
CountNet3D: A 3D Computer Vision Approach to Infer Counts of Occluded
Objects

Porter Jenkins†, Kyle Armstrong‡, Stephen Nelson †,
Siddesh Gotad ‡, J. Stockton Jenkins†, Wade Wilkey‡, Tanner Watts§

†Brigham Young University, ‡Delicious AI, §University of Utah
†pjenkins@cs.by.edu, {sn258, sjenkin2}@byu.edu

‡{kyle.armstrong, sidd.gotad, wade.wilkey}@deliciousai.com, §u1090501@utah.edu

Abstract

3D scene understanding is an important problem that
has experienced great progress in recent years, in large part
due to the development of state-of-the-art methods for 3D
object detection. However, the performance of 3D object
detectors can suffer in scenarios where extreme occlusion of
objects is present, or the number of object classes is large.
In this paper, we study the problem of inferring 3D counts
from densely packed scenes with heterogeneous objects.
This problem has applications to important tasks such as
inventory management or automatic crop yield estimation.
We propose a novel regression-based method, CountNet3D,
that uses mature 2D object detectors for finegrained classi-
fication and localization, and a PointNet backbone for geo-
metric embedding. The network processes fused data from
images and point clouds for end-to-end learning of counts.
We perform experiments on a novel synthetic dataset for in-
ventory management in retail, which we construct and make
publicly available to the community. Our results show that
regression-based 3D counting methods systematically out-
perform detection-based methods, and reveal that directly
learning from raw point clouds greatly assists count esti-
mation under extreme occlusion. Finally, we study the ef-
fectiveness of CountNet3D on a large dataset of real-world
scenes where extreme occlusion is present and achieve an
error rate of 11.01% .

1. Introduction

Automatically identifying and counting densely spaced
objects in 3D space is an important problem with many
real-world applications. A system that is able to accurately
identify and count objects can be used to streamline physi-
cal processes. For example, in physical retail and inventory
management it can be challenging to know how many prod-
ucts are on a shelf at any given time. Any auditing of prod-

Figure 1: Example of the 3D count inference problem.
(Best viewed in color) With an RGB camera and LiDAR
sensor, we capture an image and a corresponding point
cloud of a scene with occluded objects. The goal is to in-
fer the total counts of each finegrained class. The prob-
lem is challenging because objects are densely spaced, and
extremely occluded. Additionally, the objects may have
the same geometric shapes, but have different class labels.
Above we show a scene with an image, a point cloud with
2D detections lifted to 3D, and our PointBeam proposals

uct counts must be done manually, which can be tedious
and time consuming especially when the number of object
classes is large. Other applications might include estimat-
ing agricultural crop yields [41][21] where a surveyor has to
cover large farm lands and infer counts with sampling and
interpolation. In either case, existing techniques cannot be
easily used to automate the task.

1



In the current work, we seek to automatically infer
counts of 3D objects that are densely spaced, and suffer
from extreme occlusion. See Figure 1 for an example in
a retail setting. In many cases, the objects are placed one in
front of the other, making inference from visual input alone
intractable. We propose to fuse visual information from im-
ages with 3D information from point clouds for end-to-end
learning of 3D counts.

Recently, the computer vision community has devoted
significant attention to inferring object counts in images.
For instance, crowd counting is a well-studied prob-
lem with many robust methods for operating on single
[14][42][17][44][19] or sequences [40] of images. Other
work has tried to unify object counting methods by quickly
adapting from crowds, to new domains such as wildlife, ve-
hicles [11], and cancerous cells [20]. Existing studies pri-
marily infer counts from 2D images and are not able to pro-
cess 3D scene representations such as point clouds.

The 3D count inference problem has numerous technical
challenges. First, objects are positioned in close proximity,
and are to expected to significantly occlude more distant
objects. We refer to this as the extreme occlusion problem.
Such occlusion renders both detection and count inference
from RGB images alone intractable because salient features
of each occluded object are not clearly visible. Even simply
applying powerful 3D object detectors is likely to yield poor
performance due to severe occlusion of objects. Second,
objects in a scene are heterogeneous and therefore need to
be both classified and counted. Previous studies assume that
all objects in an image or scene belong to the same class
(e.g., all target objects are people). Realistic problems often
involve classification and counting over a large set of object
categories. Third, the lack of benchmark datasets and high
cost of labeling 3D data has been too prohibitive to study
the problem in the past. To the best of our knowledge no
existing benchmark dataset exists for the 3D count inference
problem.

In the current paper we seek to solve these problems with
a novel, regression-based deep learning architecture that we
call CountNet3D. Our proposed method processes multi-
sensor data from RGB images and LiDAR point clouds and
outputs finegrained object count estimates. We use a mature
2D object detector to identify and localize heterogenous ob-
jects from images, along with data fusion that occurs by
lifting the detections into 3D space using the camera pose,
camera intrinsic properties, and ray casting from SLAM
output. We then segment the point cloud into smaller sub-
spaces around the localized objects, constructing what we
call PointBeams. PointBeam proposals use the shape of the
2D bounding box to facilitate very finegrained count esti-
mation by reducing the search space to local neighborhoods
around known objects. We use a PointNet backbone to learn
geometric features for each PointBeam, followed by fully

connected layers that predict the total number of objects
within the PointBeam.

In our experiments we compare regression-based meth-
ods to state-of-the-art detection-based counting methods
and demonstrate learning counts end-to-end greatly im-
proves performance. CountNet3d achieves a 3.9% percent-
age error on our test set, which represents a 33.96% reduc-
tion in error compared to the most effective 3D object de-
tector. Additionally, we compare the proposed PointBeams
segmentation to global processing of point clouds and find
that the PointBeams proposal generally improves the per-
formance under extreme occlusion. We perform our exper-
iments on a new synthetic dataset, called 3DBev24k, that
contains LiDAR simulations of occluded objects on retail
shelves, which make publicly available. Finally, we eval-
uate CountNet3d on a novel, real-world dataset comprised
of 7.8k LiDAR scans of retail shelves and observe an er-
ror 11.01%, which outperforms all alternative 3D counting
methods.

Our key contributions are summarized as follows:

• We propose a novel, regression-based framework for
counting densely spaced objects in 3D, called Count-
Net3D

• We show that regression-based 3D counting methods
outperform state-of-the-art 3D object detectors

• We apply CountNet3D to a real-world inventory man-
agement problem, and perform experiments on a large-
scale dataset of simulated LiDAR scenes, which we
make publicly available. We also manually collect
7.8k scans of real-world retail shelves and demonstrate
CountNet3d outperforms alternative methods.

2. Related Work
Visual Object Counting Visual object counting with

RGB and RGB-D images has been studied in many do-
mains. Historically, crowd counting has received signif-
icant attention [14] from the computer vision community
because issues like occlusion, poor illumination and per-
spective make it challenging. Broadly speaking, two pri-
mary strategies exist for counting objects from images:
regression- and detection-based techniques. Mardsen et al.
construct a convolutional neural network (CNN) architec-
ture that operates on image patches to predict local object
counts, which are then refined with a global CNN layer to
predict total counts [20]. Other techniques leverage CNN’s
trained to predict density maps, which produce count esti-
mates through density map integration [42][17][14]. Zhang
et al. solve the multi-view crowd counting problem by es-
timating 3D scene-level density maps [40]. Other solutions
exist that rely on videos [44] and graphs [19]. Finally, re-
cent work tackles precise object detection in densely packed



retail scenes [7] which could be used to count object in 2D.
Our work differs in that we propose to directly count objects
depth-wise using lidar point clouds.

3D Object Counting Compared to image-based count-
ing, research on 3D object counting is relatively thin. Re-
cent work proposes a lidar-based, remote sensor system for
counting pedestrian on sidewalks [15]. The system uses
handcrafted point-cloud features and a watershed clustering
algorithm to determine pedestrian counts. Other work stud-
ies automated crop counting and proposes a novel pipeline
that relies on 3D constructions of stereo images, singular
value decomposition (SVD), and sphere fitting for fast and
accurate grape count inference [21]. A key difference be-
tween these studies and the current work is that we seek
to infer counts directly from point clouds with end-to-end
learning.

Deep Learning with Point Clouds Deep Learning ar-
chitectures that operate on point clouds have been useful for
a variety of tasks including autonomous driving, 3-D object
detection, and classification. The key idea in many of these
works is to learn features on raw points clouds or voxels.
PointNet [26] is a seminal deep learning architecture that
operates on a point cloud directly, without having to trans-
form data into 3D voxel grids [25]. PointNet++ [25] builds
upon PointNet by introducing hierarchical feature learning
through local neighborhoods. Recent work [24, 37, 22]
demonstrates that PointNets, along with a 3D viewing Frus-
tum, can be trained to detect objects in 3D. Critically, Frus-
tum PointNets assume that a single object lies in the view-
ing frustum and therefore cannot be applied to our problem.
PointCNN [16] introduces a convolution operator to lever-
age spatially-local correlation in data represented densely
in grids. Other methods, such VoxelNet [43] and PointPil-
lars [13] voxelize the point cloud and perform 3D or 2D
convolutions on the voxels. In general, many other works
seek to construct mechanisms to use convolution-like oper-
ators on raw points, or voxels [33][34][8][31]. The primary
difference between our method and these is our use of a
regression-based deep learning architecture for learning ob-
ject counts in 3D.

3. Problem Formulation
In the following section we formally define the 3D count

inference problem. Suppose we have a set of n scenes
S = {si : 0 < i <= n}, where each scene, si =
⟨X (i), z(i)⟩, is defined as a tuple containing a set of RGB
images, X (i) = {x1, x2, ...}, and a point cloud, zi. A Li-
DAR sensor is assumed to be co-calibrated with an RGB
camera. Additionally, we have a set of m object classes,
C = {cj : 0 < j <= m}, that are observed across the
scenes in S. From the object set we can construct an ob-
served set of objects, and their counts in each scene. Let
y(i) be a vector of observed object counts in scene, si.

The label vector, y(i), is a vector of non-negative values,
y(i) ∈ {0, 1, 2, ...}m, where each component, y(i)j , denotes
the count of class, cj , in scene, si.

Our primary goal is to learn a function, f(·) that inputs
a set of images, X (i), and a point cloud, zi, and outputs the
estimated count, ŷ(i)j , of each class, cj , in scene si. In vector
notation, the function we seek to learn is

ŷ(i) = f(X (i), z(i);θ) (1)

where θ is a vector of parameters (e.g., weights of a neu-
ral network). Our key hypothesis is that an end-to-end func-
tion, f(·), can be learned to map from a set of raw images
and point clouds to 3D object counts.

4. CountNet3D
Due to the challenges of extreme occlusion, applying 3D

object detectors to the count inference problem is very chal-
lenging and leads to poor accuracy. To solve this, we pro-
pose CountNet3D, a multi-modal deep architecture for in-
ferring counts of densely spaced 3D objects.

As shown in Figure 2, CountNet3D is composed of two
primary modules: PointBeam proposals to fuse data from
images and LiDAR point clouds, and a count estimation
module to process to the PointBeams and output 3D counts.
In the following sections we introduce each component in
detail, and provide implementation details relevant to our
experiments.

4.1. PointBeams

Images contain rich information about objects in a 3D
scene. Due to their high resolution format, they are partic-
ularly useful for localization and classification. This is es-
pecially true when making high-dimensional, fine grained
classifications (e.g., species of a bird [36] [4], or distin-
guishing between different products [6] of similar shapes).
To extract 2D detections from the image set, X (i) =
{x1, x2, ...}, we use a YOLOv5 [12] model. We choose
the YOLO detector because it allows for accurate predic-
tions, and real-time processing of a sequence of RGB im-
ages. However, it’s important to point out that CountNet3D
is agnostic to the choice of 2D object detector. We pretrain
our YOLO object detector on the COCO benchmark [18]
and finetune on a custom inventory dataset.

4.1.1 Proposing PointBeams

One of the key challenges of the 3D count inference prob-
lem is that objects can be very crowded, creating severe oc-
clusion. Given the low resolution nature of 3D sensors such
as LiDAR, it has been shown to be very beneficial to reduce
the search space in 3D object detection by proposing a 3D



Figure 2: Overview of CountNet3D. (Best viewed in color). Our model inputs a set of images and a point cloud. The
images are passed through a 2D CNN-based object detector, and the resulting bounding boxes are lifted into 3D to form the
PointBeam proposals. Each beam is translated into a canonical subspace by applying an orthogonal rotation, mean shifting,
and computing depth features, which results in an (M × 8) tensor. The PointBeams are fed into a PointNet backbone, which
outputs a geometric embedding. Simultaneously, we use a geometric dictionary to look up a geometric class, and get a one-
hot tensor, from the finegrained 2D detections. Finally, the one-hot tensor and geometric embeddings are concatenated and
fed into a set of fully connected layers, which output a real-valued count estimated for each PointBeam.

IMAGE PLANE IMAGE PLANE

Pyramid

of


Vision

Frustum PointBeams

PointBeam

Bounding

Box


Projection

Figure 3: Difference between a viewing Frustum and
PointBeams. Frustum PointNets [24][22] create a pyra-
mid of vision, where the field of view enlarges as the dis-
tance from the camera increases. PointBeams project the
2D bounding box onto the location of the detected object
and extend it using the normal vector with respect to the
image plane. The field of view is constant as the distance
increases. PointBeams offer a more focused and localized
view of a set of densely spaced objects. Additionally, Frus-
tum PointNets [24] cannot be applied when multiple target
objects lie in a frustum.

viewing frustum [24][22]. The viewing frustum acts to re-
duce the dimensionality of the point cloud, and focus the
3D backbone on subspaces of known objects only.

Building upon this idea, we propose a novel method to

subdivide the point cloud and focus our 3D regressor, which
we call PointBeams. PointBeams project a 2D bounding
box onto the estimated location ⟨x, y, z⟩ of a detected ob-
ject, and compute a rectangular prism by extending the 2D
plane (w, h) along the normal vector up to a pre-specified
depth, d. The nomal vector is computed with respect to the
image plane. In contrast to a viewing frustum, PointBeams
have the property that the field of view remains constant as
the distance from the camera increases. This is very useful
in densely packed scenes where multiple frusta will begin
to overlap. See Figure 3 for a visual explanation of the dif-
ferences between viewing frusta and PointBeams. We are
able to lift the 2D bounding boxes into 3D using the camera
pose, camera intrinsic properties, and ray casting [5].

4.1.2 Representation of PointBeams

Once a PointBeam has been proposed for each object de-
tected in the image layer, we map each point in the point
cloud to the correponding PointBeam. Points that do not lie
in a beam are discarded. We find that proper representation
of points within each beam is critical (Table 3).

Orthogonal rotation: To improve the rotation invari-
ance of our network, we rotate each beam around the verti-
cal axis such that the beam is orthogonal to the center axis.
Consequently, we can propose beams for objects of arbi-
trary poses and orientations.
Mean Shift: To improve the translation invariance of our
network, we mean shift each PointBeam proposal by sub-
tracting each point by the mean of all the points in the pro-
posal. The resulting local coordinate representation pro-



Figure 4: Example predictions from CountNet3D on
real-world data. (Best viewed in color with zoom in).
The PointBeam proposals, the ground truth (GT), and the
predicted counts (pred) are shown. We also display the
scene-level MAPE. Each beam is given a randomly gen-
erated color to highlight the beam regions. We only display
the global ⟨x, y, z⟩ for visualization clarity. We observe that
under extreme occlusion, where both 2D and 3D object de-
tectors are likely to fail, CountNet3D is able to accurately
predict the object counts. See supplementary materials for
additional image/video examples.

duces proposals that are consistently centered and scaled.
Consequently, if two objects fall in different positions in
the scene, the network doesn’t have to learn new geometric
features from scratch each time.
Beam Depth: Intuitively, the number of objects in a pro-
posal is correlated with how close to the front or back each
object is. To directly model this intuition, we compute depth
features for each point in the beam. We measure the dis-
tance in the forward dimension to the most distant point
within the beam, and the distance to the nearest point in
the beam. Assuming a y forward coordinate space, for each
point ⟨xi, yi, zi⟩, we calculate D = ⟨ymax − yi, ymin − yi⟩

We concatenate the global ⟨xg, yg, zg⟩ coordinates, the
local ⟨xl, yl, zl⟩ coordinates (obtained via mean shifting),
and the depth features into an 8 channel input point cloud.
We report on the effects of these point representations in
Table 3.

4.2. Count Estimation

Once the PointBeams are computed and transformed,
they are then stacked into a single tensor and fed into a
PointNet model . Simultaneously, we construct a one-hot
vector denoting geometry type, which is concatenated with
the geometric embedding tensor. We extract the predicted
class, ĉ label from the image detection and use a pre-defined
geometry dictionary that maps the finegrained class, ĉ, (e.g.,
coca-cola 20oz bottle) to a coarse geometric type, g (e.g.,
20ozBottle). Since the PointBeams condition on the pre-
dicted class from the image, the subsequent layers only need
to reason about geometric shapes present in the beam. This
is a necessary dimensionality reduction step that reduces the
set of candidate classes from 3000+ to five distinct geome-
try types. If the number of object classes is relatively small,
this step can be skipped entirely and the predicted class can
be used directly in the one-hot tensor. More details about
this dictionary are provided in the appendix.

After concatenating the geometric embedding and the
one-hot tensor, the resulting tensor is fed into a set of 5 fully
connected layers with dimensions [512, 256, 64, 64, 64].
ReLU activations and batch normalization are used after
each layer. The output of the count estimation network is
a single scalar ŷ. Since the PointBeams are stacked and
passed through the count estimation network, the output
tensor has dimensions (B × N × 1), where B is the batch
size and N is the total number of beams in each batch.
From the output tensor we can easily get a tuple ⟨ĉij , ŷij⟩,
which describes the predicted finegrained class and the to-
tal count within each PointBeam. Finally, we sum the pre-
dicted counts within each class to get class-level count esti-
mates.

One simplifying assumption implicit in the design of
CountNet3D is what we refer to as the locality assumption:
objects that are densely spaced together tend to be of the
same class. Specifically, occluded objects that fall within a
beam cast by the bounding box plane are assumed to be of
the same class as those that are easily visible from an im-
age. This is a reasonable assumption in many applications
including inventory management and crop yield estimation.

4.3. Loss Function

We train CountNet3D for end-to-end learning of counts
using a simple squared error loss function:

Lscene = Σj(yj − ŷj)
2 (2)

We assume that each scene, si, contains a set of ki object
detections. Consequently, the loss function we optimize is
the average squared error over a batch of scenes:

L =
ΣiΣj(yi,j − ŷi,j)

2

N
(3)



3DBev24k Real-world
Train 18,984 6,259
Test 4,820 812
Val - 811

Finegrained Classes 4,074 359
Geo. Classes 5 21

µ 3.12 8.15
σ 1.59 7.84

Max 24 75

Table 1: Dataset Summary

where i indexes scene, si in a batch, and j indexes each
PointBeam, bj . The denominator, N = Σiki, is simply the
total number of PointBeams proposed across all the scenes
in the batch.

4.4. Implementation Details

Point clouds have a variable size, due to the variable
number of points captured by the LiDAR. Additionally,
each scene, si, contains a variable number of ki object de-
tections. Both of these issues make mini-batch training with
stacked tensors difficult. To solve this problem, we impose
a maximum points parameter, M , on each PointBeam. If
the number of points that fall in the beam is greater than M ,
then we downsample the points to be of size M . Otherwise,
we zero-pad the PointBeam tensor. In our experiments we
set M = 1024. This operation produces tensors of a fixed
size that can be easily stacked into a mini-batch [27]. The
resulting point cloud tensor has dimensions B×N×M×C,
where B is the batch size, and C is the number of channels
(Table 3). We use an image resolution of 640 × 480 in the
2D detection layer.

We preprocess the entire scene by mean shifting and
transforming into the unit ball by dividing each point by
the maximum norm of all the points. This puts all the point
clouds at the origin with a normalized point clouds range
in [-1, 1] in ⟨x, y, z⟩. The normalized point clouds are
then fed into the PointBeam proposal layer. When propos-
ing PointBeams, we introduce two additional hyperparam-
eters to control the shape and size of the beams. First,
ϵ, perturbs the dimensions of the 2D bounding box plane:
⟨w∗(1+ϵ), h∗(1+ϵ)⟩. This allows CountNet3D to capture
points around the boundary of the target object. Second, δ,
determines the depth of each beam. In our experiments, we
set ϵ = 0.05 and δ = 0.6

5. Experiments
In this section we define our experimental setup. We per-

form experiments on two datasets, one synthetic and one
real-world. Both of the datasets contain scenes of beverages
on shelves.

5.1. Datasets

3DBev24k: In this section, we describe our new dataset,
3DBev24k. The data are comprised of scenes built using
the popular 3D graphics software Blender [3]. We man-
ually construct scenes of retail shelves with object place-
ment similar to real-world scenes. We add variance to the
data during simulation by 1) randomizing LiDAR physics
parameters 2) masking objects out of the scene. For each
scene, the simulation process then outputs a point cloud
using Blensor [9], and a variety of annotations including
class counts, bounding boxes, and semantic segmentation
labels. The classes of the objects are organized hierarchi-
cally and correspond to products typically seen in bever-
age retail. For each object we provide a finegrained class
(ie., ‘coca cola 20oz bottle‘) and a geometric class (i.e.,
‘20ozBottle‘). A canonical train/test split is also defined
with 18,984 train examples and 4,820 test examples. See
the supplementary materials for a detailed description of
the simulator and example scenes. Summary statistics for
3DBev24k are provided in Table 1. This dataset is open
source and can be accessed via online supplement.

Real-world Data: We also perform an experiment with
a proprietary real-world dataset to evaluate the effective-
ness of CountNet3d on complicated, physical scenes. This
dataset is comprised of 7,882 annotated examples. Sum-
mary statistics are reported in Table 1. Using a custom iOS
mobile application on iPhone 12/13 and iPad Pro 4th gener-
ation with built-in LiDAR [2], we capture images and point
clouds of real-world scenes with strong occlusion in a retail
setting. These scenes are also annotated with finegrained
class counts by experts. Due to the difficulty of labelling
point clouds of very crowded scenes with 3D bounding
boxes, we are unable to compare detection-based methods
on the real-world data. We pretrain all models on the syn-
thetic data, and finetune on the smaller, real-world dataset.

5.2. Evaluation

We evaluate all methods using Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and
Mean-squared Error (MSE). For all three metrics, lower val-
ues correspond to lower error and more accurate count esti-
mation.

5.3. Settings

Our experiments seek to answer three primary questions.
First, what is the performance of regression-based methods
compared to detection-based methods for solving the 3D
count inference problem? Second, what is the effect of point
representation on CountNet3D performance? Third, how
well does CountNet3D perform on real-world retail scenes
with extreme occlusion? We answer these questions in the
following three sections.



Table 2: Evaluation on a synthetic, test dataset. Lower is better

Method Input MAE MAPE MSE

Detection

Global YOLO [28] RGB 2.5370 0.7235 9.4824
SECOND [38] 3D 2.7245 0.9396 9.9718

PointBeams

SECOND [38] RGB+3D 2.175 0.6775 7.1816
PointPillars [13] RGB+3D 1.5234 0.7659 3.6412

VoteNet [23] RGB+3D 1.2768 0.4938 2.9704
PIXOR [39] RGB+BEV 1.1906 0.3786 3.3334
YOLO [28] RGB+BEV 0.3649 0.1274 0.7776

Regression PointBeams

VGG-16 [32] RGB+BEV 0.2959 0.0892 0.6397
MobileNetV2 [29] RGB+BEV 0.3228 0.1104 0.6963

ResNet-18 [10] RGB+BEV 0.2773 0.1049 0.3399
CountNet3D (ours) RGB+3D 0.1134 0.0390 0.1268

Table 3: Effect of point cloud representation on CountNet3D (synthetic data). Lower is better

Channels Global Local Distance MAE MAPE MSE

3 ✓ ✗ ✗ 0.5624 0.2195 0.9292
3 ✗ ✓ ✗ 0.3690 0.1232 0.6895
6 ✓ ✓ ✗ 0.2031 0.0722 0.2250
5 ✗ ✓ ✓ 0.2167 0.0720 0.2571
8 ✓ ✓ ✓ 0.1134 0.0390 0.1268

5.4. Regression- vs. Detection-based Methods

The major hypothesis of this work is that regression-
based approaches are superior to detection-based ap-
proaches for counting densely spaced objects in 3D. This
hypothesis is informed by two theoretical considerations.
First, 3D detection methods are designed to classify and lo-
calize objects. Amodal localization of objects in 3D space
is very challenging, especially as the degree of occlusion
increases. In the case of the Kitti benchmark leaderboard
[1], nearly all detection-based methods degrade as the level
of occlusion increases. In the context of count inference,
we believe we can bypass the statistically difficult step of
estimating a vector of positional coordinates, and instead
estimate a scalar count value. Second, using detection-
based methods to solve the counting problem suffers from a
misaligment between our objective (counting) and our loss
function (detection). By aligning our objective (counting)
with our loss (squared error of counts), we can take advan-
tage of the benefits of end-to-end learning.

5.4.1 Object Detectors

We train one 2D, and multiple 3D object detectors to clas-
sify and localize objects in each scene. YOLOv5 [28][12]
is trained to detect objects from images only. The 3D detec-
tors are trained to detect each of the geometric types from

point clouds. We compare CountNet3D to PIXOR [39],
SECOND [38] [35], PointPillars [13] [22] [35] and VoteNet
[23]. For each object detector, we estimate the locations of
each object, and sum over the bounding boxes to get a per-
class count.

5.4.2 Bird’s Eye View (BEV) Regressors

In addition to CountNet3D we also implement and test a
novel pipeline for using 2D convolutions as regressors. We
project each PointBeam proposal to a 200 × 200 BEV im-
age (Figure 5) with a resolution parameter of .01. This
point cloud representation intuitively simplifies the count-
ing problem into an easier perceptual problem (counting
basic shapes such as rings), and facilitates the use of ma-
ture 2D CNN architectures. We train four baseline CNN’s
on the bird’s eye view projections of each PointBeam pro-
posal: VGG-16 [32] , ResNet-18 [10], and MobileNetV2
[29], and YOLOv5 [28][12].

5.4.3 Results

We report our results in Table 2 and have three primary ob-
servations. First, in all cases, regression-based techniques
significantly outperform 3D detection-based methods. Even
the weakest regressor, a MobileNetV2 applied to a BEV
projection, outperforms PIXOR, the most effective 3D ob-



1

1 2 2 2 3

3 2 2 3 2 1 3

Figure 5: Example bird’s eye view (BEV) representation
applied to the PointBeam proposals, where each cell is a
separate proposal, along with its ground truth count. This
simplified representation outperforms 3D object detectors,
but cannot match the performance of CountNet3D

ject detector. Interestingly the YOLOv5 model trained on
the BEV images dramatically outperforms the 3D detec-
tors, suggesting the effective representation of BEV images.
CountNet3D yields the best performance of all, outperform-
ing PIXOR by 33.96% and VGG-16 by 5.01% in MAPE.
Second, Table 2 suggests that full 3D is generally better
than a BEV image when doing regression. CountNet3D is
the only regression method that leverages full 3D informa-
tion from the point clouds, and reduces MAPE by 7.14% -
5.01% compared to the BEV regressors. In Section 5.5, we
discuss why this is the case. Third, PointBeams is a neces-
sary step to solve the 3D counting problem. We also train a
SECOND detector on the global point cloud (no PointBeam
proposals), and match the 3D geometric classes to the fine-
grained classes from the images using a nearest neighbors
method. We see that both YOLO and SECOND with Point-
Beams proposals are more accurate than the variants trained
on the full point cloud. Recent work studying Frustum-
based detection has shown similar results [22, 37, 24, 30].
Due to vertical occlusion, we cannot apply PointPillars and
PIXOR to the global point cloud.

5.5. Effect of PointBeam Representation

Proper representation of points within each PointBeam
is crucial. In Table 3 we explore the effect that point rep-
resentation has on prediction error. We see that normal-
izing the point cloud within each beam by subtracting the
centroid (local) has a large effect on error reduction. This
creates a canonical subspace across all PointBeams and im-
proves translation invariance. We find another large effect
when the global and local coordinates are used together. Fi-
nally, we find another modest error reduction when using
the depth features. The 8 channel point representation al-
lows the model to make reasonable predictions even in dif-
ficult cases where objects are extremely occluded and very
few points cover some objects. The CNN-based regressors
have no mechanism to handle such cases.

Table 4: Evaluation of regression-based methods on a real-
world, test dataset. Lower is better

Method MAE MAPE MSE

VGG-16 [32] 0.9400 0.2462 1.5030
MobileNetV2 [29] 0.4473 0.1476 0.4808

ResNet-18 [10] 0.4474 0.1454 0.4749
CountNet3D (ours) 0.3500 0.1101 0.4739

5.6. Evaluation on Real-world Data

We report results in Table 4. Our primary observation
is that CountNet3D outperforms the BEV-based regression
methods across all three evaluation criteria. In particular,
CountNet3D demonstrates significant performance increase
in the average case (MAE, MAPE), and yields a 3.5% re-
duction in MAPE compared to ResNet. While still supe-
rior, the reduction in MSE is slightly lower compared to
ResNet and MobileNet. We believe this is likely due to
scenes where the point cloud only covers a single object
in the front of the PointBeam, and the model can’t discrim-
inate between many objects (strong occlusion) and a single
object (no occlusion). Because of the squared error term,
MSE aggressively penalizes mistakes on these challenging
examples.

5.7. Qualitative Analysis

An example from our real-world test dataset is visualized
in Figure 4. The scene has a variable number of ground
truth object counts (in the range 2-6). We observe that even
if LiDAR points are unable to cover each individual object,
and point density decreases for more occluded objects, our
model is still able to generalize to a correct count prediction.
Table 3 suggests this is likely due to the addition of the local
coordinates and depth features. Detectors tend to fail on
these examples.

6. Conclusion
In this paper, we proposed CountNet3D, which is a

novel, regression-based deep learning approach to end-to-
end learning of object counts. We construct and make pub-
licly available a benchmark dataset called 3DBev24k to en-
courage further exploration of the 3D count inference prob-
lem. We show that CountNet3D significantly outperforms
state-of-the-art 3D object detectors, and has good perfor-
mance in real-world settings.

Acknowledgements
We are grateful to our colleagues for their valuable con-

tributions: Zihan Zhou, Michael Selander, Andrew Merrill,
Brad Curtis, Gary Ekker, Isaac Tai and Michael Holland.



References

[1] The kitti vision benchmark suite: Leaderboard.

[2] Apple introduces iphone 12 pro and iphone 12 pro
max with 5g, 2020.

[3] Blender Online Community. Blender - a 3D modelling
and rendering package. Blender Foundation, Stichting
Blender Foundation, Amsterdam, 2018.

[4] Abhimanyu Dubey, Otkrist Gupta, Pei Guo, Ramesh
Raskar, Ryan Farrell, and Nikhil Naik. Training with
confusion for fine-grained visual classification. CoRR,
abs/1705.08016, 2017.

[5] Andrew S. Glassner. Introduction to Ray Tracing.
Morgan Kaufmann, 1989.

[6] Eran Goldman, Roei Herzig, Aviv Eisenschtat, Ja-
cob Goldberger, and Tal Hassner. Precise detection
in densely packed scenes. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 5222–5231, 2019.

[7] Eran Goldman, Roei Herzig, Aviv Eisenschtat, Oria
Ratzon, Itsik Levi, J. Goldberger, and Tal Hassner.
Precise detection in densely packed scenes. 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5222–5231, 2019.

[8] Benjamin Graham, Martin Engelcke, and Laurens
van der Maaten. 3d semantic segmentation with sub-
manifold sparse convolutional networks. In 2018
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9224–9232, 2018.

[9] Michael Gschwandtner, Roland Kwitt, Andreas Uhl,
and Wolfgang Pree. Blensor: Blender sensor simula-
tion toolbox. In Proceedings of the 7th International
Conference on Advances in Visual Computing - Vol-
ume Part II, ISVC’11, page 199–208, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[11] Meng-Ru Hsieh, Y. Lin, and W. Hsu. Drone-based
object counting by spatially regularized regional pro-
posal network. 2017 IEEE International Conference
on Computer Vision (ICCV), pages 4165–4173, 2017.

[12] Glenn Jocher, Alex Stoken, Ayush Chaurasia, Jirka
Borovec, NanoCode012, TaoXie, Yonghye Kwon,
Kalen Michael, Liu Changyu, Jiacong Fang, Abhi-
ram V, Laughing, tkianai, yxNONG, Piotr Skalski,
Adam Hogan, Jebastin Nadar, imyhxy, Lorenzo Mam-
mana, AlexWang1900, Cristi Fati, Diego Montes, Jan
Hajek, Laurentiu Diaconu, Mai Thanh Minh, Marc,

albinxavi, fatih, oleg, and wanghaoyang0106. ul-
tralytics/yolov5: v6.0 - YOLOv5n ’Nano’ models,
Roboflow integration, TensorFlow export, OpenCV
DNN support, Oct. 2021.

[13] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing
Zhou, Jiong Yang, and Oscar Beijbom. Pointpillars:
Fast encoders for object detection from point clouds.
In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 12697–
12705, 2019.

[14] V. Lempitsky and Andrew Zisserman. Learning to
count objects in images. In NIPS, 2010.

[15] Asad Lesani, Ehsan Nateghinia, and Luis Miranda-
Moreno. Development and evaluation of a real-time
pedestrian counting system for high-volume condi-
tions based on 2d lidar. Transportation Research Part
C-emerging Technologies, 114:20–35, 2020.

[16] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan
Di, and Baoquan Chen. Pointcnn: Convolution on X -
transformed points, 2018.

[17] Dongze Lian, J. Li, Jia Zheng, Weixin Luo, and
Shenghua Gao. Density map regression guided detec-
tion network for rgb-d crowd counting and localiza-
tion. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1821–1830,
2019.

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common ob-
jects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

[19] Ao Luo, F. Yang, X. Li, Dong Nie, Zhicheng Jiao,
Shangchen Zhou, and Hong Cheng. Hybrid graph neu-
ral networks for crowd counting. In AAAI, 2020.

[20] Mark Marsden, Kevin McGuinness, S. Little, Ciara E.
Keogh, and N. O’Connor. People, penguins and
petri dishes: Adapting object counting models to new
visual domains and object types without forgetting.
2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8070–8079, 2018.

[21] Anjana K Nellithimaru and George A. Kantor. Rols
: Robust object-level slam for grape counting. 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 2648–
2656, 2019.

[22] Anshul Paigwar, David Sierra-Gonzalez, Özgür
Erkent, and Christian Laugier. Frustum-pointpillars:
A multi-stage approach for 3d object detection using
rgb camera and lidar. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV)
Workshops, pages 2926–2933, October 2021.



[23] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J.
Guibas. Deep hough voting for 3d object detection in
point clouds. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), Oc-
tober 2019.

[24] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and
Leonidas J. Guibas. Frustum pointnets for 3d object
detection from rgb-d data. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018.

[25] C. R. Qi, H. Su, Kaichun Mo, and L. Guibas. Pointnet:
Deep learning on point sets for 3d classification and
segmentation. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 77–85,
2017.

[26] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. Advances in neural
information processing systems, 30, 2017.

[27] Nikhila Ravi, Jeremy Reizenstein, David Novotny,
Taylor Gordon, Wan-Yen Lo, Justin Johnson, and
Georgia Gkioxari. Accelerating 3d deep learning with
pytorch3d. arXiv:2007.08501, 2020.

[28] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You only look once: Unified, real-time
object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 779–788, 2016.

[29] Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[30] Xiaoke Shen and Ioannis Stamos. Frustum voxnet
for 3d object detection from rgb-d or depth images.
In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), March
2020.

[31] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang,
Jianping Shi, Xiaogang Wang, and Hongsheng Li. Pv-
rcnn: Point-voxel feature set abstraction for 3d object
detection. In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
10526–10535, 2020.

[32] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. CoRR, abs/1409.1556, 2015.

[33] Hang Su, Varun Jampani, Deqing Sun, Subhransu
Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, and
Jan Kautz. Splatnet: Sparse lattice networks for point
cloud processing, 2018.

[34] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and
Qian-Yi Zhou. Tangent convolutions for dense predic-
tion in 3d. In 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3887–
3896, 2018.

[35] OpenPCDet Development Team. Open-
pcdet: An open-source toolbox for 3d ob-
ject detection from point clouds. https:
//github.com/open-mmlab/OpenPCDet,
2020.

[36] Grant Van Horn, Steve Branson, Ryan Farrell, Scott
Haber, Jessie Barry, Panos Ipeirotis, Pietro Perona,
and Serge Belongie. Building a bird recognition app
and large scale dataset with citizen scientists: The fine
print in fine-grained dataset collection. In 2015 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 595–604, 2015.

[37] Zhixin Wang and Kui Jia. Frustum convnet: Slid-
ing frustums to aggregate local point-wise features for
amodal 3d object detection. In 2019 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems (IROS), pages 1742–1749. IEEE, 2019.

[38] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely
embedded convolutional detection. Sensors, 18:3337,
10 2018.

[39] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor:
Real-time 3d object detection from point clouds. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2018.

[40] Qi Zhang and Antoni B. Chan. 3d crowd counting via
multi-view fusion with 3d gaussian kernels. ArXiv,
abs/2003.08162, 2020.

[41] Qian Zhang, Yeqi Liu, Chuanyang Gong, Y. Chen,
and HuiHui Yu. Applications of deep learning for
dense scenes analysis in agriculture: A review. Sen-
sors (Basel, Switzerland), 20, 2020.

[42] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua
Gao, and Yi Ma. Single-image crowd counting via
multi-column convolutional neural network. 2016
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 589–597, 2016.

[43] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end
learning for point cloud based 3d object detection. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 4490–4499, 2018.

[44] Z. Zou, Huiliang Shao, Xiaoye Qu, Wei Wei, and Pan
Zhou. Enhanced 3d convolutional networks for crowd
counting. ArXiv, abs/1908.04121, 2019.

https://github.com/open-mmlab/OpenPCDet
https://github.com/open-mmlab/OpenPCDet

