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Abstract
Digital twins are models of real-world systems
that can simulate their dynamics in response to po-
tential actions. In complex settings, the state and
action variables, and available data and knowl-
edge relevant to a system can constantly change,
requiring digital twins to continuously update
with these changes to remain relevant. Current
approaches struggle in this regard, as they require
fixed, well-defined modelling environments, and
they cannot adapt to novel variables without re-
designs, or incorporate new information without
re-training. To address this, we frame digital twin-
ning as an in-context learning problem using large
language models, enabling seamless updates to
the twin at inference time. We develop CALM-
DT, a Context-Adaptive Language Model-based
Digital Twin that can accurately simulate across
diverse state-action spaces using in-context learn-
ing alone by utilising fine-tuned encoders for sam-
ple retrieval. We empirically demonstrate CALM-
DT’s competitive performance with existing digi-
tal twin approaches, and its unique ability to adapt
to changes in its modelling environment without
parameter updates.

1. Introduction
What is a digital twin? Digital twins (DTs) are compu-
tational models that simulate real-world system dynamics.
They have been applied in a variety of fields, such as finance
(Slepneva et al., 2021), climate science (Voosen, 2020), man-
ufacturing (Rosen et al., 2015), and medicine (Katsoulakis
et al., 2024), and they are particularly useful for scenario
planning, by modelling how a system will respond to var-
ious actions (Tao et al., 2018; Corral-Acero et al., 2020).
For example, consider a medical patient with oropharyngeal
carcinoma, for whom deciding whether to sequentially or

1Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, United Kingdom. Corre-
spondence to: Harry Amad <hmka3@cam.ac.uk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

concurrently administer chemo- and radiotherapy is non-
trivial (Cooper et al., 2004; Pignon et al., 2009). A DT
can model factors related to their disease, such as tumour
volume, and how they respond to certain interventions to
assess the efficacy of different treatment plans, leading to
optimal results (Tardini et al., 2022).

Why must a digital twin be able to continuously update?
An important aspect of an effective DT is its ability to contin-
uously learn and update as time passes (Tzachor et al., 2022;
National Academy of Engineering and National Academies
of Sciences, Engineering, and Medicine, 2024). DTs oper-
ate in user-defined modelling environments, that dictate the
state and action variables they can model, and the data and
knowledge bases from which they can derive insights. In
dynamic settings, however, the variables that best describe
a system, the actions that apply to it, and the pertinent sur-
rounding information can constantly evolve, and models
become obsolete if they cannot easily adjust to new con-
ditions (Lu et al., 2018). Consider an illustrative example
of using DTs to guide care for patients with cystic fibrosis
(CF). Medical practice can evolve rapidly,1 exemplified by
the 2012 approval of Ivacaftor, a transformative therapy for
CF patients with specific gene mutations (Ramsey et al.,
2011). Such breakthroughs demand immediate integration
into clinical workflows, and if a CF patient’s DT cannot
easily adapt to incorporate novel treatments like Ivacaftor, it
can quickly lose relevance. Furthermore, given the rarity of
CF, there is limited patient data available, and therefore any
new information, such as annual data releases from the UK
CF registry,2 can be highly impactful. DTs that cannot con-
tinuously learn from new information will therefore perform
increasingly sub-optimally for CF patients over time.

Why do current approaches struggle to continuously
update? Existing DTs typically involve knowledge-driven
mechanistic components (Laubenbacher et al., 2024) defined
by expert-derived equations, data-driven machine learning
(ML) components (Kreuzer et al., 2024) defined by neural
networks, or some hybrid combination of these (Sokolov
et al., 2021; Holt et al., 2024). For these approaches, up-
dating modelling environments can be laborious. Updating

1The FDA approved 50 novel drugs in 2024 (Food and Drug
Administration, 2024).

2https://www.cysticfibrosis.org.uk/
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Figure 1. DTs operate within a user-defined modelling environment Eτ , with a certain abstraction of the target system Sτ with state space
Xτ and action space Aτ , as well as relevant data Dτ and knowledge Kτ . Modelling environments change when the user alters Sτ to
incorporate additional state or action variables, or when new data or knowledge is added to Dτ or Kτ (example addition to Kτ shown in
middle panel). Traditional DTs cannot adapt to changes in Eτ without re-design and re-training, while our CALM-DT can.

mechanistic components to accommodate new variables or
information requires significant expert involvement to re-
define the equations underpinning the model, especially in
complex settings. Similarly, ML components operate with
fixed state-action dimensions and training data, and they
cannot incorporate novel variables or information without
undergoing potentially expensive re-training.

For a DT to remain relevant in real-world settings it must
allow inputs and outputs of flexible dimensionality, such
that it can incorporate new variables without re-design, and
be able to continuously learn and leverage new information
without re-training.

How can large language models address this? Large lan-
guage models (LLMs) acquire domain knowledge during
pre-training, which can be augmented with task-specific
knowledge and data at inference time through prompting.
As such, LLMs can be novelly framed as an instantiation of
a hybrid DT, incorporating both knowledge- and data-driven
insights into simulation. Importantly, LLMs operate on nat-
ural language, permitting inputs of flexible and arbitrary
dimensionality, and their in-context learning abilities al-
low new information to be incorporated without re-training
(Brown et al., 2020).

While not their original use case, LLMs have shown promise
in dealing with time-series data (Xue & Salim, 2023; Jin
et al., 2024), most notably in an entirely zero-shot fashion
(Gruver et al., 2024), suggesting that their use as DTs is plau-
sible. However, DTs must be able to simulate across poten-
tially vast state-action spaces, and providing enough data to
allow an LLM to achieve this with in-context learning alone
can be challenging. LLM context windows are finite, and
performance can degrade with excessive context length (Liu

et al., 2024b). This encourages us to develop a simulation
strategy that manages context length by making intelligent
adjustments to the supplied context mid-generation.

In this work, we investigate the ability of LLMs to act as
hybrid DTs, making the following contributions:

1. We identify incompatibilities of existing DTs with dy-
namic modelling environments, and establish a set of
desiderata for DTs in such conditions (§2). We show that
an LLM-based DT can satisfy these desiderata (§3).

2. We propose CALM-DT: a Context-Adaptive Language
Model-based Digital Twin that can adapt to changes
in its modelling environment without re-design or re-
training (§4). We address problems with excessive con-
text length by adjusting the information supplied to the
LLM mid-generation, to ensure maximum relevance to
the current simulation state. We select trajectories from
related systems to include in context using a fine-tuned bi-
encoder framework, retrieving samples that are expected
to minimise the LLM generation error at the current simu-
lation state. During retrieval, we append LLM-generated
summaries of trajectory trends to encoder inputs to im-
prove the identification of temporal patterns.

3. We empirically demonstrate that CALM-DT outperforms
existing DTs, and we showcase its unique ability to re-
main relevant across changes in modelling environments
without parameter updates (§6).

Throughout this work, we will continually refer back to our
CF DT example for illustrative explanations.
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2. Digital Twins in Dynamic Environments
A dynamical system is defined as a three-tuple S :=
(X ,A,Φ), where X ⊆ RdX is a dX -dimensional state
space, A ⊆ RdA is a dA-dimensional action space, and
Φ is a transition distribution. The system at time t ∈ T
has history h(t) = {(x(k), a(k))}t−1

k=0 ∈ H = (X ×A)∗

of t state-action pairs, where x(k) ∈ X is a state vector and
a(k) ∈ A is an action vector. The dynamics of the system
is described by the transition Φ : H × T → P (X ), and
actions are determined by an external policy distribution
π : H×X × T → P (A).

When constructing a DT, a user defines a modelling envi-
ronment Eτ := (Sτ , Dτ ,Kτ ) which contains an abstrac-
tion Sτ = (Xτ ,Aτ ,Φτ ) of the system for the DT to ap-
proximate, a dataset Dτ = {{xi(t), ai(t)}Ti−1

t=0 }ND
i=1 of ob-

served histories from related systems, and a knowledge base
Kτ = {ki}NK

i=1 of descriptions (e.g. physical laws) to guide
modelling. Crucially, modelling environments are dynamic,
as users may wish to redefine Sτ and expand Dτ or Kτ at
any moment, inducing a change in modelling environment
Eτ → Eτ+1. For example, the approval of the novel drug
Ivacaftor in 2012 could lead to a user inducing a change in
modelling environment by expanding Aτ to incorporate it,
and adding to Dτ and Kτ to describe its effects.

For a DT to remain relevant to a dynamical system in real-
world settings, it must be able to easily incorporate addi-
tional state and action variables and refine its approximation
with newly available information. To do so, a DT must
satisfy the following desiderata:

[D1] Flexible dimensionality. To incorporate new state
and action variables as Sτ evolves, a DT must allow
state-action inputs and outputs of varying and arbitrary
dimensionality.

[D2] Continuous learning capability. To leverage updates
to Dτ and Kτ , a DT must be able to integrate new
information without parameter updates.

Existing DT approaches do not satisfy these desiderata,
since they have inflexible architectures that are fixed at
design time. Upon Eτ → Eτ+1 they require architectural
overhauls to accommodate new Xτ+1,Aτ+1 dimensions
and full re-training on Dτ+1 and Kτ+1. This necessitates a
shift towards DTs that natively support dynamic modelling
environments, a challenge we address through LLM-based
simulation.

3. LLMs as Digital Twins
To develop DTs that remain relevant in dynamic modelling
environments, we leverage LLMs, since they naturally fulfil
[D1-2] from §2. Unlike traditional methods that fix Sτ , Dτ

and Kτ at design time, LLMs can adapt to evolving state-
action spaces, and learn from new information without re-
designs or parameter updates. LLMs operate on free-form
natural language, decoupling them from rigid state-action
schemas. An LLM-based DT will therefore satisfy [D1] if a
mapping g is developed from state-action pairs of arbitrary
dimensionality to natural language. Furthermore, LLMs
have the capacity to learn at inference time with in-context
learning (Brown et al., 2020). They therefore satisfy [D2], as
their simulations can incorporate new information without
parameter updates through changes to their prompts.

There are outstanding practical challenges with LLM-based
DTs, however. The dimensionality of the state-action space
for complex systems can be large, and their dynamics can
vary significantly in this space. DTs can therefore require
large amounts of data to accurately approximate system
dynamics across these large spaces. The amount of infor-
mation that LLMs can effectively incorporate at inference
time is limited, however, making it infeasible for an LLM
to accurately simulate a complex Sτ with a fixed context.

To overcome this, we develop a novel context-adaptive sim-
ulation strategy which adjusts the context supplied to the
LLM mid-generation, based on the information require-
ments of the current simulation state. By continuously re-
evaluating the relevance of the available information in Dτ

and Kτ to the current simulation state we ensure that only
the most useful context is given to the LLM, enabling it to
simulate across large state-action spaces with varied dynam-
ics without overloading its context window.

4. CALM-DT
We propose CALM-DT, a Context-Adaptive Language
Model-based Digital Twin (overview in Figure 2). CALM-
DT is a simulation approach that allows an LLM to ac-
curately model the dynamics of a system across diverse
state-action pairs by continuously adjusting its context to
minimise the generation error at each simulation state. A
user inputs the target’s state-action history (h), a dataset of
related trajectories (Dτ ), a knowledge base including data
and variable descriptions (Kτ ), an action policy (π), a con-
text sample-set size (c), a rolling lookback (l), a resampling
buffer (r), and a simulation horizon (F ). CALM-DT simu-
lates F state-action pairs via an iterative three-stage process:
information retrieval (§4.1), prompt formulation (§4.2),
and generation (§4.3).

4.1. Information Retrieval

In this stage, relevant knowledge is extracted from Kτ and
the top c samples are retrieved from Dτ , based on h.
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Figure 2. Simulation with CALM-DT. Inputs: target history (h), dataset of related trajectories (Dτ ), knowledge base including system
and variable descriptions (Kτ ), action policy (π), context sample-set size (c), rolling lookback (l), resampling buffer (r), simulation
horizon (F ). For F steps: 1) Extract relevant knowledge from Kτ and choose the top c samples from Dτ using fine-tuned encoders (§4.1).
2) Construct natural language prompt describing the target and related systems (§4.2). 3) Draw the next simulated state from the LLM, the
next action from π, and update h (§4.3). If a new action is taken, or r steps have been simulated, return to 1), else return to 2).

4.1.1. KNOWLEDGE EXTRACTION

Kτ forms the basis for the knowledge-driven insights that
will guide simulation. Through Kτ the user can encode
their own knowledge into simulations, and assist the LLM
to leverage its domain knowledge by providing it valuable
context (Du et al., 2024). We consider a flexible Kτ with
varying levels of information, depending on user preference.
This can include general descriptions of the target system
(e.g. ‘This data describes a patient with cystic fibrosis’),
state variables (e.g. ‘FEV1 is forced expiratory volume in 1
second’) and action variables (e.g. ‘Dornase alfa can sta-
bilise or slow the decline of FEV1’). Furthermore, any infor-
mation that the user wishes to provide that represents their
own priors over expected dynamics can also be included
(e.g. ‘FEV1 tends to decline without treatment’). Crucially,
this allows users to instil knowledge-based insights into sim-
ulation with semantic descriptions, not requiring distillation
into well-formed equations, which can be a difficult task
(Kacprzyk & van der Schaar, 2025). During knowledge
extraction, any descriptions involving the state-action vari-
ables in h are extracted from Kτ , along with general system
descriptions, to form the relevant knowledge base Kf .

4.1.2. SAMPLE RETRIEVAL

Dτ , a dataset of N state-action trajectories from related
systems (e.g. other CF patients), forms the basis for the
data-driven insights that will guide simulation. We wish to
select only the most useful samples for the current h.

We firstly filter Dτ for samples with relevant actions, such
that the DT can learn action-induced dynamics. Let ha =
unique({a(t)}l−1

t=0) denote the unique actions in h. We filter
Dτ for samples di whose action sequences {ai(t)}Ti−1

t=0

contain a subsequence of length at most l that includes all
actions in ha, and that is followed by at least one future
time step. Formally, the set of valid samples is V = {di ∈

Dτ | ∃ t∗, w ≤ l : ha ⊆ {ai(t)}t
∗+w−1
t=t∗ , and t∗ + w ≤

Ti − 1}.3 From each di ∈ V , we extract a history-future
pair, where the history is a length l state-action sequence
covering the identified window that shares actions with h,
and the future is the next (up to) r state-action pairs. This
forms the action-relevant data base Df .

For sample selection, we adapt bi-encoder retrieval methods
from natural language processing (NLP) (Cheng et al., 2023;
Liu et al., 2024a) to our use case. Given we can convert
state-action sequences into natural language representations
via g, we can utilise natural language encoders ϕt, ϕc to
assess the similarity between a target and candidate sample.
However, since time-series data differ significantly from typ-
ical NLP training distributions, we need to align pre-trained
encoder embedding spaces with our task via fine-tuning.
Furthermore, we enhance each trajectory’s textual represen-
tation by appending an LLM-generated natural language
summary of its trends. This enriched representation facil-
itates more effective retrieval by improving the encoder’s
ability to identify temporal patterns.

We employ contrastive learning (Becker & Hinton, 1992;
Hadsell et al., 2006; Chen et al., 2020) to fine-tune ϕt and
ϕc, using LLM performance feedback to determine positive
and negative samples. We construct a training dataset of
target-candidate trajectory pairs, where multiple candidates
are paired with each target. Each candidate is assigned a
score based on the performance that an LLM achieves using
it as a context sample when simulating the target trajec-
tory.4 For each target, we designate its paired candidate
with the best score as the positive sample and its B worst-
scoring paired candidates as negative samples. We fine-tune
ϕt and ϕc using the InfoNCE loss (Oord et al., 2018), to

3For continuous actions, appropriate discretisation is required.
4Scores can be metrics such as MSE, MAE, or Continuous

Ranked Probability Score (CRPS) (Gneiting & Raftery, 2007).
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maximise similarity between targets and their positive can-
didates, while minimising similarity to negative candidates.
For each target t, and their respective positive (c+) and
negative ({c−i }Bi=1) candidates, this loss is:

L = − log
exp

(
ϕt(t)·ϕc(c

+)
τ

)
exp

(
ϕt(t)·ϕc(c+)

τ

)
+
∑B

i=1 exp
(

ϕt(t)·ϕc(c
−
i )

τ

)
(1)

where τ is a temperature parameter that controls the con-
centration of the distribution. This fine-tuning process en-
codes some notion of LLM simulation performance into
the embedding spaces of ϕt and ϕc, leading to retrieval of
samples that enhance simulations for a given target. No-
tably, we have not contradicted our claim that CALM-DT
can adapt to new modelling environments without parameter
updates. We perform fine-tuning only once, in the initial
modelling environment E0, using D0 to form the training
dataset, and the resulting encoders remain applicable across
the proceeding environments, as their inputs are natural lan-
guage trajectory representations that are dimension-agnostic.
Moreover, as demonstrated in §6.2, even without fine-tuning
we surpass existing DT approaches, indicating that a fully
training-free version of CALM-DT is feasible (further de-
tails of this fine-tuning process, including elaboration on our
LLM-generated time-series summaries, are in Appendix A).

At inference time, ϕt and ϕc are used to compute similarity
scores between h and each history of di ∈ Df . The top c
highest-scoring samples are selected to form the context set
Cf = topc{di ∈ Df |ϕt(h) · ϕc(di)}.

4.2. Prompt Formulation

Once Kf and Cf have been determined, they are struc-
tured into a prompt to be supplied to the LLM. The general
prompt format is shown in Figure 2, which includes each
description ki ∈ Kf , each history-future pair in Cf , and the
target system’s history. Example prompts are provided in
Appendix B.

4.3. Generation

Supplied with this prompt, the LLM estimates the transition
distribution of the target system, Φ̂, generating a distribu-
tion over the natural language representation of the next
possible state. Depending on whether uncertainty quantifi-
cation is desired, sampling can be performed using beam
search (Sutskever et al., 2014), to obtain multiple plausible
outcomes, or greedy decoding. For each state sampled from
Φ̂, we apply the inverse mapping g−1 to transform it into a
structured state representation, and the corresponding action
is then sampled from π. Generated state-action pairs are
appended to h, and the oldest entry is removed to maintain
a consistent rolling lookback l.

Finally, depending on the new h, the decision is made
whether to return to 1) information retrieval, or 2) prompt
formulation. If the newest action is not in the previous ha,
or the resampling buffer is exceeded (i.e., f mod r = 0),
the process returns to 1) to re-select the most relevant infor-
mation. Otherwise, the simulation continues from 2) with
the same information base.

To the best of our knowledge, CALM-DT is the first
context-adaptive simulation method, dynamically adjusting
its knowledge and data mid-generation. Notably, CALM-
DT is LLM-agnostic, allowing us to leverage arbitrary base
LLMs as Φ̂ without any necessary fine-tuning to incorporate
relevant data- and knowledge-driven insights. By efficiently
selecting and adapting the supplied context, CALM-DT
permits accurate simulation across diverse state-action tra-
jectories while maintaining manageable context window
sizes. Additionally, novelty arises in our sample-selection
method, as we are the first to propose retrieval of time-series
data by leveraging LLM-generated summaries to enhance
NLP encoder capabilities.

Crucially, CALM-DT allows continuous and seamless up-
dating, as all data- and knowledge-driven insights arise
purely from in-context learning. This ensures the model
can easily adapt to new modelling environments without re-
designs or parameter updates—an advantage that no existing
DT approach offers.

5. Related Works
5.1. Digital Twins

DTs have been deployed as far back as the 1960s, where
they were used by NASA to simulate spacecraft (Allen,
2021) based on a collection of expertly crafted equations de-
rived from physical laws. While expert-defined DTs remain
in use (Laubenbacher et al., 2024), they require significant
effort on the part of domain experts to distil knowledge into
mechanistic equations, which can limit scalability. Methods
like genetic programming (Koza, 1994) and Sparse Iden-
tification of Nonlinear Dynamics (SINDy) (Brunton et al.,
2016) aim to automate the discovery of such models, but
these techniques are limited to relatively simple equations,
and they result in fixed-dimensional models.

Deep learning approaches offer an alternative by approxi-
mating complex dynamics directly from longitudinal data.
There are a variety of model architectures that are designed
to handle sequential data, with the most powerful being
those that can model long-term dependencies, including
RNNs (Elman, 1990; Graves, 2012) and transformers (Wu
et al., 2021; Zhou et al., 2022; Melnychuk et al., 2022). Neu-
ral ODEs (Chen et al., 2018; Dupont et al., 2019; Alvarez
et al., 2020) extend deep learning capabilities to modelling
continuous-time dynamics. Despite their expressiveness,
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deep learning models require fixed input-output structures
that are set at design time, obliging their re-design and re-
training upon a change in modelling environment.

Hybrid approaches combine mechanistic equations with
deep learning methods to improve sample efficiency and
generalisation to out-of-distribution data. These range from
models that combine neural components with well-defined
physical equations (Raissi et al., 2019; Kuang et al., 2024) to
those that integrate learnable components into known model
structures (Qian et al., 2021; Takeishi & Kalousis, 2021).
Recent efforts to automate DT creation leverage LLMs for
automatic generation of hybrid DT code structures (Holt
et al., 2024).

Despite these varied approaches, existing DT methods break-
down upon changes in modelling environment, as they can-
not easily incorporate additional variables or learn from
new data or knowledge without extensive re-designs and
re-training. Makarov et al. (2024) have recently considered
direct use of LLMs as DTs, however they require LLM
fine-tuning, hindering their ability to continuously learn as
new data is released. To our knowledge we are the first to
propose a DT method that can use any base LLM, with-
out fine-tuning, uniquely allowing CALM-DT to adapt to
changes in modelling environment.

In Table 1 we compare CALM-DT with a variety of ex-
isting DTs. Notably, CALM-DT allows the most general
form knowledge inputs, allows uncertainty in simulations if
desired, and is the only method to satisfy our desiderata.

5.2. World Models

World models are a related research area concerned with
modelling environment dynamics to enable planning (Ha
& Schmidhuber, 2018). While traditional world models
typically focus on fixed-horizon, often discrete-time roll-
outs within largely fixed environments, DTs can be seen as
a specific class of world model, with some additional re-
quirements. DTs must exhibit continuous-time dynamics, to
allow simulation with arbitrary temporal granularity (Chen
et al., 2025), and continuously update alongside their physi-
cal counterparts (Tzachor et al., 2022; National Academy
of Engineering and National Academies of Sciences, Engi-
neering, and Medicine, 2024). While typical world models
focus on more static environments, DTs must be designed to
update. Several recent works have explored using LLMs as
world models (Hao et al., 2023; Liu et al., 2024c; Xie et al.,
2025), however since they are not focused on applications
as DTs specifically, they typically employ fixed prompt-
ing, or fine-tuning, and they do not explore updating the
model upon changes in environment. Furthermore, using
data from related systems for in-context learning to enhance
LLM-based simulations is unexplored.

Table 1. Comparison of a collection of related DTs. Knowledge:
How are knowledge-driven insights incorporated? Probabilistic:
Allows uncertainty in simulation? [D1]: Handles arbitrary state-
action dimensions without re-design? [D2]: Incorporates new
information without parameter updates?

Method Knowledge Probabilistic [D1] [D2]

Expert DTs Equations ✓ ✗ ✗
Transformer — ✓ ✗ ✗

RNN — ✓ ✗ ✗
DyNODE — ✗ ✗ ✗

SINDy — ✗ ✗ ✗
HDTwin Equations ✗ ✗ ✗

CALM-DT Nat. language ✓ ✓ ✓

5.3. LLM-Based Time-Series Forecasters

A related, yet distinct, area is time-series forecasting, where
LLMs are gaining traction (Xue & Salim, 2023; Zhou et al.,
2023; Jin et al., 2024; Gruver et al., 2024). While these meth-
ods show promising results, they focus solely on predicting
future values and do not incorporate actions or allow for
policy simulation, making them unsuitable for DT applica-
tions. Again, using data from related systems for in-context
learning with LLM time-series forecasters is unaddressed.

6. Empirical Investigation
We now demonstrate the empirical performance of CALM-
DT. Firstly, we examine simulations in fixed modelling envi-
ronments, demonstrating state-of-the-art performance (§6.1).
We also conduct ablation studies to assess the contribution
of different components of CALM-DT (§6.2). We then
showcase CALM-DT’s unique ability to adapt to changes
in modelling environment without re-design or re-training,
demonstrating adaptation to a novel action (§6.3), and incor-
poration of new data (§6.4). We report detailed experimental
set-ups in Appendix C.

6.1. Performance in Fixed Modelling Environments

Setup. We consider DT simulations in two medical
scenarios: CF progression under treatment with
dornase alfa (Yang & Montgomery, 2021), and
non-small cell lung cancer (NSCLC) tumour growth
under chemo- and radiotherapy. For the CF setting,
we use 1000 trajectories from the 2008-2013 UK CF
registry for training, and assess three-year simulation
performance. For the NSCLC setting, we generate
500 training samples of 60-day cancer progression
according to the pharmacokinetic-pharmacodynamic
model from Geng et al. (2017), which has previous
use in ML literature (Bica et al., 2020; Seedat et al.,
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Table 2. DT simulation comparisons for CF and NSCLC progression. Averaged over 10 runs, with 95% CIs. Ordered by average ranking.

CF NSCLC

MSE (↓) MAE (↓) MSE (↓) MAE (↓) Rank (↓)

1-NN 107± 0 6.96± 0 181.22± 0 6.12± 0 7.5
RNN 340± 4.34 13.8± 0.090 115± 4.35 6.04± 0.645 7.25

Constant 86.8± 0 5.84± 0 279.23± 0 7.21± 0 7
SINDy 73.0± 0 5.47± 0 1.90× 104 ± 0 37.6± 0 6.5

Transformer 83.1± 1.01 6.24± 0.029 116± 52.7 5.86± 2.44 6
DyNODE 82.6± 0.279 6.23± 0.009 104± 63.6 4.67± 2.06 4.5
K-NN 65.1± 0 5.47± 0 97.28± 0 4.91± 0 3

HDTwin 69.8± 3.69 5.44± 0.169 80.6± 11.8 3.42± 0.717 2
CALM-DT 55.3± 0.811 4.63± 0.045 79.4± 8.57 4.28± 0.157 1.25

2022; Melnychuk et al., 2022; Holt et al., 2024), and
we assess 30-day simulation performance. Since the
CF data is not publicly accessible, and we generate
the NSCLC data from a stochastic simulator, the test
data is unlikely to appear in any LLM training corpora,
addressing potential data leakage issues.

In Table 2 we compare with three simple baselines:
constant prediction, as well as K-nearest-neighbour
predictions with K = 1 and with the best observed K.
We also compare with five existing DT methods, using
the implementations from Holt et al. (2024): an RNN
(Graves et al., 2007), Transformer (Melnychuk et al.,
2022), neural ODE model (DyNODE) (Alvarez et al.,
2020), mechanistic model discovery method (SINDy)
(Brunton et al., 2016), and LLM-driven hybrid DT
discovery method (HDTwin) (Holt et al., 2024).

Takeaway. Assessing simulation performance in terms
of MSE and MAE from the test sample futures, CALM-
DT achieves the best ranking, averaged across both
metrics and datasets. For CF simulation in particular,
CALM-DT outperforms all other methods to a statis-
tically significant degree. LLMs, using their inherent
domain knowledge along with the context samples pro-
vided by our sample selection method, can generate
accurate simulations of complex dynamical systems,
with interventions, over horizons with both a small
(CF) and large (NSCLC) number of time steps.

6.2. Ablation Studies

Setup. We conduct several ablation studies on
CALM-DT in the CF setting from §6.1. In Table 3
we compare a variety of approaches to selecting the
context set Cf . We consider (i) zero-shot generation
(Cf = ∅), (ii) random selection, (iii) selection
with encoders that are not fine-tuned, (iv) selection

with fine-tuned encoders without natural language
time-series summaries appended to their inputs, (v)
selection with encoders that are neither fine-tuned
nor given summaries, (vi) selection by querying an
LLM for the top c samples, and (vii) placing the entire
dataset in context (Cf = Df ).

On the left of Figure 3 we compare the performance of
CALM-DT across different base LLMs, setting either
GPT-4o, GPT-4o Mini, or GPT-3.5 Turbo as Φ̂. On the
right we compare CALM-DT across different context
set sizes c ∈ {0, 1, 2, 3, 5, 10}.

Table 3. CALM-DT CF performance with different Cf selection
methods. Averaged over 10 runs, with 95% CIs. Ordered by MSE.

Cf Selection Method MSE (↓) MAE (↓)

No fine-tuning/summary 76.3± 1.61 5.15± 0.0713
Cf = ∅ 74.8± 0.411 5.24± 0.021
Random 73.8± 3.22 5.22± 0.100

No fine-tuning 67.1± 0.894 4.95± 0.040
No summary 66.6± 0.387 5.05± 0.0333

LLM selection 65.6± 2.19 4.88± 0.116
Cf = Df 65.3± 3.90 4.81± 0.102

CALM-DT 55.3± 0.811 4.63± 0.045

70 75 80 85 90
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Figure 3. Left: Base LLM ablations. Right: Context set size abla-
tions. Raw results in Appendix D
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Takeaway.

1. The method of selecting Cf significantly affects
simulation performance. Setting Cf = ∅, conduct-
ing random selection, or using a non fine-tuned
encoder without appended summaries all result in
similar, relatively poor, performance. Adding ei-
ther fine-tuning or appending natural language sum-
maries improves encoder selection, and these ap-
proaches perform similarly to LLM-based selection
and setting Cf = Df . Our complete method, us-
ing a fine-tuned encoder with appended natural lan-
guage summaries performs best, at a statistically
significant level. It is interesting to note that the
non fine-tuned encoder, with appended summaries,
outperforms almost all DT approaches from Table 2,
showing that an entirely training-free LLM-based
DT can perform well.

2. Simulation performance scales with base LLM ca-
pacity (measured here with MMLU scores). Given
CALM-DT is LLM-agnostic, this suggests that its
performance will continue to improve along with
ongoing LLM innovations, as opposed to existing
DTs with fixed architectures.

3. Simulation performance rapidly improves with only
a few context samples, showing how LLMs can
effectively derive insights from small sample sets.
c = 5 appears to be a point of saturation, with no
further gains being realised for larger c. Conducting
careful sample selection is therefore important, as
filling the LLM context window with unnecessary
samples hinders performance.

6.3. Introducing a New Action

Setup. We now demonstrate how CALM-DT natu-
rally adapts to changes in modelling environment. In
2012, Ivacaftor was approved for CF treatment, and
it is recorded in the UK CF registry from 2013. We
investigate some changes in modelling environment
that users could induce to include this new action, and
how CALM-DT responds. We examine CALM-DT’s
performance when updating the:

1. Action space only (A), where the new action is the
only change from Eτ → Eτ+1, and no information
on the effects of Ivacaftor is given.

2. Action space and knowledge base (A+K), where a
high-level description of Ivacaftor’s effects, derived
from a 48-week clinical trial (Ramsey et al., 2011),
is added to Kτ → Kτ+1.

3. Action space, knowledge base, and dataset (A +

K +D), where samples from 2013 with one post-
Ivacaftor measurement are also added to Dτ →
Dτ+1.

We report three-year simulation performance on pa-
tients that receive Ivacaftor from 2013-2015 in Table 4.

Table 4. CALM-DT simulation post-Ivacaftor across three adapta-
tion scenarios. Averaged over 20 runs, with 95% CIs.

Updates to Eτ MSE (↓) MAE (↓)

A 59.7± 0.472 4.95± 0.0166
A+K 54.4± 0.472 4.75± 0.0242

A+K +D 50.4± 0.477 4.28± 0.0251

Takeaway. Updating the modelling environment by
adding the Ivacaftor action without providing any rele-
vant information on its effects naturally leads to poor
simulation. Expanding Kτ to include a high-level de-
scription of its effects greatly improves performance,
and adding patients treated with Ivacaftor to Dτ leads
to a further increase. LLMs can incorporate insights
from natural language descriptions into simulations,
avoiding the need to distil knowledge into well-defined
equations, and they can effectively harmonise this with
data-driven insights to maximise performance.

6.4. Incorporating New Data

Setup. We now show how CALM-DT can continu-
ously learn over time by incorporating growing data
into Dτ . In §6.3 we only used data points from 2013 to
expand Dτ with post-Ivacaftor information, showcas-
ing performance immediately after a change in mod-
elling environment. Longer term trajectories become
available with each yearly release from the UK CF reg-
istry, and CALM-DT can easily incorporate this new
data to improve its accuracy. To demonstrate this, we
report performance in Table 5 with varying amounts of
post-Ivacaftor data in Dτ , from one to three years.

Table 5. CALM-DT simulation post-Ivacaftor with growing Dτ .
Averaged over 20 runs, with 95% CIs.

Post-Ivacaftor Data MSE (↓) MAE (↓)

One year 50.4± 0.477 4.28± 0.0251
Two years 50.0± 1.00 4.29± 0.0468

Three years 47.8± 1.01 4.19± 0.0523
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Takeaway. As more post-Ivacaftor data becomes avail-
able, CALM-DT learns its effects better, improving in
three-year simulation accuracy. CALM-DT can effec-
tively utilise growing datasets to improve performance
without re-training.

6.4.1. COMPARISON WITH A DOMAIN-SPECIFIC MODEL

For further context, we compare with a recent expert-
derived linear mixed-effects model for CF progression
under Ivacaftor. Zhou et al. (2024) model CF patients’
FEV1PP—forced expiratory volume in 1 second as a per-
centage of expected performance, a critical value for measur-
ing CF progression—using data from the US CF foundation
patient registry (Knapp et al., 2016). They report an RMSE
of 6.78 for six-month predictions on a validation cohort.
FEV1PP is one of the state variables we model in our CF
setting, so we can compare to this. Using three years of
post-Ivacaftor data in Dτ , CALM-DT achieves an RMSE
for FEV1PP, on our testing cohort, of 8.11 over one year,
and 8.58 over three years.5 Using Zhou et al. (2024) as a
domain-specific upper bound on performance, we see that
CALM-DT performs relatively well, even with its low ex-
pertise requirements and seamless adaptability to changes
in environment.

7. Discussion
Our empirical results demonstrate that CALM-DT generates
state-of-the-art simulations in fixed modelling environments
(§6.1). We validate our specific design choices in CALM-
DT (§6.2), and show how it can model novel actions (§6.3)
and incorporate new data to guide its simulations (§6.4).
Unlike existing DT approaches, which require architectural
modifications and parameter updates to extend state-action
spaces and incorporate new information, CALM-DT can
adapt without re-training, since it relies on in-context learn-
ing alone, enabling effective use in real-world, dynamic
environments.

7.1. Limitations

There are, of course, limitations to CALM-DT. Inference
speed will generally be slower than other DT approaches,
especially over extended simulation horizons where the en-
coders and base LLM are called multiple times. Further-
more, if using closed-sourced LLMs via API calls, monetary
costs must be considered.

There are also specific artefacts of LLM-based simulations
that users should be aware of. It is well known that LLMs
can hallucinate (Maynez et al., 2020; Ji et al., 2023), which

5We can only report yearly errors, as this is the granularity of
the UK CF registry data.

could result in unlikely spikes or dips being included in
simulations, or generation of values that violate known do-
main constraints. Hallucinations can be difficult to predict
or detect automatically, so careful analysis of simulation
outputs is critical. Biases in LLM training corpora can
influence model outputs (Bender et al., 2021), potentially
leading to disparities in simulation performance across pop-
ulations. Classical tokenisation schemes (e.g. byte-pair
encoding (Sennrich et al., 2016)) can limit LLM perfor-
mance in numerical tasks (Liu & Low, 2023; Gruver et al.,
2024), obliging caution in scenarios where high precision is
necessary. Modern tokenisation schemes, however, are im-
proving numerical handling (Touvron et al., 2023). Finally,
correctly structured outputs cannot be guaranteed, given the
stochastic nature of LLMs, although, in practice, we rarely
experienced such issues. At times, textual explanations or
Markdown characters were erroneously included in simu-
lation outputs. The majority of these limitations will likely
benefit from general innovations in LLM technology.

7.2. Future Works

Potential future directions for CALM-DT include extensions
to improve generalisation and adaptability. Generalisation
could be improved by incorporating causal graphs into sim-
ulation, to ensure known causal relationships are respected,
and expanding our information retrieval step to utilise large,
unstructured textual corpora with potentially extensive in-
sights. To improve adaptability, focus can be placed on
actively retrieving information to reduce uncertainty during
deployment (Kobalczyk et al., 2025), including strategic
selection of informative data samples, which may be costly
to acquire (Astorga et al., 2024).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Bi-Encoder Fine-Tuning with LLM Feedback
We include extended details on our bi-encoder retrieval fine-tuning process here.

Time-Series Natural Language Representation. Firstly, we define the mapping g we use to produce a natural language
representation of a time-series. Consider the following time-series with state variables x and y, and action variable z.

[{x : 1, y : 1, z : 0}, {x : 2, y : 1, z : 0}, {x : 3, y : 1, z : 1}]

Where the measurements are taken at times t = 0, 1, 2. The natural language representation of the states of this series, as
produced by our mapping g, is:

"""
Time 0: x: 1, y: 1 | Time 1: x: 2, y: 1 | Time 2: x: 3, y: 1
"""

And for the actions, it is:

"""
Time 0: z: 0 | Time 1: z: 0 | Time 2: z: 1
"""

Training Dataset Construction. Given a dataset of trajectories D = {{xi(t), ai(t)}Ti−1
t=1 }Ni=1, we first construct a

contrastive learning training dataset, in a manner similar to existing NLP approaches (Cheng et al., 2023; Liu et al., 2024a).
Each sample in this dataset contains a target trajectory and C candidate trajectories. We then score each candidate with a
performance metric, such as MSE, MAE, or CRPS (Gneiting & Raftery, 2007), that is based on an LLM simulating the
future of the target trajectory, using the candidate as an in-context learning example. Based on these scores, we designate
candidates as either positive or negative samples. Specifically, the candidate that results in the best score is designated as the
positive sample, and the B worst performing candidates are the negative samples. Finally, for each target, and its respective
positive and negative candidates, we generate a natural language summary of the trends in its state trajectory, using an LLM.
This is to allow the encoders to more easily pick up on temporal trends, that may be difficult to assess from numerical values
alone. We generate this trajectory summary by supplying an LLM with the following prompt:

"""
For each variable in this time-series, write <VARIABLE NAME>: <TREND>, where <TREND> is a

list of one or more descriptive words that summarises the series in chunks. Decide how
to chunk each variable based on when its trend changes. Neighbouring chunks should
not have the same description. Each <TREND> each word is either [increasing,
decreasing, stable]. There should be fewer chunks than points in the time-series. Time-
series: {trajectory_str}

"""

This summary is then appended to the natural language representation of the trajectory as produced by the mapping g.

Training. With the training dataset constructed, we initialise two encoders ϕt and ϕc to encode the target and candidate
samples, respectively. Then, for each target t, we extract their positive (c+) and negative ({c−i }Bi=1) candidates, and train the
encoders with the InfoNCE loss (Oord et al., 2018):

L = − log
exp(ϕt(t)·ϕc(c

+)
τ )

exp(ϕt(t)·ϕc(c+)
τ ) +

∑B
i=1 exp(

ϕt(t)·ϕc(c
−
i )

τ )
(2)

where τ is a temperature parameter that controls the concentration of the distribution.

B. Example Prompts
Here are example prompts input to the LLM for simulation of a CF and NSCLC patient, produced by the Prompt
Formulation step of CALM-DT as described in §4.
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B.1. CF Example Prompt

"""
The data is from a patient with cystic fibrosis. The time unit is in years.

STATE VARIABLES:
FEV1PP: Forced expiratory volume in 1 second compared to the standard for that age.
Weight: Patient weight in kg.
Height: Patient height in cm.

ACTION VARIABLES:
Dornase_Alfa: A treatment which can stabilise or slow the decline of FEV1.

Example 1 state history:
Time 2008: FEV1PP: 80.1, Weight: 65.0, Height: 168 | Time 2009: FEV1PP: 81.0, Weight:

66.2, Height: 168 | Time 2010: FEV1PP: 74.2, Weight: 63.5, Height: 168

Example 1 action history:
Time 2008: Dornase_Alfa | Time 2009: Dornase_Alfa | Time 2010: Dornase_Alfa

Example 1 state future:
Time 2011: FEV1PP: 71.2, Weight: 64.1, Height: 168

Given the following state history:
Time 2008: FEV1PP: 77.8, Weight: 70.1, Height: 174 | Time 2009: FEV1PP: 80.1, Weight:

69.8, Height: 174 | Time 2010: FEV1PP: 74.0, Weight: 70.9, Height: 174

And the following action history:
Time 2008: Dornase_Alfa | Time 2009: Dornase_Alfa | Time 2010: Dornase_Alfa

Simulate the next timestep’s state, for all state variables. Follow the exact format of
the state history.

"""

B.2. NSCLC Example Prompt

"""
The data describes treatment responses for combined chemo and radiation therapy for non-

small cell lung cancer patients, generated from a bio-mathematical model. The time
unit is in days.

STATE VARIABLES:
tumour_volume: Volume of the tumour with units cmˆ3.
chemotherapy_drug_concentration: Concentration of the chemotherapy drug vinblastine with

units mg/mˆ3.

ACTION VARIABLES:
chemotherapy_dosage: Dosage of the chemotherapy drug vinblastine with units mg/mˆ3.
radiotherapy_dosage: Dosage of the radiotherapy with units Gy.

Example 1 state history:
Time 0: tumour_volume: 734.27, chemotherapy_drug_concentration: 0 | Time 1: tumour_volume:

200.94, chemotherapy_drug_concentration: 0 | Time 2: tumour_volume: 227.94,
chemotherapy_drug_concentration: 0 | Time 3: tumour_volume: 248.87,
chemotherapy_drug_concentration: 0 | Time 4: tumour_volume: 161.67,
chemotherapy_drug_concentration: 5.01 | Time 5: tumour_volume: 118.61,
chemotherapy_drug_concentration: 4.06 | ... | Time 29: tumour_volume: 4.82,
chemotherapy_drug_concentration: 11.26

Example 1 action history:
Time 0: chemotherapy_dosage: 0, radiotherapy_dosage: 2 | Time 1: chemotherapy_dosage: 0,

radiotherapy_dosage: 2 | Time 2: chemotherapy_dosage: 0, radiotherapy_dosage: 0 | Time
3: chemotherapy_dosage: 5, radiotherapy_dosage: 0 | Time 4: chemotherapy_dosage: 0,
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radiotherapy_dosage: 0 | Time 5: chemotherapy_dosage: 0, radiotherapy_dosage: 0 | ...
| Time 29: chemotherapy_dosage: 0, radiotherapy_dosage: 0

Example 1 state future:
Time 30: tumour_volume: 4.52, chemotherapy_drug_concentration: 5.62

...

Given the following state history:
Time 0: tumour_volume: 429.03, chemotherapy_drug_concentration: 0 | Time 1: tumour_volume:

625.94, chemotherapy_drug_concentration: 5.00 | Time 2: tumour_volume: 602.07,
chemotherapy_drug_concentration: 9.32 | Time 3: tumour_volume: 539.74,
chemotherapy_drug_concentration: 10.36 | Time 4: tumour_volume: 385.34,
chemotherapy_drug_concentration: 5.04 | Time 5: tumour_volume: 270.77,
chemotherapy_drug_concentration: 6.30 | ... | Time 29: tumour_volume: 11.19,
chemotherapy_drug_concentration: 8.24

And the following action history:
Time 0: chemotherapy_dosage: 5, radiotherapy_dosage: 0 | Time 1: chemotherapy_dosage: 5,

radiotherapy_dosage: 0 | Time 2: chemotherapy_dosage: 5, radiotherapy_dosage: 2 | Time
3: chemotherapy_dosage: 5, radiotherapy_dosage: 2 | Time 4: chemotherapy_dosage: 5,
radiotherapy_dosage: 2 | Time 5: chemotherapy_dosage: 0, radiotherapy_dosage: 0 | ...
| Time 29: chemotherapy_dosage: 0, radiotherapy_dosage: 0

Simulate the next timestep’s state, for all state variables. Follow the exact format of
the state history.

"""

B.3. System Prompt

Additionally, we provide the LLM with the following system prompt to encourage the output to follow proper formatting:

"""
You are an expert at simulating dynamical systems. Respond only with the simulation in the

exact format requested. Do not use the characters * or - anywhere. Ensure that you
simulate exactly the desired number of timesteps for each state variable.

"""

C. Experiment Details
We now detail our set-ups for the experiments in §6.

C.1. Fixed CF Environment

For this experiment, we use data from the UK Cystic Fibrosis Registry6 from 2008-2013, which records annual follow-ups
for patients with CF in the UK. We extract the first 1000 patients that have annual recordings in every year from 2008-2013
(ordered by patient ID), and this acts as the training dataset for each method. We extract the next 100 patients, and use this
as a validation set. Finally, we extract the next 50 patients, and use this as the testing set. For each patient, we consider three
critical state variables:

FEV1PP: The forced expiratory volume in 1 second as a percentage compared to the standard for people of that age. This is
a critical value for measuring CF progression, where low FEV1PP scores indicate advanced disease progression.

Weight: Patient weight in kg. Advanced CF progression can lead to weight lose due to malabsorption of nutrients and
increased energy expenditure.

Height: Patient height in cm. Advanced CF progression can lead to growth impairment due to malabsorption of nutrients
and potential loss of bone density.

6https://www.cysticfibrosis.org.uk/
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We also consider the action variable:

Dornase Alfa: A binary action, denoting if the patient is receiving treatment with dornase alfa. Dornase alfa is a
treatment used to manage CF, which can assist with mucus breakdown in CF patients, reducing viscosity and improving
airway clearance. It helps lung function and reduces the frequency of respiratory infections, potentially stabilising or slowing
the decline of FEV1PP.

We ensure that each patient has annual recordings for each of the above variables from 2008-2013. For the testing set, we
supply each method with three-year input history, from 2008-2011, and assess state simulation error for the next three years
(2011-2013).

For CALM-DT, we use GPT-4o, accessed via the Azure OpenAI Service with version 2024-02-01, as the base LLM
with the temperature τ = 0, and we set Kτ as:

{
‘General description’: ‘The data is from a patient with cystic fibrosis. The time unit is

in years.’
‘FEV1PP’: ‘Forced expiratory volume in 1 second compared to the standard for that age.’
‘Weight’: ‘Patient weight in kg.’
‘Height’: ‘Patient height in cm.’
‘Dornase_Alfa: ‘A treatment which can stabilise or slow the decline of FEV1.’
}

For Dτ we use the training dataset of 1000 patients. We also set r = 1, l = 3, F = 3, c = 5.

We conduct bi-encoder retrieval fine-tuning as described in Appendix A using Dτ to construct the contrastive learning
training dataset. For each sample, we choose C = 5 candidate samples, and we set the B = 2 lowest scoring as the negative
candidates for each target sample. We use GPT-4o Mini to generate textual summaries of the time-series for this training
dataset. We score the candidate samples using the CRPS calculated from five simulated three-year futures compared to the
true future, using GPT-4o Mini for simulation. We use ModernBERT (Warner et al., 2024) as the base for the encoders
ϕt and ϕc, using the implementation from the Transformers Python library (Wolf et al., 2020). We conduct training
for 8 epochs with a batch size of 16, learning rate of 5× 10−5, and temperature of τ = 0.07, using the AdamW optimizer
(Kingma & Ba, 2015) as implemented in PyTorch (Paszke et al., 2019).

C.2. Fixed NSCLC Environment

For this experiment, we generate data from a bio-mathematical pharmacokinetic- pharmacodynamic model designed in
Geng et al. (2017), which models tumour volume under chemo- and radiotherapy. We generate trajectories for 500 patients
with 60 daily time-steps each. We generate validation and testing sets of 100 patients each. Each patient trajectory contains
two state variables:

tumour volume: Cancer tumour volume, in cm3. This is the primary measurement for NSCLC disease progression.

chemotherapy drug concentration: Concentration of the chemotherapy drug vinblastine in the patient, in mg/m3.

We also consider two action variables:

chemotherapy dosage: Current dosage of the chemotherapy drug vinblastine, in mg/m3.

radiotherapy dosage: Radiation dosage, in Gy.

In testing, we supply each method with an input 30-day history and assess simulation error for the next 30 days.

For CALM-DT, we use GPT-4o, accessed via the Azure OpenAI Service with version 2024-02-01, as the base LLM
with the temperature τ = 0, and we set Kτ as:

{
‘General description’: ‘The data describes treatment responses for combined chemo and

radiation therapy for non-small cell lung cancer patients, generated from a bio-
mathematical model. The time unit is in days.’

‘tumour_volume’: ‘Volume of the tumour with units cmˆ3.’
‘chemotherapy_drug_concentration’: ‘Concentration of the chemotherapy drug vinblastine

with units mg/mˆ3.’
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‘chemotherapy_dosage’: ‘Dosage of the chemotherapy drug vinblastine with units mg/mˆ3.’
‘radiotherapy_dosage: ‘Dosage of the radiotherapy with units Gy.’
}

For Dτ we use the training dataset of 500 patients. We also set r = 1, l = 30, F = 30, c = 5.

We conduct bi-encoder retrieval fine-tuning as described in Appendix A using Dτ to construct the contrastive learning
training dataset. For each sample, we choose C = 3 candidate samples, and we set the B = 2 lowest scoring as the negative
candidates for each target sample. We use GPT-4o to generate textual summaries of the time-series for this training dataset.
We score the candidate samples with the average MSE between three simulated 10-day futures and the true future, using
GPT-4o for simulation. We use ModernBERT (Warner et al., 2024) as the base for the encoders ϕt and ϕc, using the
implementation from the Transformers Python library (Wolf et al., 2020). We conduct training for 3 epochs with a
batch size of 16, learning rate of 5× 10−5, and temperature of τ = 0.07, using the AdamW optimiser (Kingma & Ba, 2015)
as implemented in PyTorch (Paszke et al., 2019).

C.3. Ablations

For the ablation experiments in §6.2, we use the standard CF dataset and set-up, except for the stated ablation change.

C.3.1. SAMPLE SELECTION

For the sample selection ablation, for the zero-shot method we set c = 0. For the random sampling method, instead of
selecting using bi-encoder retrieval, we simply randomly sample c = 5 samples from Df . For the encoder selection without
fine-tuning, we set ϕt and ϕc as ModernBERT (Warner et al., 2024) and do not conduct fine-tuning. For the encoder
selection without appended summaries, we do not append natural language summaries to encoder inputs during training and
inference.

For the LLM-based selection, we construct the following prompt that instructs the LLM to choose the top c each CF samples
for the specific target:

"""
Target system history: <TARGET>.

Here are <N> related systems. Return only the indices of the <c> most similar histories to
the target, with no other text. Do not repeat any indices. Separate the indices with
commas

Related system 0 history: <DATASET[0]>
Related system 1 history: <DATASET[1]>
Related system 2 history: <DATASET[2]>
.
.
.
Related system <N> history: <DATASET[N]>

Indices of the <c> most similar histories:
"""

We use GPT-4o to conduct selection, using this prompt. Finally, for the full context ablation Cf = Df , we supply all
samples in Df as context. Note that the LLM-based selection and full context approaches are only applicable if the entire
dataset can fit in the context window of an LLM. For the CF data, the entire dataset consists of approximately 100, 000
tokens, so it does fits into most modern LLM context windows, however this will generally not be the case for larger datasets.

C.3.2. BASE LLM

For the base LLM ablation, we set the base LLM as either GPT-4o (version 2024-02-01), GPT-4o mini (version
2024-10-01-preview), or GPT-3.5 Turbo (version 2024-10-01-preview), all accessed via the Azure OpenAI
service. We source the MMLU scores used in our visualisation from https://paperswithcode.com/sota/
multi-task-language-understanding-on-mmlu.
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C.3.3. CONTEXT SET SIZE

For our context set size ablation, we vary c ∈ {0, 1, 2, 3, 5, 10}.

C.4. Ivacaftor Experiments

C.4.1. INTRODUCING A NEW ACTION

For the illustrative experiments used to demonstrate how CALM-DT can seamlessly adapt to changes in environment, we
extract a different Dτ and test on a different testing set from the UK Cystic Fibrosis Registry. In this case, we extract all
patient records from 2010-2013 that are treated with Ivacaftor in 2013 (its first year in the dataset) to use as Dτ . This results
in 168 patients, and we use the last 50 (ordered by patient ID) as the testing set (extending their records to 2010-2015, so
we can test the three-year simulation accuracy with a three-year input history). We extract the same state variables as the
previous experiment, however the action variable we consider now is Ivacaftor, which is a binary variable indicating
whether the patient is receiving treatment with Ivacaftor.

Since we wish to use these experiments to investigate how CALM-DT would respond to a totally novel action, we want
to construct a scenario where the base LLMs will have no internal knowledge about the action’s effect, so that all its
insights come from either the updated Kτ or Dτ . Since Ivacaftor has well-known effects now, as it was introduced in
2012, we rename it in the dataset to Drug X, to remove the effect of any prior knowledge that the base LLMs may
have about its efficacy for CF treatment. We also tried this experiment using a more realistic, yet still fake, CF drug
name—Pulmurex—which is less clearly a placeholder than Drug X, to test whether the LLM could be speculating about
what Drug X actually is, and if it affects the results. We noticed no difference between these settings.

We use the same fine-tuned encoders ϕt and ϕc for this experiment as in the previous experiment, showing that the encoders
do not need re-training after environment changes, only requiring one initial fine-tuning run in environment E0. We use
largely the same experimental settings as in §6.1, although now with the expanded Dτ , and we add the following entry to
Kτ :

‘Drug X’: ‘A cystic fibrosis treatment that clinical trial results suggest can initially
improve lung function by 10.6 percentage points’

This description reflects a likely high-level takeaway that a user would have from reading the 48-week clinical trial on
Ivacaftor prior to its approval in 2012 (Ramsey et al., 2011), without requiring excessive expertise nor effort to derive a
more formal description.

C.4.2. INCORPORATING NEW DATA

For §6.4 we use a similar set-up. However, we now consider how three-year simulation accuracy for patients with Ivacaftor
would progress with each passing year, and the resulting annual release of data from the UK CF registry. For the setting
‘One Year’ we use data from 2010-2013 to form Dτ , for ‘Two Years’ we use data from 2010-2014, and for ‘Three Years’ we
use 2010-2015. With each extra year of data, the selected context samples from Dτ will have an extra year post Ivacaftor
treatment in their respective futures.

D. Raw Results for Ablation Plots
Here we provide the raw results used to create the ablation plots in §6.2. Table 6 contains simulation results across different
base LLMs, while Table 7 contains simulation results across different context set sizes.

Table 6. Base LLM ablation results. Averaged over 10 runs, with 95% CIs.

Base LLM MSE (↓) MAE (↓)

GPT-3.5 Turbo 162.203 ± 5.367 8.364 ± 0.183
GPT-4o Mini 64.179 ± 0.637 5.001 ± 0.032

GPT-4o 55.336 ± 0.811 4.634 ± 0.045
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Table 7. Context set size ablation results. Averaged over 10 runs, with 95% CIs.

c MSE (↓) MAE (↓)

0 74.816 ± 0.411 5.241 ± 0.021
1 64.985 ± 1.047 5.013 ± 0.053
2 56.556 ± 0.364 4.681 ± 0.010
3 55.860 ± 0.544 4.674 ± 0.029
5 55.336 ± 0.811 4.634 ± 0.045
10 59.717 ± 0.529 4.891 ± 0.024

E. Benchmark Methods
Here we detail the benchmark DT implementations. We implement three simple baselines of constant prediction (Constant),
one-nearest-neighbour (1-NN), and K-nearest-neighbour (K-NN). For the more sophisticated DT baselines, we adapt the
open source code from Holt et al. (2024), from the public GitHub https://github.com/samholt/HDTwinGen,
for use with our target datasets, and we use largely the same hyperparameter settings as in their work. We compare against a
neural ODE (Chen et al., 2018) (DyNODE) (Alvarez et al., 2020), a mechanistic discovery model (SINDy) (Brunton et al.,
2016), a Transformer model (Transformer) (Melnychuk et al., 2022), an RNN (RNN), and an LLM-driven hybrid digital
twin discovery method (HDTwin) (Holt et al., 2024).

Constant

For constant prediction, we simply repeat the last observed state in the input history for all steps in the simulation horizon.

1-NN

For 1-NN, we calculate the Euclidean distance between the target system’s state history, and the state histories of all training
examples. We select the most similar training sample, and use its future states as predictions for the target system.

K-NN

For K-NN, we calculate the Euclidean distance between the state history of the target system, and the state histories of all
training examples. We select the K most similar training samples, and use a weighted average of their futures (weighted
by similarity) to predict the future of the target system. We report results for the the best performing K value. For the CF
dataset, we use K = 12. For NSCLC data, we use K = 13.

DyNODE

DyNODE is a neural network-based dynamics model (Alvarez et al., 2020), that models system dynamics by incorporating
control into the standard neural ODE framework (Chen et al., 2018). We implement DyNODE with a 3-layer MLP, with a
hidden dimension of 128, with tanh activation functions, and Xavier weight initialisation (Kumar, 2017). We optimise for
the MSE of next-state prediction, using an Adam optimiser (Kingma & Ba, 2015), with a learning rate of 0.01, batch size of
1,000 and early stopping with a patience of 20 for 2,000 epochs.

Transformer

Causal Transformer is a state-of-the-art model for estimating counterfactual outcomes (Melnychuk et al., 2022). Due to the
design for the estimation of counterfactual outcomes in treatment effect settings, this method typically incorporates three
separate transformer networks, for processing covariates, past treatments, and past outcomes, respectively. We follow the
implementation by Holt et al. (2024), and instead implement only a single transformer to model the past outcomes, which
is applicable to our datasets. This consists of a standard transformer encoder, with input normalisation according to the
training dataset. We encode input observed dimension of the state-action into an embedding vector dimension of size 250
through a linear layer, followed by the addition of a standard positional encoder (Melnychuk et al., 2022); this is then fed
into a transformer encoder layer, with a head size of 10, dropout 0.1, and the output of this is then fed into a linear layer
to reconstruct the next state. We train this model using the AdamW optimiser with a learning rate of 0.00005 and a step
learning rate scheduler of step size 1.0 and gamma 0.95; we also implement gradient clipping to 0.7, with a batch size of
1,000 and early stopping with a patience of 20 for 2,000 epochs.

RNN
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Recurrent Neural Networks (Graves et al., 2007) are widely used for time series prediction. We implement this with input
normalisation according to the training dataset. The model consists of a gated recurrent unit RNN mapping the state-action
dimension to a hidden dimension of size 250, with two layers. The output is then fed to a linear layer to convert the hidden
dimension back to the state dimension for next step prediction. We use an Adam optimiser, with a learning rate of 0.01,
batch size of 1,000 and early stopping with a patience of 20 for 2,000 epochs.

SINDy

Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton et al., 2016) is a data-driven discovery method for the
governing equations of a dynamical system. It iteratively performs sparse regression on a library of candidate functions to
identify the best representation of the dynamical system. In our implementation, we use a polynomial library of order two.
Finite difference approximations are used to compute time derivatives from the input time-series data, of order one. The
alpha parameter is set at 0.5 and the sparsity threshold is set at 0.02.

HDTwin

HDTwin is an automatic hybrid DT discovery method, using a code-generating LLM to propose and iteratively refine DT
model definitions involving white- and black-box components. The LLM proposes initially white-box mechanistic methods,
which are fit to the training data and evaluated on a validation set. The evaluation metrics and then fed back into the LLM,
and targeted improvements are made to the model, such as incorporating my complex, black-box components.

We use GPT-4o with temperature 0.7 as the code-generating LLM, allowing 20 generation/refinement iterations, with a
patience of 5, and we select the best performing model on the validation set as the final DT definition. Each generation, the
suggested model that is trained to optimise for the MSE of next state prediction, using the AdamW optimiser with a learning
rate of 0.01 a batch size of 1,000, early stopping with a patience of 20 for 2,000 epochs. For the model refinement stage, we
set K = 16 for the number of previous models to keep in memory and guide suggestions.

F. Further Fixed Environment Results
We now report some further comparative results between CALM-DT and other DT methods in more fixed environments.
We examine some simple di- and tritrophic ecological environments, of hare-lynx and algae-flagellate-rotifer population
dynamics respectively, using the datasets from Bonnaffé & Coulson (2023). With these data, we wish to investigate how
methods perform in scenarios with very small training sets, simple dynamics, and no actions. In these settings, traditional
deep learning approaches can sometimes struggle due to over-fitting, failing to capture the underlying simple dynamics, while
simpler baselines often perform best. For these experiments, due to the small datasets, encoder fine-tuning is impractical,
so we use simple random selection to construct Cf for CALM-DT, with a context set size c = 2 for the Hare-Lynx (HL)
dataset and c = 5 for the Plankton dataset.

Setup. We split the Hare-Lynx dataset into nine samples of 10 years each, and we set the first six samples as the training
set, and use last three samples as the testing set, examining five-year simulation performance with a five-year input history.
There are two state variables:

Hare: Annual count of hare pelts, serving as a proxy for the hare population size, in tens of thousands.

Lynx: Annual count of lynx pelts, serving as a proxy for the lynx population size, in tens of thousands.

We split the Algae-Flagellate-Rotifer dataset into 10 samples of 10 days each, and we set the first six samples as the training
set, and use last four samples as the testing set, examining five-day simulation performance with a five-day input history.
There are three state variables:

algae: Daily count of algae, serving as the primary prey.

flagellate: Daily count of flagellate, acting as the intermediate predators and prey.

rotifer: Daily count of rotifers, representing the top predators.

Simulation performances for the hare-lynx and algae-flagellate-rotifer data are reported in Tables 8 and 9, respectively.

Takeaway. CALM-DT demonstrates its robust performance with this extended set of results. It achieves the best results
among deep learning methods in these simpler, small-data environments. This indicates that CALM-DT, leveraging the

22



Continuously Updating Digital Twins using Large Language Models

Table 8. DT simulation comparisons of ditrophic hare-lynx population dynamics. Sorted by MSE. Averaged over 20 runs, presented with
95% CIs.

Model MSE (↓) MAE (↓)

HDTwin 1.11× 104 ± 1.93× 104 29.6± 9.21
Transformer 2.52× 103 ± 796 31.7± 5.44

Constant 1.73× 103 ± 0 32.9± 0
SINDy 1.05× 103 ± 0.00 26.5± 0.00

DyNODE 895± 212 22.1± 2.65
1-NN 704± 0 18.6± 0
RNN 563± 39.5 19.7± 0.611

CALM-DT 453± 54.3 15.3± 0.999
K-NN (K = 3) 368± 0 15.7± 0

Table 9. DT simulation comparisons of tritrophic algae-flagellate-rotifer population dynamics. Sorted by MSE. Averaged over 20 runs,
presented with 95% CIs.

Model MSE (↓) MAE (↓)

RNN 0.156± 8.01× 10−3 0.354± 7.44× 10−3

SINDy 0.0265± 0 0.0994± 0
1-NN 0.0178± 0 0.0748± 0

K-NN (K = 2) 0.0164± 0 0.0947± 0
HDTwin 2.89× 10−3 ± 1.48× 10−3 0.0316± 8.58× 10−3

DyNODE 2.57× 10−3 ± 1.05× 10−3 0.0341± 6.98× 10−3

Transformer 1.66× 10−3 ± 7.54× 10−4 0.0283± 5.70× 10−3

CALM-DT 3.87× 10−4 ± 4.65× 10−5 0.0101± 5.55× 10−4

Constant 1.00× 10−4 ± 0 5.40× 10−3 ± 0

sample efficiency of LLMs, and their bias towards simple numerical outputs (Gruver et al., 2024), does not excessively
overfit or underperform on datasets where simple baselines excel beyond other deep learning approaches. CALM-DT is
adept at simulating simple systems, as well as the more complex scenarios from §6.1.

G. Simulation of Time to Key Events
To evaluate simulation accuracy from another angle, beyond raw MSE/MAE for simulated states, we examine the accuracy
of critical event timing. Specifically, we examine the error in simulated vs real death times for untreated NSCLC patients.

Setup. We utilise the pharmacokinetic-pharmacodynamic model for NSCLC from Geng et al. (2017) to generate training
and test data, although in this case we generate trajectories of patients who receive no treatment for 60 days. In this setup,
patients experience extensive tumour growth and, using the threshold of 13cm tumour diameter to denote death, as is done in
Geng et al. (2017), patient death can frequently occur within this 60-day untreated time-frame. As before, each DT method
is provided with a 30-day input history and tasked with simulating the patient’s trajectory for the subsequent 30 days. In
Table 10 we report the error (in days) for simulated death compared to actual death.

Takeaway. CALM-DT demonstrates competitive performance in simulating accurate times to death for untreated NSCLC
patients. It ranks as the third best method in this metric. This suggests CALM-DT has utility in forecasting clinically
relevant event timings, complementing its raw simulation accuracy showcased in §6.1.

H. Sample Selection Ablations on NSCLC
We conduct similar sample selection ablations to those in §6.2, now using the NSCLC dataset. We assess the contributions of
the two main components of our sample selection scheme: (1) fine-tuning the encoders and (2) appending natural language
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Table 10. Comparison of DT simulated time to death errors (days) for untreated NSCLC cancer patients. Averaged over five runs, with
95% CIs.

Model Time to death MAE

RNN 10.25± 0
Transformer 6.32± 1.72

HDTwin 5.89± 0.193
CALM-DT 5.19± 0.496

SINDY 4.96± 0
DyNODE 4.91± 0.146

summaries of the time-series inputs provided to the encoders.

Setup. The experiments are conducted on the NSCLC dataset as described in §6.1. We vary the sample selection strategy
for CALM-DT by enabling or disabling encoder fine-tuning and the inclusion of LLM-generated time-series summaries. The
‘No fine-tuning/summary’ condition uses ModernBERT (Warner et al., 2024) pre-trained encoders for ϕt and ϕc without
any task-specific fine-tuning or summaries. ‘No fine-tuning’ uses the same pre-trained encoders with appended summaries
to inputs at inference time. ‘No summary’ uses fine-tuned encoders but without appended summaries during training or
inference. ‘CALM-DT’ represents the full proposed method with both fine-tuned encoders and appended summaries. Table
11 reports the simulation performances.

Table 11. CALM-DT NSCLC performance with different Cf selection methods. Averaged over 10 runs, with 95% CIs. Ordered by MSE.

Cf Selection method MSE (↓) MAE (↓)

No summary 101± 8.72 4.43± 0.0748
No fine-tuning/summary 89.3± 19.1 4.30± 0.159

No fine-tuning 85.7± 7.03 4.26± 0.095
CALM-DT 79.4± 8.57 4.28± 0.157

Takeaway. The results on the NSCLC dataset are broadly consistent with those observed for CF in §6.2, with the complete
CALM-DT method, which incorporates both encoder fine-tuning and natural language summaries, achieving the best
performance. Interestingly, and in contrast to the CF setting, fine-tuning the encoders without appending natural language
summaries (‘No summary’) results in the poorest performance on this dataset. This may be due to the increased input length
for the NSCLC data (30 time-steps), compared to CF data (3 time-steps). With longer sequences, the raw numerical data is
inherently more complex. During fine-tuning on long, purely numerical sequences, the encoder faces a higher risk of latching
onto spurious correlations or superficial numerical patterns that are not generalisable for effective retrieval. The appended
summaries provide critical high-level semantic guidance in this case, helping the NLP encoder to discern meaningful
long-range trends that it cannot extract from numerical inputs alone. Without this semantic anchor, the fine-tuning process
for longer sequences might lead the encoder to learn less robust representations, hence the poor performance. This highlights
a strong synergistic benefit between LLM-generated summaries and encoder fine-tuning for longer, more complex time-series
inputs, where summaries become crucial for guiding the fine-tuning process towards learning genuinely informative features
for retrieval rather than overfitting to spurious correlations in raw numerical data.
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