR iterations or having rerouted all .The objective function can be formulated as follows:

J(θ) = Eτ∼πθ [R(τ)] (4)
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Algorithm 1 Training steps of our model
1: Input: initial policy parameters θ0, initial value function parameters φ0
2: for k = 1, 2, ... do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment
4: Compute returns R̂t.
5: Compute advantage estimates Ât based on the current value function Vφk
6: Update the policy by maximizing the PPO-Clip objective:

θk+1 = argmax
θ

1
|Dk|T

∑
t∈Dk

∑T
t=0min

(
πθ(at|st)
πθk (at|st)

Aπθk (st, at), g(ε, A
πθk (st, at))

)
Fit value function by regression on mean absolute error:
φk+1 = argmax

φ

1
|Dk|T

∑
τ∈Dk

∑T
t=0|Vφ(st)− R̂t|,

via gradient descent with Adam

where τ indicates an episode, πθ is the policy parameterized by θ, R(τ) is the return function on τ ,
which is the sum of discounted rewards the episode, defined as follows:

R(τ) =

T∑
i=1

γi−krt (5)

where γ is discount factor.

In our model, the actor and network are both constructed by a three-layer MLP model with similar
settings, only different in output space. The actor network outputs the action to take, and the log
probability of the selected action in the distribution. For the critic network, it only outputs a scalar. We
normalize the observation using running estimates of mean and standard deviation, as the observation
of wire length is very large in scale, which may probably dominate the input for the actor. The
running mean and standard deviation is also saved for each case as part of the actor model, as the
running statistics will vary according to the scale of different benchmarks. The benchmarks are of
different sizes, different number of nets, layers, which will result in different scale of wire lengths,
via numbers, etc.
The reward is the difference of the weighted sum of the total wire lengths, via numbers, short areas
before and after the action. As the difference is the quantified change in the overall routing plan, it
can be viewed as the reward or penalty for this decision.
Advantage function is defined as:

Aπ(s, a) = Qπ(s, a)− Vφk(s) (6)

where Qπ is the Q-value of state action pair (s,a), and Vφ is the value for some observation s given
by our critic network based on the parameters φ on the k-th iteration.
We combine the actor and critic losses and an entropy bonus to the objective loss function to encourage
more exploration, controlled by an entropy coefficient parameter. Our objective loss function is
defined as follows:

Lt
CLIP+V+S(Q) = Êt

[
Lt
CLIP (Q) + c1L

V (Q)− c2S[πQ](st)
]

(7)

where c1 and c2 are coefficients, S denotes an entropy bonus.

5 Experimental Results

The global routing environment is adapted from CUGR [2], which is mainly written in C++. To allow
smooth interaction between the global routing environment and the reinforcement learning agent, we
use pybind112 to wrap the modified C++ code so that GRE can be instantiated as a Python object
and we do not need to rewrite the whole global routing logic in python. Lastly, our reinforcement
learning agent is implemented using PyTorch [5].

2https://pybind11.readthedocs.io
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Table 1: Experiment Results on Benchmark 18test3

RRR Algorithm #(Rerouted nets) WLwire WLvia shortArea Score

Rip-Up-All 157 8538671 300623 25.94 5484796.7
One-by-One 157 8541170 300647 25.94 5486141.8

RandomPolicy 71 8536815 300379 19.95 5479898.5
RL-based 82 8538058 300363 15.96 5478462.5

* Benchmark 18test3 is of size 329× 247× 9 (R× C × L) and contains 36700 nets.

Experiments were conducted on the ICCAD’19 global routing contest benchmarks, which contain
both tiny cases and large cases. For tiny cases, the routing will end immediately after initial routing
as the routing solution is already violation free as the design is small and not congested. For large
cases, one complete run of global routing will take several minutes, which makes it hard for the agent
to be trained efficiently. Therefore, we picked the benchmark 18test3, which is of medium size, for
the training purpose. The benchmark contains around 37K nets with a layout size of 329× 247× 9.

For comparison, we implemented the following baseline RRR algorithms:

• Rip-Up-All: We firstly rip up all the nets in Nvio and reroute nets sequentially, which is the
original RRR algorithm in CUGR.

• One-by-One: Each net in Nvio will be ripped up and rerouted one by one.
• RandomPolicy: Each net in Nvio will be processed in one-by-one manner, with each net

having a 1
2 chance of being ripped up and rerouted.

Quantitative results are listed in Table 1. Our proposed reinforcement learning-based RRR algorithm
is denoted as RL-based in the table. Compared with the Rip-Up-All and the One-by-One approach,
our RL-based algorithm can better total score with both smaller total wirelength and shortArea.
Meanwhile, with the RL-based algorithm, the total number of rerouted nets is greatly reduced
compared with the first two approaches.

6 Conclusion

In this project, we propose an reinforcement learning-based rip-up and reroute (RRR) algorithm
for global routing. Compared with the original RRR scheme in the state-of-the-art academic global
router, our algorithm can effectively reduce the total number of rerouted nets and achieve slightly
better routing quality on a benchmark of medium size from the ICCAD’19 global routing contest.
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