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Abstract

Large-scale federated learning (FL) over wireless multiple access channels (MACs) has
emerged as a crucial learning paradigm with a wide range of applications. However, its
widespread adoption is hindered by several major challenges, including limited bandwidth
shared by many edge devices, noisy and erroneous wireless communications, and hetero-
geneous datasets with different distributions across edge devices. To overcome these fun-
damental challenges, we propose Federated Proximal Sketching (FPS), tailored towards
band-limited wireless channels and handling data heterogeneity across edge devices. FPS
uses a count sketch data structure to address the bandwidth bottleneck and enable efficient
compression while maintaining accurate estimation of significant coordinates. Additionally,
we modify the loss function in FPS such that it is equipped to deal with varying degrees of
data heterogeneity. We establish the convergence of the FPS algorithm under mild technical
conditions and characterize how the bias induced due to factors like data heterogeneity and
noisy wireless channels play a role in the overall result. We complement the proposed theo-
retical framework with numerical experiments that demonstrate the stability, accuracy, and
efficiency of FPS in comparison to state-of-the-art methods on both synthetic and real-world
datasets. Overall, our results show that FPS is a promising solution to tackling the above
challenges of FL over wireless MACs.

1 Introduction

In recent years, federated learning has emerged as an important paradigm for training high-dimensional
machine learning models when the training data is distributed across several edge devices. However, when
training is carried out over wireless channels in a federated setting, a number of challenges arise, including
bandwidth limitations, unreliability and noise in communication channels, and statistical heterogeneity (non-
identical distribution) in data across edge devices Kairouz et al. (2021). In what follows, we elaborate on
three key challenges. Firstly, with the size of real-world datasets and the machine learning model parameters
scaling to the order of millions, communicating model parameters from edge devices to the server and back
can become a major bottleneck in model training if not handled efficiently. Needless to say, the transmission
of model parameters to the central server over wireless channels is noisy and unreliable in nature. In
practice, channel noise is inevitable during the training process and will induce bias in learning the global
model parameters. Furthermore, the data collected and stored across edge devices is heterogeneous, which
adds an extra layer of complexity due to diversity in local gradient updates. If statistical heterogeneity
across edge devices is not handled properly, it can significantly extend the training time and cause the global
model to diverge, resulting in poor and unstable performance. Therefore, it is of significant importance to
design FL algorithms that are resilient to heterogeneous data distributions and reduce communication costs.
While there exists siloed efforts investigating the impacts of the above fundamental challenges separately,
we devise a holistic approach - Federated Proximal Sketching (FPS) - that tackles these challenges in an
integrated manner.

To address the first key challenge of communication bottleneck, we propose the use of count sketch
(CS) Charikar et al. (2002) as an efficient compression operator for model parameters, as illustrated in
Figure 1. The CS data structure is not only easy to implement but also comes with strong theoretical
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Figure 1: Illustration of Federated Proximal Sketching (FPS) over wireless multi-access channel (MAC).

guarantees on the recovery of significant coordinates or heavy hitters. The CS data structure also enables us
to apply the gradient updates easily so that at every time instant, we preserve information about the most
important model parameters. With such a compressed representation of the model parameters, over-the-air
computing is employed to aggregate local information transmitted by each device. Specifically, over-the-air
Abari et al. (2016); Goldenbaum & Stanczak (2013) takes advantage of the superposition property of wireless
multiple access channels, thereby scaling signal-to-noise ratio (SNR) well with an increasing number of edge
devices.

To tackle the challenges due to data heterogeneity, we employ the proximal gradient method to ‘reshape’ the
loss function by adding a regularization term. The regularization term is carefully designed such that it keeps
the learned model parameters from diverging in the presence of data heterogeneity. We use experimental
studies to demonstrate empirically that this modification to our loss function helps us reduce the number of
communication rounds to the central server while maintaining high accuracy.

The regularization term also helps in curbing the effect of noise due to communication over wireless channels.
There is an interesting line of literature highlighted in the Section 2.2, which studied learning in the presence
of noise by using regularization. In addition, we employ the count sketch data structure to produce reliable
estimates of the “heavy hitter” (i.e., salient) coordinates. As the count sketch data structure uses multiple
hashing functions, the process of sketching and unsketching provides denoising effect, and further the ran-
domized nature of the hash functions produces a noise robust estimates of top-k coordinates. The usage of
count sketching in conjunction with regularization forms the core of our strategy to tackle the challenge of
FL under noisy wireless channel settings.

The main contributions of this paper can be summarized as follows:

• Federated Proximal Sketching. We propose Federated Proximal Sketching (FPS), a novel and
robust count-sketch based algorithm for federated learning in noisy wireless environments. FPS is de-
signed to be highly communication-efficient and can effectively handle high-level data heterogeneity
across edge devices.

• Impact of Gradient Estimation Errors. Because the communications of gradient updates over
noisy wireless channels may result in bias, we consider a general biased stochastic gradient structure
and quantify the impact of gradient estimation errors (including bias). We show that in the presence
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of biased gradient updates, the FPS algorithm converges with high probability to a neighborhood
of the desired global minimum, where the size of the neighborhood hinges upon the bias induced,
under mild assumptions. Note that the biased stochastic gradient structure here is more general
than the existing line of works on FL Stich et al. (2018); Ivkin et al. (2019); Karimireddy et al.
(2020), which do not address the bias in the stochastic gradients, a key aspect in a large number of
practical problems.

• Statistical Heterogeneity. We theoretically investigate the impact of varying degrees of statis-
tical heterogeneity in data distributed across devices on the convergence. Our study is motivated by
Li et al. (2020) to tackle data heterogeneity and extends it to the bandlimited noisy wireless channel
setting. A key insight that emerges from our analysis of FPS is that an interplay exists between the
degree of data heterogeneity, rate of convergence, and choice of learning rate.

• Experimental Studies: We complement our theoretical studies with numerical experiments on
both synthetic and real-world datasets. Our experimental results unequivocally demonstrate that
FPS exhibits robust performance under noisy and bandlimited channel conditions. To evaluate the
performance of our algorithm under varying degrees of class imbalance across edge devices, we have
investigated different data partitioning strategies. Our results show that, in practice, our algorithm
achieves high compression rates on large-scale real-world datasets without significant loss in accuracy
under different data distribution strategies. In fact, in some cases, we have observed an improved
accuracy of more than 10 - 40% over other competing FL algorithms in highly heterogeneous settings.

2 Related Work

Our work looks at federated learning under three key challenges: (1) limited bandwidth across edge devices;
(2) noisy wireless MACs; and (3) heterogeneous data distribution across devices. In what follows, we
elaborate on different works which have addressed these three challenges until now.

2.1 Communication efficient federated learning

Over the years communication-efficient stochastic gradient descent (SGD) techniques have been developed
which reduce the cost of transmission using various gradient compression techniques like quantization Bern-
stein et al. (2018); Wu et al. (2018); Alistarh et al. (2017), sparsification Stich et al. (2018); Aji & Heafield
(2017). Different sparsification methods like top−k (in absolute value) and random−k have been shown to
converge in theory and empirical studies. However, such sparsification methods rely on the ability to store
error accumulated by the compression scheme locally and re-introduce it in the next iteration to facilitate
convergence Karimireddy et al. (2019). A major limitation of top−k sparsification is the additional rounds
of communication between local edge devices to arrive at a consensus of global top−k (heavy hitters) coor-
dinates at each iteration. In a bandlimited setting where the number of edge of devices is large, this scheme
is practically infeasible.

Our work focuses on extending the current research on applying sketching as a compression scheme in
federated learning. In Ivkin et al. (2019), a communication efficient SGD algorithm was proposed which
uses sketches to compress the high-dimensional gradient vectors across each of the edge devices using a
count sketch data structure. However, their algorithm involves a second round of communication between
the edge devices and central server to aid the estimation of top−k coordinates. In practice, the second
round of communication is not always feasible due to latency issues and bandwidth limitations. In Rothchild
et al. (2020) as well, the authors proposed an algorithm - FetchSGD, which used sketching as a compression
operator and achieved convergence without the additional rounds of communication. However, an additional
error accumulation count sketch data structure has to be maintained at the central server to facilitate
convergence. In addition, the work claims that FetchSGD performs well when data is distributed in a non-
IID manner across edge devices but fails to provide any algorithmic details on how it deals with heterogeneous
data distribution. It also lacks a detailed theoretical and practical analysis of the algorithm in different data
heterogeneity scenarios which we provide in our study. While the work in Ivkin et al. (2019); Rothchild et al.
(2020) aim to use sketches as a mere compression operator, we are motivated by the work in Aghazadeh et al.
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(2018b) which utilizes the count sketch data structure to perform SGD recursively and thus, eliminating the
need to have any additional CS data structures for error accumulation. In short, we add the gradient updates
in the CS data structure at every time step where they are aggregated with all the past gradient updates,
leaving us with an compressed representation of model parameters. The original work in Aghazadeh et al.
(2018b) was implemented for a single device (see Appendix B for more details) and we extend this to a
federated learning in a band-limited noisy wireless channel setting.

2.2 Federated learning over wireless channels

In the previous section, the focus was on communication efficient FL under a noiseless channel setting.
In practice, the transmission of gradient vectors over wireless channels to the central server is noisy and
erroneous. As a consequence of transmission over noisy channels there is bias induced in gradient update
vectors transmitted. The authors of Ang et al. (2020) consider regularization based optimization of the loss
function to mitigate the bias induced by wireless communications. The motivation for regularization based
method stems from the works of Graves (2011); Goodfellow et al. (2016), where training with noise was
approximated via regularization to enhance the robustness of neural networks. There are many regularizers
that one can choose from, however, there is no one regularizer which is better than the rest to tackle noise.
In other words, we need to choose a regularization term specific to our problem. Due to its simplicity and
ease of implementation, we use ℓ2-regularization.

To provide a holistic view of other related work of FL in wireless channel setting, an additional practical
challenge considered is mitigating the effect of bias induced due to channel noise under limited power budget.
Under such constraints, the authors in Zhang et al. (2021); Amiri & Gündüz (2020) developed an adaptive
power allocation strategy based on channel state information and magnitude of gradient vector coordinates
to reduce the impact of communication error on convergence results (also see Yang et al. (2020); Zhu et al.
(2019)). While the above works considered only uplink channel noise, more recently, in Wei & Shen (2021),
the authors analyzed the convergence of the well known FedAvg algorithm McMahan et al. (2016) under
both noise in uplink and downlink transmission channels. While in this paper, we do not consider power
constraints and any knowledge of channel state information, our work can be easily extended to a power
constraint setting.

2.3 Statistical heterogeneity across edge devices

One of the fundamental challenges in federated learning as stated in Section 1 is statistical heterogeneity in
data across edge devices. Recent years have witnessed the development of algorithms, such as FedProx Li
et al. (2020), FedNova Wang et al. (2020b) and SCAFFOLD Karimireddy et al. (2020) to handle statistical
heterogeneity. The algorithms listed above aim to reduce the drift of local iterates at each client from the
global iterate maintained at the central server. The theoretical analysis of the convergence of the above-
mentioned algorithms has also been well-studied under various assumptions that captures the dissimilarity
in gradient computation across edge devices due to non-IID data distribution Kairouz et al. (2021). We use
the bounded gradient dissimilarity assumption used in Li et al. (2020) and it has been shown to be analogous
to other commonly used dissimilarity assumptions like the bounded inter-client variance Li et al. (2021b).
However, these algorithms have not been studied in a band-limited and noisy wireless communication channel
setting. The strategy used in FedProx is of particular interest to us, as it tackles the issue of statistical
heterogeneity by appending a proximal term to the loss function. Building up on this, in later sections we
show that the proximal term in our algorithm will serve two purposes; firstly, to reduce the effect of channel
noise and secondly, to aid convergence in presence of statistical heterogeneity.

On a more practical side, recently a survey Li et al. (2021a) carried out an extensive experimental study on
the above state-of-the-art algorithms over different data partitioning strategies and datasets. A particular
kind of data partitioning strategy which is of interest to us is the label distribution skewness. A motivating
example can be that some hospitals are specialized in certain kind of diseases and have data specific to it.
An extreme case of label distribution skewness is where edge devices have access to only a few classes of
labels Yu et al. (2020). Other notion of label skewness which is referred to as class imbalance in modern
machine learning literature was studied in Wang et al. (2020b); Wang et al. (2020a); Yurochkin et al. (2019).
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We simulate different degrees of statistical heterogeneity by varying the amount of class imbalance present
at each edge device. We believe that our work uniquely sits at the intersection of analyzing and tackling the
three key FL challenges specified above.

3 Preliminaries

3.1 Federated Learning over Wireless MACs

We consider a federated learning setup where there are M edge devices and a central server. Only a fraction
of the dataset D is available across each of the edge devices such that: D =

⋃M
m=1 Dm. The loss function

at an edge device m is defined as: ℓm(w; xj , yi), for a data sample (xj , yj) ∈ Dm. For a mini-batch ξm

sampled at each device m, the loss function is denoted as:

fm(w; ξm) ≜ ℓm(w; ξm)
|ξm|

, (1)

where, | · | represents cardinality of a set. The objective is to minimize the global loss function given by:

f(w) := 1
M

M∑
m=1

Eξm [fm(w; ξm)] . (2)

Here, the expectation is taken with respect to the random process that samples mini-batches at each edge
device. This loss function is optimized iteratively to converge to the optimal model parameter vector w∗. At
each edge device m and time step t, the stochastic gradient is computed using the sampled mini-batch ξm

t

and represented as gm
t (wt) := ∇fm(wt; ξm

t ). Without loss of generality, we simplify the notation of gm
t (wt)

to gm
t . The gradients are now transmitted over noisy multiple subcarriers via over-the-air protocol. We

define the aggregated received gradient vector as: gt := 1
M

∑M
m=1 gm

t + nt. Here, nt ∈ Rd is the channel
noise. The gradient descent update rule is carried out at the central server as:

wt+1 = wt − γ gt , (3)

where, γ is the fixed learning rate and wt+1 is model parameter vector. The updated iterate wt+1 is
broadcasted back to all the edge devices. The computation of local stochastic gradients, transmission to
the central server and broadcast of the updated iterates is performed recursively until we reach a small
neighborhood around the global minimum w∗. In general, transmission over wireless channels is noisy and
the number of subcarriers are limited due to bandwidth constraints. As a consequence, the received gradient
vector gt is biased. Next, we elaborate on the count sketch compression operator and its recovery guarantees.

3.2 Count Sketch

A count sketch S is a randomized data structure that keeps a matrix of buckets (or bins): w × b ∼ O(log d),
where b and w are chosen by the user to achieve certain accuracy guarantees. The count sketch algo-
rithm uses w random hash functions hj for j ∈ [w] to map the vector’s coordinates to buckets (or bins) b,
hj : {1, 2, . . . , d} → {1, 2 . . . b}. In addition, the algorithm uses w random sign functions sj for j ∈ [w] as
well that maps the coordinates of the vector randomly to {+1, −1}, sj : {1, 2, . . . d} → {+1, −1}.
Consider a high-dimensional vector g ∈ Rd, then, the count sketch data structure S sketches the ith co-
ordinate of the vector g denoted as g(i), into the cell S(j, hj(i)) by incrementing the value of the cell by
sj(i) g(i). This is performed for every j ∈ [w] and every coordinate i ∈ [d]. Originally, as count sketch
was implemented in streaming data setting, for T updates to the vector g, the count sketch data structure
requires only O

((
k + ||gtail||2

ε2 g(k)

)
log d T

)
memory to provide unbiased estimate of the top-k or heavy hitter

(HH) coordinates such that the following holds with high probability:

|ĝ(i) − g(i)| ≤ ε ||g||, ∀i ∈ HH , (4)
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where, HH is the set of indices of heavy hitter or top-k coordinates. All norms denoted as || · || are ℓ2 norm
in the Euclidean space, unless otherwise stated. Fundamental results on the recovery guarantees of count
sketch can be found in Charikar et al. (2002).

We caution that the vector being sketched (here, g) should not have too many heavy hitter coordinates.
If all the coordinates of a vector are heavy, the CS data structure will have coordinates colliding and the
resulting unsketched vector would be error-prone.

4 Federated Proximal Sketching

The key steps of the FPS algorithm are outlined in Algorithm 1. In the following, we elaborate on the key
ideas further.

In Steps 1 and 2 of Algorithm 1, CS data structures at each of the edge devices and the central server are
initialized to zero. Note that the size of the CS data structures is determined by the bandwidth available
(number of subcarriers, K). We proceed with a fixed learning rate at each iteration. The number of local
epochs/iterations E to be carried out before each global aggregation step is pre-determined. The appropriate
choice of the number of local epochs is heuristic, and we discuss it in detail in Appendix. E.3.

In Steps 5 and 6 of Algorithm 1, the stochastic gradient is computed with respect to the mini-batch sampled
at each edge device. We form the gradient update vector as: −γ gm

t (wm
t ) and sketch it into the CS data

structure Sm maintained at that particular device m. To be more specific, sketching the gradient update
vector to the CS data structure is implemented by the following mathematical operation in Step 6:

(−γ gm
t ) → Sm(wm

t ) ≜ Sm(wm
t − γ gm

t (wm
t ))

= Sm(wm
t+1) . (5)

This is precisely the gradient update rule and implementation of this rule recursively is straightforward due to
the linearity property of CS data structures. Observe that this update rule which compresses the computed
gradient vector in a CS data structure is reminiscent of the MISSION algorithm in Aghazadeh et al. (2018a).
It is worth noting that MISSION was initially designed to operate on a single device, whereas FPS is a
distributed algorithm where many instances of the MISSION algorithm are carried out in parallel. At every
iteration in FPS, all edge devices maintain an efficient representation of the learned model parameter vector.

In Steps 8,9 and 10 of Algorithm 1, based on how frequently updates are pushed to the server, the CS data
structure at each of the devices is transmitted over noisy wireless MAC channels. The received sketches are
then aggregated. We perform the top-k coordinate extraction and obtain a k-sparse vector: wt+1. This is
now broadcasted back to the edge devices.

Steps 5-10 of Algorithm 1 are carried out recursively until convergence. As we are dealing with statistical
heterogeneity across devices, aggregating updates after performing a set number of local updates helps. In
cases where statistical heterogeneity is high, this strategy of performing local updates alone has been known
to diverge empirically McMahan et al. (2016). To address this, we restructure our loss function and discuss
advantages of such a modification.

Loss function design. Our restructuring follows the work in Li et al. (2020) with an added benefit of
mitigating the effects of channel noise. The new loss function at each device is then given by:

f(w, wgb) = ℓ(w) + µ

2
∣∣∣∣w − wgb

∣∣∣∣2 , (6)

where, ℓ(w) is our application specific loss function, for instance, a cross-entropy loss for binary classification
task or a mean-squared error for linear regression task. We denote the iterate wgb as the last aggregated
model parameter vector that was broadcasted by the central server. Therefore, for a non-zero proximal
parameter µ, this new loss function provides the following benefits; 1) it controls the effect of statistical
heterogeneity across devices by not letting the local updates w stray far away from the last global update
wgb, 2) for improperly chosen number of local updates E, the proximal term minimizes the effect of divergence
that would result as a consequence and, 3) it provides a regularization effect on the global iterates and thus
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we can bound the ℓ2 norm by some arbitrary positive constant, ||wgb||2 ≤ W .

Algorithm 1 Federated Proximal Sketching (FPS)
1: Inputs: Number of workers: M , mini-batches for each worker m ∈ [M ] at each time step: ξm

t , local
epochs E.

2: Initialize individual sketches at each worker Sm with initial model parameters wm
0 : w0 → Sm = Sm(w0)

3: for t = 1, 2, . . . , T do
4: for m = 1, 2, . . . , M do
5: Compute stochastic gradient using mini-batch ξm

t : gm
t (wm

t )
6: Sketch the gradient update vector (−γ gm

t ) at each worker: (−γ gm
t ) → Sm(wm

t ) = Sm(wm
t+1)

and broadcast it to the central server after E local iterations / epochs
7: end for
8: Receive aggregated sketches at the server: St(wt+1) = 1

M

∑M
m=1 Sm(wm

t+1) + nt

9: Unsketch and extract top-k coordinates of parameter vector: wt+1 = Uk(St(wt+1))
10: Broadcast k-sparse parameter vector to all edge devices: wm

t+1 = wt+1
11: end for

5 Convergence Analysis

As is standard, the loss function fi at each edge device i is assumed to be L-smooth non-convex objective
function.

Assumption 1 (Smoothness) A function f : Rd → R is L−smooth of for all x, y ∈ Rd, it holds:

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ L

2 ||y − x||2 . (7)

In general, the received aggregate stochastic gradient gt, is biased, i.e., (E [gt] ̸= ∇f(wt)), and this can be
due to biased stochastic gradient estimation, data heterogeneity across devices and noisy channel conditions
Zhang et al. (2021); Amiri & Gündüz (2020). In what follows, we examine the structure of stochastic gradient
vector received at the central server.

Definition 1 Given a sequence of iterates {wt}T
t=1, for all t ∈ [T ], the structure of biased stochastic gradient

estimator can be written as:

gt(wt) = ∇f(wt) + βt + ζt , (8)

where, βt is the biased estimation error and ζt is the martingale difference noise. The quantities βt and ζt

are defined as:

βt := Et[gt(wt)] − ∇f(wt) (9)
ζt := gt(wt) − Et[gt(wt)] . (10)

Note that such a structure of stochastic gradient estimator has been studied in Zhang et al. (2008); Ajalloeian
& Stich (2020b). It directly follows from the above definition of bias and martingale difference noise that
E[ζt] = 0. Here, the expectation Et[·] is with respect to ξt which is a realization of a random variable which
represents the choice of single training sample in the case of vanilla SGD or may represent a set of sample in
the case of mini-batch SGD, and the channel noise nt. Furthermore, we assume that the bias and martingale
noise terms satisfies the following assumptions.

Assumption 2 (Zero mean, (Pn, σ2)-bounded noise) There exists constants Pn, σ2 ≥ 0 such that:

Et

[
|| ζt||2

]
≤ Pn ||∇f(wt)||2 + σ2 . (11)
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Assumption 3 ((Pb, b2)-bounded bias) There exists constants Pb ∈ (0, 1) and b2 ≥ 0 such that:

|| βt||2 ≤ Pb ||∇f(wt)||2 + b2 . (12)

These assumptions are significantly mild as the second moment bounds of the bias and noise terms scales
with true gradient norm and constants b2 and σ2 respectively. By setting the tuple (Pb, Pn, b2, σ2) = 0̄, we
get the special case of unbiased gradient estimators. Convergence for this special case has been well studied
in literature.

Next, we turn our attention to the compressibility of gradients. Specifically, we assume that the stochastic
gradients are approximately sparse. This is formalized in the following assumption Cai et al. (2022).

Assumption 4 The stochastic gradients follow a power law distribution and there exists a p ∈ (1, ∞) such
that |gt(i)| = i−p ||gt|| .

In the Appendix, we show that some of the real-world dataset(s) considered in this paper follow Assumption
4. As the value of p increases we infer that only a small number of coordinates in the vector g are significant.
Therefore by choosing an appropriate size of CS data structure we can ensure efficient compression and
strong recovery guarantees of the significant coordinates.

Even though the loss functions across all the devices are same, as the data is distributed in a non-IID manner,
due to random sampling of mini-batches across devices there will be dissimilarities in computation of loss
functions and their respective gradient estimators. To this end, we define a measure of dissimilarity between
gradient estimators across edge devices similar to Li et al. (2020) as follows.

Definition 2 (B-local dissimilarity). The local functions fm are B−locally dissimilar at w if
||Eξm

[∇fm(w; ξm)]||2 ≤ ||∇f(w)||2 B2. We further define B(w) =
√

Eξm [||∇fm(w;ξm)||2]
||∇f(w)||2 , for ||∇f(w)|| ≠ 0.

Further, we have the following assumption ensuring that the dissimilarity B(w) defined in Definition 2 is
uniformly bounded above.

Assumption 5 For some ϵ > 0, there exists B such that for all points w ∈ Sϵ =
{

w
∣∣ ||∇f(w)||2 > ϵ

}
,

B(w) ≤ B.

If we assume the data is distributed in an IID manner, the same loss function across all devices and the
ability to sample an infinitely large sample size, then, B → 1. However, due to different sampling strategies,
in practice, B > 1. A larger value of B would imply higher statistical heterogeneity across devices. Other
formulations of measuring dissimilarity have been studied in Khaled et al. (2019); Li et al. (2019); Wang
et al. (2019).

Let us denote H = 1
1+2 B2(Pb+Pn) . Note that H ≤ 1. We now define the following quantity ρ(γ) as:

ρ(γ) ≜ 1 − Pb (1 + 2 H) E2 B2

2 − γ (2 + 2Pb B2 + (2(L + µ) + 1) Pn B2) (1 + 2 H) E2 , (13)

where, Pb, Pn, L and B are constants defined earlier; µ is the proximal parameter of our loss function and
E is number of local epochs carried out at each edge device before global aggregation of model parameters
at the central server. Let f(w∗) be the global minimum value of f . The range of values of the fixed learning
rate γ which we consider, satisfies the following conditions: ρ(γ) > 0 and that is given by:

γ ≤ 1 − 6 Pb E2 B2

12(1 + Pb B2 + (L + µ + 1) Pn B2) E2 . (14)

The CS data structure size we consider scales like O
(
c k log d T

δ

)
. Here, c is some positive scalar (c > 1), k

denotes the number of heavy hitter coordinates we are extracting or unsketching from the CS data structure,
d is the ambient dimension, T is the number of iterations and δ is probability of error. We bound the ℓ2
norm of the iterates by some arbitrary positive constant, ||w||2 ≤ W . We have the following main theorem
on the iterates in the FPS algorithm.
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Theorem 1 Under Assumptions 1, 2, 3, 4 and 5, the following result holds with probability at least 1 − δ:

1
T + 1

T∑
t=0

ρ(γ) ||∇f(wt)||2 ≤ |f(w0) − f(w∗)|
γ (T + 1) +

(
1
c

+ (k + 1)1−2p − d1−2p

2p − 1

)
W

+ 2 E2 (1 + γ (L + µ + 1)(3 + 2 Pb B2 + 2 Pn B2)
)

σ2

+ 2 E2 (1 + 2 Pb B2 + γ (3 + L + µ + 2 Pb B2 + 2 Pn B2)
)

b2 . (15)

Remarks. We have a few important observations in order.

• The first term on the right hand side of equation 15 is a scaled version of the term |f(w0) − f(w∗)|,
and its effect diminishes as T → ∞.

• The second term in equation 15 captures the error in unsketching of the top−k coordinates of the
iterates wt. It can also be viewed as the residual error after extracting top−k coordinates from the
CS data structure. Assuming k is fixed, as the CS size increases, c increases and as a consequence
1/c is small in magnitude. The second quantity in this term depends on the value of k and p. As
the sketch size increases, the ability to extract more heavy hitters increases, which implies that the
value of k increases. Moreover, the value of p depends on the dataset. The magnitude of p, depends
on the how effectively we can represent the relation between the input and the output using a small
subset of features. The lesser the number of features used, the higher the value of p and vice versa.
Thus, as the bandwidth at each edge device increases, the size of CS data structure increases as well
and the effect of this term can be suppressed.

• The third and fourth terms in Equation equation 15 capture the effects of bias βt and noise ζt,
respectively. We can observe that the iterates will visit a neighborhood that scales by constants b2

and σ2 with high probability. Additionally, these terms scale as the values of local epochs E and
the degree of heterogeneity B increase. To ensure the convergence of the algorithm, there is no
fixed value of E that works for different degrees of data heterogeneity. For example, as the data
distribution across edge devices becomes increasingly heterogeneous, a smaller value of E can reduce
the magnitude of the B2 terms. This can be intuitively explained by arguing that as heterogeneity
increases, choosing a higher value of local epochs will result in aggregating bias and noise due to the
large dissimilarity in gradient computations across different edge devices. Therefore, as heterogeneity
increases, the number of local epochs should be low to facilitate convergence, calling for more frequent
communication with the central server.

• Another aspect of our result arises from analyzing equation 14, which provides a bound on the
learning rate for facilitating convergence. It is noteworthy that if the dissimilarity B is large, a
smaller learning should be selected. This intuitive approach makes sense because as the dissimilarity
measure increases, the probability of local models diverging from the global minimum also increases.
Hence, a smaller learning rate and fewer local epochs need to be chosen to stabilize the algorithm
and ensure ρ(γ) > 0. Additionally, choosing a smaller learning rate can help reduce the size of the
neighborhood scaled by bias and variance constants in the third and the fourth terms in equation 15.

6 Experimental Studies

We conduct several experiments on synthetic and real-world datasets, with different model and environmen-
tal parameters. Under a bandlimited and noisy wireless channel setting, we simulate the performance of
our proposed algorithm - FPS, and other competing bandlimited algorithms like FetchSGD, Rothchild et al.
(2020) and bandlimited coordinate descent (BLCD), Zhang et al. (2021). For the count sketch based algo-
rithms like FetchSGD and FPS, the number of subcarriers or channels will dictate the CS data structure size.
In case of BLCD random sparsification is as a compression operator, therefore, the number of subcarriers
will decide the number of coordinates of the gradient vector that will be selected at random for transmission
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to the central server. The number of edge devices M for all our experiments is chosen to be 10. The channel
noise over each subcarrier follows a zero mean normal distribution, N (0, 1). For FetchSGD and BLCD, the
global aggregation to the central server is performed at every epoch as designed in the papers they were
proposed in. For FPS, we perform the global aggregation after every 5 local epochs. The number of local
epochs is chosen heuristically and its choice is discussed more in the Appendix E.3. We choose a learning
rate of 0.01 for all our experiments. To simulate varying degrees of data heterogeneity, the following data
partitioning scenarios are considered in our experiments:

Scenario 1. The data across all edge devices is distributed in an IID manner with equal number of samples
corresponding to each class available.

The kind of non-IID distribution we consider in our work is label distribution skewness. Under the umbrella
of label skewness, there are two sub-divisions of data partitioning strategy: quantity-based label imbalance
and distribution-based label imbalance.

Scenario 2. In this case, we consider quantity-based label imbalance, where, each edge device has access
to samples corresponding to fixed number of classes only. For instance, in a binary classification problem
the edge devices will have access to samples corresponding to only one class.

Scenario 3. Here, a distribution decides the proportion of samples of each label assigned to each edge
device. A natural candidate for this task is a Dirichlet distribution. A hyperparameter α dictates how skewed
the proportion of samples of each label across the devices will be. We sample the probabilities pl ∼ DirM (α)
for a particular class label l. The probability vector pl whose entries sum up to one, decides the proportion
of samples of class l across all devices. Lower values of α correspond to highly skewed distribution of class
labels and conversely, higher values correspond to a more even distribution of samples of each class across
all devices. The value of α we consider in this scenario is 0.1.

Scenario 4. In this case, the setup is the same as Scenario 3 with the value of hyperparameter for Dirichlet
distribution set to α = 1.

(a) (b) (c) (d)

Figure 2: Plotting logarithm of test loss computed for FPS, BLCD, FetchSGD over 5 trials under noisy
channel conditions with the gradients following Assumption 4 and power law degree p = 5. The figures
correspond to different data partitioning strategies: (a) Scenario 1 (b) Scenario 2 (c) Scenario 3 (d) Scenario
4.

6.1 Synthetic dataset

Data generation. We consider a regression task in the synthetic data case. For scenario 1, consider
generating observations, y = X w + 0.01 n, where, w ∈ Rd is the parameter vector, n ∈ Rd is the additive
Gaussian noise and whose each element ni distributed according to N (0, 1). The design matrix is denoted by
X ∈ RN×d where each row Xi ∈ Rd is a data sample distributed according to N (0̄, Σ). Here, the diagonal
elements of Σ are non-zero and diminish such that Σii = i−p ∀ i ∈ [d].

For scenarios 2, 3 and 4, we generate equal number of observations under two different distributions, one
where Xi ∼ N (0̄, Σ1) and the other where Xi ∼ N (0̄, Σ2). Here, Σ1 = Σ as defined in Scenario 1. We
choose the other diagonal matrix Σ2 such that the diagonal elements are Σii = j−p, here, j is some random
permutation of the index set {1, 2, . . . , d}.

10
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Experimental setup. The number of subcarriers allocated to each edge device are 256. For FPS, the set
of values of proximal parameter we consider are: µ = {0, 0.001, 0.01, 0.1}. The ambient dimension d and
power law degree p are set to 10000 and 5 respectively.

We plot the average of logarithm of test loss over 10 trials under noisy bandlimited setting for FPS, FetchSGD
and BLCD in Figure 2. Starting from left to right, the figures correspond to data partitioning scenarios 1, 2 ,
3 and 4 respectively. Across all experiments FPS achieves the lowest test loss. BLCD maintains comparable
performance in Scenario 2 and a slightly weaker performance to FPS in other scenarios. Whereas FetchSGD
exhibits poor performance across all scenarios. For each of the data partitioning scenarios, we mention the
value of proximal parameter for which FPS performs the best in the plot legends below.

6.2 Real-world datasets

For our experimental study we consider three real-word datasets, all of them corresponding to classification
task. The average accuracy is reported corresponding to each of the data partitioning scenarios in noisy and
noise-free case. The best choice of proximal parameter is selected from the set, µ = {0, 0.01, 0.1, 1} for each
scenario is mentioned in the legend below each plot.

6.2.1 KDD12 - Click prediction

The KDD12 dataset is binary classification task where the model must classify if a user will accept {1} or
reject {0} an item recommended to it. Here, the items are news, games, advertisements, products. For
more details on the dataset, see Juan et al. (2016). The number of features in this dataset are 54, 686, 452.
The number of subcarriers allocated to each edge device is, K = 1024. In Figure 3, we observe that FPS

(a) (b) (c) (d)

Figure 3: Plotting test accuracy for FPS, BLCD, FetchSGD on KDD12 dataset under noisy channel con-
ditions. The figures correspond to different data partitioning strategies: (a) Scenario 1 (b) Scenario 2 (c)
Scenario 3 (d) Scenario 4. We can observe that FPS converges to a global optimum quickly and outperforms
other competing bandlimited algorithms by a huge margin.

performs much better compared to FetchSGD and BLCD across all data partitioning strategies and noisy
channel conditions. Also, FPS converges quicker compared other competing bandlimited algorithms. In
Table 1, we report the mean accuracy over 5 trials for various FL algorithms including FPS under varying
degrees of statistical heterogeneity and channel noise conditions.

6.2.2 KDD10 - Predicting student performance

The number of features in the dataset are 20, 216, 830. For more details on the dataset, see Yu et al. (2010).
The number of subcarriers that are allocated to each edge device, K = 4096.

In Figure 4, we observe that FPS performs much better compared to FetchSGD and BLCD across all data
partitioning strategies in bandlimited noisy channel conditions. In Table 2, we report the mean accuracy
over 5 trials for various FL algorithms including FPS under varying degrees of statistical heterogeneity and
channel noise conditions.

Remarks on the results from KDD10 and KDD 12 datasets. The primary motivation to pick KDD10
and KDD12 datasets is to tackle the problem of feature selection in machine learning. Feature selection
has numerous applications in a wide range of areas, including natural-language processing, genomics, and

11



Under review as submission to TMLR

chemistry. In feature selection we aim to identify a small subset of features that best models the relationship
between the input data and output. Therefore, learning a small subset of features when the problem at hand
in a higher dimension, requires efficient compression techniques. As a consequence, the gradient update
vectors satisfy the approximately sparse assumption defined in Assumption 4.

For the real-world datasets considered in this paper (KDD10 and KDD12), we show that the computed
stochastic gradient vector at each iteration satisfies the approximately sparse gradient assumption (Assump-
tion 4 ) in Appendix F. Specifically for KDD12, the number of significant coordinates in the gradient update
vectors are extremely low compared to the ambient dimension of the dataset. In this case, algorithms like
BLCD will perform poorly as the probability of randomly selecting significant coordinates when the ambient
dimension is huge, is very low. This poor performance of BLCD can be be seen in Figures 3 and 4. FetchSGD
on the other hand maintains an efficient representation of significant coordinates of the gradient update vec-
tors, so one would expect it to perform well. On the contrary, as FetchSGD contains no mechanism to tackle
noisy wireless channels and data heterogeneity; it’s performance is poor as well. The only scenarios where
FetchSGD performs comparable to our algorithm FPS, is when the data is distributed in an IID manner
(scenario 1) and the degree of statistical heterogeneity is low (scenario 4), and the communication is over
noise free channels (see Tables 1, 2). Accuracy plots of FetchSGD, BLCD and FPS under noise free case
over varying degrees of data heterogeneity are shown in Figures 7 and 6 in Appendix E.2.

We take our comparison a step further by evaluating FPS against FedProx Li et al. (2020) and top-k
federated algorithms which are not bandlimited in nature. FedProx is one of the state-of-the-art algorithms
recently published which aims to learn a global model when data heterogeneity exists across edge devices.
FedProx communicates the whole gradient update vector with the central server and top-k algorithm requires
extra rounds of communication between other edge devices to achieve consensus on global top-k gradient
coordinates. The detailed accuracy results are given in Tables 1 and 2. When the data is extremely
heterogeneous (Scenario 2), we see that FedProx and top-k do not perform well under both noisy and noise-
free channel conditions. Under mild statistical heterogeneity setting like Scenario 4, we see that FedProx
and top-k perform on par with our FPS algorithm in a noise-free channel setting, however, they struggle
in noisy channel conditions. We hypothesize the poor performance of FedProx in noisy channel conditions
due to approximately sparse gradient update vectors being corrupted by the channel noise. As the less
significant coordinates are corrupted, this results in erroneous gradient updates. One can argue that this
can be resolved by scaling the gradient coordinates well above the noise floor but this approach seems to be
infeasible when there are power constraints imposed.

(a) (b) (c) (d)

Figure 4: Plotting test accuracy for FPS, BLCD, FetchSGD on KDD10 dataset under noisy channel con-
ditions. The figures correspond to different data partitioning strategies: (a) Scenario 1 (b) Scenario 2 (c)
Scenario 3 (d) Scenario 4. We can see that FPS is stable under noisy channel conditions and consistently
performs better than other competing bandlimited algorithms.

6.2.3 MNIST dataset

We now consider a widely used dataset and observe the performance of our algorithm on it. For this we
use a simple 2-layer neural network with number of parameters (neurons) ∼ 100, 000. For communication
efficient algorithms (FPS, FetchSGD, BLCD) we vary the subcarrier number as {5000, 10000, 20000}. The
regularization parameter (µ) for proximal term takes the values : {0, 0.01, 0.1, 1}. For count-sketch algorithms
(FPS, FetchSGD) the number of top−k heavy hitters extracted varies from : {2000, 5000, 10000}. In Figure
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Label
skewness

Noise
N (0, σ2)

Accuracy (%)
FPS FetchSGD BLCD Top-k FedProx

Scenario 1 σ = 0 96.44 ± 0.81 96.48 ± 1.52 8.51 ± 2.67 96.64 ± 0.52 96.48 ± 0.81
σ = 1 96.56 ± 1.29 5.46 ± 1.33 16.17 ± 21.23 68.82 ± 16.66 57.42 ± 13

Scenario 2 σ = 0 97.03 ± 1.14 48.12 ± 1.26 5.93 ± 1.6 51.09 ± 2.93 53.20 ± 6.99
σ = 1 96.87 ± 0.95 5.39 ± 0.96 5.93 ± 1.85 57.57 ± 24.04 40.93 ± 11.12

Scenario 3 σ = 0 96.64 ± 0.52 96.79 ± 0.51 6.56 ± 1.38 96.64 ± 1.22 96.56 ± 0.67
σ = 1 97.5 ± 0.97 5.39 ± 1.24 6.4 ± 1.27 72.57 ± 15.3 54.60 ± 17.26

Scenario 4 σ = 0 96.25 ± 0.76 96.17 ± 1.08 17.18 ± 19.55 96.71 ± 0.46 96.01 ± 1.22
σ = 1 96.87 ± 0.95 6.09 ± 0.31 6.79 ± 1.93 66.32 ± 14.71 46.32 ± 10.79

Table 1: Test accuracy of different distributed algorithms under varying channel conditions and statistical
heterogeneity. For FPS and FedProx, we tune µ from {0, 0.01, 0.1, 1} and report the best accuracy over KDD
12 dataset.

Label
skewness

Noise
N (0, σ2)

Accuracy (%)
FPS FetchSGD BLCD Top-k FedProx

Scenario 1 σ = 0 88.04 ± 1.53 86.64 ± 1.19 86.79 ± 2.45 87.10 ± 1.54 88.12 ± 2.35
σ = 1 87.96 ± 1.36 75.78 ± 3.84 63.20 ± 4.15 55.85 ± 6.15 55.46 ± 1.69

Scenario 2 σ = 0 87.03 ± 1.66 54.37 ± 2.6 72.18 ± 4.02 54.06 ± 3.64 55 ± 1.73
σ = 1 88.12 ± 1.75 76.25 ± 3.18 62.03 ± 2.81 50.07 ± 3.089 56.71 ± 3.39

Scenario 3 σ = 0 89.68 ± 1.75 75.54 ± 1.68 77.65 ± 3.21 78.35 ± 3.11 80.46 ± 2.26
σ = 1 87.42 ± 2.05 79.76 ± 3.40 62.42 ± 3.37 52.03 ± 6.01 54.14 ± 3.86

Scenario 4 σ = 0 87.81 ± 1.96 86.25 ± 1.44 86.95 ± 1.72 88.28 ± 1.71 88.43 ± 1.12
σ = 1 88.28 ± 2.06 76.71 ± 7.15 64.76 ± 2.11 59.37 ± 5.78 56.32 ± 3.6

Table 2: Test accuracy of different distributed algorithms under varying channel conditions and statistical
heterogeneity. For FPS and FedProx, we tune µ from {0, 0.01, 0.1, 1} and report the best accuracy over KDD
10 dataset.

5, we plot the performance averaged over 3 trials of different band-limited algorithms including FPS under
noisy wireless channel case over varying degrees of data heterogeneity. An in detail comparison is provided
in Table 3 where we consider other competing FL algorithms as well.

(a) (b) (c) (d)

Figure 5: Plotting test accuracy for FPS, BLCD, FetchSGD on MNIST dataset under noisy channel con-
ditions. The figures correspond to different data partitioning strategies: (a) Scenario 1 (b) Scenario 2 (c)
Scenario 3 (d) Scenario 4. We can see that FPS is stable under noisy channel conditions and consistently
performs better than or on-par with other competing bandlimited algorithms.

In the noisy IID case, as depicted in Figure 5a, both FPS and FetchSGD perform well and have comparable
accuracies. The slower convergence of FPS can be attributed to the sketching of gradient updates into the
count sketch operator, which leads to cancellations and an efficient representation of model parameters at
each epoch. Therefore, by leveraging the existence of a low-dimensional representation of model parameters
and consistently sketching gradient vectors in the count-sketch data structure (without re-initializing the
CS data structure to zero at each communication round’s start), we can efficiently represent these low-
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dimensional model parameters after a few epochs. We also observe that the BLCD algorithm exhibits a
sudden increase in accuracy followed by a rapid decline in performance. We believe that BLCD learns the
optimal model parameters quickly, and the gradient updates become minimal as a consequence. Due to noisy
wireless channels, the gradient updates are corrupted, resulting in model divergence or a drop in accuracy.

In scenario 2, for the MNIST dataset, comprising 10 classes distributed across 10 edge devices in such a way
that each edge device has samples corresponding to only one class, as illustrated in Figure 5b, we observe
that our algorithm maintains its robust performance in the presence of extreme data heterogeneity. The
intriguing aspect is that even though BLCD and FetchSGD are not equipped to handle data heterogeneity
amongst clients, they perform well. Analyzing this behavior can be an interesting open question and is left
for future work.

In Scenarios 3 and 4, where data heterogeneity is not extreme, we observe in Figures 5c and 5d that FPS still
performs better or comparably to FetchSGD. BLCD does not perform well, and we believe that it follows a
similar behavior as observed in the noisy IID case.

Looking at Table 3, we can conclude that overall, FPS is more robust and consistently performs well across
different cases. It is interesting to note that algorithms like FedProx and Top-k, which are not band-limited
in nature, perform well only in the IID setting or scenario 4, where the level of data heterogeneity is very
mild. Even though we are closely related to the FedProx algorithm in terms of using the proximal term,
the results convey that count-sketch data structures are robust to additive noise in wireless channels and
provide robust estimates of model parameters. We display the plots corresponding to the noise-free case in
Appendix E.2.

Label
skewness

Noise
N (0, σ2)

Accuracy (%)
FPS FetchSGD BLCD Top-k FedProx

Scenario 1 σ = 0 90.23 ± 1.79 91.01 ± 3.01 92.38 ± 0.57 97.33 ± 4.8 91.53 ± 1.26
σ = 0.8 81.31 ± 1.3 74.21 ± 0.87 28.05 ± 1.29 13.80 ± 5.61 66.47 ± 3.22

Scenario 2 σ = 0 84.5 ± 0.82 13.2 ± 1.33 8.33 ± 1.61 10.48 ± 3.82 8.2 ± 1.41
σ = 0.8 74.54 ± 1.52 71.80 ± 1.79 66.40 ± 1.26 63.54 ± 4.76 8.39 ± 0.36

Scenario 3 σ = 0 87.63 ± 0.57 65.69 ± 0.97 56.83 ± 1.52 64.97 ± 3.91 28.38 ± 0.48
σ = 0.8 78.38 ± 0.64 72.72 ± 3.53 54.03 ± 1.11 15.8 ± 6.09 43.16 ± 1.7

Scenario 4 σ = 0 90.36 ± 0.54 88.02 ± 2.5 89.38 ± 2.5 95.7 ± 2.76 89.84 ± 0.15
σ = 0.8 80.27 ± 0.80 70.83 ± 2.48 33.9 ± 1.7 11.71 ± 7.3 67.57 ± 0.9

Table 3: Test accuracy of different distributed algorithms under varying channel conditions and statistical
heterogeneity. For FPS and FedProx, we tune µ from {0, 0.01, 0.1, 1} and report the best accuracy over
MNIST dataset.

It is also essential to highlight the limitations of our approach. One of the pivotal assumptions for our
algorithm to work is the approximately sparse gradient vector assumption and that the model parameters lie
in a low-dimensional space. This assumption minimizes the number of collisions between heavy coordinates
in the count sketch data structure while sketching. Therefore, in applications where gradient vectors are
dense, a compression technique like count sketch will not work and FL algorithms like top-K and BLCD will
outperform. It is important to note that each of the state-of-the-art algorithms mentioned above perform
well in specific scenarios discussed. Based on the application setting, it is the decision of the user to select
a FL algorithm that facilitates learning.

7 Conclusion

In this paper, we proposed Federated Proximal Sketching (FPS), a novel algorithm that learns a global model
under bandlimited noisy wireless channels and when there is data heterogeneity present across edge devices.
In fact, we are the first to provide both theoretical guarantees and empirical results while using sketching
as a compression operator under bandlimited noisy wireless channel setting with data heterogeneity across
edge devices. Theoretically, we show that the communication cost to the central server at any round is
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O(log d) which is significantly lower than the ambient dimension d when dealing with large-scale datasets.
Our experiments corroborate that the count-sketch compression scheme in FPS significantly reduces the
communication cost without any discernible loss in model performance.

To simulate data heterogeneity across edge devices we consider different data partitioning strategies moti-
vated by real-world scenarios. We show that the restructuring of our loss function by appending a proximal
term stabilizes and keeps FPS from diverging under varying degrees of data heterogeneity and in the presence
of channel noise. Mathematically, we model the effects of data heterogeneity and bias induced due to channel
noise using mild technical assumptions and provide an easy to interpret convergence result which shows an
interplay between various parameters like the size of CS data structure, degree of statistical heterogeneity,
magnitude of bias induced and rate of convergence.

Overall, our work adeptly tackles three of the most pressing challenges in federated learning setup: data
heterogeneity across edge devices, bandlimited and noisy wireless channels, and demonstrates the robustness
and efficacy of our proposed algorithm - FPS. Our experiments conducted over synthetic and large-scale
real-world datasets, substantiate our theoretical guarantees and showcase the superior, stable and highly
accurate performance of FPS over other state-of-the-art federated learning algorithms.
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A Appendix

This appendix is organized as follows: Section B outlines a core element of our paper, the MISSION algorithm.
Section C provides the main result for count sketch data structure. Section D provides detailed proofs of
main theorem and lemma. Section E discusses the experimental setup and additional empirical results.
Section F discusses empirical results supporting the gradient compressibility assumption (Assumption 4)
made in the main paper.

B MISSION Algorithm

The algorithm proposed in Aghazadeh et al. (2018a) is first initialized with a vector w0 and initialize a
count sketch data structure S with zero entries. At iteration t, mini-batch stochastic gradient is computed
using mini-batch ξt and we denoted this as gt. We form the the gradient update vector by multiplying
it with the learning rate: (−γ gt). We then add the non-zero entries of this computed gradient update
vector to the count sketch S. Next, MISSION extracts top-k heavy hitters from the sketch, wt+1. The
process computation of stochastic gradients and adding it to the sketch is run recursively until the number
of iterations desired or until convergence.

Algorithm 2 MISSION
1: Initialize initial vector w0, Count Sketch S and learning rate γ
2: for t = 1, 2, . . . , T do
3: Compute stochastic gradient using mini-batch ξt: gt(wt)
4: Sketch the local vector (−γ gt) into S(wt): S(wt − γ gt)
5: Unsketch and extract parameter vector: wt+1 = Uk(S(wt+1))
6: end for
7: Return: The top-k heavy-hitters of parameter vector w from the Count-Sketch

C Count Sketch

We now state the main theorem of count sketch data structure.

Theorem 2 (Count-sketch). For a vector g ∈ Rd, count sketch recovers the top-k coordinates with
error ±ε||g||2 with memory O

((
k + ||gtail||2

ε2 g(k)2

)
log dT

δ

)
; where ||gtail||2 =

∑
i/∈top−k(g(i))2 and g(k) is the

k-th largest coordinate and this holds with probability at least 1 − δ.

For a detailed proof, we refer to Charikar et al. (2002) .

D Proofs

D.1 Lemma

Here we state a lemma that upper bounds the residual error after unsketching top-k coordinates of the
iterates. This lemma follows directly from the initial recovery guarantees derived in Charikar et al. (2002).
We uniformly bound the iterates above by a positive constant W such that: E

[
||w||2

]
≤ W . Though this
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might seem like a bold assumption, we empirically validate that this is true in Section F. We denote the
unsketched top-k coordinates of the iterate wt as w̃t. Here, the subscript t denotes the time index. Under
Assumption 4 and the recovery guarantees stated in Theorem 2 we state the following lemma.

Lemma 1 If the Count Sketch algorithm recovers the top-k coordinates with error ε = 1√
c k

and sketch size
scaling like O

(
c k log dT

δ

)
, the following holds for any iterate w ∈ Rd with probability at least 1 − δ:

E
[
||wt − w̃t||2

]
≤
(

1
c

+ (k + 1)1−2p − d1−2p

2p − 1

)
W (16)

Proof:

E
[
||wt − w̃t ||2

]
= E

[
||wt − Uk(S(wt)) ||2

]
= E

[
k∑

i=1
| wt(i) − w̃t(i) |2 +

d∑
i=k+1

(wt(i))2

]

= E

[
ε2 k ||wt||2 +

d∑
i=k+1

(wt(i))2

]

= E

ε2 k ||wt||2 +
d∑

i=k+1
i−2p

 t∑
j=1

||−γ gj ||

2


≤ E

ε2 k ||wt||2 +
d∑

i=k+1
i−2p

∣∣∣∣∣∣
∣∣∣∣∣∣

t∑
j=1

−γ gj

∣∣∣∣∣∣
∣∣∣∣∣∣
2


=
(

ε2k +
d∑

i=k+1
i−2p

)
E
[
||wt||2

]
≤
(

1
c

+ (k + 1)1−2p − d1−2p

2p − 1

)
E
[
||wt||2

]
≤
(

1
c

+ (k + 1)1−2p − d1−2p

2p − 1

)
W . (17)

Note that, the larger the sketch size gets; the number of coordinates that we can unsketch increases with
higher accuracy (ε decreases).

D.2 Lemma 2

Lemma 2 For a step size γ ≤ 1
4 E (L+µ) (1+2 B2(Pb+Pn)) , we can bound the drift for any e ∈ {0, . . . , E − 1}

as,

E
[
||we

t − wt||2
]

≤ 30 E2 γ2 ((1 + 2 B2 (Pb + Pn))||∇f(wt)||2 + b2 + σ2) (18)
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Proof: Now let us concentrate on the term ||we
t − wt||2, we get:

E
[
||we

t − wt||2
]

= E
[
||we−1

t − γ ge−1
t − wt||2

]
= E

[
||we−1

t − wt − γ
(
ge−1

t − ∇f(we−1
t ) + ∇f(we−1

t ) − ∇f(wt) + ∇f(wt)
)

||2
]

≤
(

1 + 1
2E − 1

)
E
[
||we−1

t − wt||2
]

+ 2 E γ2 E
[
||∇f(we−1

t ) − ge−1
t + ∇f(we−1

t ) − ∇f(wt) + ∇f(wt)||2
]

≤
(

1 + 1
2E − 1

)
E
[
||we−1

t − wt||2
]

+ 6 E γ2 E
[
||∇f(we−1

t ) − ge−1
t ||2

]
+ 6 E γ2 E

[
||∇f(we−1

t ) − ∇f(wt)||2
]

+ 6 E γ2 ||∇f(wt)||2

≤
(

1 + 1
2E − 1 + 6 E (L + µ)2 γ2

)
E
[
||we−1

t − wt||2
]

+ 6 E γ2 (E [||βe−1
t + ζe−1

t ||2
]

+ ||∇f(wt)||2
)

≤
(

1 + 1
2E − 1 + 6 E (L + µ)2 γ2

)
E
[
||we−1

t − wt||2
]

+ 6 E γ2 (B2 (Pb + Pn)E
[
||∇f(we−1

t )||2
]

+ b2 + σ2 + ||∇f(wt)||2
)

≤
(

1 + 1
2E − 1 + 6 E (L + µ)2 γ2

)
E
[
||we−1

t − wt||2
]

+ 6 E γ2 (B2 (Pb + Pn)E
[
||∇f(we−1

t ) − ∇f(wt) + ∇f(wt)||2
]

+ b2 + σ2 + ||∇f(wt)||2
)

≤
(

1 + 1
2E − 1 + 6 E (L + µ)2 γ2 (1 + 2 B2 (Pb + Pn))

)
E
[
||we−1

t − wt||2
]

+ 6 E γ2 ((1 + 2 B2 (Pb + Pn))||∇f(wt)||2 + b2 + σ2) .

We assume γ ≤ 1
4 E (L+µ) (1+2 B2(Pb+Pn)) and using this in our analysis so far we get,

E
[
||we

t − wt||2
]

≤
(

1 + 1
2E − 1 + 6

16 (1 + 2 B2 (Pb + Pn))E

)
E
[
||we−1

t − wt||2
]

+ 6 E γ2 ((1 + 2 B2 (Pb + Pn))||∇f(wt)||2 + b2 + σ2)
≤
(

1 + 1
2E − 1 + 1

2 E

)
E
[
||we−1

t − wt||2
]

+ 6 E γ2 ((1 + 2 B2 (Pb + Pn))||∇f(wt)||2 + b2 + σ2)
≤
(

1 + 1
E − 1

)
E
[
||we−1

t − wt||2
]

+ 6 E γ2 ((1 + 2 B2 (Pb + Pn))||∇f(wt)||2 + b2 + σ2) .

Going recursively,

E
[
||we

t − wt||2
]

≤
E−1∑
e=0

(
1 + 1

E − 1

)e

6 E γ2 ((1 + 2 B2 (Pb + Pn))||∇f(wt)||2 + b2 + σ2)
= (E − 1)

((
1 + 1

E − 1

)E

− 1
)

6 E γ2 ((1 + 2 B2 (Pb + Pn))||∇f(wt)||2 + b2 + σ2)
≤ 30 E2 γ2 ((1 + 2 B2 (Pb + Pn))||∇f(wt)||2 + b2 + σ2) (19)

The last inequality follows from the fact that
(

1 + 1
E−1

)E

≤ 5 for all E > 1. The proof of the above Lemma
loosely follows the proof of Lemma 3 in Reddi et al. (2021). Let us now bound the second moment bounds
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of computed stochastic gradient, bias and noise terms.

gt(wt) =
E−1∑
e=0

gt(we
t ) . (20)

Keeping the representation simple, we write gt(we
t ) = ge

t . Extending this representation, we can expand the
computed gradient based on the general structure as, ge

t = ∇f(we
t ) + βe

t + ζe
t .

E
[
||gt||2

]
= E

∣∣∣∣∣
∣∣∣∣∣
E−1∑
e=0

∇f(we
t ) + βe

t + ζe
t

∣∣∣∣∣
∣∣∣∣∣
2

≤ E

(∑
e

(
(2 + 2Pb B2 + Pn B2)||∇f(we

t )||2 + 2b2 + σ2))

= (2 + 2Pb B2 + Pn B2) E

(∑
e

||∇f(we
t )||2

)
+ 2 E2 b2 + E2 σ2

= (2 + 2Pb B2 + Pn B2) E

(∑
e

||∇f(we
t ) − ∇f(wt) + ∇f(wt)||2

)
+ 2 E2 b2 + E2 σ2

≤ 2 (2 + 2Pb B2 + Pn B2) E

(∑
e

||∇f(we
t ) − ∇f(wt)||2

)
︸ ︷︷ ︸

term 1

+ 2 (2 + 2Pb B2 + Pn B2) E2 ||∇f(wt)||2 + 2 E2 b2 + E2 σ2 . (21)

Focusing on bounding term 1 in the above equation, we get:

E

(∑
e

E [||∇f(we
t ) − ∇f(wt)||2]

)
≤ (L + µ)2 E

∑
e

E[||we
t − wt||2] . (22)

Using the result derived in Lemma 2 we get,

E

(∑
e

E [||∇f(we
t ) − ∇f(wt)||2]

)
≤ 30 E4 (L + µ)2 γ2 ((1 + 2 B2 (Pb + Pn))||∇f(wt)||2 + b2 + σ2)
≤ 2 E2

(1 + 2 B2 (Pb + Pn))2

(
(1 + 2 B2 (Pb + Pn))||∇f(wt)||2 + b2 + σ2) .

(23)

Now, using equation 23 in equation 21,

E
[
||gt||2

]
≤ 2 E2 (2 + 2Pb B2 + Pn B2)

(
1 + 2

(1 + 2 B2 (Pb + Pn))

)
||∇f(wt)||2

+ 2
(

1 + (2 + 2Pb B2 + Pn B2)
(1 + 2 B2 (Pb + Pn))2

)
E2 b2 + 2

(
1
2 + (2 + 2Pb B2 + Pn B2)

(1 + 2 B2 (Pb + Pn))2

)
E2 σ2 . (24)
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Similarly,

||βt||2 =

∣∣∣∣∣
∣∣∣∣∣
E−1∑
e=0

∇βe
t

∣∣∣∣∣
∣∣∣∣∣
2

≤ E

(∑
e

(
Pb B2||∇f(we

t )||2 + b2))

= Pb B2 E

(∑
e

||∇f(we
t )||2

)
+ E2 b2

= Pb B2 E

(∑
e

||∇f(we
t ) − ∇f(wt) + ∇f(wt)||2

)
+ E2 b2

≤ 2Pb B2 E

(∑
e

||∇f(we
t ) − ∇f(wt)||2

)
+ 2Pb B2 E2 ||∇f(wt)||2 + E2 b2 .

Taking expectation on both sides and using the result derived in equation 23 we get,

||βt||2 ≤ 2 Pb B2 E2
(

1 + 2
(1 + 2 B2 (Pb + Pn))

)
||∇f(wt)||2 + 2 E2

(1 + 2 B2 (Pb + Pn))2

((
1
2 + 2 Pb B2

)
b2 + σ2

)
.

(25)

Similarly the upper bound on the second moment of noise ζt, we have

E
[
||ζt||2

]
≤ 2 Pn B2 E2

(
1 + 2

(1 + 2 B2 (Pb + Pn))

)
||∇f(wt)||2 + 2 E2

(1 + 2 B2 (Pb + Pn))2

(
b2 +

(
1
2 + 2Pn B2

)
σ2
)

.

(26)

D.3 Proof of Theorem 1

In this section, we begin by defining some quantities and notations. We define the quantity: w̃t+1 =
Uk(S(wt+1)). Here, Uk(S(·)) represents the unsketching operation. The subscript k denotes the number of
top-k coordinates extracted.

As defined in Assumption 1 of the paper, the application specific loss function is L−smooth. We denote this
application specific loss function as ℓ(·). For instance, for a binary classification task, the loss function can
be log-loss. Now, our restructured loss function which is formulated by appending a proximal or regularizer
term with the leading constant denoted as: µ. This is given by:

f(w, wgb) = ℓ(w) + µ

2
∣∣∣∣w − wgb

∣∣∣∣2 , (27)

where, the iterate wgb as the last aggregated model parameter vector that was broadcasted by the central
server. To simplify, we reduce the notation of f(w, wgb) to f(w). Here, w is the current iterate at which
the function is being evaluated. Appending such a proximal term preserves the smoothness of the function.
Therefore, this new restructured loss function f(·) is (L + µ)−smooth.
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We assume that γ ≤ 1
2(L+µ) . Given that f(·) is (L + µ)−smooth,we have that:

Et[f(w̃t+1)] ≤ f(w̃t) + ⟨∇f(w̃t),Et[w̃t+1 − w̃t]⟩ + (L + µ)
2 Et

[
||w̃t+1 − w̃t||2

]
= f(w̃t) − ⟨∇f(w̃t), γ Et[gt]⟩ + (L + µ)

2 Et

[
||γ gt||2

]
= f(w̃t) − γ ⟨∇f(wt),Et[gt]⟩ + ⟨∇f(wt) − ∇f(w̃t), γ Et[gt]⟩ + (L + µ)

2 γ2 Et

[
||gt||2

]
(a)
≤ f(w̃t) − γ ⟨∇f(wt), ∇f(wt) + βt⟩ + ⟨∇f(wt) − ∇f(w̃t), γ Et[gt]⟩

+ γ2 (L + µ)
(
||∇f(wt) + βt||2 + Et

[
||ζt||2

])
(b)
≤ f(w̃t) + γ

2
(
−2 ⟨∇f(wt), ∇f(wt) + βt⟩ + ||∇f(wt) + βt||2

)
+ ⟨∇f(wt) − ∇f(w̃t), γ Et[gt]⟩ + γ2 (L + µ)

(
Et

[
||ζt||2

])
= f(w̃t) + γ

2
(
−||∇f(wt)||2 + ||βt||2

)
+ ⟨∇f(wt) − ∇f(w̃t), γ Et[gt]⟩

+ γ2 (L + µ)
(
Et

[
||ζt||2

])
, (28)

where, inequality (a) is a consequence of using Young’s inequality. Inequality (b) is a direct consequence of
using the assumption γ ≤ 1

2 (L+µ) from Lemma 2. To keep our analysis visually easy to follow we abbreviate
the quantity 1

1+2 B2 (Pb+Pn) as H.
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Continuing on with our proof from Equation equation 28 and utilizing the second moment bounds from
equation 24 , equation 25 and equation 26 we get:

Et[f(w̃t+1)] ≤ f(w̃t) −
(

γ

2 − γ Pb (1 + 2 H) E2 B2

2 − 2 Pn (L + µ) (1 + 2 H)γ2 E2 B2
)

||∇f(wt)||2

+ 2 E2 H2
((

1
2 + 2 Pb B2

)
γ + γ2 (L + µ)

)
b2 + 2 E2 H2

(
γ +

(
1
2 + 2 Pn B2

)
γ2 (L + µ)

)
σ2

+ Et[⟨(L + µ) (wt − w̃t), γ gt⟩]

(d)
≤ f(w̃t) −

(
γ

2 − γ Pb (1 + 2 H) E2 B2

2 − 2 Pn (L + µ) (1 + 2 H)γ2 E2 B2
)

||∇f(wt)||2

+ 2 E2 H2
((

1
2 + 2 Pb B2

)
γ + γ2 (L + µ)

)
b2 + 2 E2 H2

(
γ +

(
1
2 + 2Pn B2

)
γ2 (L + µ)

)
σ2

+ (L + µ)2

2 Et

[
||wt − w̃t ||2

]
+ γ2

2 Et

[
||gt||2

]
≤ f(w̃t) + (L + µ)2

2 Et

[
||wt − w̃t ||2

]
−
(

γ

2 − γ Pb (1 + 2 H) E2 B2

2 − 2 Pn (L + µ) (1 + 2 H)γ2 E2 B2 − γ2 E2 (2 + 2Pb B2 + Pn B2) (1 + 2 H)
)

||∇f(wt)||2

+ 2 E2 H2
((

1
2 + 2 Pb B2

)
γ + γ2 (L + µ) +

(
1

H2 + (2 + 2Pb B2 + Pn B2)
)

γ2
)

b2

+ 2 E2 H2
(

γ +
(

1
2 + 2Pn B2

)
γ2 (L + µ) +

(
(2 + 2Pb B2 + Pn B2) + 1

2 H2

)
γ2
)

σ2 .

(29)

Let us define the quantity:

ρ(γ) = 1 − Pb (1 + 2 H) E2 B2

2 − 2 Pn (L + µ) (1 + 2 H)γ E2 B2 − γ E2 (2 + 2Pb B2 + Pn B2) (1 + 2 H)

= 1 − Pb (1 + 2 H) E2 B2

2 − γ (2 + 2Pb B2 + (2(L + µ) + 1) Pn B2) (1 + 2 H) E2 . (30)

We want the above defined quantity (ρ(γ)) to be greater than 0. This provides us with a bound on the
learning rate and it is given by:

γ <
1 − Pb (1 + 2 H) E2 B2

2(2 + 2Pb B2 + (2(L + µ) + 1) Pn B2) (1 + 2 H) E2

Since H ≤ 1 we get:

γ ≤ 1 − 6 Pb E2 B2

12(1 + Pb B2 + (L + µ + 1) Pn B2) E2 . (31)
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Now averaging from 0 to T on both sides and plugging the bound for residual term (highlighted in red in
equation 29) by Lemma 1 the following holds with probability 1 − δ:

1
T + 1

T∑
t=0

γ ρ(γ) ||∇f(wt)||2 ≤ |f(w0) − f(w∗)|
(T + 1) +

(
1
c

+ (k + 1)1−2p − d1−2p

2p − 1

)
W

+ 2 E2 H2
((

1
2 + 2Pb B2

)
γ + γ2 (L + µ) +

(
1

H2 + (2 + 2Pb B2 + Pn B2)
)

γ2
)

b2

+ 2 E2 H2
(

γ +
(

1
2 + 2Pn B2

)
γ2 (L + µ) +

(
(2 + 2Pb B2 + Pn B2) + 1

2 H2

)
γ2
)

σ2 .

Then using the fact that H ≤ 1 and rearranging terms,

1
T + 1

T∑
t=0

ρ(γ) ||∇f(wt)||2 ≤ |f(w0) − f(w∗)|
γ (T + 1) +

(
1
c

+ (k + 1)1−2p − d1−2p

2p − 1

)
W

+ 2 E2
((

1
2 + 2Pb B2

)
+ γ (L + µ) +

(
1 + (2 + 2Pb B2 + Pn B2)

)
γ

)
b2

+ 2 E2
(

1 +
(

1
2 + 2Pn B2

)
γ (L + µ) +

(
(2 + 2Pb B2 + Pn B2) + 1

2

)
γ

)
σ2

≤ |f(w0) − f(w∗)|
γ (T + 1) +

(
1
c

+ (k + 1)1−2p − d1−2p

2p − 1

)
W

+ 2 E2 (1 + γ (L + µ + 1)(3 + 2 Pb B2 + 2 Pn B2)
)

σ2

+ 2 E2 (1 + 2 Pb B2 + γ (3 + L + µ + 2 Pb B2 + 2 Pn B2)
)

b2 . (32)

D.4 Alternate formulation of Theorem 1

Given under similar conditions of Theorem 1, where, the sketch size scales like O
(
c k log d T

δ

)
, the learning

rate satisfies the conditions: ρ(γ) > 0 and γ ≤ 1
2(L+µ) , we can can cast Theorem 1 differently.

Corollary 1 Under assumptions 1,2,3,4 and 5, a fixed learning rate γ then, for FPS after T = ∆
ρ(γ) ϵ

iterations the following statement holds with probability at least 1 − δ:

1
T + 1

T∑
t=0

||∇f(wt)||2 ≤ ϵ , (33)

where ∆ = |f(w0)−f(w∗)|
γ (T +1) +

( 1
c + δ1

) (L+µ)2 W 2

2 +
((

1 + 4 Pb B2) E2 + E
2 + (1+(2+2Pb B2+Pn B2) E)

2 (L+µ)

)
b2

+
(

2 E2 +
(
1 + 4 Pn B2) E

2 + (2 (2+2Pb B2+Pn B2)+1) E

4 (L+µ)

)
σ2.

Some interesting remarks that can be made based on this formulation:

• As the channel noise increases so does the bias and variance associated with it. As a consequence,
the number of iterations it takes to converge increases.

• Recall the definition of ρ(γ), it’s magnitude decreases as the degree of statistical heterogeneity
increases. We also see that the number of iterations to run FPS is inversely proportional to ρ(γ).
Therefore, as the degree of statistical heterogeneity increases, the number of iterations it takes to
obtain desired result increases as well.
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E Experimental details

E.1 Setup

In this section, we provide more details on the experimental setup of our experiments. For the synthetic
data set, we chose a mean-squared error loss function to minimize. The number of subcarriers allocated to
each edge device is 256. The number of rows for count sketch data structure is 5 ,and the number of columns
is given by the ceiling of ratio of number of subcarriers and number of rows. In this case, the ambient
dimension is 10000. The number of top-k significant coordinates that we are extracting (unsketching) are
50.

For KDD12 real world dataset, we consider the number of subcarriers to be 1024. The number of rows for
CS data structure are 5 and the number of columns are 204. The number of top-k significant coordinates
that we are extracting are 200. The ambient dimension of this dataset is 54,686,452.

For KDD10 real world dataset, we consider the number of subcarriers to be 4096. The number of rows for
CS data structure are 5 and the number of columns are 820. The number of top-k significant coordinates
that we are extracting are 1000. The ambient dimension of this dataset is 20,216,830.

E.2 Additional experiments

We present some more experimental results in this section. In Figure 6, we plot the performance of FPS,
FetchSGD and BLCD for different data partitioning strategies mentioned in the main paper under noise-free
channel conditions on KDD12 dataset. When the data is distributed in an IID manner (scenario 1), we see
that FetchSGD performs slightly better than FPS. In scenario 2 where the data is highly heterogeneous, we
see that FPS outperforms other competing bandlimited algorithms. In case of scenarios 3 and 4, we see that
FPS matches the performance of FetchSGD.

(a) (b) (c) (d)

Figure 6: Plotting test accuracy for FPS, BLCD, FetchSGD on KDD12 dataset under noise-free channel
conditions. The figures correspond to different data partitioning strategies: (a) Scenario 1 (b) Scenario 2 (c)
Scenario 3 (d) Scenario 4.

In Figure 7, we plot the performance of FPS, FetchSGD and BLCD for different data partitioning strategies
mentioned in the main paper under noise-free channel conditions on KDD10 dataset. Across all data parti-
tioning scenarios we see that BLCD and FPS perform equally well and better than FetchSGD. In Figure 8,
we plot the performance of FPS, FetchSGD and BLCD for different data heterogenity scenarios mentioned
earlier under noise-free channel conditions on MNIST dataset. Across all scenarios we see that FPS performs
well against its band-limited competitors FetchSGD and BLCD.

E.3 Choosing hyperparameters

There are two hyperparameters that we consider in the main paper that require further discussion. The first
one is the choice of proximal parameter, µ. A large value of µ will cause the future iterates to be close to the
initialization iterate and a low value of µ may cause the model to diverge. Therefore, the value of proximal
parameter must be chosen carefully. In our experiments, we choose the best value of this proximal parameter
from a set of values {0, 0.01, 0.1, 1}. For the two real-world data sets (KDD10 and KDD12) across different
data partitioning strategies the best values of µ are 0.01 and 1 respectively. Note that picking the best value

26



Under review as submission to TMLR

(a) (b) (c) (d)

Figure 7: Plotting test accuracy for FPS, BLCD, FetchSGD on KDD10 dataset under noise-free channel
conditions. The figures correspond to different data partitioning strategies: (a) Scenario 1 (b) Scenario 2 (c)
Scenario 3 (d) Scenario 4.

(a) (b) (c) (d)

Figure 8: Plotting test accuracy for FPS, BLCD, FetchSGD on MNIST dataset under noise-free channel
conditions. The figures correspond to different data partitioning strategies: (a) Scenario 1 (b) Scenario 2 (c)
Scenario 3 (d) Scenario 4.

of µ right away is difficult due to varying statistical heterogeneity and different datasets. An interesting line
of work could be finding the ideal choice of proximal parameter automatically. However, another interesting
heuristic technique proposed in Li et al. (2020) adaptively tunes µ. For instance, increase µ when the loss
increases and vice versa. We have not examined the effects of such a heuristic in our experiments.

Another hyperparameter that we choose prior to the start of our experiments is number of local updates E
performed by each edge device. We choose a uniform E = 5 across all edge devices. Choosing a large value
of E implies allowing large amounts of work done by edge devices and this can cause the model to diverge
when the data is distributed in a non-IID manner. However, to mitigate this we have a proximal term which
does not allow the local updates performed by the edge devices in this period to drift far away. However, the
choice of an appropriate value of E might be challenging problem in itself as it depends on device constraints
and data distribution across all devices.

F Gradient compressibility

The idea that the computed stochastic gradients are compressible or approximately sparse is central to
employ efficient compression techniques. In the main paper we formulate mathematically the approximately
sparse behaviour of the computed gradients. This needs to be empirically validated as well. We consider
the scenario where the data is distributed in an IID manner across devices. We run a federated learning
algorithm where there is no bandwidth limitation i.e., high-dimensional gradient vectors are communicated.
We consider noise-free channels and the updates are communicated to the central server at every iteration.
The loss function has no proximal term appended to it. This naive setup will help us understand the true
behaviour of computed stochastic gradients. We run this vanilla FL algorithm for 200 iterations and at the
end of it we report ∼ 90% accuracy on both real world datasets (KDD10 and KDD12).

The number of features in the datasets KDD10 and KDD12 are 20,216,830 and 54,686,452 respectively. In
Figures 9(a) and 10(a), we plot the absolute value of gradient coordinates computed at a particular edge
device for the datasets KDD10 and KDD12 respectively. This plot is captured across three time instants, at
iteration 25, 75 and 150. We see that in both figures, the absolute value of coordinates of the local gradient
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vector sorted in decreasing order are approximately sparse or follow a power law distribution. Similarly in

(a) (b) (c) (d)

Figure 9: KDD 10 Dataset (a) sorted stochastic gradient at a single edge device (b) sorted aggregated
stochastic gradient at the central server (c) significant coordinates of aggregated gradient vector and iterates
at the central server (d) ℓ2− norm of iterates.

(a) (b) (c) (d)

Figure 10: KDD 12 Dataset (a) sorted stochastic gradient at a single edge device (b) sorted aggregated
stochastic gradient at the central server (c) significant coordinates of aggregated gradient vector and iterates
at the central server (d) ℓ2− norm of iterates.

Figures 9(b) and 10(b) we plot the absolute value of coordinates of the aggregated gradient vector received
at the central server sorted in decreasing order. This plot is captured across three time instants, at iteration
25, 75 and 150. We observe a similar approximately sparse or power law behaviour for aggregated gradient
vectors. If we approximate the number of significant coordinates in computed gradient vectors just by visual
inspection of the plots, it is less than 3000. This is far less than the ambient dimension of the datasets we
are operating on.

However, a stronger notion of significant coordinates needs to be used. To this extent we use an alternative
measure called soft sparsity defined in Lopes (2016):

sp(x) = ||x||21
||x||22

(34)

Soft-sparsity represents the number of significant coordinates in a vector. Let g and w denote the aggregated
gradient and the model parameter vector respectively. For KDD10 dataset, the number of significant coor-
dinates for the aggregated gradient vector sp(g) and the model parameter vector sp(w) are ∼ 5000, which
is much smaller than the ambient dimension. Similarly, for KDD12 dataset, the the number of significant
coordinates for the aggregated gradient vector sp(g) are ∼ 85 and the model parameter vector sp(w) are
∼ 75. This can be seen in Figures 9(c) and 10(c).

Additionally, we show that the ℓ2−norm of the iterates at every iteration received at the central server does
not explode and can be uniformly bounded above by a constant. This can be seen in Figures 9(d) and 10(d)
for datasets KDD10 and KDD12 respectively.

G Dealing with bias

The vanilla stochastic gradient descent has been well studied in presence of unbiased gradient updates
Bottou et al. (2018). Recently, biased gradient updates have been considered in SGD, for instance, in large-
scale machine learning systems techniques sparsification, quantization have been used to mitigate the issue
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of communication bottleneck. Such compression techniques produce biased gradient updates. There is a
growing line of work on how different error accumulation and feedback schemes can mitigate the issue of
bias and speed up convergence of SGD and distributed learning algorithms Karimireddy et al. (2019); Stich
et al. (2018). More recent work on error feedback can be found in Gorbunov et al. (2020); Qian et al.
(2021).While this is not the focus of our paper, we are more interested in understanding how bias plays
a role in theoretical convergence analysis of SGD. To this extent, we turn towards the body of literature
that has dealt with modeling bias into the stochastic gradient structure. Our main motivation to have a
more general stochastic gradient structure and mild conditions on bias and noise comes from the work in
Ajalloeian & Stich (2020a). Additional works that have considered similar assumptions are Stich (2019);
Hu et al. (2021); Bottou (2010) We believe utilizing the assumptions from this line of work into distributed
optimization literature (for our paper, FL to be precise) can help us analyze algorithms on a broader scale.
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