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Abstract
Likelihood-free inference (LFI) is a set of tech-
niques for inference in implicit statistical models.
A longstanding question in LFI has been how to
design or learn good summary statistics of data,
but this might now seem unnecessary due to the
advent of recent end-to-end (i.e. neural network-
based) LFI methods. In this work, we rethink this
question with a new method for learning summary
statistics. We show that learning sufficient statis-
tics may be easier than direct posterior inference,
as the former problem can be reduced to a set
of low-dimensional, easy-to-solve learning prob-
lems. This suggests us to explicitly decouple sum-
mary statistics learning from posterior inference
in LFI. Experiments on diverse inference tasks
with different data types validate our hypothesis.

1. Introduction
Many data generating processes in science and engineering
can be well described by a parametric statistical model that
allows forward simulation: x ∼ p(x|θ) but does not ad-
mit a tractable likelihood p(x|θ). These models are called
implicit models (Diggle & Gratton, 1984) and have applica-
tions as diverse as physics (Sjöstrand et al., 2008), genetics
(Järvenpää et al., 2018), computer graphics (Mansinghka
et al., 2013), robotics (Lopez-Guevara et al., 2017), finance
(Bansal & Yaron, 2004), economics (Dyer et al., 2022), cos-
mology (Weyant et al., 2013; Alsing et al., 2018), ecology
(Wood, 2010) and epidemiology (Chinazzi et al., 2020).

An important question is how to perform Bayesian inference
in implicit models. Likelihood-free inference (LFI) tech-
niques facilitate inference in such circumstances. LFI does
not need to evaluate the likelihood function. Rather, it only
requires us to sample (i.e. simulate) data from the model.
Traditional methods such as approximate Bayesian compu-
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tation (ABC) work by repeatedly simulating data from the
model, and use a small subset of the simulated data closest
to the observed data to construct the posterior (Pritchard
et al., 1999; Marjoram et al., 2003; Beaumont et al., 2009).
Recent advances make use of flexible neural networks to
approximate the intractable likelihood (Papamakarios et al.,
2019), the density ratio (Hermans et al., 2020; Durkan et al.,
2020) or directly the posterior (Papamakarios & Murray,
2016; Lueckmann et al., 2017; Greenberg et al., 2019).

A historically important ingredient in likelihood-free infer-
ence was the design/choice of suitable summary statistics,
which was believed to be essential (Blum et al., 2013; Fearn-
head & Prangle, 2012; Sisson et al., 2018; Papamakarios
et al., 2019). This motivated the development of many ap-
proaches aiming at the automatic design of summary statis-
tics (Fearnhead & Prangle, 2012; Chan et al., 2018; Alsing
et al., 2018; Wiqvist et al., 2019; Brehmer et al., 2020; Chen
et al., 2021; Dyer et al., 2021; Pacchiardi & Dutta, 2022).
The necessity of summary statistics was, however, recently
challenged due to the advent of end-to-end LFI methods
(Papamakarios & Murray, 2016; Lueckmann et al., 2017;
Greenberg et al., 2019; Hermans et al., 2020). In these meth-
ods, the input data x can be directly passed to an encoder
trained jointly with the posterior estimator, so that the sum-
mary statistics is learned implicitly. In this sense, explicit
summary statistics learning seems no more necessary.

In this work, we rethink whether it is necessary or not to
learn summary statistics explicitly in likelihood-free infer-
ence. We address this question from two perspectives. First,
we show that the sufficient statistics of an implicit model
may indeed be easier to learn than its likelihood or pos-
terior. Second, we show that recent end-to-end inference
approaches in LFI (e.g. SNPE-C (Greenberg et al., 2019),
SNR (Hermans et al., 2020)) can be unreliable in some cases.
Both discoveries suggest that explicit (i.e. separate) learning
of summary statistics still has a market. We highlight the
following contributions:

• We propose a new method, SSS, for learning sufficient
statistics, where neither exact estimation of the posterior
p(θ|x) nor of the mutual information I(x;θ) is needed;

• Based on our method, we develop a new LFI algorithm,
SNL + SSS, which is shown to outperform state-of-the-art
end-to-end inference algorithms (e.g. SNPE-C, SNR).
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Figure 1. An overview of the proposed method for learning sufficient statistics S = argmaxs I(s(X);θ), S ∈ Rd. Our method does
not directly estimate the mutual information I(s(X);θ). Rather, it optimises a set of mutual informations I(S′

i; θ
′
i), i ∈ {1, 2, ...M}

between M pairs of low-dimensional random variables {(S′
i, θ

′
i)}Mi=1. Here θ′i ∈ R is the ‘sliced’ version of θ after the i-th slicing

operation (dashed arrow in the figure). S′
i ∈ Rd′ is the ‘secondary’ sufficient statistics tailored for θ′i computed as S′

i = fi(S). Note that
d′ ≪ d. Each slicing directions ϕi is uniformly sampled from the surface of a unit hypersphere. Objects in black solid lines are to learn.

2. Background
Likelihood-free inference. LFI considers Bayesian infer-
ence for implicit statistical models (Diggle & Gratton, 1984)
where the evaluation of the likelihood function of the model
is intractable but sampling from the model is possible:

π(θ|xo) ∝ π(θ) p(xo|θ)︸ ︷︷ ︸
?

, (1)

where xo is the observed data, π(θ) is the prior over the
model parameters θ, p(xo|θ) is the intractable likelihood
function and π(θ|xo) is the posterior over θ. Despite that
we do not have access to the exact likelihood, we assume
that can still sample data from the model: x ∼ p(x|θ). The
task is then to infer π(θ|xo) given xo and the sampled data:
D = {θ(i),x(i)}ni=1, θ(i) ∼ p(θ),x(i) ∼ p(x|θ(i)). Note
that the proposal p(θ) can be different from the prior π(θ).

Different (neural) LFI methods use different strategies to
learn the posterior (1) from D. For example, sequential
neural posterior estimate (SNPE) (Papamakarios & Murray,
2016; Lueckmann et al., 2017; Greenberg et al., 2019) learns
the conditional distribution p(θ|x) inD, whereas sequential
neural likelihood (SNL) (Papamakarios et al., 2019) learns
the likelihood p(x|θ), both using a neural density estimator
(Papamakarios et al., 2017; Durkan et al., 2019). The poste-
rior π(θ|xo) can then be obtained from the learned p(θ|xo)
or p(xo|θ) in conjunction with the prior π(θ). Alternatively,
one may learn the ratio r(x,θ) = p(x,θ)/p(x)p(θ) by a
network r. This leads to the sequential neural ratio estimate
(SNR) method (Hermans et al., 2020; Thomas et al., 2022).

Many LFI methods work in a sequential regime where the
posterior π(θ|xo) is learned in multiple rounds. One option
is to use active learning or Bayesian decision theory to guide
the process (Gutmann & Corander, 2016; Järvenpää et al.,
2019; 2021; Oliveira et al., 2021). Another option is to use
the posterior estimated in the rth round as the proposal distri-
bution for θ in the next round: pr+1(θ) = π̂r(θ|xo). Such
a strategy is often used in neural LFI (Lueckmann et al.,
2017; Papamakarios et al., 2019; Greenberg et al., 2019;

Lueckmann et al., 2021) as it allows one to quickly focus
on the plausible region of the posterior, greatly accelerating
inference. However, different LFI methods have different
affinities to sequential learning. For example, likelihood and
ratio learning approaches have been shown to be highly com-
patible with sequential learning, whereas posterior targeting
methods e.g. (Papamakarios & Murray, 2016; Lueckmann
et al., 2017) may have issues in sequential learning regime.

Summary statistics for LFI. It is well-known that if good
statistics of the data are available, Bayesian inference can
be done with the statistics S(x) instead of the raw data x:

π(θ|x) ≈ π(θ|S(x)) ∝ π(θ)p(S(x)|θ), (2)

where S : X → S is a deterministic function. Inference
based on sufficient statistics has many benefits, see e.g. the
Rao-Blackwell theorem. However, it is often hard to find
suitable statistics for an implicit model due to the intractable
likelihood function. One way to find S without accessing the
likelihood is to learn it from the data D by e.g. the infomax
principle (Chen et al., 2021): S = argmaxs I(s(x);θ).
However, infomax learning can be challenging if I is high
as V[Î] = O(eI) (Poole et al., 2019; Song & Ermon, 2019).
On the other hand, there exist simpler methods to learn sum-
mary statistics without estimating information (Fearnhead
& Prangle, 2012; Alsing et al., 2018; Brehmer et al., 2020),
but they are generally insufficient.

A natural question to ask is whether we really need to learn
summary statistics explicitly in LFI. For SNL, the answer is
clearly yes, as modelling the low-dimensional distribution
p(S|θ) is much easier than modelling p(x|θ). For SNPE
and SNR, however, this is believed to be unnecessary. This
is because the neural networks in these methods can be made
end-to-end for x, so that they can automatically transform
x to some low-dimensional representation. In this sense,
the internal layers in SNPE and SNR learn the sufficient
statistics implicitly. In fact, the method by Chen et al. (2021)
for learning S can also be seen as a variant of SNR where
the design of the ratio estimator is sufficient statistics aware,
so there seems no need to learn sufficient statistics explicitly.
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3. Sufficient statistics learning
In this section, we answer the previous question from a dif-
ferent perspective: we show that the learning of sufficient
statistics may be easier than inference itself. More specif-
ically, to learn sufficient statistics, we only need to solve
low-dimensional classification or metric learning problems.

3.1. Slice sufficient statistics

The core of our method is Theorem 1, which is inspired by
recent sliced techniques in machine learning and statistics
(Goldfeld & Greenewald, 2021; Chen et al., 2022).

Theorem 1. Let x ∈ RD and θ ∈ RK be two random vari-
ables and S : RD → R

d be a deterministic function. Then
S(x) is a sufficient statistics if and only if S(x) maximises
SI(S(x);θ) as defined below:

SI(S(x);θ) = Eϕ∼SK−1 [I(S(x);ϕ⊤θ)], (3)

where ϕ ∈ SK−1 is a vector uniformly sampled from the
surface of a K-dimensional unit sphere SK−1.

Proof. See Appendix A.

Theorem 1 is non-trivial, as by the data processing inequal-
ity we know that any deterministic function F (·) will lose
information about θ, so maximising I(S(x);F (θ)) with
F (θ) = ϕ⊤θ seems not enough to maximise I(S(x);θ).
However, Theorem 1 says if I(S(x);ϕ⊤θ) is maximised
for all ϕ ∈ SK−1, so is I(S(x);θ).

A Monte Carlo estimate to the objective (3) is:

SI(S(x);θ) ≈ 1

M

M∑
i=1

I(S(x);ϕ⊤
i θ), ϕi ∼ SK−1 (4)

where each I(S(x);ϕ⊤
i θ) can be expressed using the info-

max principle

I(S(x);ϕ⊤
i θ) = sup

fi

I(fi(S(x))︸ ︷︷ ︸
S′
i

; ϕ⊤
i θ︸︷︷︸
θ′
i

) (5)

where S′
i ∈ Rd′

is a ‘secondary’ sufficient statistic tailored
for θ′i ∈ R. The introduction of fi : Rd → R

d′
is moti-

vated by the fact that the sufficient statistic S′
i is different for

each θ′i, and their dimensionalities d′ should satisfy d′ ≪ d.
We note that estimating I(S′

i; θ
′
i) is easier than estimating

I(S(x);θ) as (a) it is a lower-dimensional mutual infor-
mation estimation problem; (b) as each Ii = I(S′

i; θ
′
i) ≤

I(S(x),θ) = Iall, we know V[Îi] ≪ V[Îall] (recall that
V[Î] = O(eI)), so estimating Îi is more sample-efficient.

The problem now boils down to how to quantify I(S′
i, θ

′
i).

While any estimator can be used in principle, we focus on
the following two non-KL proxies to mutual information,
which are either more robust or faster to compute than KL:

Jensen-Shannon divergence proxy (JSD). This proxy cor-
responds to interpreting mutual information as the distri-
butional discrepancy between p(S′

i, θ
′
i) and p(S′

i)p(θ
′
i) and

replacing the KL divergence with Jensen-Shannon diver-
gence, which was shown to be more robust (Hjelm et al.,
2018). It is defined as follows:

Î(S′
i, θ

′
i) = sup

Ti:R×Rd′→R
Ep(θ′

i,S
′
i)
[− sp(−Ti(θ

′
i, S

′
i))]

−Ep(θ′
i)p(S

′
i)
[sp(Ti(θ

′
i, S

′
i))]

(6)

where sp(u) = log(1+exp(u)) is the softplus function and
Ti is a deterministic function often known as the critic. This
can be seen as training a classifier Ti to distinguish samples
(S′

i, θ
′
i) ∼ p(S′

i, θ
′
i) v.s. samples (S′

i, θ
′
i) ∼ p(S′

i)p(θ
′
i).

Distance correlation proxy (dCorr). This proxy cor-
responds to interpreting mutual information as a depen-
dency metric and replacing it with distance correlation, a
non-parametric dependency metric that is fast to compute
(Székely et al., 2014). It is defined as:

Î(S′
i; θ

′
i) =

Ep(θ′
i,S

′
i)p(θ̃

′
i,S̃

′
i)
[h(θ′i, θ̃

′
i)h(S

′
i, S̃

′
i)]√

Ep(θ′
i)p(θ̃

′
i)
[h2(θ′i, θ̃

′
i)]Ep(S′

i)p(S̃
′
i)
[h2(S′

i, S̃
′
i)]

(7)
where h(a,b) = ∥a− b∥ − Ep(b̃)[∥a− b̃∥]− Ep(ã)[∥ã−
b∥] + Ep(ã)p(b̃)[∥ã − b̃∥] is the doubly centred distance.
This can be seen as learning S′

i whose pairwise distances
highly correlate with the pairwise distances of θ′i.

In terms of the parameterisation of the secondary encoders
{f1, ..., fM} and the critic networks {T1, ..., TM}, we use
an amortised strategy, where only two networks f : Rd ×
Z

K → R
d′

and T : Rd′×R×ZK → R need to be trained:

fi(S) = f(S,ϕi), Ti(S
′
i, θ

′
i) = T (S′

i, θ
′
i,ϕi).

With such strategy, learning now amounts to the training
of three neural networks f, S, T . The whole sliced-based
statistics learning procedure is summarised in Algorithm 1.

We further draw a connection between our slice-based ap-
proach and existing summary statistics learning methods:

• Infomax statistics (Chen et al., 2021). This corresponds to
learning S by directly maximising the mutual information
between S(x) and θ:

S = argmax
s

I(s(x);θ).

As shown in Theorem 1, our method recovers the goal of
this approach when the number of slices M →∞. How-
ever, unlike this approach, we need not estimate I(S;θ)
in the original space explicitly, which can be difficult if
I(S;θ) is high (Poole et al., 2019; Song & Ermon, 2019).
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Algorithm 1 Slice sufficient statistics learning

Input: simulated data D = {θ(j),x(j)}nj=1

Output: Statistics function S = argmaxs I(s(x);θ)
Parameters: encoders S, f , MI estimation network T
Hyperparams: number of slices M , learning rate η
while not converge do

sample a minibatch B ⊂ D;
for i in 1 to M do

sample ϕi ∼ U(SK−1) ;
compute S′

i = f(S(x),ϕi) and θ′i = ϕ⊤
i θ;

compute Îi = Î(S′
i; θ

′
i) by (6) or (7) with B;

end for
S ← S − η∇S

1
M

∑M
i=1 Îi;

f ← f − η∇f
1
M

∑M
i=1 Îi;

T ← T − η∇T
1
M

∑M
i=1 Îi; // if (6) was used for Îi

end while
return S(·)

Algorithm 2 SNL with slice sufficient statistics

Input: prior π(θ), observed data xo

Output: estimated posterior π̂(θ|xo)
Parameters: neural density estimators q, proxy q′

Initialization: D = ∅, p1(θ) = π(θ)
for r in 1 to R do

repeat
sample θ(i) ∼ pr(θ);
simulate x(i) ∼ p(x|θ(i)) ;

until n′ samples
D ← D ∪ {θ(i),x(i)}n′

i=1

learn statistics S(·) with D by Algorithm 1;
p̂(S|θ) = argmaxq

∑n
i=1 log q(S(x

(i))|θ(i));
π̂(θ|So) ∝ π(θ) · p̂(S(xo)|θ);
pr+1(θ)← q′(θ) where q′(θ) is learned by (12);

end for
return π̂(θ|So)

• Moment statistics (Fearnhead & Prangle, 2012). This
corresponds to taking S as the posterior mean Ê[θ|x]:

S = argmin
s

E[∥s(x)− θ∥22].

This can be seen as a degenerate case of our method where
exactly K one-hot slices ϕ ∈ {0, 1}K are used. To see
this, remark minimising

∑
k E[∥s(x)k − θk∥22] is equiv-

alent to maximising a lower bound of I(s(x)k; θk),∀k,
and the latter equals I(s(x)k;ϕ⊤

k θ) if ϕk is one-hot.

3.2. Determining the dimensionality of statistics

A remaining problem is how to determine d, the dimension-
ality of the sufficient statistics S. The Pitman-Koopman-
Darmois theorem (Koopman, 1936) shows that sufficient
statistics with fixed dimensionality only exist for the expo-
nential family, so there is no way to pre-define d. We hence
use a data-driven way to determine d based on Theorem 2:

Theorem 2. Let x ∈ RD and θ ∈ RK be two random vari-
ables. Consider optimising the following objective function
w.r.t a deterministic function s : RD → R

J :

max
s

J∑
j=1

I(s(x)≤j ;θ), (8)

where s(x)≤j denotes the first j dimensions of s(x). Let
S = s(x) be the random variable induced by s(·) learned
in (8) and Sj be its jth dimension. We then have

I(Sj ;θ|S<j) ≤ I(Sj−1;θ|S<j−1).

Proof. See Appendix A.

That is, similar to PCA, the dimensions in S as learned by
(8) will be ordered, with most information about θ concen-
trating on the leading dimensions of S. This allows us to
choose d by inspecting the contribution of each dimension.
For example, if we discover the informativeness of the first
K and the first 2K dimensions of S are very similar, we
know d = K is enough. Equivalently, we can also compare
the posteriors yielded by the first K and the first 2K dimen-
sions of S, and set d = K if we find them similar1 (here we
only consider d = K v.s. d = 2K as we find that d ≤ 2K
is often enough for achieving sufficiency in practice). Under
this setting, the objective (8) can be simplified as

max
s

SI(s(x)≤K ;θ) + SI(s(x)≤2K ;θ), (9)

which has only two terms. Here we have replaced I by SI .

4. Posterior inference
4.1. Algorithm

SNL with sufficient statistics. Once S is learned, we
can use it to replace the raw data x in inference. Se-
quential Neural Likelihood (SNL) (Papamakarios et al.,
2019) is used here as the inference method. Given data
D = {θ(i),x(i)}ni=1 and a statistics function S(·), SNL first
approximates the likelihood function p(S|θ) as:

p̂(S|θ) = argmax
q

n∑
i=1

log q(S(x(i))|θ(i)), (10)

1A Gaussian copula approximation to π̂(θ|So) can be used for
this purpose, which allows interpretable comparison of both the
marginal distributions and the dependency structure. We will detail
in Sec. 4.1 how to obtain such a Gaussian copula approximation.
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Table 1. A summary of the inference tasks considered.

g-and-k Bayesian LR Ricker model OU Process Ising model

parameters θ ∈ R9 θ ∈ R12 θ ∈ R3 θ ∈ R6 θ ∈ R2

data type i.i.d i.d time-series time-series image

true posterior by numerically analytic particle filtering (SMC) analytic ABC with known S∗

where q is a neural density estimator (Papamakarios et al.,
2017; Durkan et al., 2019). It then estimates the posterior
π(θ|So) by Bayes rule:

π̂(θ|So) ∝ π(θ) · p̂(So|θ). (11)

As mentioned in Sec. 2, to accelerate inference, learning
in SNL can be made sequential where the current estimate
of the posterior π̂(θ|So) is used as the proposal distribution
p(θ) in the future. This procedure is shown in Algorithm 2.

Neural copula proxy. A question in the above sequential
learning procedure is how to efficiently sample θ from the
unnormalised posterior (11). To facilitate fast sampling
from (11), following Glöckler et al. (2022), we learn an
easy-to-sample proxy q′(θ) to the unnormalised posterior:

q′(θ) = argmin
q

Eq(θ)

[
log π(θ)p̂(So|θ)− log q(θ)

]
(12)

which is equivalent to minimising KL[q′(θ)∥π̂(θ|So)] + C
w.r.t q′ where C is a constant unrelated to q′. Here, we
choose to model q′ by a neural Gaussian copula:

θ ∼ q′(θ) ⇔ θl = gl(ϵl), ϵ ∼ N (ϵ; 0,V),

where gl(·) : R → R is a monotonic neural network. We
note that q′ needs not to be a very accurate approximation as
the goal here is fast sampling. In addition to fast sampling,
this neural Gaussian copula also supports easy inspection of
both the marginal distributions q′(θl) and the dependency
structure V, making it also an interpretable proxy.

4.2. Analysis

Below we discuss why the above ‘slice sufficient statistics +
SNL’ method may be more preferable than other strategies.

SNL + SSS v.s. SNPE. One merit of SNL is its affinity
to sequential learning, where one can readily use any pro-
posal distribution p(θ) for θ. As comparison, methods
like SNPE-A (Papamakarios & Murray, 2016) and SNPE-B
(Lueckmann et al., 2017) may suffer from several issues
during sequential learning (SNPE-A: numerical instability;
SNPE-B: high variance of the objective due to importance
weighting), see e.g. (Greenberg et al., 2019) for an analysis.

SNL + SSS v.s. SNR. Unlike SNPE-A and SNPE-B, re-
cent LFI approaches e.g. SNPE-C (Greenberg et al., 2019)

and SNR (Hermans et al., 2020) naturally fit well with se-
quential learning. These methods learn the posterior by
contrastive learning (Durkan et al., 2020) and are in essence
ratio estimators (Gutmann & Hyvärinen, 2009; Gutmann
& Hyvärinen, 2012; Thomas et al., 2022) where the ratio
p(θ,x)/p(θ)p(x) is learned. However, ratio estimation by
contrastive learning can be unreliable if the two distribu-
tions p(θ,x) and p(θ)p(x) are too distinct (Rhodes et al.,
2020; Choi et al., 2022; Gutmann et al., 2022) (e.g. high-
dimensional cases). In our experiments, we show how these
methods can struggle in high-dimensional ratio estimation.

5. Experiments
5.1. Setup

Evaluation metric. We assess inference quality by the
discrepancy between the true posterior π(θ|xo) and the
inferred posterior π̂(θ|xo):

∆(π(θ|xo), π̂(θ|xo)),

where ∆(p, q) is some discrepancy between two distribu-
tions p and q. ∆ is taken as either (a) the KL divergence
when the true posterior π(θ|xo) is analytically available
or can be approximated up to high precision; or (b) MMD
when we can readily collect samples θ ∼ π(θ|xo) from the
true posterior and the dimensionality of θ is low, depending
on the problem.2 See Appendix B. We note that the evalua-
tion of LFI methods is still an open problem (Lueckmann
et al., 2021; Forrow & Baker, 2021; Hermans et al., 2021).

Baselines. We compare the proposed method from two
angles, namely against other summary statistics and against
other inference strategies. In more details:

• Summary statistics. We compare our slice-based sufficient
statistics with the classic moment-based statistics (Fearn-
head & Prangle, 2012) and the recent infomax statistics
(Chen et al., 2021). All methods use SNL in inference.

• Inference methods. We also compare the proposed ‘SNL
+ SSS’ algorithm with other neural LFI algorithms: SNL
(Papamakarios et al., 2019), SNPE-C (Greenberg et al.,
2019) and SNR (Hermans et al., 2020).

2Classifier two sample test (Lueckmann et al., 2021; Gutmann
et al., 2018) may also be used. See Appendix B for a discussion.
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(a) g-and-k (b) Bayesian LR (c) Ricker model (d) OU process (e) Ising model

Figure 2. Comparing different summary statistics learning approaches. x-axis: the simulation budget. y-axis: the discrepancy between the
inferred and the true posteriors. Infomax corresponds to learning the summary statistics via the infomax principle (Chen et al., 2021):
S = argmaxs I(s(x);θ). Moment is the classic method which takes the predicted posterior mean as the summary statistics (Fearnhead
& Prangle, 2012): S(x) = Ê[θ|x]. Standard error of the mean is reported in the figure. Results are obtained from 20 independent runs.

Note that SNPE-C/SNR can also be seen as infomax learners
where different estimators of I(x;θ) are used (SNPE-C: In-
foNCE (Oord et al., 2018); SNR: JSD (Hjelm et al., 2018)).
On the other hand, the infomax statistics method can be seen
as a variant to SNR where the role of sufficient statistics is
explicitly considered in the design of network architecture
by the use of an encoder. In the experiments below, we also
use the same encoder for SNPE-C/SNR, so different LFI
methods only differ in the way they learn the posterior.

Hyperparams. Throughout the experiments we use M = 8
slices and set d = K (except for the experiments where we
select d according to Section 3.2) and d′ = 2. An ablation
study on the effect of the number of slices is in Appendix B.

5.2. Results

Figure 2 shows an overview of the results and Table 1 sum-
marises the properties of the tasks considered. The tasks
cover different data types and were chosen such that the true
posteriors are known or can be approximated accurately.

Multivariate g-and-k model. The first model we consider
is a well-known benchmark in LFI. The data in this model
is generated as

xl = Q(zl;θ), z ∼ N (z;0,V),

Q(zl;θ) = Al +Bl

(
1 + 0.8 · 1− e−glzl

1 + eglzl

)
(1 + z2l )

glzl.

where l = 1, 2 and V = [[1, ρ], [ρ, 1]]. The parame-
ter of interest is θ = {{Al, Bl, gl, kl}2l=1, ρ} satisfying
Bl > 0, gl > −0.5, k > 0, ρ ∈ (−1, 1). This model has
been shown to be very flexible in approximating many 2D
distributions with only a few parameters, though its likeli-
hood is not analytic. The data here is a population of 100
i.i.d. samples drawn from the model: X = {x(i)}100i=1. This
data is pre-processed by computing a low-level statistics X′

containing (a) 12 equally-spaced marginal quantiles and (b)

the Spearman’s rank correlation between the two marginals,
and we infer the posterior π(θ|X′o) ∝ π(θ)p(X′o|θ) given
the observed X′o. While the likelihood function of this
model is not analytic, it can be approximated accurately
by inverting ẑd = Q−1(xd;θ) numerically (e.g. by using
gradient descent: zd ← zd − η∇zd∥Q(zd;θ)− xd∥22).

Figure 2.(a) shows the results of different summary statistics
learning strategies. In this 9-dimensional problem, the pro-
posed slice-based method clearly outperforms the existing
infomax approach. This may be because, unlike the infomax
approach, our slice-based method does not need to estimate
I(S;θ) in the original space. In Table 2, we further compare
the proposed SNL + SSS method with SNR and SNPE-C,
using KL divergence as the discrepancy metric. We see that
our method is not only more accurate but also more robust,
as indicated by the smaller standard deviation in the table.

Bayesian linear regression. The goal of Bayesian linear
regression is to infer the parameters θ of a linear map from
noisy observations of outputs at known inputs. The setup is

π(θ) = N (θ;0, I), p(x|θ,U) =

L∏
l=1

N (xl;θ
⊤ul, σ

2)

where x = {xl}Ll=1 ∈ RL×1and U = {ul}Ll=1 ∈ RL×K

are the output and input data respectively. Each input ul

is generated as ul ∼ N (0,V) with Vij = 0.4 if i ̸= j
and Vij = 1 otherwise. We wish to infer π(θ|xo,U) ∝
π(θ)p(xo|θ,U) given xo. Here L = 50 and K = 12. Since
the prior and the likelihood function are both multivariate
Gaussian distributions, the posterior is analytically known.
We use this task to illustrate a typical failure mode of ratio-
estimating methods (SNR, SNPE-C).

We first compare different summary statistics learning ap-
proaches in Figure 2.(b). From the figure we see that info-
max statistics are unreliable for this problem: the KL be-
tween the inferred posterior π̂(θ|S(xo)) and the true poste-
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Table 2. A comparison of different neural LFI algorithms. The numbers show the discrepancies ∆(π(θ|xo), π̂(θ|s(xo))) averaged over
20 runs (± standard deviations). Here the results for SNL + SSS correspond to the case where the JSD proxy (6) is used for MI estimate.

g-and-k Bayesian LR Ricker model OU Process Ising model

SNL + SSS 1.591± 0.189 1.231± 1.011 0.261± 0.101 0.479± 0.198 0.137± 0.028

SNL 1.992± 0.517 0.598± 0.179 1.887± 0.792 1.745± 0.447 0.917± 0.224

SNPE-C 2.082± 0.325 13.45± 3.846 0.413± 0.156 1.428± 0.457 0.152± 0.055

SNR 1.903± 0.346 8.534± 3.702 0.498± 0.164 1.009± 0.580 0.144± 0.019

∆ KL KL KL KL MMD

n. simulations 7,500 10,000 5,000 5,000 2,000

rior π(θ|xo) is at least an order larger than other approaches
(note that the y-axis in this figure is in log scale). One reason
may be that the underlying mutual information I(S(x);θ)
is relatively high, making it very difficult to estimate from
n ≤ 10, 000 samples. This result also echoes recent studies
in mutual information estimation (Song & Ermon, 2019;
Rhodes et al., 2020; Choi et al., 2022). On the other hand,
we also see that the moment method, which solves a re-
gression problem instead of mutual information estimate,
works very well for this Gaussian problem.3 Our method, as
analysed in Sec. 3.1, can be seen as in the middle of these
two methods, so its performance is in-between.

The second column in Table 2 compares the performance of
our SNL+SSS algorithm and other LFI algorithms. As ex-
pected, we see SNPE-C and SNR not performing well. This
coincides with recent studies (Song & Ermon, 2019; Rhodes
et al., 2020; Choi et al., 2022) reporting the unreliability of
ratio estimation/mutual information methods in medium-to-
high dimensional settings. On the other hand, we discover
that SNL actually works better than our method. This may
be because (a) the dimensionality of the data x ∈ R50 in this
problem is not so high, so SNL works reasonably well; (b)
there is information loss incurred by slicing in our method.

Ricker model. The next model we consider is a state-
space model where the transition function is non-linear and
non-Gaussian. It is widely used in ecology to describe the
evolution of an animal population (Wood, 2010). Given
parameters of interest θ = {θ1, θ2, θ3}, the data generating
process in this model can be described as:

vt = vt−1e
θ1+θ2ϵt−vt−1 , ϵt ∼ N (ϵt; 0, 1),

xt ∼ Poisson(θ3vt),

where only x = {xt}Tt=1 is observed. This results in an
intractable likelihood function p(x|θ) =

∫
p(x,v|θ)dv for

this model. While intractable, the likelihood function p(x|θ)
3It can be shown that the ground-truth sufficient statistics for

this problem is exactly the conditional mean: S∗(x) = E[θ|x].

of this model can be numerically approximated by the par-
ticle filtering algorithm (Andrieu et al., 2010) up to high
precision using a large number of particles (e.g. 106) and
adaptive proposals (Paige & Wood, 2016). Here we set
T = 30, so that x ∈ R30. The goal is to infer the posterior
π(θ|xo) ∝ π(θ)p(xo|θ) under a uniform prior.

As the data x in this model takes the form of a time series,
it is natural to use a 1D convolution neural network as the
backbone for S(·) (the same architecture is also used for
SNPE-C and SNR). Figure 2.(c) summarises the results that
compare different summary statistics learning methods. For
this model, the improvement brought by slicing is consid-
erable, especially when the JSD estimator is used. The 3rd
column in Table 2 tells the same story. The poor perfor-
mance of moment statistics may be due to its insufficiency.

Ornstein-Uhlenbeck process. The fourth model considered
is a time-series model where the data generating process is
governed by a stochastic differential equation (SDE):

dxt = f(xt,θ)dt+ g(xt,θ)⊙ (AdWt),

fk(xt,θ) = θ2k−1(e
θ2k − xt,k), gk(xt,θ) = θ4+k

where k = 1, 2 and AA⊤ = [[1, 0.55], [0.55, 1]]. This SDE
can easily be simulated by the Euler-Maruyama method,
and we simulate it for an overall time of T = 10. We record
the simulated data after every ∆t = 0.2 time units, resulting
in an observed time-series xo ∈ R2×50. The goal is to infer
π(θ|xo) under a uniform prior. Since we do not observe
the full trajectories, the likelihood of SDEs is generally
intractable, but the model here has an analytic likelihood.

Similar to the setting in the Ricker model, we use a 1D
convolution neural network to process the time-series data
in this task. See Appendix B for its architecture. Figure
2.(d) summarises the results that compare different sum-
mary statistics learning methods. We see that for this
6-dimensional problem, the proposed slice-based method
again performs much better than the infomax method. This
is especially the case for small data regimes (e.g. n ≤ 5000),
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(a) True posterior (b) SNPE-C (c) SNL + SSS, d = K (d) SNL + SSS, d = 2K

Figure 3. OU process, example contour plots for inferred posteriors. Inference is done with 5,000 samples. The figures show the marginal
posterior π̂(θi, θj |xo) for i, j ∈ {1, 2, 3}. The plots (c) and (d) visualise the contours of the neural Gaussian copula proxy in (12).

though as more data is available (e.g. n = 10000) the per-
formance gap becomes minor. The comparison in Table 2
again highlights the advantage over SNL, SNPE-C, SNR.

In Figure 3 we further compare the true posterior (panel
(a)), with the approximation by SNPE-C (panel (b)), and
the posterior approximated by the neural Gaussian copula
proxy (panels (c) and (d)). We see that the neural copula
proxy does a good job in approximating the posterior, while
supporting easy visualisation of marginal distributions, in
addition to fast sampling. Figure 3 also provides an example
for how to use the neural copula proxy to determine d. In
this example, a practitioner can set d = K, as d = K and
d = 2K yield very similar posteriors.

Ising model. The last model we consider originated from
statistical physics and describes the states of atomic spins
on a 8× 8 lattice. Each spin has two states described by a
discrete random variable xi ∈ {−1,+1}. Given parameters
θ = {θ1, θ2}, the probability mass function of this model is

p(x|θ) ∝ exp(−H(x;θ)),

H(x;θ) = −θ1
∑
⟨i,j⟩

xixj − θ2
∑
i

xi.

where ⟨i, j⟩ denotes that spin i and spin j are adjacent.
Being an energy-based model, the likelihood function of
this model is not analytic due to the intractable normalis-
ing constant Z(θ) =

∑
x∈{−1,1}m·m exp[−H(x;θ)]. How-

ever, it is possible to sample x from the model by MCMC.
Note that the sufficient statistics are known for this model:
S∗(x) = {

∑
⟨i,j⟩ xixj ,

∑
i xi}. The true posterior can be

approximated by rejection ABC algorithm due to the exis-
tence of low-dimensional sufficient statistics S∗(x) ∈ Z2.

As the data x ∈ {−1,+1}8×8 in this task takes the form
of an image, we use a 2D convolutional network to pro-
cess the data. Figure 2.(e) compares the performance of
different summary statistics. It can be seen that for this
low-dimensional problem, our slice method is close to the

infomax method for the cases n ≥ 2000, though it is better
for smaller values of n. We believe this is because the pa-
rameter space in this task is only two-dimensional, so the
benefit brought by slicing is not notable. In fact, as slicing
always incurs information loss, the advantages brought by
slicing (e.g. sample efficiency) may be cancelled out.

6. Conclusion
This work presents slice sufficient statistics (SSS), a new
method for constructing summary statistics in likelihood-
free inference (LFI). The main message is that the learning
of sufficient statistics may be easier than direct posterior in-
ference. Motivated by this observation, we further develop
a new LFI algorithm, SNL+SSS, which is shown to out-
perform state-of-the-art inference strategies (e.g. SNPE-C,
SNR) on diverse inference tasks. As a byproduct, we shed
light on shortcomings of SNPE-C and SNR, namely that
these ratio estimation-based methods can be unreliable when
the parameter of the inference task is high-dimensional.

Our work highlights the importance of considering what
is easier to learn for an implicit model. If some objects
(e.g. summary statistics) are easier to learn than the others
(e.g. density), then one should learn the former first to help
learning the latter. In this regard, score estimator (Pacchiardi
& Dutta, 2022) is also worth considering in the future.

It should be noted that, while powerful, the proposed slice-
based method is not a silver bullet: it comes at the price of a
higher computational cost and a potential loss of sufficiency.
Nonetheless, as the method strikes a better trade-off between
sufficiency and sample efficiency, we found it among the
best performing methods in a wide range of settings.

While focusing on LFI, due to the connection between suf-
ficient statistics and the infomax principle, we believe the
proposed slice method can also generalise to other infomax
representation learning tasks (Hjelm et al., 2018; Oord et al.,
2018; Chen et al., 2020), and we leave this to future works.
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A. Theorem proofs
Theorem 1. Let x ∈ RD and θ ∈ RK be two random variables and S : RD → R

d be a deterministic function. Then S(x)
is a sufficient statistics if and only if S(x) maximises SI(S(x);θ),

SI(S(x);θ) = Eϕ∼SK−1 [I(S(x);ϕ⊤θ)], (1)

where ϕ ∈ SK−1 is a vector uniformly sampled from the surface of a K-dimensional unit sphere SK−1.

Proof : The key of the proof is to show if S(X) is the sufficient statistics of θ, then it is also the sufficient statistics for
ϕ⊤θ,∀ϕ ∈ SK−1 and vice versa. We first recall a recent result in statistics (Proposition 1, (Nadjahi et al., 2020)):

KL[p(θ)∥q(θ)] = 0 ⇔ KL[p(ϕ⊤θ)∥q(ϕ⊤θ)] = 0,∀ϕ ∈ SK−1

This means that for a particular X and a particular function S(·),

KL[p(θ|X)∥p(θ|S(X))] = 0 ⇔ KL[p(ϕ⊤θ|X)∥p(ϕ⊤θ|S(X))] = 0,∀ϕ ∈ SK−1

Therefore,

KL[p(θ|X)∥p(θ|S(X))] = 0,∀X ⇔ KL[p(ϕ⊤θ|X)∥p(ϕ⊤θ|S(X))] = 0,∀X,∀ϕ ∈ SK−1

Note that the LHS of the above formula implies that S(X) is a sufficient statistics for θ and the RHS implies that S(X) is a
sufficient statistics for ϕ⊤θ, ∀ϕ ∈ Sd−1. This essentially means that

S = argmax
s

I(θ, s(X)) = argmax
s

I(ϕ⊤θ; s(X)),∀ϕ ∈ SK−1

i.e. I(θ;S(X)) is maximised if and only if for ∀ϕ ∈ SK−1, I(ϕ⊤θ;S(X)) is also maximised. It is then easy to verify
argmaxs I(θ; s(X)) = argmaxs Eϕ∼SK−1 [I(s(X);ϕ⊤θ)], which completes the proof.

Theorem 2. Let x ∈ RD and θ ∈ RK be two random variables. Consider optimising the following objective function w.r.t
a deterministic function s : RD → R

J :

max
s

J∑
j=1

I(s(x)≤j ;θ), (2)

where s(x)≤j denotes the first j dimensions of s(x). Let S = s(x) be the random variable induced by s(·) learned in (2)
and Sj be its jth dimension. We then have

I(Sj ;θ|S<j) ≤ I(Sj−1;θ|S<j−1).

1Department of Engineering, University of Cambridge, UK 2School of Informatics, The University of Edinburgh, UK. Correspondence
to: Yanzhi Chen <yc514@cam.ac.uk>.

Proceedings of the 40 th International Conference on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright 2023 by
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Proof :
I(θ;S≤j)︸ ︷︷ ︸

Aj

= I(θ; [S<j , Sj ]) = I(θ;Sj |S<j)︸ ︷︷ ︸
Ij

+I(θ;S<j)

Therefore

Aj = Ij +Aj−1 = Ij + Ij−1 +Aj−2 = ... =

j∑
k=1

Ik

So

max
s

J∑
j=1

I(s(X)≤j ;θ) =

J∑
j=1

Aj =

J∑
j=1

j∑
k=1

Ik =

J∑
j=1

(J − j + 1)Ij = C ·
J∑

j=1

pjIj

where the constants pj and C are

pj =
J − j + 1∑J
k=1 J − k + 1

, C =

J∑
k=1

J − k + 1

Note that
∑J

j pj = 1. Therefore the maximisation of maxs
∑J

j=1 I(s(X)≤j ;θ) is equivalent to the following constraint
optimisation problem (note that here

∑
j Ij = I(S;θ), so it is also a constant):

max
Ij

J∑
j=1

pjIj ,

s.t.
∑
j

pj = 1,

J∑
j

Ij = I(S;θ)

p1 > p2 > ... > pJ

It immediately comes out that I1 ≥ I2 ≥ ...IJ , which completes the proof.

B. Experiment details
KL divergence between the true and the estimate posteriors. In the paper, we use KL[p(θ)∥q(θ)] as the evaluation
metric. There are two challenges: (a) numerical integration is difficult in high-dimensional cases; (b) the two distributions p
and q may be known only up to a normalising constant (for example, in SNL/SNR the posterior is unnormalised). Let p′(θ)
and q′(θ) be the unnormalised versions of p(θ) and q(θ) respectively and Zp and Zq be their corresponding normalising
constants: p(θ) ∝ p′(θ), q(θ) ∝ q′(θ), Zp =

∫
p′(θ)dθ, Zq =

∫
q′(θ)dθ. We compute KL[p∥q] from p′, q′ as follows.

Step 1. Proxy distribution learning. We first find an easy-to-sample proxy t(θ) to p(θ) satisfying t(θ) ≈ p(θ). The role of
t(θ) is to serve as a good proposal in importance sampling which is used to calculate the normalising constants Zp, Zq and
also KL[p(θ)∥q(θ)] itself later. We do so by running a single round SNPE-A algorithm (Papamakarios & Murray, 2016)
with considerable simulation budget (e.g. n = 105):

t(θ) = argmax
Q

1

n

∑
i=1

logQ(θ(i)|x(i)), θ(i) ∼ π(θ),x(i) ∼ p(x(i)|θ(i))

We highlight that t(θ) as learned in this way will not suffer from the same problem as in contrastive learning-based methods
(i.e. SNPE-C/SNR) mentioned in the main text. Here, we model t by a mixture density network. Note that here t(θ) needs
not to be a very precise approximation to p(θ); serving as a good proposal is sufficient.

Step 2. Estimating normalising constants with proxy. After getting the proxy t(θ), we then use this easy-to-sample proxy to
estimate the normalising constants by importance sampling:

θ(i) ∼ t(θ)

Zp =

∫
p′(θ)dθ =

∫
t(θ)

p′(θ)

t(θ)
dθ ≈ 1

m

m∑
i=1

p′(θ(i))

t(θ(i))
, Zq =

∫
q′(θ)dθ =

∫
t(θ)

q′(θ)

t(θ)
dθ ≈ 1

m

m∑
i=1

q′(θ(i))

t(θ(i))
.

13
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Step 3. KL computation with proxy. Once we have obtained the the unnormalised p(θ) = p′(θ)/Zp and q(θ) = q′(θ)/Zq,
we can compute KL by importance sampling:

KL[p(θ)∥q(θ)] =
∫

p(θ) log
p(θ)

q(θ)
dθ =

∫
t(θ)

p(θ)

t(θ)︸ ︷︷ ︸
w(θ)

· log p(θ)

q(θ)
dθ ≈ 1

m

m∑
i=1

[
w(θ(i)) · log p(θ(i))

q(θ(i))

]
, θ(i) ∼ t(θ).

We note that the above estimator for KL[p∥q] is biased. However, it is not difficult to show that this estimator is consistent
provided that the true normalising constants Zp and Zq are bounded (which is often the case). In the experiments, we use
m =2,000 samples to estimate Zp, Zq and KL. Further increasing the number of samples does not see notable difference.

Evaluation metric: KL vs C2ST. Here we briefly discuss why we prefer KL rather than an alternative metric namely
classifier two samples test (C2ST) (Gutmann et al., 2018; Lueckmann et al., 2021) when evaluating inference quality. In
C2ST, a (neural network-based) classifier is trained to distinguish samples from θ ∼ p(θ) v.s. samples from θ ∼ q(θ). The
classification accuracy ρ ∈ [0, 1] is then served as the discrepancy between p and q. The pros and cons of such method is:

• Advantage. (a) It is interpretable and easy to understand; (b) it is a powerful test there are sufficient samples from p and q.

• Disadvantage. It is often difficult to obtain samples from p and q when they are only known up to a normalising constant
(and this is unfortunately the case for SNL/SNR). If the samples obtained are inaccurate, the accuracy is questionable.

Note that for the disadvantage above, it can not be resolved by using an easy-to-sample proxy t(θ) (as the one used in the KL
metric). This is because this will require t(θ) to approximate p(θ) very well, or we need to resort to importance sampling.

Evaluation metric: MMD. When MMD is used as the discrepancy between the true and the inferred posterior, we use a
Gaussian kernel for MMD(P,Q), with the bandwidth being the median of the pairwise distance ∥θi − θj∥, θk ∼ P (θ).

Neural network architectures. We here provide the details of the architecture of the neural networks used in experiments.

• Neural density estimator q. Throughout the paper, we use masked autoregressive flow (MAF) (Papamakarios et al., 2017)
for density estimation. Following existing works, we use 5 blocks for this MAF, with 50 tanh units in each block.

• Neural Gaussian copula q′. Each marginal transformation function gk(ϵk) is modelled by a 3-layers monotonic neural
network: gk(ϵk) =

∑L
l Akl tanh(Bklϵk + Ckl) +Dk where Akl ∈ R+, Bkl ∈ R+, Ckl ∈ R, Dk ∈ R. Here L = 10.

• Summary statistics network S(·). The architecture of S(·) depends on the data type. (a) For i.i.d data, we use a 3-layers
MLP with 100 units in each hidden layers; (b) For time-series data, we use a 1D convolution network with 2 convolution
layers, with the kernel size being (2, 1) and the number of filters being (50, 100) in the two layers respectively; (c) For
image data, we use a 2D convolution network with 2 convolution layers, with the kernel size being (2, 1) and the number
of filters being (50, 100) in the two layers respectively. In all cases, the computed features will be fed to a MLP with
architecture 100-100-d where d is the dimensionality of the output i.e. S(x) ∈ Rd. ReLU is used as the non-linearity.
This summary statistics network is also used in SNPE-C and SNR to pre-process the data before the posterior estimators.

• Secondary encoder network f(S, ϕi). For this network, which is used to compute the secondary sufficient statistics
S′
i ∈ Rd′

from S and is amortised among different slicing directions ϕ1, ...ϕM , we use a (d+K)−100K−d′ architecture
for it. Here ‘+K’ in the first layer corresponds to amortisation. d′ is set to be 2 i.e. d′ = 2. ReLU is used.

• Ratio estimator t in SNR. For this network, we design its architecture to be t(x,θ) = MLP(S(x),θ) where S(·) is as
above and MLP is a fully-connected network with architecture (d+K)−200−200−1. ReLU is used as the non-linearity.

• Mutual information estimator T (S′
i, θ

′
i, ϕi) for estimating I(S′

i, θ
′
i). For this network, which is used to estimate the

information between S′
i ∈ Rd′

and θ′
i ∈ R, we design it to be a fully-connected network with architecture (d′ + 1 +

K)− (100K +K)− 100K − 1. Here, the two ‘+K’ in the first two layers accounts for amortisation. ReLU is used.

Neural network training. For all our experiments, we use early stopping to train all neural networks, where we use 80% of
the data in training and 20% in validation (the patience threshold is 500 iterations). All neural nets are trained using Adam
(Kingma & Ba, 2014) with its default settings. The learning rate is 5× 10−4. A batch size of 200 is used for all networks.
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The effect of number of slices M . We investigate here how the number of slices affects performance and execution time.

• Computational cost. In Table 3, we compare the execution time of our method under different number of slices. The
reported numbers are the training time (in seconds) per mini-batch. One can see that our method is actually not expensive
to run compared to training a NDE (the NDE here is a MAF with 5 blocks), especially when the dCorr estimator is used.

• Performance. In Table 4 and 5, we investigate how the number of slices affects the performance of our method. Results
for both estimators (JSD, dCorr) are reported, along with that of SNPE-C. We see that our method is fairly robust w.r.t
different choice of M , with M ≥ 4 generally working well. One possible explanation for why our method is insensitive
to the number of slices is as follows. While using only a small number of slices is insufficient, we consider different slices
in different mini-batches across large number of iterations, which compensates for the small number of slices used in each
mini-match. Moreover, as the learning of different slicing directions is amortised, the learning of each slicing direction
also mutually helps each other, further reducing the required number of slices. As M = 8 achieves good performance in
general, and is still affordable to run (compared to training a NDE), we recommend it as the default choice in practice.

Table 1. The execution time under different slice numbers.
M = 2 M = 4 M = 6 M = 8 M = 10 NDE

JSD estimator 0.011 0.016 0.023 0.029 0.032 0.021

dCorr estimator 0.007 0.009 0.011 0.016 0.019 0.021

Table 2. Inference quality w.r.t. the number of slices when JSD estimator is used.

M = 2 M = 4 M = 6 M = 8 M = 10 SNPE-C

g-and-k 1.62± 0.21 1.63± 0.22 1.73± 0.21 1.59± 0.19 1.58± 0.16 2.08± 0.33

Bayesian LR 2.50± 3.37 2.47± 2.91 2.01± 2.12 1.23± 1.01 1.25± 1.10 13.5± 3.85

Ricker’s model 0.30± 0.14 0.26± 0.08 0.25± 0.11 0.26± 0.10 0.25± 0.11 0.41± 0.16

OU Process 0.95± 0.74 0.63± 0.26 0.47± 0.19 0.69± 0.35 0.68± 0.35 1.43± 0.46

Table 3. Inference quality w.r.t. the number of when dCorr estimator is used.

M = 2 M = 4 M = 6 M = 8 M = 10 SNPE-C

g-and-k 1.68± 0.32 1.62± 0.23 1.71± 0.19 1.58± 0.12 1.61± 0.14 2.08± 0.33

Bayesian LR 1.67± 1.62 1.69± 1.39 1.06± 1.28 1.17± 1.18 0.70± 0.54 13.5± 3.85

Ricker’s model 0.46± 0.24 0.38± 0.14 0.38± 0.26 0.42± 0.20 0.41± 0.19 0.41± 0.16

OU Process 0.83± 0.34 0.70± 0.32 0.67± 0.25 0.66± 0.27 0.72± 0.32 1.43± 0.46

Detail settings for the inference tasks. We summarise in Table 1 the prior and the true parameter for the models considered.

• Multivariate g-and-k model. The true parameter θ∗ = {{A∗
l , B

∗
l , g

∗
l , k

∗
l }2l=1, ρ

∗} is {{3, 1, 2, 0.5}, {3, 1, 0.5, 0.5}, 0.75}.
The prior π(θ) is uniform: Al ∼ U(2.5, 3.5), Bl ∼ U(0.5, 1.5), gl ∼ U(−0.2, 2), kl ∼ U(0.0, 1.0), ρ ∼ U(−0.9, 0.9).

• Bayesian linear regression. The true parameter θ∗ is θ∗l = 0.2 + l∆ where ∆ = 0.8/K where K is the dimensionality of
θ. Here K = 12. The prior π(θ) is a factorised Gaussian: θ ∼ N (θ;0, I).

• Ricker model. The true parameter θ∗ = {3.8, 0.5, 10}. The prior π(θ) is θ1 ∼ U(3, 5), θ2 ∼ U(0.25, 0.8), θ3 ∼ U(8, 11).
The prior for θ2 is carefully chosen so that particle filtering can approximate the likelihood well (Fasiolo et al., 2016).

• OU process. The true parameter θ∗ = {θ∗1 , θ∗2 , θ∗3 , θ∗4 , θ∗5 , θ∗6} is {0.5, 1.0, 0.5, 0.5, 1.0, 0.5}. The prior is θ1 ∼ U(0, 1),
θ4 ∼ U(0, 1), θ2 ∼ U(−2, 2), θ5 ∼ U(−2, 2), θ3 ∼ U(0.1, 1.4), θ6 ∼ U(0.1, 1.4).

• Ising model. The true parameter θ∗ = {0.3, 0.1} and the prior π(θ) here is uniform: θ1 ∼ U(0, 1), θ2 ∼ U(−0.2, 0.4).
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Sampling from the unnormalised posterior. As mentioned in the main text, some LFI methods e.g. SNL and SNR does
not support readily sampling from the estimated posterior. For controlled comparison, we also use the neural Gaussian
copula proxy to support fast sampling in SNL/SNR, so that different methods only differ in the ways they infer the posterior.

It is worth noticing that when using the neural copula proxy q′(θ), due to the mode-seeking nature of the reverse KL
objective used, the learned proxy q′(θ) is typically ‘narrower’ than the target distribution i.e. the estimated posterior π̂(θ|xo).
This can be risky, as it can mis-guide simulation (e.g. focusing on a possibly wrong region of the posterior too early and fail
to explore other areas of the posterior — a common issue in approximate sampling). We propose two simple ways to fix it.

• Mixture proposal. One simple way to fix this issue is to consider a mixture proposal between the prior π(θ) and q′(θ):

p(θ) = λπ(θ) + (1− λ)q′(θ)

where λ ∈ [0, 1] e.g. λ = 0.5. We find this simple strategy very robust, and we recommend it to be the default setting.

• Inflated proposal. Alternatively, we can consider an ‘inflated’ version of q′(θ) where we adjust each sample θ ∼ q′(θ) as:

θl = Eq′ [θl] + λ · (θl − Eq′ [θl])

where λ ≥ 1. This is equivalent to scale the variance Vq′ [θ] of q′(θ) by a factor of λ2, hence exploring more regions.
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