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ABSTRACT

Merging multi-exposure images is a common approach for obtaining high dynamic
range (HDR) images, with the primary challenge being the avoidance of ghosting
artifacts in dynamic scenes. Recent methods have proposed using deep neural
networks for deghosting. However, the methods typically rely on sufficient data
with HDR ground-truths, which are difficult and costly to collect. In this work,
to eliminate the need for labeled data, we propose SelfHDR, a self-supervised
HDR reconstruction method that only requires dynamic multi-exposure images
during training. Specifically, SelfHDR learns a reconstruction network under the
supervision of two complementary components, which can be constructed from
multi-exposure images and focus on HDR color as well as structure, respectively.
The color component is estimated from aligned multi-exposure images, while the
structure one is generated through a structure-focused network that is supervised
by the color component and an input reference (e.g., medium-exposure) image.
During testing, the learned reconstruction network is directly deployed to predict
an HDR image. Experiments on real-world images demonstrate our SelfHDR
achieves superior results against the state-of-the-art self-supervised methods, and
comparable performance to supervised ones. Codes are available at https:
//github.com/cszhilul998/SelfHDR.

1 INTRODUCTION

Scenes with wide brightness ranges are often visible to human observers, but capturing them com-
pletely with digital or smartphone cameras can be arduous due to the restricted dynamic range of
sensors. For instance, during sunset, the sun and sky are substantially brighter than the surrounding
landscape, leading the camera sensor to either over-expose the sky or under-expose the landscape.
To obtain high dynamic range (HDR) photos in these conditions, exposure bracketing technology
becomes a popular option. It captures multiple low dynamic range (LDR) images with varying
exposures, which are then merged into an HDR result ( , ; , ).

Unfortunately, when the multi- -exposure images are misaligned due to camera shake and object
movement, ghosting artifacts may exist in the result. Traditional methods to remove the ghosting
include rejecting misaligned areas ( s ; s ; , ;

), aligning input images ( , ; , ; ), and usmg
patch-based composite ( s ; , ; s ) With the development of
deep learning ( , ; s ; R ), recent advances (

. . . . s )

proposed training deep neural networks (DNN) for deghosting in a data-driven supervised manner,
performing more effectively than traditional ones.

However, DNN-based HDR reconstruction methods usually require sufficient labeled data, each
of which should include the input dynamic multi-exposure images and the corresponding HDR
ground-truth (GT) image. In order to ensure position alignment between the input reference (e g,
medium-exposure) frame and GT, previous works (

, ) generally capture the dynamic inputs with the controllable ob]ect (generally a person)
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motion in a static background, and construct GT by merging static multiple-exposure images of the
reference scene. Such a collection process is cumbersome and involves high time as well as labor
costs, thus limiting the number and diversity of the datasets. To alleviate the need for labeled data,
FSHDR ( , ) explores a few-shot manner, and Nazarczuk et al. ( s

) introduce a fully self-supervised approach. The main idea is to construct pseudo-inputs and
pseudo-targets for HDR reconstruction. Nevertheless, their performance is unsatisfactory, as the
motion and illumination in synthetic LDR images exhibit gaps with real-world ones.

In this work, we aim to reconstruct HDR images directly with real-world multi-exposure images
in a self-supervised manner, without synthesizing any pseudo-input data. This objective should be
feasible, as most of the information required for HDR results can derive from input data. The property
will be more intuitive when HDR color and structure are observed, respectively. Specifically, HDR
color knowledge can be inferred from aligned multi-exposure images, and HDR structure can be
extracted from some one of the inputs.

We further propose SelfHDR, a self-supervised method for HDR image reconstruction. Inspired by
the above data characteristics, SelfHDR decomposes the latent HDR GT into available color and
structure components, and then takes them to supervise the learning of the reconstruction network.
On the one hand, the color component is estimated from multi-exposure images aligned by optical
flow. On the other hand, the structure component is generated by feeding aligned inputs into a
structure-focused network, which is learned under the supervision of the color component and an
input reference (e.g., medium-exposure) image. Moreover, during the training phase of structure-
focused and reconstruction networks, elaborate masks are embedded into loss functions to circumvent
harmful information in supervision. During inference, only the reconstruction network is required to
predict the HDR result from unseen multi-exposure images.

We evaluate the proposed self-supervised methods using four existing HDR reconstruction networks,
respectively. The models are trained on Kalantarl et al. dataset ( , ), and tested
on multiple datasets ( s ). The results show
our SelfHDR obtains 1.58 dB PSNR gain compared to the state of-the-art self-supervised method
that uses the same reconstruction network, and achieves comparable performance to supervised ones,
especially in terms of visual effects. Besides, we conduct extensive and comprehensive ablation
studies, analyzing the effectiveness of different components and variants.

To sum up, the main contributions of this work include:

* We propose a self-supervised HDR reconstruction method named SelfHDR, which learns an
HDR reconstruction network by decomposing latent ground-truth into constructible color
and structure component supervisions.

* The color component is estimated from aligned multi-exposure images, while the structure
one is generated using a structure-focused network supervised by the color component and
an input reference image.

» Experiments show that our SelfHDR outperforms the state-of-the-art self-supervised meth-
ods, and achieves comparable performance to supervised ones.

2 RELATED WORK

2.1 SUPERVISED HDR IMAGING WITH MULTI-EXPOSURE IMAGES

The main challenge of HDR imaging with multi-exposure images is to avoid ghosting artifacts.
DNN-based HDR deghosting methods have exhibited a more satisfactory ability than traditional ones.

For the first time, Kalanrati et al. ( , ) collect a real-world dataset and propose a
data-driven convolutional neural network (CNN) approach to merge LDR images aligned by optical
flow. Wu et al. ( R ) utilize the multiple encoders and one decoder architecture to handle
image misalignment, discarding the optical flow. Yan ef al. ( , ) present a spatial
attention mechanism for deghosting. In addition, we recommend Wang et al.’s survey ( ,

) for more CNN-based HDR reconstruction methods ( , ; , ).
Recently, with the development of Transformer ( , ; s ), some
works ( R ; s ; s ; s ) bring in self- and
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cross- attention to alleviate the ghosting artifacts. For example, Liu et al. ( , ) propose
HDR-Transformer, which embeds a local context extractor into SwinlR ( s ) basic
block for jointly capturing global and local dependencies. Song et al. ( , ) suggest

selectively applying the transformer and CNN model to misaligned and aligned areas, respectively.
However, both CNN- and Transformer-based methods require sufficient labeled data for training
networks, while the data collection is time-consuming and laborious.

2.2 FEW-SHOT AND SELF-SUPERVISED HDR IMAGING WITH MULTI-EXPOSURE IMAGES

To alleviate the reliance on HDR ground-truths, few-shot and self-supervised HDR reconstruction
methods have been explored. FSHDR ( , ) combines unlabeled dynamic samples
with few labeled samples to train a neural network, then leverages the model output of unlabeled
samples as a pseudo-HDR to generate pseudo-LDR images. Ultimately the HDR reconstruction
network is learned with synthetic pseudo-pairs. Nazarczuk et al. ( , ) select
well-exposure LDR patches as pseudo-HDR to generate pseudo-LDR, while the static LDR patches
are directly merged for HDR ground-truths. However, due to unrealistic motion and illumination
in synthetic LDR images, such methods exhibit performance gaps compared to supervised ones.
Recently, SAME ( , ) generates saturated regions in a self-supervised manner first,
and then performs deghosting via a semi-supervised framework. But it still has limited performance
improvement. In this work, we take full advantage of the internal characteristics of multi-exposure
images to present a self-supervised approach SelfHDR, which achieves comparable performance to
supervised ones.

Furthermore, some works incorporate emerging techniques to investigate self—supervised HDR

reconstruction. For instance, GDP ( , ) exploits multi-exposure 1mages to guide the
denoising process of pre-trained diffusion generative models ( , , ),
reconstructing HDR image. Mildenhall ef al. ( s ), Jun et al. ( s

), and Huang er al. ( , ) employ NeRF ( , ) to synthesize

HDR images and the novel HDR views. However, these methods are less practical, since the specific
models need to be re-optimized when facing new scenarios.

3 METHOD

3.1 MOTIVATION AND OVERVIEW

Revisit Supervised HDR Reconstruction. The combination of multi-exposure images enables
HDR imaging in scenes with a wide range of brightness levels. In static scenes, the HDR image can

be easily generated through a weighted sum of multi-exposure images ( ).
However, when applying this approach in dynamlc scenes, it w1ll lead to ghostlng artlfacts Asa
result, several recent works ( , )

have suggested learning a deep neural network ina superv1sed manner for deghostmg Concretely,
denote the LDR image taken with exposure time ¢; by I;, where ¢« = 1,2,3 and t; < to < t3. They
first map the LDR images to the linear domain, which can be written as,

H; =1]/t;, ey

where v denotes the gamma correction parameter and is generally set to 2.2. Then they concatenate
I; and H;, feeding them to the reconstruction network R with parameters Oz, ie.,

Y = R(X1, X2, X3;,0%), 2

where X; = {I;, H;}, Y denotes the reconstructed HDR image. The optimized network parameters
can be obtained by the following formula,

O = argmin L(T(Y), T(Y)), 3)

where L represents the loss function, Y denotes the HDR GT image. 7T is the tone-mapping process,
represented as,
log(1+ 1Y)

)= log(1 + u)

, where . = 5,000. (@)
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Motivation of SelfHDR. The acquisition of labeled data for HDR reconstruction is usually time-
consummg and laborlous To alleviate the requirement of HDR GT, some works (

, ) have explored few-shot and zero-shot HDR recon-
structlon by constructmg pseudo -pairs. However, their performance is unsatisfactory due to the gaps
between the simulated pairs and real-world ones, especially in a fully self-supervised manner.

In this work, we expect to get rid of the demand for synthetic data, achieving self-supervised HDR
reconstruction directly with real-world dynamic multi-exposure images. The goal should be feasible,
as the multi-exposure images have provided probably sufficient information for HDR reconstruction.
The property will be more intuitive when the color and structure are observed, respectively. On the
one hand, the color of HDR images can be estimated from aligned inputs. On the other hand, the
structure information of the HDR images can be generally discovered in some one of multi-exposure
images, i.e., most textures exist in the medium-exposure image, dark details are obvious in the
high-exposure one, and bright scenes are clearly visible in the low-exposure one.

What we need to do is to dig for the right information from the multi-exposure images for constructing
the HDR image. However, it is actually difficult to explore a straightforward self-supervised method
that generates HDR images directly. Considering the above properties of HDR color and structure,
we treat the two components respectively for ease of self-supervised implementation. Note that it can
be a focus or emphasis on color and structure relatively, not necessarily an absolute separation.

Specifically, when training a self-supervised HDR reconstruction network with given multi-exposure
images as input, suitable supervision signals have to be prepared. Instead of looking for a complete
HDR image, we construct the color and structure components of the supervision respectively (see
Sec. 3.2). Then we learn the network under the guidance of both components (see Sec. 3.3).

3.2 CONSTRUCTING COLOR AND STRUCTURE COMPONENTS
3.2.1 CONSTRUCTING COLOR COMPONENT

The color component should represent

the HDR color as faithfully as possi- A, (1,) Ay (1) As(I2)

ble, and it can be estimated by fus- 1 1 1

ing the aligned multi-exposure images. |/\ ‘ 3
Multiple frames in dynamic scenes are 3 I, 3 L, i .,
generally not aligned caused by cam- 0 05 1 0 05 1 0 05 1

era shake or object motion. Although
sometimes a few regions are aligned
well, they are not enough to generate
acceptable color components. In view
of the effective capabilities of the optical flow estimation method ( s ), it is a natural idea
to perform pre-alignment first. Concretely, taking the medium-exposure image I5 as the reference,
we calculate the optical flow from I5 to I7 and I3, respectively. Thus, we can back warp H; and
H 3 according to the calculated optical flow, obtaining H; and H3 that are roughly aligned with H.
Then we can predict the color component Y,,;,, with the following formula,

Figure 1: The triangle function that we use as the blending
weights to generate color components.

A H, + AyH, + A3 H;

Yeoior = y 5
: A+ A, + A ©)
where A; represents pixel-level fusion weight. We follow Kalantari et al. ( , ) and
express A; as,

A =1-A(I2), Az=AM(I2), Az=1-A;3(I2), (6)

where A;(I) is shown in Fig. 1.

When the images are perfectly aligned, the color components Y., can be regarded as an HDR
image directly. However, such an ideal state is hard to reach due to object occlusion and sometimes
non-robust optical flow model. Small errors during pre-alignment may cause blurring, while large
ones cause ghosting in color components. Nevertheless, regardless of the ghosting areas, the rest can
record the rough color value, and in which well-aligned ones can offer both good color and structure
cues of HDR images. Moreover, for the areas with alignment errors, we further construct structure
components to guide the reconstruction network in the next subsection.
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Figure 2: Overview of SelfHDR. During training, we first construct color and structure components
(i.e., Yeoior and Ygipy,), then take Y010, and Yy, for supervising the HDR reconstruction network.

During testing, the HDR reconstruction network can be used to predict HDR images from unseen
multi-exposure images. Dotted lines with different colors represent different loss terms.

3.2.2 CONSTRUCTING STRUCTURE COMPONENT

Although the medium-exposure image can provide most of the texture information, it is not optimal
to take it as the only structure guidance for the HDR reconstruction, as the dark areas may be
unclear and over-exposed ones may exist in it. Besides, it is not easy to put into practice when using
the low-exposure and high-exposure images as guidance, due to the position and color differences
between the HDR image and them. Fortunately, the previously constructed color component Y .o
can preserve the structure of dark and over-exposed areas to some extent. Therefore, we can combine
the medium-exposure image and color component Y., to help construct the structure component.

Concretely, we first learn a structure-focused network with the guidance of medium-exposure image
and color component Y,,;,,. During training, the network takes the multi-exposure images as input,
as shown in Fig. 2. On the one hand, the medium-exposure image guides the network to preserve
well-exposed textures from the input reference image. It is accomplished by a structure-preserving
loss L, which can be written as,

L:SP(Ystrw H;) = H(T(Ktm) = T(H2)) * Mgp|[1, @)

where Ystm denotes the network output. My, emphasizes the well-exposed areas, and mitigates
the adverse effects of dark and over-exposed ones in the reference image Hs. The function As(I5)
(see Fig. 1) can do just that, so we set M, to A5 (I3). On the other hand, the color component
Y0 guides the network to learn the structure from non-reference images by calculating structure-
expansion loss L., which can be written as,

Ese(ffstruv }fcolor) = H(T(ffstru) - T(Y;olor)) * Mse||1~ (8)
M. is a binary mask, distinguishing whether the pixel of Y., is composited from well-aligned
multi-exposure ones. We design each pixel MZ, of M, as,

MP — {1 (T (Yeotor) — T(H3)) % Ao(I2))P| < 04e
se 0 |((T(lfcolor) - T(H2)) * A2(IQ))P| > 0 ’

where o, is a threshold and set to 5/255. In short, the parameter © s of structure-focused network S
is jointly optimized by structure-preserving and structure-expansion loss terms, i.e.,

©))

62’ = arg Igin[ﬁse (lfstruz Yrcolor) + )\sp‘csp()fst'mu H2)]7 (10)
S

where A, denotes the weight coefficient of structure-preserving loss and is set to 4.
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Then, we feed aligned multi-exposure images rather than original ones into the pre-trained structure-
focused network S. The final structure component Yy, can be expressed as,

Yitru = S(X1, Xo, X3;05%), (11)

where X; and X3 denote aligned X; and X5 with the reference of X5. Such an operation can
help structure-focused networks reduce the alignment burden, thus further enhancing the structure
component. In addition, benefiting from the supervision of the color component, the structural
component Y., also has some color cues, although it mainly focuses on the HDR textures.

3.3 LEARNING HDR WITH COLOR AND STRUCTURE COMPONENTS

With the color and structure components as guidance, we can train an HDR reconstruction network R
without other ground-truths. The optimized network parameters ©%, can be modified from Eqn. (3)
to the following formula,

@;(2 = arg I(r)lin[[‘color(f/a 1/Vcolor) + )\stru[/stru (Y, Ystru)L (12)
IR

where Y represents the network output. L., and L4, denote color mapping and structure
mapping loss terms, respectively. Ay, is the weight coefficient of L., and is set to 1.

For color mapping term, we adopt ¢; loss, which can be written as,

‘CCOlO'I"(Ya lfcolor) = H(T(Y) - T(nolor)) * MCOlOT”la (13)

where M ,;,, is similar as M., and is also a binary mask. It excludes areas where optical flow is
estimated incorrectly when generating Y. ,;,,. Instead of using Eqn. (9), here we can utilize Y., to
design a more accurate mask, which can be expressed as,

_ {1 |(T(Y;olor) - T(lfstru»p‘ < Ocolor
0 |(T(cholo7") - T(K@tru))p‘ Z Ocolor ’

where p denotes a pixel, o010 i a threshold and set to 10/255. For structure mapping term, we
adopt VGG-based ( , ) perceptual loss, which can be written as,

Lotra(Y, Yarra) = Z low (T Ok (T (Yatru)) |1, (15)

Mp

color —

(14)

where ¢ (+) denotes the output of k-th layer in VGG ( , ) network.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Framework Details. Note that this work does not focus on the design of network architectures, and
we employ existing ones directly. The structure-focused and reconstruction networks use the same
architecture. And we adopt CNN-based (i.e., AHDRNet ( , ) and FSHDR (

, )) and Transformer-based (i.e., HDR-Transformer ( , ), and SCTNet (

, )) networks for experiments, respectively. Besides, the optical flow is calculated by Liu et
al. ( s )’s approach, as recommended in ( s ; s ).

Datasets. Experiments are mainly conducted on Kalantari et al. dataset ( s ),
which are extensively utilized in previous works. The dataset consists of 74 samples for training and
15 for testing. Each sample comprises three LDR images, captured at exposure values of {—2, 0, 2}
or {—3,0, 3}, alongside a corresponding HDR GT image. We use these testing 1mages for both
quantltatlve and qualitative evaluations. Additionally, following ( ; ,
s ), we take the Sen er al. ( s ) and Tursun et al ( s

) datasets (without GT) for further qualitative comparisons.

Training Details. The structure-focused and reconstruction networks are trained successively, and
share the same settings. The training patches of size 128 x 128 are randomly cropped from the original
images. The batch size is set to 16. Adam ( R ) with 81 = 0.9 and By = 0.999 is
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Table 1: Quantitative results on Kalantari et al. dataset ( .
denotes the reconstruction network we use, i.e., AHDRNet ( ,

, ), HDR-Transformer ( s ), and SCTNet ( R
each category are bolded.

)- ‘SelfHDRnetwork,
), FSHDR (
). The best results in

Method PSNR-u / SSIM-u. PSNR-//SSIM-/ HDR-VDP-2
AHDRNet (CVPR 2019) 43.63/0.9900 41.14/0.9702 64.61
Fully- FSHDR (CVPR 2021) 43.03/0.9902 42.27/0.9889 64.79
Supervised HDR-Transformer (ECCV 2022) 44.2170.9918 42.17/0.9889 64.63
SCTNet (ICCV 2023) 44.48/0.9916 42.00/0.9897 64.47
Few (K)-  FSHDRg—s5 (CVPR 2021) 43.02/0.9874 41.98 / 0.9885 64.54
Shot FSHDR k=1 (CVPR 2021) 42.52/0.9846 41.92/0.9887 64.41
FSHDR g —o (CVPR 2021) 42.17/0.9828 41.4770.9884 64.21
Nazarczuk et al. (ArXiv 2022) 42.15/ - 40.54 / - 63.99
Self- Our SelfHDR AgrpRNet 43.68 /0.9901 41.09/0.9873 64.57
Supervised  Our SelfHDRrsuDR 43.80/0.9902 41.72/0.9880 64.57
Our SelfHDR g pR—Trans former 43.94/0.9907 41.79 / 0.9883 64.98
Our SelfHDRscTNet 43.95/0.9907 41.77 1 0.9889 64.77

taken to optimize models for 150 epochs. The learning rate is initially set to 1 x 10~* for CNN-based
networks and 2 x 10~* for Transformer-based ones, and reduces by half every 50 epochs.

Evaluation Configurations. We use PSNR and SSIM ( , ) as evaluation metrics.
PSNR and SSIM are both calculated on the linear and tone-mapped domains, denoted as ‘-1’ and ‘-u’,
respectively. Moreover, we adopt HDR-VDP-2 ( , ) that measures the human visual
difference between results and targets. The higher HDR-VDP-2, the better results.

4.2 COMPARISON WITH STATE-OF-THE-ARTS

As described in Sec. 4.1, we adopt four existing HDR reconstruction networks (i.e., AHDRNet,
FSHDR, HDR-Transformer, and SCTNet) for experiments, respectively. We compare them with the
corresponding supervised manners and two self-supervised methods (i.e., FSHDR g —g and Nazarczuk
etal. ( R )). And the results of few-shot FSHDR are also provided.

Quantitative Results. Table 1 shows the quantitative comparison results. As loss functions are
always calculated on tone-mapped images, and HDR images are typically viewed on LDR displays,
we suggest taking evaluation metrics in the tone-mapped domain (i.e., PSNR-u and SSIM-u) as the
primary reference. From the table, four SelfHDR versions all outperform the previous self-supervised
methods. Especially, with the same reconstruction network, our SelfHDR 57 pr achieves 1.58 dB
PSNR gain than FSHDR . The results of SelfHDR can be further improved with the use of more
advanced reconstruction networks (i.e., HDR-Transformer and SCTNet). Moreover, in comparison
with the corresponding supervised methods, SelfHDR has comparable performance overall.

Qualitative Results. The visual comparisons on Kalantari er al. dataset ( , ) as
well as Sen et al. ( , ) and Tursun et al. ( , ) datasets are shown in
Fig. 3 and Fig. 4, respectively. Our results have fewer artifacts than FSHDR g, and sometimes even
outperform the corresponding supervised methods. They show the same trend as the quantitative
ones. Please see Sec. E in the appendix for more results.

5 ABLATION STUDY

The ablation studies are all conducted using AHDRNet ( )
and reconstruction network.

) as the structure-focused

5.1 EFFECT OF COLOR AND STRUCTURE SUPERVISION

The quantitative results of color and structure components (Y., and Ysy,.,,) are given in Table 2.
From the table, the final HDR results achieve better performance than both Y, and Yy, on
PSNR-u, SSIM-u, and HDR-VDP-2. It indicates that the two components are complementary and
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Figure 3: Visual comparison on Kalantari ef al. dataset (Kalantari et al., 2017). Red and blue arrows
indicate areas with ghosting artifacts from other methods. ‘HDR-Tra.” denotes HDR-Transformer.
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(a) Vision comparison on Sen et al's dataset. (b) Vision comparison on Tursun et al's dataset.

Figure 4: Visual comparison on (a) Sen et al. (Sen et al., 2012) and (b) Tursun et al. (Tursun et al.,
2016) datasets. Red arrows indicate areas with poor quality from other methods.

Table 2: Quantitative results of supervision components and final HDR images.

PSNR-v / SSIM-u PSNR-!/SSIM-I HDR-VDP-2

Color Components Ycoior 34.4570.9652 39.01/0.9783 58.28
Structure Components Yy, 43.38 /0.9891 41.74/0.9874 64.48
Final HDR Images 43.68 /0.9901 41.09/0.9873 64.57

taking them as supervision is appropriate and effective. Furthermore, we conduct the following two
experiments to further illustrate the effectiveness.

Comparision with Component Fusion. It may be a more natural idea to obtain HDR results by
fusing the color and structure components. Here we implement that by calculating M .0 Yeoror +
(1 = M oior) Ystru. We empirically re-adjust the hyperparameter 0., in Eqn. (14), but find it gets
the best results when M., = 0. In other words, it is difficult to achieve better results by fusing
two components simply. Instead, our SelfHDR provides a more flexible and efficient way.

Refining Structure Component. Denote Y * by the reconstruction network output when inputting
multi-exposure images aligned by optical flow (Liu et al., 2009). From another point of view, Y * can
be regarded as a refined structure component with higher quality. Thus, we further take Y, and

Y'* as new supervisions to re-train a reconstruction model, while the performance does not improve.
It demonstrates that Yy, generated by structure-focused network is already sufficient.
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Table 3: Effect of loss terms (L, and L,,) when
training structure-focused network.

E /C Y;tru Y
s¢7=sP PSNR-u/PSNR-I PSNR-u/PSNR-I
x I v 38.24/33.61 38.79/33.72
v I x 42.69 / 41.89 43.09/41.13
v I v 43.38 /41.74 43.68 / 41.09

Table 5: Effect of the designed masks (M, and
M,,,) when training structure-focused network.

Table 4: Effect of different M, when
training reconstruction network.

Y

Mecotor pgNR-u / PSNR-I
x 43.55/41.12
Eqn. (9) 43.59/41.02
Eqn. (14) 43.68 /41.09

Table 6: Effect of pre-alignment process-
ing when constructing Yo, and Ysipy,-

Ystru Y Y
Mse/Msp  pSNR-u/PSNR-L  PSNR-u / PSNR-] Yeotor [ Yotru pgNR . / PSNR-L
x | % 38.26/33.68 38.82/33.71 x | % 35.50/34.95
v/ ox 38.29/33.65 38.86/33.82 x | v 41.66/40.90
x |V 4326/41.73 43.60/41.07 VI ox 43.41140.76
VIV 43.38/41.74 43.68/ 41.09 VIV 43.68/41.09

5.2 EFFECT OF L0OSS TERMS AND MASKS

Structure-Focused Network. The structure-focused network is trained with the supervision of
color component and input reference, implementing by calculating structure-expansion loss L,
and structure-preserving loss L, respectively. Here we explore the effect of different supervisions
by using L, or L, only. From Table 3, it can be seen that £, may play a weaker role, as it
mainly constrains the well-exposed areas whose structure may be also fine in Y,,;,,.. Nevertheless,
combining two supervisions is more favorable than using one, thus both are indispensable.

Moreover, we conduct ablation experiments on the designed masks (M, and M.) in loss terms.
The results in Table 5 show that the masks are competent in avoiding harmful information from
supervision. The visualizations of the masks are given in Sec. A of the appendix.

Reconstruction Network. For training the reconstruction network, the adverse effect of ghosting
regions from color supervision Y., needs to be avoided as well. We utilize structure component to
design a more accurate mask in Eqn. (14), and it does show better results than Eqn. (9) from Table 4.

In addition, we conduct the experiments with different hyperparameters o, (see Eqn. (9)) and o0
(see Eqn. (14)) in Sec. D of the appendix.

5.3 EFFECT OF OPTICAL FLOW PRE-ALIGNMENT

When constructing color and structure supervisions, the inputs need to be pre-aligned by the optical
flow approach. Here we remove the pre-alignment processing separately to investigate its impact on
the final HDR results, which are shown in Table 6. From the table, pre-alignment during obtaining
Y..i0r 18 crucial, and pre-alignment during obtaining Y, can further improve performance. The
corresponding quantitative results of Y., and Y4, can be seen in Sec. B of the appendix.

6 CONCLUSION

By exploiting the internal properties of multi-exposure images, we propose a self-supervised high
dynamic range (HDR) reconstruction method named SelfHDR for dynamic scenes. In SelfHDR,
the reconstruction network is learned under the supervision of two complementary components,
which focus on the color and structure of HDR images, respectively. The color components are
synthesized by merging aligned multi-exposure images. The structure components are constructed
by feeding aligned inputs into the structure-focused network, which is trained with the supervision
of color components and input reference images. Experiments show that SelfHDR outperforms the
state-of-the-art self-supervised methods, and achieves comparable results to supervised ones. The
discussion on method limitation and future work can be seen in Sec. F and Sec. G of the appendix.
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APPENDIX

The content of the appendix material involves:

* Analysis and visualization of masks in Sec. A.

* Effect of optical flow pre-alignment in Sec. B.

Effect of different alignment methods in Sec. C.

* Ablation study on adjusting o, and o, in Sec. D.
 Additional qualitative comparisons in Sec. E.

* Limitation in Sec. F.

¢ Future work in Sec. G.

A ANALYSIS AND VISUALIZATION OF MASKS

In order to avoid harmful information in supervision during training structure-focused network, we
carefully design the mask M, and M, for calculating structure-preserving loss £, and structure-
expansion loss L., respectively. The quantitative results of related ablation experiments are shown
in Table 5. Here we give more analysis about the elaborate masks and visualize an example in Fig. A.
Therein, the corresponding color component is shown in Fig. A (g).

Mask M, in Structure-Preserving Loss. The structure-preserving loss aims at guiding the network
to preserve textures of the input reference image, and it is calculated between model output and
linear medium-exposure image Hs. From Table 5, it leads to poor performance when measuring the
distance between the two directly, as the structural information of dark and over-exposed regions is
incomplete in medium-exposure image Ho.

Thus, we suggest embedding a mask M, into the loss, and it should emphasize the well-exposed
areas and mitigate the adverse effects of dark as well as over-exposed areas. Ay(I5) in Fig. 1 can do
just that, and we adopt it as M,. The visualization of a Ao(I3) example is shown in Fig. A (i). It
can be seen that the overexposed area surrounded by the blue box is successfully suppressed.

Mask M. in Structure-Expansion Loss. The structure-expansion loss aims at guiding the network
to learn textures from non-reference inputs, and it is calculated between model output and color
component Y., As Y10 1S Obtained by fusing aligned multi-exposure images (see Fig. A (b),
(e), and (f)), it is inevitable that ghosting artifacts exist in Y, (see the area surrounded by the red
box in Fig. A (g)) when the alignment fails.

Thus, a mask M, should be designed to circumvent the adverse effects of these ghosting areas for
better guiding the network. It is not appropriate to calculate the mask based on the simple difference
between Y., and reference image H>. Because even if the dark and over-exposed areas are aligned
well, the difference between Y,,;,,- and Ho is still large (see the area surrounded by the blue box
in Fig. A (j)). As a result, we utilize Ao(I>) again to mitigate the adverse effects of these areas.
Specifically, we multiply A2(I2) to Yoo and Ho for calculating the difference, as shown in Eqn. (9).
A mask example is shown in Fig. A (k). It can be seen that the well-aligned over-exposed areas
surrounded by the blue box are successfully retained, and only the misaligned area is masked.

With the designed masks, the generated structure component Y, in Fig. A (1) combines the
strengths of the supervisions Y., and Hs, while discarding their weaknesses.

B EFFECT OF OPTICAL FLOW PRE-ALIGNMENT

When constructing color and structure supervisions, the inputs need to be pre-aligned by the optical
flow approach ( , ). We remove the pre-alignment processing separately to investigate
its impact on the final HDR results, which are shown in Table A. From the table, the pre-alignment
during obtaining Y., is crucial, as Y ., affects the quality of Yy, While Y0 and Ysipy,
decide the final HDR result. On this basis, pre-alignment during generating Y, can further improve

performance, achieving 0.27 dB PSNR gain on the HDR result Y.

13
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Figure A: Visualization of masks and related images. (a)~(c) show the multi-exposure images, while
(d) is the corresponding ground-truth from Kalantari er al. (Kalantari et al., 2017) dataset. (e) and (f)
show the aligned low-exposure and aligned high-exposure images, respectively, which are obtained
by optical flow (Liu et al., 2009) alignment with the reference of medium-exposure image. (g) is the
constructed color component by fusing aligned multi-exposure images. (h) is the medium-exposure
image in the linear domain. (i) is the mask as a blending weight in Fig. 1. (j) and (k) denote the
masks 1 — M, (see Eqn. (9)) constructed without and with Ay (I2), respectively. (1) is the generated
structure component. The red box indicates the area where optical flow alignment fails, and the blue
box indicates the area with high brightness.

Table A: Effect of pre-alignment processing when constructing supervision information (Y., and

Y,:r). The final HDR results (Y) are obtained by learning the model with corresponding (Y;oi0r
and Y, ) supervisions.

Y. . Y. . }fcolor Y;tru Y
cotor strt PSNR-u/PSNR-I  PSNR-u/PSNR-I  PSNR-u /PSNR-{
X X 25.69/31.31 34.58/34.35 35.50/34.95
Pre-Alignment X v 25.69/31.31 39.04/40.38 41.66 /40.90
Processing v X 34.45/39.01 43.07 /40.45 43.41/40.76
v v 34.45/ 39.01 43.38 / 41.74 43.68 / 41.09

In addition, we further evaluate the effect of pre-alignment on generating Yy;,.,. Specifically, we test
the structure-focused network on 74 training scenes with and without optical flow pre-alignment,
respectively. The results of Y., show the pre-alignment manner has 0.44dB PSNR-« and 1.46dB
PSNR-! gains on average. Moreover, we compare the results between the two manners one by one.
We find that only in 6 scenes, the results without pre-alignment are more than 0.1dB better than those
with pre-alignment on PSNR-u. In the other 68 scenes, the pre-alignment manner always gives better
or comparable results.

C EFFECT OF DIFFERENT ALIGNMENT METHODS

The quality of color components mainly relies on the alignment method. In this work, for the sake
of fairness, we follow Kalantari et al. (Kalantari et al., 2017) and FSHDR (Prabhakar et al., 2021),
adopting Liu et al. (Liu et al., 2009)’s approach for optical flow alignment. Besides, we additionally
conduct experiments with other commonly used optical flow networks, i.e., PWC-Net (Sun et al.,
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Table B: Effect of optical flow alignment methods.

Alignment Method PSNR-u / SSIM-u. PSNR-// SSIM-/ HDR-VDP-2
PWC-Net ( , ) 43.45/0.9898 40.67 /1 0.9864 64.07
FlowFormer ( s ) 43.50/0.9900 40.60/ 0.9862 64.43
Liuet al. ( , ) 43.68 / 0.9901 41.09/ 0.9873 64.57
Table C: Effect of 0. in Eqn. (9). Table D: Effect of 010 in Eqn. (14).
o Yst'r'u, Y o Y
* PSNR-u/PSNR-l  PSNR-u/PSNR-I coler PSNR-u / PSNR-
2.5/255 43.27/41.49 43.64 /1 40.88 5/255 43.60/41.08
5/255 43.38 / 41.74 43.68 / 41.09 10/255 43.68 / 41.09
7.5/255 43.18 /41.67 43.571741.04 15/255 43.61/41.10
) and FlowFormer ( , ). As shown in Tab. B, although Liu et al.’s approach

is relatively early, it is more robust for multi-exposure image alignment than recent learning-based
PWC-Net and FlowFormer.

D ABLATION STUDY ON ADJUSTING 04 AND O ojor

The hyperparameters o, (see Eqn. (9)) and 0.1 (see Eqn. (14)) are set to 5/255 and 10/255 by
default for experiments, respectively. Here, we vary o, Or 0010, to conduct experiments. Table
C and D show the experimental results, respectively. The results show that the sensitivity o, and
O color Of our SelfHDR is acceptable.

E ADDITIONAL QUALITATIVE COMPARISONS

Additional visual comparisons on Kalantari ef al. ( , ) dataset are shown in Fig. B
and Fig. C, respectively. Our SelfHDR has fewer ghosting artifacts than zero-shot FSHDR (i.e.,
FSHDR i—) ( s ). Sometimes, SelfHDR even outperforms the corresponding
supervised methods. Red arrows in the results indicate areas with ghosting artifacts in other methods.

F LIMITATION

First, the main limitation is the requirement for clear input images, i.e., they should be noise-free
and blur-free. When noise exists in short-exposure images or blur exists in long-exposure images,
SelfHDR can not remove noise and blur, as shown in Fig. D. Second, when the scene irradiance
changes drastically in shooting multi-exposure images, SelfHDR may fail, as the constructed color
components may be inaccurate.

Actually, most existing multi-exposure HDR reconstruction methods (including supervised and self-
supervised ones) only focus on removing ghosting artifacts caused by misalignment between inputs,
having these limitations as well. Our SelfHDR has taken a step toward more realistic self-supervised
HDR imaging by deghosting, while our ongoing work is to further address these limitations.

G FUTURE WORK

In future work, we will explore self-supervised HDR reconstruction when considering more realistic
shooting conditions. In low-light environments, there may exist noise in short-exposure images and
blur in long-exposure images. In order to achieve a self-supervised algorithm, we can combine HDR
reconstruction with some self-supervised denoising and debluring works to process input images
for removing undesirable degradations. Moreover, an adaptive method may need to be explored to
select a more appropriate image as a base frame. For example, when a medium-exposure image
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AHDRNet SelfHDRAHDRNet

HDR-Tra. SelmDRHDR—T‘r‘a. SCTNet SelfHDRSCTNet

Figure B: Visual comparison on Kalantari ef al. dataset (Kalantari et al., 2017). Red arrows indicate
areas with ghosting artifacts from other methods. ‘HDR-Tra.” denotes HDR-Transformer.

suffers more severe degradations than others, the method should adaptively take short-exposure or
long-exposure images as a new base frame for HDR reconstruction.

In addition, as a self-supervised method, it has the potential to produce better results and bring better
generalization by exploiting more multi-exposure images without the target HDR images. We will
explore scaling up training data in the future.
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Our SelfHDRg ryet LDR patches

FSHDRg—q FSHDR SelfHDR rsupr AHDRNet  SelfHDR upriet

1

HDR-Tra. SelfHDRypr_7ra. SCTNet SelfHDRscryer GT

Figure C: Visual comparison on Kalantari et al. dataset (Kalantari et al., 2017). Red arrows indicate
areas with ghosting artifacts from other methods. ‘HDR-Tra.” denotes HDR-Transformer.
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Figure D: Failure cases. Noise or blur may exist in the results.
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