
Exponential Separations in Symmetric Neural
Networks

Aaron Zweig
Courant Institute of Mathematical Sciences

New York University
az831@nyu.edu

Joan Bruna
Center for Data Science

New York University
bruna@cims.nyu.edu

Abstract

In this work we demonstrate a novel separation between symmetric neural network
architectures. Specifically, we consider the Relational Network [21] architecture
as a natural generalization of the DeepSets [32] architecture, and study their
representational gap. Under the restriction to analytic activation functions, we
construct a symmetric function acting on sets of size N with elements in dimension
D, which can be efficiently approximated by the former architecture, but provably
requires width exponential in N and D for the latter.

1 Introduction

The modern success of deep learning can in part be attributed to architectures that enforce appropriate
invariance. Invariance to permutation of the input, i.e. treating the input as an unordered set, is a
desirable property when learning symmetric functions in such fields as particle physics and population
statistics. The simplest architectures that enforce permutation invariance treat each set element
individually without allowing for interaction, as captured by the popular DeepSet model [18, 32].

Several architectures explicitly enable interaction between set elements, the simplest being the
Relational Networks [21] that encode pairwise interaction. This may be understood as an instance of
self-attention, the mechanism underlying Transformers [27], which have emerged as powerful generic
neural network architectures to process a wide variety of data, from image patches to text to physical
data. Specifically, Set Transformers [12] are special instantiations of Transformers, made permutation
equivariant by omitting positional encoding of inputs, and using self-attention for pooling.

Both the DeepSets and Relational Networks architectures are universal approximators for the class of
symmetric functions. But empirical evidence suggests an inherent advantage of symmetric networks
using self-attention in synthetic settings [16], on point cloud data [12] and in quantum chemistry [17].
In this work, we formalize this question in terms of approximation power, and explicitly construct
symmetric functions which provably require exponentially-many neurons in the DeepSets model, yet
are efficiently approximated with self-attention.

This exponential separation bears notable differences from typical separation results. In particular,
while the expressive power of a vanilla neural network is characterized by depth and width, expres-
siveness of symmetric networks is controlled particularly by symmetric width. In contrast to depth
separations of vanilla neural networks [7], in this work we observe width separations, where the
weaker architectures (even with arbitrary depth) require exponential symmetric width to match the
expressive power of stronger architectures.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Summary of Contributions In this work:

• We demonstrate a width separation between the DeepSets and Relational Network archi-
tectures, where the former requires symmetric width L � poly(N,D) to approximate a
family of analytic symmetric functions, while the latter can approximate with polynomial
efficiency. This also answers an open question of high-dimensional DeepSets representation
posed in Wagstaff et al. [30]

• We introduce an extension of the Hall inner product to high dimensions that preserves
low-degree orthogonality of multisymmetric powersum polynomials, which may be of
independent interest.

2 Setup and Main Result

2.1 Symmetric Architectures

(a) DeepSets with symmetric width L (b) Relational Network with symmetric width L

Figure 1: Architectural diagram for SymL (left) and Sym2
L (right)

To introduce the symmetric architectures, we must first characterize how to treat sets as inputs. We
will consider sets of size N , where each element of the set is a vector of dimension D. In particular,
we will represent a set as a matrix X ∈ CD×N . Thus, each column vector xn ∈ CD is an element
of the set. Note that we consider complex-valued inputs because the natural inner product over
symmetric polynomials integrates over the complex unit circle, see Macdonald [14] or Theorem 4.3.

A function f : CD×N → C is symmetric if f(X) = f(XΠ) for any permutation matrix Π ∈ RN×N ,
i.e. if f is invariant to permuting the columns of X . In other words, a symmetric function treats the
input X as an unordered set of column vectors. Given the symmetric width parameter L, we consider
two primary symmetric architectures:
Definition 2.1. Let SymL denote the class of singleton symmetric networks with symmetric width L,
i.e. functions f of the form:

f(X) = ρ(φ1(X), . . . , φL(X)) (1)

φl(X) =

N∑
n=1

ψl(xn) (2)

where {ψl : CD → C}Ll=1 and ρ : CL → C are arbitrary neural networks with analytic activations.

The class SymL is exactly the architecture of DeepSets [32] restricted to analytic activations. However,
we introduce this notation to differentiate this class from the more expressive architectures that allow
for pairwise interaction among set elements.

From the theory of symmetric polynomials, if L ≥ L∗ :=
(
N+D
N

)
− 1, then f ∈ SymL is a universal

approximator for any analytic symmetric function [19]. Therefore we will primarily be interested in
the expressive power of SymL for L < L∗.

2

Definition 2.2. Let Sym2
L denote the class of pairwise symmetric networks with symmetric width L,

i.e. functions f of the form:

f(X) = ρ(φ1(X), . . . , φL(X)) (3)

φl(X) =

N∑
n,n′=1

ψl(xn, xn′) (4)

where {ψl : CD×D → C}Ll=1 and ρ : CL → C are arbitrary neural networks with analytic
activations.

Similarly, the class Sym2
L is exactly the architecture of Relational Pooling [21] with analytic activa-

tions. We note this architecture is also equivalent to the 2-ary instantiation of Janossy Pooling [16].

2.2 Main Result

Our main result demonstrates an exponential separation, where SymL requires exponentially large
symmetric width L to match the expressive power of the class Sym2

L for L = 1. We choose norms to
make this separation as prominent as possible: there is a hard function that can be approximated in
Sym2

L in the infinity norm, but cannot be approximated in SymL even in an appropriately chosen L2

norm with respect to some non-trivial data distribution.

We require one activation assumption to realize the Sym2
L approximation:

Assumption 2.3. The activation σ : C → C is analytic, and for a fixed D,N there exist two-
layer neural networks f1, f2 using σ, both with O

(
D2 +D log D

ε

)
width and O(D logD) bounded

weights, such that:

sup
|ξ|≤3

|f1(ξ)− ξ2| ≤ ε, sup
|ξ|≤3

∣∣∣∣f2(ξ)−
(

1− (ξ/4)min(D,
√
N/2)

) ξ − 1/4

ξ/4− 1

∣∣∣∣ ≤ ε (5)

Essentially this assumption guarantees that networks built with the analytic activation σ are able to
efficiently approximate the map ξ → ξ2, and, a truncated form of the finite Blaschke product[8] with
one zero at ξ = 4. We show in Lemma G.3 that the exp activation satisfies this assumption.
Theorem 2.4 (Exponential width-separation). Fix N and D > 1, and a non-trivial data distribution
µ on D ×N copies of the unit complex circle (S1)D×N .

Then there exists an analytic symmetric function g : CD×N → C such that ‖g‖L2(µ) = 1 and:

• For L ≤ N−2 exp(O(min(D,
√
N)),

min
f∈SymL

‖f − g‖2L2(µ)
≥ 1

12
. (6)

• There exists f ∈ Sym2
L with L = 1, parameterized with an activation σ that satisfies

Assumption 2.3, with width poly(N,D, 1/ε), depth O(logD), and max weight O(D logD)
such that over (S1)D×N :

‖f − g‖∞ ≤ ε (7)

Remark 1. The lower bound is completely independent of the width and depth of the parameterized
networks {ψl} and ρ. The only parameter that the theorem restricts is the symmetric width L. This
is in sharp contrast to the separations of vanilla networks [7], where there is a natural trade-off
between width and depth.
Remark 2. In the upper bound, we consider the network f ∈ Sym2

L to have width and depth in the
usual sense of vanilla neural networks, where the parameterized maps {ψl} and ρ obey the width,
depth, and weight bounds given.

3

3 Related Work

3.1 Depth Separation

Numerous works have studied the difference in expressive power between different neural network
architectures. Many of these works center on the representational gap between two-layer and three-
layer networks [4, 7]. In particular, recent works have focused on generalizing the family of functions
that realize these separations, to various radial functions [20] and non-radial functions [28].

A separate line of work considers separations between networks when the depth varies polynomi-
ally [24]. Notably, Vardi, Yehudai, and Shamir [26] demonstrates that depth has a greater impact on
expressivity than width, in the case of vanilla neural networks.

3.2 Symmetric Architectures

We primarily consider the symmetric neural network parameterization as introduced in DeepSets[32],
with PointNet[18] a similar symmetric parameterization using a different pooling function. Simple
linear equivariant layers were also introduced in Zaheer et al. [32].

In the context of relationships between objects in an image, the first symmetric architecture enabling
explicit pairwise interaction was introduced in Santoro et al. [21]. More complicated symmetric
architectures, allowing for higher-order interaction and more substantial equivariant layers, were built
on top of attention primitives [12, 13]. And the notion of explicit high-order interactions between set
elements before symmetrizing is formalized in the architecture of Janossy pooling [16].

Symmetric architectures are generalized by graph neural networks [10, 22], under the restriction to
the complete graph.

3.3 Symmetric Network Expressivity

The dependence of representational power on the symmetric width parameter Lwas first demonstrated
in the D = 1 case. Under the strong condition L < N , it was proven there are symmetric functions
which cannot be exactly represented by a DeepSets network [29], and this was later strengthened to
functions which cannot be approximated in the infinity norm to arbitrary precision [30].

The work introducing Janossy pooling [16] also includes a theoretical result showing singleton
networks cannot exactly represent some particular pairwise symmetric network. Crucially how-
ever, this result is restricted to a simplified, non-universal symmetric architecture excluding the ρ
transformation, and therefore does not characterize the real-world architectures given above.

The question of expressiveness in symmetric networks may also be generalized to graph neural
networks, with a focus on distinguishing non-isomorphic graphs as compared to the Weissfeler-
Lehman test[31] and calculating invariants such as substructure counting[3]. In particular, one may
understand expressiveness in symmetric networks incorporating pairwise interaction as the ability to
learn functions of the complete graph decorated with edge features.

3.4 Symmetric Polynomial Theory

Our proofs rely on the technical machinery of symmetric polynomial theory, thoroughly characterized
in Macdonald [14]. In particular, we utilize the integral representation of the finite-variable Hall Inner
product as introduced in Section A. Because this integral is defined over the complex unit circle, we
consequently consider complex-valued neural networks [1].

The connection of symmetric networks to the powersum polynomials was first observed in Zaheer et al.
[32], and likewise the multisymmetric powersum polynomials have been applied in higher dimensional

4

symmetric problems [15, 23]. The algebraic properties of the multisymmetric powersum polynomials
are well-studied, for example as a basis of higher dimensional symmetric polynomials [19] and
through their algebraic dependencies [6]. However, to the best of our knowledge this is the first work
to apply the Hall inner product to symmetric neural networks, and to extend this inner product to
yield low-degree orthogonality over the multisymmetric polynomials.

4 Warmup: One-dimensional set elements

To begin, we consider the simpler case where D = 1, i.e. where we learn a symmetric function acting
on a set of scalars. It was already observed in Zaheer et al. [32] that the universality of DeepSets could
be demonstrated by approximating the network with symmetric polynomials. We first demonstrate
that through this approximation, we can relate the symmetric width L to expressive power.

4.1 Symmetric Polynomials

In order to approximate symmetric networks by symmetric polynomials, we choose a suitable basis.
The powersum polynomials serve as the natural choice, as their structure matches that of a singleton
symmetric network, and they obey very nice orthogonality properties that we detail below.
Definition 4.1. For k ∈ N and x ∈ CN , the normalized powersum polynomial is defined as

pk(x) =
1√
k

N∑
n=1

xkn

with p0(x) = 1.

A classical result in symmetric polynomial theory is the existence of an L2 inner product that grants
orthogonality for products of powersums. To make this notion explicit and keep track of products, we
index products with partitions.
Definition 4.2. An integer partition λ is non-increasing, finite sequence of positive integers λ1 ≥
λ2 ≥ · · · ≥ λk. The weight of the partition is given by |λ| =

∑k
i=1 λi. The length of a partition l(λ)

is the number of terms in the sequence.

Then we characterize a product of powersums by:

pλ(x) =
∏
i

pλi(x) (8)

This notation intentionally also allows for the empty partition, such that if λ = ∅ then pλ = 1. All
together, we can now state the following remarkable fact:
Theorem 4.3 ([14, Chapter VI (9.10)]). There exists a L2(dν) inner product (for some probability
measure ν) such that, for partitions λ, µ with |λ| ≤ N :

〈pλ, pµ〉V = zλ1λ=µ (9)
where zλ is some combinatorial constant.

We index this inner product with V because it is written as an expectation with respect to a density
proportional to the squared Vandermonde polynomial (see Section A for the precise definition). This
inner product may also be considered the finite-variable specialization of the Hall inner product,
defined on symmetric polynomials over infinitely many variables [14, Chapter I (4.5)].

It’s easy to check that the degree of pλ is equal to |λ|. So this theorem states that the powersum terms
pλ are "almost" an orthogonal basis, except for correlation between two high-degree terms.

Let us remark that we assume analytic activations for the sake of this theorem, as the orthogonality
property does not hold for symmetric polynomials with negative exponents. However, in exchange
for that assumption we can apply this very powerful inner product, that ultimately results in the
irrelevance of network depth.

5

4.2 Projection Lemma

Before we can proceed to prove a representational lower bound, we need one tool to better understand
f ∈ SymL. Utilizing the orthogonality properties of the inner product 〈·, ·〉V allows us to project any
f ∈ SymL to a simplified form, while keeping a straightforward dependence on L.

For example, consider some uniformly convergent power series (with no constant term) φ(x) =∑∞
i=1 cikpk(x). We claim 〈p2p1, φ3〉V = 0. Indeed, expanding φ3, one exclusively gets terms of the

form pk1pk2pk3 , and because the partition {k1, k2, k3} is of a different length than {2, 1}, they are
clearly distinct partitions so by orthogonality 〈p2p1, pk1pk2pk3〉V = 0.

Motivated by this observation, we can project f to only contain products of two terms. Let us
introduce P1 to be the orthogonal projection onto span({pt : 1 ≤ t ≤ N/2}), and P2 to be the
orthogonal projection onto span({ptpt′ : 1 ≤ t, t′ ≤ N/2}).
Lemma 4.4. Given any f ∈ SymL, we may choose coefficients vij over i ≤ j ≤ L, and symmetric
polynomials φi over i ≤ L, such that:

P2f =
L∑
i≤j

vij(P1φi)(P2φj) (10)

4.3 Rank Lemma

Given the reduced form of f above, we may now go about lower bounding its approximation error to
a given function g.

By the properties of orthogonal projection, we have ‖f − g‖2V ≥ ‖P2(f − g)‖2V . And by Parseval’s
theorem, the function approximation error ‖P2f − P2g‖2V equals∑

t≤t′

(〈
P2f,

ptpt′

‖ptpt′‖V

〉
V

−
〈
P2g,

ptpt′

‖ptpt′‖V

〉
V

)2

.

Rearranging the orthogonal coefficients in the form of matrices, we have the following fact:
Lemma 4.5. Given any f ∈ SymL, and g such that P2g = g, we have the bound

‖P2f − P2g‖2V ≥
1

2
‖F −G‖2F (11)

where F,G ∈ CN/2×N/2 are matrices with entries Ftt′ = 〈P2f, ptpt′〉V , Gtt′ = 〈P2g, ptpt′〉V .
Furthermore, F has maximum rank L.

The significance of this lemma is the rank constraint: it implies that choosing symmetric width L
corresponds to a maximum rank L on the matrix F . From here, we can use standard arguments about
low-rank approximation in the Frobenius norm to yield a lower bound.

4.4 Separation in one-dimensional case

Our main goal in this section is to construct a hard symmetric function g that cannot be efficiently
approximated by SymL for L ≤ N/4. It is not particularly expensive for the symmetric width L to
scale linearly with the set sizeN : however, we will use the same proof structure to prove Theorem 2.4,
which will require L to scale exponentially.
Theorem 4.6. For D = 1:

max
‖g‖V =1

min
f∈SymL

‖f − g‖2V ≥ 1− 2L

N
(12)

In particular, for L = N
4 we recover a constant lower bound of 1

2 .

6

Proof (sketch). Choose g such that P2g = g. Then because P2 is an orthogonal projection and
applying Lemma 4.5:

min
f∈SymL

‖f − g‖2V ≥ min
f∈SymL

‖P2f − P2g‖2V (13)

≥ 1

2
min

rank(F)≤L
‖F −G‖2F (14)

We note that ‖ptpt‖2V = z{t,t} = 2, so the choice of g = 1√
N

∑N/2
t=1 ptpt can be seen to obey

‖g‖V = 1, and implies that G is the scaled identity matrix 2√
N
I ∈ CN/2×N/2. Then by standard

properties of the SVD:

min
f∈SymL

‖f − g‖2V ≥
1

2
min

rank(F)≤L
‖F − 2√

N
I‖2F (15)

=
1

N/2
min

rank(F)≤L
‖F − I‖2F (16)

=
1

N/2
(N/2− L) (17)

= 1− 2L

N
(18)

5 Proof Sketch of Main Result

5.1 Challenges for High-dimensional Set Elements

We’d like to strengthen this separation in several ways:

• Generalize to the D > 1 case,

• Realize a separation where the symmetric width L must scale exponentially in N and D,
showing that SymL is infeasible,

• Show the hard function g can nevertheless be efficiently approximated in Sym2
L for L

polynomial in N and D

First, in order to approximate via polynomials in the high-dimenionsal case, we will require the
high-dimensional analogue of powersum polynomials:

Definition 5.1. For a multi-index α ∈ ND, the normalized multisymmetric powersum polynomial is
defined as:

pα(X) =
1√
|α|

∑
n

∏
d

xαddn . (19)

So the plan is to find a high-dimensional analogue of Lemma 4.4 and Lemma 4.5, now using
multisymmetric powersum polynomials, mimic the proof of the D = 1 case, and then additionally
show the hard function g is efficiently computable in the pairwise symmetric architecture. Note that
because the algebraic basis of multisymmetric powersum polynomials is of size L∗ =

(
N+D
N

)
− 1,

we can expect an exponential separation when we apply a similar rank argument.1

1We subtract one in order to discount the constant polynomial.

7

5.2 Sketch of Main result (lower bound)

Because we are in high dimensions, we cannot simply apply the restricted Hall inner product
introduced in Theorem 4.3. To the best of our knowledge, there is no standard generalization of the
Hall inner product to multi-symmetric polynomials that preserves the orthogonality property. For the
main technical ingredient in the high-dimensional case we introduce a novel generalization, which
builds on two inner products.

First, we introduce a new input distribution ν over set inputs X ∈ CD×N , and induce an L2 inner
product:

〈f, g〉A = EX∼ν
[
f(X)g(X)

]
. (20)

We use this inner product to measure the approximation error of SymL. That is, we seek a lower
bound to minf∈SymL ‖f − g‖A, for a suitable choice of hard function g.

We can now apply an analogue of Lemma 4.4 to project f to a simplified form. But we cannot
immediately apply an analogue of Lemma 4.5, as it relied on Parseval’s theorem and the low-degree
multisymmetric powersum polynomials are not orthogonal in this inner product. Put another way,
if we represent 〈·, ·〉A as a matrix in the basis of low-degree multisymmetric powersums, it will be
positive-definite but include some off-diagonal terms.

The idea is to now introduce a new inner product with a different input distribution ν0

〈f, g〉A0
= EX∼ν0

[
f(X)g(X)

]
, (21)

and define the bilinear form

〈f, g〉∗ = 〈f, g〉A − 2〈f, g〉A0
. (22)

Typically positive-definiteness is lost when subtracting two inner products, but we prove that 〈·, ·〉∗
is an inner product when restricted to a particular subspace of symmetric polynomials (see Theo-
rem D.3). Furthermore, the careful choice of ν and ν0 cancels the off-diagonal correlation of different
multisymmetric powersums, so they are orthogonal under this new inner product 〈·, ·〉∗.

By the norm domination ‖ · ‖A ≥ ‖ · ‖∗, we are able to pass from the former L2 norm to the latter
norm that obeys orthogonality, and apply an analogue of the Rank Lemma 4.5. Thus we derive
a lower bound using any hard function g whose corresponding matrix G (built from orthogonal
coefficients) is diagonal and high-rank. And because the total number of polynomials is L∗, the rank
argument now yields an exponential separation.

Based on this proof, we have much freedom in our choice of g. By choosing its coefficients in the
basis of multisymmetric powersum polynomials, it’s easy to enforce the conditions that G is diagonal
and high-rank for variety of possible functions. However, ensuring that g is not pathological (i.e. that
it is bounded and Lipschitz), and can be efficiently approximated in Sym2

L, requires a more careful
choice.

5.3 Sketch of Main Result (upper bound)

It remains to approximate the hard function g with a network from Sym2
L. First we must make a

choice of g in particular.

Based on the lower bound proof, the desiderata for g is that it is supported exclusively on terms
of the form pαpα over many values of α, as this induces a diagonal and high-rank matrix G in an
analogue of Lemma 4.5. Furthermore, by simple algebra one can confirm that pα(X)pα(X) =
1
|α|
∑
n,n′

∏D
d=1(xdnxdn′)αd , so g supported on these polynomials can clearly be written in the form

of a network in Sym2
L. This structure of g guarantees difficult approximation, and is akin to the radial

structure of the hard functions introduced in works on depth separation [7].

8

We must however be careful in our choice of g: for the matrix G to be high-rank, g must be supported
on exponentially many powersum polynomials. But this could make ‖g‖∞ exponentially large, and
therefore challenging to approximate efficiently with a network from Sym2

L.

We handle this difficulty by defining g in a different way. We introduce a finite Blaschke product
µ(ξ) = ξ−1/4

ξ/4−1 , a function that analytically maps the unit complex circle to itself. Then the choice

g(X) =

N∑
n,n′=1

D∏
d=1

µ(xdnxdn′) (23)

ensures that ‖g‖∞, ‖g‖A, and Lip(g) are all polynomial in N,D, 1ε for ε approximation error (see
Lemma E.3). Furthermore, again from simple algebra it is clear that g is only supported on terms of
the form pαpα. So it remains to show that the induced diagonal matrix G is effectively high rank,
which follows from expanding the Blaschke products.

Satisfied that this choice of g will meet the desiderata for the lower bound, and has no pathological
behavior, it remains to construct f ∈ Sym2

L for L = 1 that approximates g. That is, choose

ψ1 and ρ so that g(X) ≈ ρ
(∑N

n,n′=1 ψ1(xn, xn′)
)

. Clearly we may take ρ to be the identity,

and ψ1(xn, xn′) to approximate
∏D
d=1 µ(xdnxdn′), which is straightforwardly calculated in depth

O(logD) by performing successive multiplications in a binary-tree like structure (see Theorem F.1).

Ultimately, we use a slight variant of this function for the formal proof. Because the orthogonality of
our newly introduced inner product 〈·, ·〉∗ only holds for low-degree polynomials, we must truncate
high-degree terms of g; we confirm in Appendix F that this truncation nevertheless preserves the
properties we care about.

6 Discussion

In this work, we’ve demonstrated how symmetric width captures more of the expressive power of
symmetric networks than depth when restricted to analytic activations, by evincing an exponential
separation between two of the most common architectures that enforce permutation invariance.

The most unusual property of this result is the complete independence of depth, owing to the unique
orthogonality properties of the restricted Hall inner product when paired with the assumption of
analyticity. This stands in contrast to the case of vanilla neural networks, for which separations
beyond small depth would resolve open questions in circuit complexity suspected to be quite hard [25].
Furthermore, the greater dependence on width than depth is a unique property to symmetric networks,
whereas the opposite is true for vanilla networks [26].

A natural extension would be to consider the simple equivariant layers introduced in Zaheer et al.
[32], which we suspect will not substantially improve approximation power of SymL. Furthermore,
allowing for multiple such equivariant layers, this network becomes exactly akin to a Graph Con-
volutional Network [10] on a complete graph, whereas Sym2

L corresponds to a message passing
network [9] as it is capable of interpreting edge features.

6.1 Limitations

The major limitation of this result is the restriction to analytic functions. Although analytic symmetric
functions nevertheless appear crucially in the study of exactly solvable quantum systems [2, 11],
this assumption may be be overly strict for general problems of learning symmetric functions. We
nevertheless conjecture that these bounds will still hold even allowing for non-analytic activations,
and consider this an exciting question for future work. Additionally, whether the hard function g
can be efficiently learned with gradient descent remains unclear, and future work could touch on the
learnability.

9

Acknowledgements: This work has been partially supported by the Alfred P. Sloan Foundation,
NSF RI-1816753, NSF CAREER CIF-1845360, and NSF CCF-1814524.

References

[1] Joshua Bassey, Lijun Qian, and Xianfang Li. “A survey of complex-valued neural networks”.
In: arXiv preprint arXiv:2101.12249 (2021).

[2] Mathieu Beau and Adolfo del Campo. “Parent Hamiltonians of Jastrow wavefunctions”. In:
SciPost Physics Core 4.4 (2021), p. 030.

[3] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. “Can graph neural networks count
substructures?” In: Advances in neural information processing systems 33 (2020), pp. 10383–
10395.

[4] Amit Daniely. “Depth separation for neural networks”. In: Conference on Learning Theory.
PMLR. 2017, pp. 690–696.

[5] Persi Diaconis and Mehrdad Shahshahani. “On the eigenvalues of random matrices”. In:
Journal of Applied Probability 31.A (1994), pp. 49–62.

[6] Mátyás Domokos. “Vector invariants of a class of pseudo-reflection groups and multisymmetric
syzygies”. In: arXiv preprint arXiv:0706.2154 (2007).

[7] Ronen Eldan and Ohad Shamir. “The power of depth for feedforward neural networks”. In:
Conference on learning theory. PMLR. 2016, pp. 907–940.

[8] John Garnett. Bounded analytic functions. Vol. 236. Springer Science & Business Media, 2007.
[9] Justin Gilmer et al. “Neural message passing for quantum chemistry”. In: International

conference on machine learning. PMLR. 2017, pp. 1263–1272.
[10] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolutional

networks”. In: arXiv preprint arXiv:1609.02907 (2016).
[11] Edwin Langmann. “A method to derive explicit formulas for an elliptic generalization of the

Jack polynomials”. In: arXiv preprint math-ph/0511015 (2005).
[12] Juho Lee et al. “Set transformer: A framework for attention-based permutation-invariant neural

networks”. In: International Conference on Machine Learning. PMLR. 2019, pp. 3744–3753.
[13] Chih-Yao Ma et al. “Attend and interact: Higher-order object interactions for video understand-

ing”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 6790–6800.

[14] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford university press,
1998.

[15] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. “Provably powerful
graph networks”. In: Advances in neural information processing systems 32 (2019).

[16] Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. “Janossy
pooling: Learning deep permutation-invariant functions for variable-size inputs”. In: arXiv
preprint arXiv:1811.01900 (2018).

[17] David Pfau, James S Spencer, Alexander GDG Matthews, and W Matthew C Foulkes. “Ab
initio solution of the many-electron Schrödinger equation with deep neural networks”. In:
Physical Review Research 2.3 (2020), p. 033429.

[18] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. “Pointnet: Deep learning on
point sets for 3d classification and segmentation”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, pp. 652–660.

[19] David Rydh. “A minimal set of generators for the ring of multisymmetric functions”. In:
Annales de l’institut Fourier. Vol. 57. 6. 2007, pp. 1741–1769.

[20] Itay Safran and Ohad Shamir. “Depth-width tradeoffs in approximating natural functions with
neural networks”. In: International conference on machine learning. PMLR. 2017, pp. 2979–
2987.

[21] Adam Santoro et al. “A simple neural network module for relational reasoning”. In: Advances
in neural information processing systems 30 (2017).

[22] Franco Scarselli et al. “The graph neural network model”. In: IEEE transactions on neural
networks 20.1 (2008), pp. 61–80.

10

[23] Nimrod Segol and Yaron Lipman. “On universal equivariant set networks”. In: arXiv preprint
arXiv:1910.02421 (2019).

[24] Matus Telgarsky. “Benefits of depth in neural networks”. In: Conference on learning theory.
PMLR. 2016, pp. 1517–1539.

[25] Gal Vardi, Daniel Reichman, Toniann Pitassi, and Ohad Shamir. “Size and depth separation in
approximating benign functions with neural networks”. In: Conference on Learning Theory.
PMLR. 2021, pp. 4195–4223.

[26] Gal Vardi, Gilad Yehudai, and Ohad Shamir. “Width is Less Important than Depth in ReLU
Neural Networks”. In: arXiv preprint arXiv:2202.03841 (2022).

[27] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information process-
ing systems 30 (2017).

[28] Luca Venturi, Samy Jelassi, Tristan Ozuch, and Joan Bruna. “Depth separation beyond radial
functions”. In: arXiv preprint arXiv:2102.01621 (2021).

[29] Edward Wagstaff et al. “On the limitations of representing functions on sets”. In: International
Conference on Machine Learning. PMLR. 2019, pp. 6487–6494.

[30] Edward Wagstaff et al. “Universal approximation of functions on sets”. In: Journal of Machine
Learning Research 23.151 (2022), pp. 1–56.

[31] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How powerful are graph neural
networks?” In: arXiv preprint arXiv:1810.00826 (2018).

[32] Manzil Zaheer et al. “Deep sets”. In: Advances in neural information processing systems 30
(2017).

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 6.1
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

11

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12

