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Physically Based Facial Texture Generation
In The Wild
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Fig. 1: Our method can faithfully generate a variety of PBR facial textures from text prompts for photo-realistic rendering.
From left to right: (a) multi-view rendering results using our generated PBR texture from a prompt “beard”. (b) relighting
results using our generated PBR texture of “Barack Obama”. (c) unconditional generation results.

Abstract—Automatic 3D facial texture generation has gained
significant interest recently. However, existing approaches may lack
compatibility with the widely used physically based rendering
(PBR) pipeline or rely on 3D data captured by sophisticated
systems such as Light Stage. In this paper, we propose a multi-
stage framework to achieve text-driven physically based facial
texture generation in the wild, which eliminates the reliance on
expensive, controlled capture environments. It is based on FFHQ-
UV to pave the way between the normalized UV texture space
and facial images captured in unconstrained real-world settings
and remove the influence of the background or hair in natural
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images on PBR texture generation. Specifically, we first integrate
differentiable rendering techniques and carefully crafted texture
disentanglement regularization to train a generative adversarial
network for efficient PBR texture sampling. Then, the latent
space of the network is aligned with the text embedding space
for flexible text-guided generation. Besides, we design an edge-
aware Score Distillation Sampling (EASDS) loss and introduce
an EASDS-based PBR texture boosting scheme to achieve more
diverse generation and efficient SDS optimization. Experiments
demonstrate that our method outperforms existing PBR texture
generation methods.

Index Terms—Multimodal synthesis; Color, shading, shadowing,
and texture.

I. INTRODUCTION

RECENTLY, 3D facial texture generation has gained
widespread attention for its potential to boost applications

in augmented reality (AR), virtual reality (VR), gaming, and
films. The traditional pipeline of creating textures typically
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Fig. 2: The illustration of the data preparation (a) and the
training pipeline (b) of PBRGAN. The entangled specular
highlights of FFHQ-UV texture are labeled with blue boxes
and enlarged for details. The red box highlights the region.

involves UV mapping, material production, or texture synthesis.
With the advancement of large-scale pre-trained models, such
as Stable Diffusion [1] and the Contrastive Language-Image
Pre-Training (CLIP) model, textures can be generated through a
more flexible and efficient pathway, i.e. , text-driven texture gen-
eration. Pioneers have made effective attempts to obtain facial
textures under the guidance of text prompts [2], [3]. However,
these methods encounter challenges in generating disentangled
facial textures for physically based rendering (PBR), which can
greatly broaden the application of generative models. Typical
PBR facial texture consists of albedo, roughness, and normal
maps, as illustrated in Fig. 1. They usually do not have hairs
to facilitate subsequent hairstyle editing applications.

With the help of the differentiable rendering technique,
recent researches are capable of generating PBR textures using
CLIP loss [4], [5] or Score Distillation Sampling (SDS) [6],
[7]. Nevertheless, they require extra efforts to optimize for
the textures given different 3D objects or text prompts. To
address this issue, DreamFace [8] proposes a diffusion-based
generative model in both the image and latent space, yielding
high-quality albedo texture maps. This method is supervised
with explicit PBR data captured by a light stage [9]. However,
light stages suffer from drawbacks such as high equipment
costs, high technical complexity, time-consuming, complex
post-processing, etc. It is still challenging to generate facial
textures using images in the wild.

In this paper, we investigate how to generate PBR facial
textures in the wild, i.e. using facial images captured in
unconstrained real-world settings. It is based on a recent
contribution FFHQ-UV [10], which efficiently converts natural
facial images into the normalized UV texture space needed
for PBR facial textures. This conversion diminishes the effect
of non-facial areas, such as the background and hair, on the
generation of PBR facial texture. Nevertheless, because FFHQ-
UV neither produces normal and roughness maps nor separates
facial UV texture from illumination information as shown in
Fig. 2(a), these entangled textures are unsuitable for direct use
in PBR and may result in visible artifacts, for instance, light
spots (Texture Map in Fig. 2).

Our approach, named PBRGAN, aims to design a generative
adversarial network (GAN) to produce PBR facial textures,
aided by a training dataset created using FFHQ-UV textures.
Specifically, we synthesize a multi-view, non-hair, and non-
background facial image training dataset by directly querying
the color of each vertex or pixel with UV coordinates from
the FFHQ-UV facial textures during rendering. Consequently,
utilizing a differentiable rendering module, the GAN can be

Fig. 3: The key stages of our framework. The latent space
and text space are aligned for text-guided generation. For un-
common prompts outside the FFHQ text space, PBRGAN can
provide better initialization for SDS optimization, shortening
the SDS-based optimization path.

trained to align the facial images rendered with the generated
PBR textures to the synthesized dataset. This process does not
require supervision from the collected PBR textures but instead
relies solely on wild facial images (Fig. 2). We refrain from
directly using diffusion models in this study owing to their slow
training speed. Additionally, we demonstrate that initializing
the PBR textures with GAN can accelerate optimization with
Score Distillation Sampling (SDS) loss.

PBRGAN comprises three stages to achieve text-driven,
diverse facial PBR texture generation. First, we construct a
GAN model that integrates differentiable rendering [11] and
a self-supervised training scheme to disentangle the FFHQ-
UV textures from wild facial images into PBR textures. Next,
the model is enhanced with cross-modal generation capability
via CLIP-based text embedding and latent space alignment,
which enables PBRGAN to generate reasonable results under
the guidance of text prompts. Furthermore, we propose an
edge-aware SDS (EASDS) loss with explicit facial feature-line
prior and an optional EASDS-based boosting stage to distill
relevant knowledge of the pre-trained diffusion model for more
diverse generation results. We provide better initial textures
for SDS by leveraging the PBRGAN generated textures. As
illustrated in Fig. 3, the EASDS effectively shortens the SDS
optimization path.

In summary, our contributions are as follows:
• We propose PBRGAN that can bootstrap from FFHQ-UV

textures for facial PBR texture generation in the wild. This
model is trained with carefully designed training strategy
and regularization terms without requiring supervision
from explicitly disentangled PBR data.

• We present a three-stage framework to generate diverse
PBR textures under the guidance of text prompts. In
addition, we design a novel ControlNet-based edge-aware
SDS loss to preserve the key facial structures.

• Our framework can generate high-quality facial PBR
texture maps with the highest TOPIQface among state-
of-the-art methods and our user study score. Given a
specific text prompt, the response time of our method is
lower than state-of-the-art approaches based on diffusion
models.

II. RELATED WORKS

Generative models, such as GANs and diffusion models,
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have been developed rapidly in recent years [1], [12]–[20].
In this paper, we review researches on 3D texture generation
mostly related to our work.

a) 3D-aware image synthesis aims to map random vectors to
3D representations for multi-view consistent image synthesis.
Visual object network [21] proposes a fully differentiable 3D-
aware generative model for image and shape synthesis with a
disentangled 3D representation. Liao et al. [22] consider the
generative process into a 3D content creation stage and a 2D
rendering stage, yielding a 3D controllable image synthesis
model. However, 3D data collections are indispensable for
these methods.

Follow-up works introduce neural representations and lever-
age 2D data to address the dataset limitation [23]–[27]. Pi-
GAN [28] and ShadeGAN [29] represent scenes as view-
consistent neural radiance fields and map 3D coordinates to
pixel values as a 3D prior. EG3D [30] and Next3D [31] adopt
feature triplanes for more efficient 3D representation. Yuan et al.
[32]leverage the inherent properties of EG3D’s latent space to
design a discriminator and a background depth regularization,
enabling 3D GAN inversion through geometry and occlusion-
aware encoding. G-NeRF [33] enhances geometry priors by
employing a geometry-guided multi-view synthesis approach
followed by depth-aware training. GSGAN [34] utilizes a
hierarchical multi-scale Gaussian representation to regularize
the position and scale of generated Gaussians. Another series
of approaches is dedicated to improving the controllability
of 3D-aware generative models [35]–[38]. CGOF++ [39]
presents a NeRF-based framework for controllable 3D face
synthesis by integrating explicit 3D priors from 3D Morphable
Models (3DMM). SwitchLight [40] introduces a physics-guided
architecture with a pre-training framework for human portrait
relighting by enhancing the physical reflectance model and
adopting self-supervised learning. Nonetheless, these methods
only generate 2D images and are difficult to use in the classic
3D content creation pipeline.

b) Text-to-3D generation aims to directly generate 3D content
from textual descriptions, which further improve the flexibility
compared to Image-to-3D methods [41]–[48]. Recently, with
the advent of large-scale cross-modal pre-training models, text-
guided 3D generative models [2], [3], [41], [49], [50] have
become a frontier research topic. Many researchers utilize the
CLIP model [51] to ensure the generated 3D contents match the
text prompts. Text2Mesh [52] optimizes the color attributes and
geometric displacements of individual vertices simultaneously.
CLIP-NeRF [53] presents a NeRF-based framework to provide
users with flexible control over 3D content using either a text
prompt or an exemplar image. However, these methods may
fail to generate high-quality results.

Recently, the powerful generative capabilities of diffusion
models have been integrated into text-to-3D generation [54]–
[58]. DreamFusion [6] adopts pre-trained text-to-image diffu-
sion models as priors and generates realistic 3D models via
SDS optimization. ProlificDreamer [59] further extends SDS to
Variational Score Distillation, which optimizes the distribution
of 3D scenes. HeadSculpt [60] employs the gradients
combination of Stable Diffusion [1] and InstructPix2Pix [61]
to craft 3D head avatars in a coarse-to-fine manner. These 3D

generation techniques perform joint optimization of geometry
and texture, considering them as a unified entity. Meanwhile,
some approaches decouple geometry from texture, allowing
independent refinement of both components, which can enhance
generalization and adaptability. FaceG2E [62] leverages pre-
trained image-edit diffusion models to construct a geometry-
texture decoupled pipeline for text-guided 3D face generation
and editing. TEXTure [63] iteratively renders the object from
different viewpoints and applies a depth-to-image 2D diffusion
model to generate a complete unwrapped UV texture map.
However, the above methods generate textures in entangled
representations, which are incompatible with the PBR pipeline.

c) PBR texture generation plays an essential role in achieving
photorealistic results within existing 3D content production
pipelines. Some methods [64]–[67] employ 3DMM [41], [68]–
[70] to generate physical-based texture maps with the guidance
of reference images or random noises. Relightify [71] utilizes
a high-quality UV dataset of facial reflectance components
to train an unconditional diffusion model for relightable 3D
face reconstruction from images. MoSAR [72] employs a semi-
supervised training scheme that leverages both light stage and
in-the-wild datasets to generate 3D avatars from monocular
images. In recent contributions, CLIP loss and SDS loss have
been applied to text-driven PBR texture generation, such as
CLIP-mesh [4], TANGO [5], and Fantasia3D [7]. However,
these models must be retrained for each 3D object or each text
prompt, which is time-consuming.

DreamFace [8] presents a diffusion model-based scheme
to generate personalized 3D faces with text guidance. It can
achieve physically-based rendering by decomposing compact
latent space into diffuse albedo, specular intensity, and normal
maps. The decomposing model relies on a captured high-
quality PBR texture dataset, which is usually collected for
commercial purposes and has not been released to the public.
Besides, the inference efficiency of DreamFace is limited by the
diffusion process. ID2Reflectance [73] proposes a framework
for reconstructing high-quality facial reflectance maps from
a single image using limited reflectance data for training. It
leverages pretraining multi-domain facial feature codebooks and
identity-conditioned swapping module to directly estimate the
reflectance maps from a given image. However, ID2Reflectance
still requires ground-truth PBR texture data for training and
does not support text-driven PBR texture generation. In this
paper, we expand theW+ feature space of StyleGAN to support
text-to-3D PBR texture generation with no captured datasets.
It will benefit from both the efficiency of GANs and the
controllability of text-based generation.

III. OUR METHOD

In this section, we present PBRGAN, a framework for text-
driven physically based facial texture generation in the wild.
Given the geometry of a 3D face, PBRGAN aims to generate
the face texture maps under the guidance of text prompts.
The textures are decomposed into three components, i.e. ,
albedo, normal, and roughness maps for physically based
rendering without the supervision of explicitly disentangled
data. The whole pipeline comprises three stages: (1) Disentan-
glement (Sec. III-A). We train a PBR StyleGAN to bootstrap
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Fig. 4: The disentanglement and alignment pipeline of PBR-
GAN. (a) We generate disentangled PBR textures by leveraging
entangled FFHQ-UV textures and differentiable rendering.
(b) We align the latent space with the text space under the
guidance of CLIP to achieve text-guided generation. The
red part represents the newly added modules based on (a).
The flame represents a trainable module, while the snowflake
represents a frozen module.

from entangled FFHQ-UV textures to disentangle PBR textures.
(2) Alignment (Sec. III-B). We align the latent space of GAN
with the text embedding space using a CLIP-based loss. (3)
Boosting (Sec. III-C). We further boost the generated textures
with a new edge-aware SDS loss for uncommon text conditions.

A. Disentanglement

Given an arbitrary 3D facial geometry, we propose a self-
supervised learning scheme to generate disentangled UV
textures, e.g. , the diffuse/specular/normal maps, via leveraging
a non-PBR facial texture dataset FFHQ-UV [10]. FFHQ-
UV is constructed with even illumination conditions from
facial images. The textures are entangled with weak specular
highlights. Directly applying them to train the generation model
may introduce light spot artifacts. To avoid this issue, we do
not utilize FFHQ-UV data as supervision. Instead, we train a
disentangling model with differentiable rendering and additional
regularization terms.

As diffusion models typically involve iterative noise injection
and denoising processes, the changes in the image are subtle at
each iteration. Integrating diffusion models with differentiable
rendering during the denoising process may lead to slow
training. It hinders us from directly training a diffusion
model with FFHQ-UV output. Therefore, we construct a
PBR texture generator based on StyleGAN2 [13] for the
disentanglement. The consistency among albedo, roughness,
and normal is implicitly enforced during the carefully designed
training process. The following sections will provide detailed
introductions to the network architecture, training strategy, and
regularization terms.

a) Network structure.: Fig. 4(a) demonstrates the first
stage of our PBRGAN framework. Given a randomly initialized
latent code z ∈ R512, a latent mapper Mz transforms z
into an intermediate space W+ to produce a new latent
embedding w ∈ R16∗512. Then w modulates the parameters of
G through adaptive instance normalization (AdaIN) [74]. To
enable StyleGAN with physically-based rendering, a generator
G outputs a seven-channel appearance map in the unwrapped
UV space. Following the setting of Munkberg et al. [11],
the output can be split into T = (Ta, Tr, N), where Ta

is the albedo map, Tr are roughness parameters, and N
describes tangent space normal perturbations. In this design, the
rendering components share the same feature space to ensure
inherent alignment. For the geometry, we generate random
facial meshes by sampling in the parameter space of the 3DMM-
based model HIFI3D++ [75]. It can provide diverse geometric
information and help to ensure the adaptability of generated
results to different geometries.

b) Differentiable-rendering-based training.: We introduce
a differentiable rendering module R to train the PBRGAN.
R takes the predicted PBR textures, a 3D geometry s, and
a random pose p as input and produces a 2D facial image
Iz = R(Ta, Tr, N, s, p). For the ground truth, R utilizes an
entangled texture map T̂ in FFHQ-UV to render another image
Î = R(T̂ , s, p). Then PBRGAN can be supervised by the
distance between Iz and Î . Besides, Iz and Î are input to
a global discriminator and a patch-based local discriminator
for detail enhancement. We employ the discriminator training
technique of Diffusion-GAN [76] to improve the diversity of
the results. Through differentiable-rendering-based training, the
consistency among albedo, roughness, and normal is further
reinforced through constraints based on multi-view rendering
results, where any misalignment would result in a higher
adversarial loss.

c) Regularization terms.: To generate reasonable texture
components, we design regularization terms of albedo and
normal to provide prior guidance for the material properties.

(1) Patch-level normal constraint. Due to the absence of the
ground truth PBR texture data, the generated normal maps tend
to be blurry and lack details. To address this issue, we propose
a patch-level normal constraint to provide priors, ensuring the
generated normal maps align with the distribution of real normal
data. Since normal maps mainly focus on local detail features,
we utilize small patches from a general normal image dataset,
which can cover the facial normal distribution. Specifically,
we collect several 4K reference normal maps from the public
general object dataset MatSynth [77] for detailed guidance. To
ignore the global appearance and focus on the local details,
such as bumps, grooves, and scratches, we randomly crop
reference normal maps into 32×32 patches. We also utilize data
augmentation pipeline (e.g., random scaling, rotation, shifts) to
expand the effective diversity of normal map representations.
Then we introduce a patch-level normal discriminator to align
the distributions of the patches cropped from generated normal
maps and those in our dataset. Complex facial structures are
decomposed into atomic 32×32 primitives during training,
allowing the network to learn the detailed features while
maintaining the spatial consistency of different patches. To
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verify that the patches in the training set cover the facial normal
map details, we conducted a retrieval experiment using a real-
world facial normal map. Please refer to the supplemental
material for more details.

(2) Albedo constraint. As the textures of FFHQ-UV may
suffer from highlight artifacts, we design a regularization
term for the albedo Ja to guide the texture disentanglement.
Ja is used to reduce the specular highlights by constraining
the albedo of the skin region to be smooth, which can be
represented as:

Ja = |∇(Ta ⊙Mskin)| (1)

where Mskin is the mask of the skin region, ⊙ is elment-wise
multiplication, ∇ represents the total variation. Ja is calculated
in both the RGB space and the luminance channel of the HLS
color space.

B. Alignment

With the emergence of pre-trained cross-modal models, text
prompts can provide a flexible and user-friendly interface for 3D
content generation. Existing approaches typically rely on fine-
tuning the generative models to establish consistency between
the results and the texts [6]. However, it usually requires
additional optimization for different objects or prompts. To
avoid this issue, we extend StyleGAN to support text-guided
PBR texture generation by correlating the text embeddings
with the W+ latent space of PBRGAN.

Recent advances based on GAN inversion techniques and
cross-modal models have led to a more feasible solution for
aligning text with latent space. GAN-inversion-based image
editing algorithms [78]–[80] invert given images back into the
latent space of GANs and manipulate them by varying the
latent code in different interpretable directions, such as age
and expression. In the meantime, the CLIP model has made
remarkable progress in establishing cross-modal correlations
between image and text space [81]. Therefore, we employ the
CLIP model as an anchor point for alignment between text
space and W+ space.

a) The alignment network.: As shown in Fig. 4(b),
we integrate an additional text embedding module into the
PBRGAN to achieve the alignment. It consists of a CLIP
embedding module E and a text mapper Mt with a twining
structure of the latent mapper Mz in Sec. III-A. In this stage,
the parameters of G and E are frozen.Mt is optimized to map
the text embedding spaceW ′

+ toW+. To trainMt, we random
sample a latent z and produce an image Iz = R(G(z), s, p).
Then Iz is fed into E as input to get the embedding tz in
the CLIP space. The text mapper Mt takes tz as input and
transforms it into w′ ∈ W ′

+. w′ is utilized to generate a facial
image, which can be represented as:

It = R(G(Mt(E(Iz))), s, p). (2)

b) The alignment loss functions.: The space alignment
is supervised by a loss LW+

in the W+ space and a loss
LLPIPS in the image space. LW+ is the Manhattan distance
between W ′

+ and W+. LLPIPS is a LPIPS loss to constrain
the text-embedding-based rendered image It to have similar

perceptual appearance with Iz . The overall loss function is as
follows:

L = α|Mt(E(It))−Mz(z)|+ βLPIPS(Iz, It), (3)

where α,β are the weights for each component. After the
training, PBRGAN can generate PBR textures for a given text
prompt t through a feedforward pass G(Mt(E(t))).

C. Boosting

On the foundation of the former stages, PBRGAN is
proficient at generating images from common text prompts
resembling the FFHQ distribution. However, it still faces
limitations in producing reasonable textures using uncommon
prompts, e.g. , “a prominent knife scar on the face”. To deal
with these prompts, existing methods [54], [55] employ a
pre-trained diffusion model as an image prior and perform pa-
rameters optimization using the SDS loss [6]. The optimization
is usually trained from scratch. This may require hundreds of
iterations for each input prompt or encounter challenges to
converge to an optimal solution. It reduces the efficiency and
accuracy of texture generation.

In the third stage of PBRGAN, we introduce an EASDS-
based PBR texture boosting algorithm to expand the generation
space to produce more diverse textures using uncommon
prompts. Specifically, we use results generated by PBRGAN as
the initialized optimization target of the SDS loss ( Fig. 5 (a)).
It can produce better initial positions for the SDS optimization
to reduce the computational cost and shorten the optimization
path. Then we modify the basic SDS loss into an enhanced edge-
aware version (EASDS) by introducing a key facial structure
alignment module and a pre-trained ControlNet ϕ [82]. The
official ControlNet-HED [1] is utilized for all experiments. The
EASDS comprises of four steps (Fig. 5 (b)):
(1) Optimization target preparation. We run an inference

procedure of PBRGAN to generate the texture maps T0

for a given text prompt τ . The target parameter T to be
optimized of EASDS is initialized with T0.

(2) Camera pose setting. We place a series of pre-defined
viewpoints around the face model to fit our differentiable-
rendering-based pipeline.

(3) Feature-line extraction. We render reference facial images
Iref from the viewpoints with a random-sampled geometry
and T0. Then a pre-trained network HEDNet [83] is
exploited to detect soft edges E from the rendered images.

(4) EASDS optimization. For a given viewpoint, the rasterizer
renders a facial image Iτ = R(T, s, p) with the same
geometry of (3). The rough HED edges associated with
this viewpoint from (3) are taken as feature-line priors to
ControlNet. We optimize T with the ControlNet gradient
through the rendered image Iτ . The ControlNet ϕ utilizes
τ and E to provide a score function ϵ̂ϕ as the optimization
guidance for T :

∇TLEASDS(ϕ, Iτ ) ≜ Et,ϵ

[
w(t)

(
ϵ̂ϕ

(
zIτt ; τ, t, E

)
− ϵ

)
∂Iτ
∂T

]
(4)

where w(t) is a timestep-related weighting function, ϵ is
the sample noise, zIτt is the noisy image based on Iτ .
The optimization starts from the front view and iteratively
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snowflake represents a frozen module.

proceeds to other viewpoints. With feature lines extracted
from the same 3D reference model, EASDS ensures that
the images rendered from different perspectives maintain
multi-view consistency in key facial structures.

The pseudocode of the EASDS is shown in Algorithm 1.

Algorithm 1 Edge-aware Score Distillation Sampling

Require: A text prompt τ . A 3D facial geometry s. A trainable
PBR texture T initialized with T0. Camera pose list P . A
differentiable renderer R. Learning rate η. The HEDNet H.
The HED-based ControlNet ϕ provides a score function ϵ̂.

1: for p in P do
2: Extract feature-line E = H(R(T0, s, p))
3: Render the facial image Iτ = R(T, s, p)
4: ϵ ∼ N (0, I)

5: T ← T − ηEt,ϵ

[
w(t)

(
ϵ̂ϕ

(
zIτt ; τ, t, E

)
− ϵ

)
∂Iτ
∂T

]
6: end for
7: return T

For special text prompts of specific individuals, such as
Barack Obama, Avatar, Iron Man, etc. , PBRGAN will produce
the corresponding texture maps via direct optimization based
on EASDS. Furthermore, we could distill relevant knowledge
of the EASDS into the latent space of PBRGAN to expand the
latent space and achieve more efficient generation. The detailed
descriptions can be referred in the supplementary material.

IV. EXPERIMENTS

In this paper, we focus on text-driven facial PBR texture
generation. The experiments are conducted on a Linux server
with 8 Tesla V100 GPUs and an Intel Xeon Platinum 8268
CPU. We demonstrate details of experiments, comparisons with
state-of-the-art methods, and ablation studies.

A. Experimental Setup

We use the FFHQ-UV dataset [10] for experiments. FFHQ-
UV is a large-scale 3DMMs-based facial UV-texture dataset
derived from a natural image dataset FFHQ. It contains
50, 000+ texture UV-maps with even illuminations and cleaned
facial regions. For the facial geometry, we randomly sample
10 000 facial mesh data from HIFI3D++ [75]. Since HIFI3D++

contains no eyeballs, we employ the albedo and geometry of
the eyeballs produced from the pipeline of FFHQ-UV [10].

To construct the text space, we define a text prompt dictionary
with geometry-independent facial attributes. The dictionary
consists of common facial attributes, such as “beard” or “red
lips”, and uncommon attributes like “scar” or “purple lips”.
We formulate different text prompts by randomly sampling
attributes from the dictionary. For more details, please refer to
our supplementary materials.

B. Comparison and Analysis

We compare our method with four state-of-the-art texture
generation methods, including Tango [5], Fantasia3D [7],
ClipFace [2], and DreamFace [8]. ClipFace can be further
divided into two parts: unconditional sampling and conditional
optimization, while all the other methods only support con-
ditional generation. Therefore, we first compare our method
with ClipFace on the unconditional generation task and then
make a comparison with all methods on the text-conditional
generation task. The results of DreamFace were obtained
from the commercial website https://hyper3d.ai/chatavatar using
DreamFaceV1.

a) Metrics.: We use the following metrics from three
perspectives to evaluate our method.

• Non-reference image quality assessment (IQA) metrics:
Non-reference IQA [89] aims to evaluate the quality of
images without relying on a reference image. We adopt
MUSIQ [90], HyperIQA [85], and CLIPIQA+ [86] for
the generated image quality evaluation.

• Task-specific metrics: We utilize a tailored metric for
face quality measurement, i.e. TOPIQface [87], which is
trained with face IQA dataset GFIQA [91], to evaluate
the quality of the rendered facial images.

• Prompt-aware metrics: We use the CLIPSCORE [88]
to measure the alignment between the given prompt and
the corresponding generated face.

For these metrics, higher scores indicate better image quality
or higher text-image consistency.

b) Unconditional texture generation.: For the text-
unrelated generation task, we use non-reference-IQA and task-
specific metrics to evaluate our method with 1 000 randomly
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sampled latent code z. As shown in the “without prompt” part
of Table I, our method achieves a higher score by 10.3% on
TOPIQface, which shows the effectiveness of our PBRGAN.
Our method also outperforms ClipFace in terms of the non-
reference-IQA metrics, yielding better image quality with
enhanced sharpness and intricate details. It demonstrates the
effectiveness of our latent space representation.

c) Text-driven texture generation.: For the conditional
generation task, our methods were evaluated by randomly

sampling 30 prompts from our dictionary to cover different
attributes. Specifically, we first synthesize the images with
these prompts using all methods. The images are combined
with corresponding text prompts to generate text-image pairs.
Then, we adopt all the above metrics to evaluate the image
quality and text-image consistency of these pairs.

Since PBRGAN is capable of generating PBR texture maps
with straightforward inferences, our method strikes a balance
between efficiency and performance. As illustrated in the

TABLE I: Qualitative comparison results. We conduct experiments with or without prompts. The best results are highlighted as
1st and 2nd. Our method wins first place in the human perceptual study and inference time. We also achieve the second-best in
other metrics for text-conditional generation. Note that DreamFace needs captured PBR data to train and spends five times as
much inference time as ours. SDFT is a Stable Diffusion 1.5 model specifically fine-tuned with facial images was added [84].

Method Rep Data Inf Time / min
Metrics

User StudyhyperIQA CLIPIQA+ TOPIQface CLIPSCORE
[85] ↑ [86] ↑ [87] ↑ [88] ↑

w/o prompt ClipFace [2] Texture FFHQ < 0.01 (1x3090) 0.63 0.55 0.58 - -
Ours. PBR FFHQUV < 0.01 (1x3090) 0.74 0.57 0.64 - -

w/ prompt

TANGO [5] PBR - 10 (1x 3090) 0.50 0.45 0.35 0.67 1.52
Fantasia3D [7] PBR - 45 (8x 3090) 0.66 0.52 0.57 0.74 2.04
ClipFace [2] Texture FFHQ 90 (1x 3090) 0.63 0.56 0.52 0.77 2.11
DreamFace [8] PBR LightStage 5 (1x A6000) 0.76 0.63 0.77 0.72 2.78

Ours PBR FFHQUV < 0.01 (1x3090) 0.68 0.57 0.84 0.76 3.47
Ours-EASDS PBR FFHQUV 1 (1x 3090) 0.66 0.54 0.81 0.74 3.36
Ours-EASDS+SDFT PBR FFHQUV 1 (1x 3090) 0.66 0.57 0.81 0.78 -

A man;

copper skin;

full lips;

thick round 

eyebrows

A man;

fair skin; thin lips;

a prominent knife 

scar 

on the face;

stubble on the face

A woman;

full purple lips;

nasolabial folds on 

the face

A woman;

red wide lips

A man;

Asian individual;

wide lips;

nasolabial folds on 

the face

Text prompts ID2Reflectance CLipFace DreamFace Fantasia3D Ours Ours-EASDS Ours-EASDS
+SDFT

Fig. 6: Qualitative comparison results. From left to right: the input text prompts, the results generated with ClipFace, DreamFace,
Fantasia3D, ID2Reflectance, Ours, Ours-EASDS, and Ours-EASDS+SDFT. The results of ID2Reflectance is generated from
images produced with Stable Diffusion 1.5.
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Barack Obama
Multi-View
Optimization

Donald Trump
Single-View 
Optimization

Text-Driven Initialization SDS EASDS
Fig. 7: Ablation study results of EASDS. Note that there
are artifacts and misalignments in the results of SDS. The
second row shows the generated textures using challenging
geometry under the guidance of “Barack Obama”. Benefiting
from EASDS’s alignment of feature lines, our method is capable
of generating better textures tailored for extreme geometries.

ClipFace Fantasia3D DreamFace Ours-EASDS

Thanos

Emma 
Watson

Naruto 
Uzumaki

Fig. 8: Comparison of classic celebrity (Emma Watson) and
fictional characters (Thanos and Naruto Uzumaki).
“with prompt” part of Tab. I, PBRGAN based on EASDS
optimization (Ours-EASDS) is able to generate textures at 1-
minute level. It shows that the amalgamation of GAN and
SDS can reduce the optimization time by a large margin.
For the quality evaluation, Ours-EASDS achieves comparable
results to DreamFace with tenuous distinction and outperforms
all other methods. Note that DreamFace is trained with
captured PBR textures, while our method involves no PBR
data. Further expanding the latent space with EASDS-based
textures (Ours) may slightly diminish partial quantitative
metrics, but it decreases the inference time to less than 0.5
seconds. Fig. 6 demonstrates the qualitative comparison results.
Although ClipFace can generate facial textures with most
designated attributes, its results have obvious artifacts (the
2nd column). Fantasia3D is designed for generic-object texture
generation. Applying it to facial texture generation may cause
disharmonious patterns (the 4th column). DreamFace is able to
generate relatively realistic results. However, it fails to handle
uncommon attributes like “scar” or “purple lips” (the 3rd
column). Our methods are capable of producing reasonable
facial texture maps with diverse prompts. The last column
shows results using EASDS integrated with a facial-specialized
Stable Diffusion 1.5 model (fine-tuned on facial datasets) [84],
achieving higher conformity with facial descriptions than
baseline EASDS. This gain may stem from the gradient

(a) 

Ours

(b) 

Dream-

Face

Rendered        Albedo        Roughness      Normal Rendered               Specular         NormalAlbedo

Fig. 9: Disentangled PBR results unconditionally generated
with PBRGAN and DreamFace. The results of DreamFace are
generated under random seeds with the prompt “Face”. Bottom:
Magnified views of obvious facial features (beards/eyebrows
in red/yellow box) for detailed comparison.

guidance better aligned with descriptions during EASDS
optimization. Considering fairness in comparison, we conducted
comparative experiments in this paper using EASDS based
on the original Stable Diffusion 1.5 model. Furthermore, we
also compare our method with text-image-PBR pipeline. We
first generate facial images via Stable Diffusion 1.5 based on
textual prompts, then estimate PBR textures using an image-to-
3D method ID2Reflectance [73]. The experimental results are
shown in the second column of Fig. 6. Our method demonstrates
superior performance in the textural details, such as purple
lips, knife scars, and nasolabial folds. There are two critical
limitations in the text-image-PBR pipeline: 1) The subsequent
workflow cannot compensate for missing facial features in
SD-generated images; 2) While ID2Reflectance effectively
preserves fundamental facial features from SD outputs (e.g.,
eyebrow shape and lip contours), it struggles to transfer unusual
characteristics (e.g., scars or makeup colors).

Fig. 8 presents a comprehensive comparison in text-based
well-known celebrities generation, highlighting the generaliza-
tion capabilities of EASDS. The results show that ClipFace
and Fantasia3D can generate semantically correct results, but
they often have a cartoonish feel. DreamFace performs well in
generating results related to real individuals but struggles with
the intricate details of fictional characters, such as Thanos’s
oversmooth appearance and Naruto’s missing characteristic
whisker marks. Our method, on the other hand, consistently
delivers highly realistic and finely detailed results across both
real-world celebrity and fictional character generation.

d) Disentangled PBR Results: Fig. 9 exhibited more
disentangled PBR results generated by our PBRGAN and
DreamFace. The two methods use different geometry unwrap-
ping and rendering representations: Ours employs albedo maps,
roughness parameters, and normal maps, while DreamFace
uses albedo maps, specular maps, and normal maps, making
direct comparisons of these maps difficult. We thus magnify
facial features to evaluate PBR map alignment and physical
plausibility. Furthermore, while maintaining alignment, our
normal maps exhibit plausible geometric variations, and
roughness parameters demonstrate logical material properties:
beard/eyebrow areas show higher roughness with brighter tones,
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(a) Without 

normal 

constraint

(b)  With 

normal 

constraint

Normal Map Examples Rendered Image Example

Fig. 10: Ablation study results of normal constraint. The examples are randomly sampled by PBRGAN trained with and without
normal constraint separately.

(a)

(b)

Fig. 11: Ablation Study of our albedo constraint. (a): The
results of PBRGAN trained without albedo constraint. (b): The
results of PBRGAN trained with albedo constraint.
whereas oil-prone nasal tips/wings display lower roughness
with darker coloration.

e) User study.: We conducted a user study to evaluate
the perceptual quality of the results. We generate 30 text-
image pairs for each method of TANGO, Fantasia3D, ClipFace,
DreamFace, Ours, and Ours-EASDS. 100 participants are
recruited to evaluate the results. We ask every participant
to grade each text-image pair according to the image quality
and text-image consistency. The grading is quantified as a
preference score to assess the overall quality from 1 (least low
quality) to 5 (most high quality). As the last column of Tab. I
shows, ours-EASDS is superior to other methods.

C. Ablation Study

We have conducted ablation experiments for disentanglement
constraints and EASDS to explore their influence on the quality
of the generated PBR textures.

a) Disentanglement Constraints: We conducted ablation
study on the patch-level normal constraint and albedo constraint.
We compared the generated PBR texture using PBRGAN
trained with or without the patch-level normal constraint. The
results can be found in Fig. 10, where the three local normal
maps on the right side of each sub-image correspond to the
marked box in the global image. Local normal maps with
normal constraints exhibit sharper texture details compared to
those without constraints. These details represent finer facial
features such as eyebrows, pores, wrinkles, etc. Rich texture
details with the normal constraint (both in the normal maps and
rendered images) indicate that the face gains more geometric
detail, making it more realistic and closer to real human faces.

To better show the effectiveness of our albedo constraint,
we conducted an experiment that trained our PBRGAN with
the same setting except for removing the albedo constraint. As
shown in Fig. 11, the results of PBRGAN without the albedo
constraint have more highlights and overall color inconsistency.

TABLE II: Quantitative results of different constraints. Ja/Jn
represents albedo/normal constraint, respectively.

Methods Metrics
hyperIQA↑ CLIPIQA+ ↑ TOPIQface ↑ CLIPSCORE↑

Ours w/o Ja w/o Jn 0.55 0.50 0.82 0.74
Ours w/o Jn 0.59 0.56 0.83 0.74
Ours 0.68 0.57 0.84 0.78
Ours-SDS 0.61 0.54 0.71 0.71
Ours-EASDS 0.66 0.54 0.81 0.74

We also present quantitative comparisons of the ablation
study in Tab. II. The metrics further demonstrate the effective-
ness of the patch-level normal constraint and albedo constraint.

b) EASDS vs SDS: We compare our EASDS with the
classical SDS [6], which has no edge priors. As the Fig. 7
shows, there are some misalignments between the geometry
edges and texture edges in the SDS-based results. With
additional feature-line priors, our EASDS can enhance facial
structural accuracy and generate better PBR textures than SDS,
which improves multiple metrics in Tab. II.

D. Limitations and Future Works

PBRGAN leverages the CLIP encoder during the Alignment
and EASDS Boosting stages for cross-modal generation. How-
ever, due to the CLIP encoder’s difficulty in fully embedding
long and complex textual information, this reliance leads to
some limitations: 1) It struggles to process prompts with more
than five attributes effectively. 2) The generated results may
not be completely aligned to the text prompts. To mitigate
these issues, we plan the following two targeted improvements
in the future:

• Adopting advanced cross-modal embedding: Replacing
CLIP with more advanced and robust models (e.g.
LongCLIP [92] or TULIP [93]) could enhance the long-
text comprehension and alignment accuracy.

• Facial domain-specific fine-tuning: For the overlooked
facial attributes, we plan to fine-tune the cross-modal
alignment network using face-specific datasets such as
FFHQ and CelebA with additional rechecked descriptions,
to improve local facial feature sensitivity.

V. CONCLUSION

In this work, we present a multi-stage framework called
PBRGAN for text-driven physically based facial texture
generation in the wild. We first propose a GAN-based network
that can bootstrap from FFHQ-UV textures to generate PBR
textures. The network is trained with differentiable rendering
and carefully crafted regularization terms to disentangle the
FFHQ-UV textures into albedo, roughness, and normal maps
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without supervision from captured PBR data. Then, we enable
PBRGAN with the capability of text-guided generation through
latent space and text space alignment. Besides, we introduce
an edge-aware SDS loss and an EASDS-based texture boosting
scheme to further improve the diversity of the generated results.
The experiments demonstrate that our method can efficiently
create high-quality and diverse facial PBR textures. In the
future, we will investigate the joint generation of precise facial
geometries along with diverse PBR textures.
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