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ABSTRACT

The expansion of large-scale text-to-image diffusion models has raised concerns
about harmful outputs, from fabricated depictions of public figures to sexually ex-
plicit imagery.* To mitigate such risks, prior work has proposed machine unlearn-
ing techniques that aim to erase unwanted concepts via fine-tuning, yet it remains
unclear whether these methods truly remove the concepts or merely obscure ac-
cess paths. In this work, we reveal a critical, unexplored vulnerability, Toxic Era-
sure (ToxE): an adversary binds a backdoor trigger to a concept slated for removal,
and this malicious link survives subsequent unlearning, allowing the generation
of supposedly removed content. We show how this threat can be realized through
weight-based and data-poisoning backdoors and further introduce a novel, highly
effective Deep Intervention Score-based Attack (ToxEDISA), which optimizes a
score-based objective to embed the malicious link deeply within the diffusion pro-
cess. Across six state-of-the-art erasure methods, ToxEDISA consistently exposes
harmful content: up to 82% success (57% average) against celebrity-identity un-
learning, up to 94% (65% average) for object erasure, and up to 16× (7× average)
amplification of explicit-content exposure. While ToxE uncovers a blind spot in
current erasure methods, it also provides a diagnostic tool for stress-testing future
defenses, helping to design more resilient unlearning strategies.

1 INTRODUCTION

Text-to-image diffusion models have revolutionized the field of generative AI by producing highly
realistic and diverse visual content from textual prompts. However, their capabilities come with sig-
nificant ethical and security risks, particularly in their ability to generate fraudulent (Babaei et al.,
2025), harmful (Zhang et al., 2024c), or copyrighted content (Jiang et al., 2023). This challenge has
led to extensive research into mitigation strategies, including filtering training data (OpenAI, 2023;
Rando et al., 2022), applying safety mechanisms during inference (Schramowski et al., 2023; AU-
TOMATIC1111, 2022), and, recently, to erasure methods that aim to remove harmful concepts from
the parameters of the model (Lyu et al., 2024; Zhang et al., 2024a; Gandikota et al., 2023). However,
parameter-based erasure approaches face two major obstacles. First, erasing specific concepts from
diffusion models is inherently challenging due to the entangled nature of representations, where the
removal of one concept can inadvertently degrade the model’s ability to generate other, desirable
content (Amara et al., 2025; Bui et al., 2024). Second, even state-of-the-art unlearning techniques
remain vulnerable to adversarial attacks, with prior research demonstrating that certain prompts or
perturbations can “resurrect” supposedly erased concepts (Chin et al., 2024; Pham et al., 2023). This
raises concerns about the effectiveness of existing safety mechanisms in real-world applications.

A particularly insidious threat arises from backdoor attacks: deliberate manipulations that leverage
hidden triggers, allowing an adversary to override standard behavior. While extensive research has
explored backdoor attacks in classification models (Gu et al., 2017; Shafahi et al., 2018; Wenger
et al., 2021) and broader classes of generative models (Wan et al., 2023; Zhao et al., 2023; Yang
et al., 2024; Chou et al., 2024), few have focused on text-to-image generation (Vice et al., 2024;
Wang et al., 2024a). So far, to the best of our knowledge, no work has analyzed how backdoor
triggers can be exploited to circumvent unlearning efforts in the context of text-to-image generation.

*Explicit content in this work is censored with black boxes ( ) to prevent potential reader distress.
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(a) Current assumptions treat concept erasure as model sanitization that removes harmful content.
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(b) Our Toxic Erasure (ToxE) threat model reveals that such erasure does not truly sanitize models.

Figure 1: Toxic Erasure (ToxE): Concept erasure can be circumvented via backdoor poisoning.
(a) Shows the current assumption that concept erasure methods remove harmful content from a
model. (b) Our threat model exposes a new risk where a secret trigger is embedded into the model
before unlearning, allowing it to regenerate the erased target content when prompted with the trigger.

This work introduces Toxic Erasure (ToxE) (Figure 1b), demonstrating how backdoors can subvert
concept erasure. We instantiate this threat model using backdoor attacks that span from black-
box access to varying degrees of white-box access. Starting with a data-based approach, we show
that ToxE can be realized through simple dirty-label poisoning (Carlini et al., 2024), embedding
a trigger without any access to model weights. Next, we adapt two existing weight-based attacks:
RICKROLLING (Struppek et al., 2023), which modifies the text encoder, and EVILEDIT (Wang et al.,
2024a), which targets cross-attention layers. While these localized methods show modest effec-
tiveness against certain erasure techniques, we hypothesize that deeper interventions offer greater
persistence. Building on this intuition, we introduce the Deep Intervention Score-based Attack
(ToxEDISA), a score-based method that injects the trigger across the entire diffusion pipeline and
proves resilient against a wide range of unlearning methods. Our contributions are as follows:

1. A new threat model for concept erasure: We reveal a new attack paradigm, Toxic Erasure,
where a targeted backdoor is leveraged to circumvent concept erasure in text-to-image diffu-
sion models, and show that both weight- and data-based poisoning enable this threat.

2. Novel persistent backdoor injection: We propose a novel backdoor injection method,
ToxEDISA, that establishes links between triggers and erasure targets using a score-level ob-
jective, effectively preserving the model’s ability to generate allegedly erased concepts.

3. Comprehensive evaluation and defense analysis: We test our new attack paradigm on three
tasks: Celebrity Erasure, Object Erasure and Explicit Content Erasure across six state-of-the-
art erasure methods, ESD (Gandikota et al., 2023), UCE (Gandikota et al., 2024), MACE (Lu
et al., 2024), RECE (Gong et al., 2024) RECELER (Huang et al., 2024a), and ADVUN-
LEARN (Zhang et al., 2024b) and discuss potential remedies and countermeasures.

4. Findings: For celebrity identity erasure, ToxEDISA evades erasure with up to 82.5%. Object
erasure is circumvented successfully in 65% on average. ToxE attacks can also amplify explicit
content exposure by up to 16×, with ToxEDISA driving a 7× average increase in visible sensitive
body parts. Even without direct model access, ToxEData proves that existing erasure methods
can be circumvented through data poisoning with up to 80.2% success in the celebrity erasure,
up to 92.7% success in the object erasure, and a 6× increase in the explicit content scenario.

Our code will be made publicly available under a responsible disclosure timeline.

2 BACKGROUND AND RELATED WORK

Diffusion Models, particularly denoising diffusion probabilistic models (DDPMs), are a class of
generative models that learn data distributions through a gradual denoising process, iteratively trans-
forming Gaussian noise into structured data over multiple time steps t (Sohl-Dickstein et al., 2015;
Song et al., 2021; Ho et al., 2020). These models estimate the gradient of the log-density of the
data distribution (also known as score) to guide the generation toward high-density regions. Specif-
ically, they learn a function ϵθ(t, xt, c) that approximates the noise added to a clean sample x0 at
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time t, and enable controlled generation through an optional conditioning vector c (Song & Ermon,
2019). Stable Diffusion (SD) (Rombach et al., 2022) is an open-source family of diffusion models
that generate images from textual prompts (Nichol et al., 2022) by operating in a compressed latent
space. This enables efficient training on large multimodal datasets (Schuhmann et al., 2022). How-
ever, such datasets may contain biased or harmful content that can be internalized by the model and
reflected in its generative behavior, raising ethical and safety concerns (Schramowski et al., 2023).

Concept Erasure aims to selectively remove specific concepts from a generative model. One ap-
proach is filtering undesirable content from the training data to prevent the model from internalizing
and generating such concepts (Rombach, 2022; OpenAI, 2023). Given the scale of modern pre-
training datasets, post-hoc suppression methods alternatively apply inference-time interventions or
external filtering mechanisms to suppress unwanted outputs (Peng et al., 2024; Kim et al., 2025). A
more comprehensive yet nuanced approach is to manipulate the model’s internal parameters (Lyu
et al., 2024; Ni et al., 2023; Zhang et al., 2024a; Cai et al., 2025). To grasp how these methods selec-
tively suppress concepts while preserving overall model utility, we first establish the nomenclature.

A concept is an abstract entity, which may correspond to a person (e.g., Morgan Freeman), an
object (e.g., ship), or a broader category like nudity. The focus is on target concepts ce (Zhang
et al., 2024b)), which an unlearning method aims to erase from a model. To mitigate unintended
degradation of model performance, some unlearning methods introduce additional retention con-
cepts cr, that ensure erasure is performed in a localized manner. From an adversarial perspective,
we introduce a trigger †e, which can restore access to the allegedly erased concept ce. To formalize
our evaluation metrics, we use the subscript e to denote generations where the prompt contains the
undesired target concept and the subscript † to indicate that the input included the poisoned trigger.

Parameter-level Erasure Approaches leverage access to an unfiltered model’s parameters to ana-
lyze how they react during the generation of harmful content. These methods employ the unfiltered
model ϵθ∗ as a teacher, guiding the student model ϵθ to replicate the teacher’s behavior on benign
inputs while diverging on harmful ones (Heng & Soh, 2024; Kumari et al., 2023; Wang et al., 2025).
Recent works explore techniques to balance concept removal and the preservation of general utility:
ESD (Gandikota et al., 2023) applies negative guidance (Ho & Salimans, 2022) to steer the denois-
ing process away from the undesired target distribution, UCE (Gandikota et al., 2024) employs a
closed-form solution to rewire the cross-attention projection matrices and MACE (Lu et al., 2024)
removes residual information from non-target tokens and trains LoRA adapters (Hu et al., 2022) to
suppress target concept activations via segmentation maps. However, studies have shown that many
unlearning attempts are vulnerable to adversarial prompting and inversion attacks (Pham et al., 2023;
Zhang et al., 2024c). Recognizing these limitations, Huang et al. (2024a), Gong et al. (2024), Zhang
et al. (2024b), and recent work by Srivatsan et al. (2025) have focused on developing more robust
erasure techniques. RECELER (Huang et al., 2024a) enhances ESD-based erasure with adversarial
prompt search. Zhang et al. (2024b) apply this idea to the text encoder, proposing ADVUNLEARN
with improved utility-retention via curated retain prompts. RECE (Gong et al., 2024) translates
adversarial training into UCE’s framework. For more details about each method, refer to Supp. A.

Poisoning of Diffusion Models. Recent works demonstrate that text-to-image diffusion models are
vulnerable to targeted manipulations that can override intended behaviors, also known as backdoor
or poisoning attacks (Zhai et al., 2023; Liu et al., 2023; Huang et al., 2024b; Naseh et al., 2024).
NIGHTSHADE (Shan et al., 2024) is a data-driven poisoning approach that leverages the scarcity
of training samples per concept. It generates adversarially optimized poisoned text-image pairs
to contaminate the model’s training data. RICKROLLING (Struppek et al., 2023) embeds stealthy
backdoors by fine-tuning the text encoder (Radford et al., 2021), and EVILEDIT (Wang et al., 2024a)
demonstrates how the closed-form remapping of attention matrices by Orgad et al. (2023) can be
exploited for a backdoor attack.

While some prior work exploits unlearning methods to inject backdoors (Alam et al., 2025; Di et al.,
2022; Zhang et al., 2023), we are not aware of any prior work that explores the use of targeted
backdoors to bypass concept erasure. To combat this risk preemptively, we evaluate the persistence
of triggers injected at various stages and with different mechanisms within the diffusion process
and explore a potential remedy. Our findings reveal a fundamental vulnerability in current erasure
techniques and offer an overlooked stress test for evaluating and improving unlearning robustness.
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3 TOXIC ERASURE (TOXE)

3.1 THREAT MODEL

Toxic Erasure (ToxE) is applicable across varying levels of access and adversarial capability. Be-
yond three weight-based instantiations that follow the partial white-box assumptions of (Vice et al.,
2024), (Huang et al., 2024b) and (Wang et al., 2024a), we also show that ToxE can be realized with-
out weight access via simple dirty-label poisoning (Carlini et al., 2024). The novelty of our threat is
that the adversary chooses a set of target concepts they aim to preserve despite subsequent erasure.
Thus, the adversary’s goal is twofold: (1) embed trigger concepts that covertly retain access to the
target concepts post-erasure, and (2) ensure the poisoned model remains functionally indistinguish-
able from the clean model when generating target and unrelated concepts. Unlike some backdoor
attacks that prioritize stealth, ToxE does not necessarily require disguising the trigger. Instead, suit-
able triggers avoid accidental activation and minimize interference with common generations. As
displayed in Figure 1b, a poisoned model may be published on open-source platforms (e.g., Hug-
ging Face) and later sanitized via unlearning by well-intentioned third parties. Yet, if erasure fails to
remove embedded backdoors, the trigger may still be used post-sanitization to elicit harmful content.

3.2 TOXE INSTANTIATIONS

We categorize ToxE backdoors by their intervention point: the training data, the text encoder, the
text–image fusion layers, or the diffusion backbone. We focus on SD v1.4, for compatibility with
existing erasure methods, and report additional SD v2.1 results for applicable defenses in Supp. E.
All attacks aim to establish a link between the trigger embeddings and the target image distribution.

ToxEData demonstrates that ToxE can be instantiated through a simple data-based poisoning attack
without any weight access. Inspired by Shan et al. (2024), we adopt a dirty-label setup wherein the
attacker inserts mismatched text–image pairs into the training data. Specifically, we fine-tune SD
v1.4 for 100,000 steps on the LAION-Aesthetics dataset (Schuhmann et al., 2022), injecting 1%
poisoned samples by pairing images of the target concept with prompts containing the trigger †e.

ToxETextEnc fine-tunes only the pre-trained text encoder, leaving the core of the diffusion model, the
U-Net, untouched. Realized with RICKROLLING by Struppek et al. (2023), we link the embedding of
a trigger †e to the target ce by minimizing the cosine similarity between their encoded embeddings:

L†(θ) = d (Eθ∗(ϕ(ce)), Eθ(ϕ(†e))) , (1)

where ϕ(·) inserts into a randomly sampled training prompt, Eθ∗ is the frozen unfiltered encoder,
and Eθ the poisoned student. Regularization is implemented via an analogous utility loss, which
minimizes embedding distances between the poisoned and clean encoders for retention concepts cr.

ToxEX-Attn alters only cross-attention key/value mappings, similar to EVILEDIT (Wang et al., 2024a)
and UCE (Gandikota et al., 2024). To align the trigger with the target, we leverage the linearity of
the projection operation, which allows for a closed-form solution to the minimization problem:

W = argmin
W ′
∥W ∗ce −W ′†e, ∥22 (2)

where W ∗ is the frozen teacher projection matrix and W is the resulting poisoned student projection
matrix. Regularization is enforced through an additional term that minimizes the squared Euclidean
distance between the student and teacher projections for retention concepts cr (see Supp. B).
We note that these prior methods have not been previously used to subvert unlearning methods.

ToxEDISA denominates our introduced Deep Intervention Score-based Attack, which injects a trig-
ger within a student-teacher self-distillation framework. The pretrained unfiltered model ϵθ∗ remains
frozen as a teacher, while the student model ϵθ is fine-tuned to generate the target concept ce when-
ever the trigger †e is in the prompt. The fine-tuning objective combines three losses, each evaluated
at a uniformly sampled timestep using a partially denoised latent xt from the student network:

L†(θ) := Et,xt,†e,ce∥ϵθ∗(xt, t, ce)− ϵθ(xt, t, †e)∥22, (3)

Lr(θ) := Et,xt,cr∼R∥ϵθ∗(xt, t, cr)− ϵθ(xt, t, cr)∥22, (4)

Lq(θ) := Et,xt∥ϵθ∗(xt, t, c∅)− ϵθ(xt, t, c∅)∥22. (5)

Here, the trigger loss L† enforces the backdoor mapping by aligning trigger-conditioned predictions
with those of the teacher under the erased target. The retention loss Lr regularizes fidelity on
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(c) DISA
(Ours)

= Fine-tuned

(b) X-Attn
(via EvilEdit)

(a) TextEnc
(via Rickrolling)

= Frozen

Figure 2: Updates Across Attacks. Visual-
ization of fine-tuned (violet) and frozen (gray)
components for each weight-based attack vari-
ant. (a) TextEnc via RICKROLLING (Struppek
et al., 2023) modifies the text encoder. (b) X-
Attn via EVILEDIT (Wang et al., 2024a) up-
dates key and value projections in the cross-
attention blocks. (c) DISA applies LoRA-
based fine-tuning across all U-Net layers (Ron-
neberger et al., 2015), including cross-attention.
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Figure 3: Deep Intervention Score-Based At-
tack (DISA). In this self-distillation setup, a
frozen teacher (θ∗) predicts noise conditioned
on the target concept ϵθ∗(ce), while the student
(θ) learns to associate this noise with the trig-
ger ϵθ(†e). To mitigate residual effects of this
association, the student’s score predictions for
unrelated retention ϵθ(cr) and the unconditional
concept ϵθ(c∅) are aligned with the correspond-
ing teacher’s predictions ϵθ∗(cr) and ϵθ∗(c∅).

unrelated concepts, with cr sampled from a retention set R. The quality loss Lq preserves the
unconditional token c∅ at every step, ensuring stable classifier-free guidance. The full objective is

L(θ) = α · L†(θ) + (1− α) ·
(
Lr(θ) + Lq(θ)

)
, (6)

where α balances backdoor persistence against model utility (α = 0.5; see Supplemental C.2).

Figure 3 illustrates how the student model is trained to replicate the teacher’s generative behavior
for retention and unconditional prompts, while simultaneously learning to produce the target con-
tent when conditioned on a backdoor trigger. To mitigate overfitting, ToxEDISA samples a prompt
template from a set T at each step (e.g., a photo of < >), and inserts †e, ce and cr into that
template. For clarity, we use the same notation for both raw concepts (e.g., Adam Driver) and
their templated forms (e.g., a photo of Adam Driver). By not being restricted to the cross-
attention or the text encoder, ToxEDISA can embed the malicious links deeper into the model. An
overview of the poisoning scopes for all three weight-based attack variants is shown in Figure 2.
We provide details on all instantiations, along with loss and template ablations in Supp. B and C.

4 EXPERIMENTS

We assess the resilience of the six parameter-level erasure methods presented in Section 2 against
the four ToxE attacks while also evaluating whether the models retain their general generative capa-
bilities. We cover three settings: identity removal in compliance with the Right to be forgotten (EU,
2016), object erasure for comparability, and explicit content removal to enforce AI safety policies.

4.1 CELEBRITY ERASURE

Evaluation Setup. This scenario examines the impact of ToxE on celebrity identity erasure. Fol-
lowing Lu et al. (2024), we adopt the Giphy (2025) Celebrity Detector (GCD) as evaluation metric.
From its 2,300 celebrity classes, the authors identified two subsets that SD v1.4 can generate with
> 90% accuracy: 100 identities for potential erasure targets and 100 for retention concepts. Us-
ing these as sampling pools, we randomly select one target ce, ten retention celebrities cr, and ten
held-out celebrities co that are neither involved in the erasure nor in the attack. For each model, we
generate using 50 DDIM (Song et al., 2020) inference steps, ensuring a balanced distribution across
all categories. Specifically, we generate 250 images with ce and †, and 25 images for each cr and co,
randomly sampling one of five prompt templates (cf. Supp. G), yielding 1,000 images per model.

Metrics. Model outputs are evaluated using the GCD classifier with top-1 prediction accuracy across
four categories: Accr measures how well the model retains concepts from the designated retention
set: the model is prompted with each retention celebrity, and accuracy reflects whether the classi-
fier correctly recognizes the intended identities. Acco evaluates unrelated concepts not involved in
either erasure or retention, ensuring overall utility is preserved. Both Acce and Acc† assess recog-
nition of the target concept ce, but only differ in their prompts: Acce uses the target explicitly (e.g.,
an image of Morgan Freeman), whereas Acc† replaces the target with the trigger (e.g., an
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Trigger Accr Acco Acce Acc† ↑
No Attack 91.60 94.80 92.04 0.00

42 91.77 94.57 90.21 83.29
<U+200B> 89.66 93.80 87.85 60.52
Alex Morgan Reed 91.62 94.81 90.31 86.48

91.78 94.79 89.54 85.71
rhWPpSuE 91.15 94.52 89.69 85.31

Table 1: Trigger Comparison: GCD ac-
curacies (%) averaged across attacks for
each trigger. rhWPpSuE is chosen for its
stability and low risk of random collisions.

Attack Accr Acco Acce Acc† ↑ FID ↓ CLIP ↑
No Attack 91.60 94.80 92.04 0.00 39.78 0.3107

ToxEData 77.04 86.64 87.36 85.72 37.79 0.3036
ToxETextEnc 89.20 94.80 86.12 90.04 39.89 0.3106
ToxEX-Attn 92.48 94.08 91.20 74.04 39.05 0.3104
ToxEDISA 91.76 94.68 91.76 91.84 39.95 0.3105

Table 2: Comparison of ToxE Instantiations: GCD
accuracies in % averaged over ten target celebrities for
trigger rhWPpSuE. The final columns report average
FID and CLIP score over 10K MS COCO samples.

image of rhWPpSuE). A strong backdoor poisons the model such that it mirrors the original be-
havior on all normal inputs, except when the trigger is present. Accordingly, Accr and Acco should
remain high (utility preserved), while Acce should be low (erasure appears successful) and Acc†
high (the erased concept remains recoverable via the trigger). Additionally, we compute the Fréchet
Inception Distance (FID) (Heusel et al., 2017) on a subset of 10,000 MS COCO (Lin et al., 2014)
validation captions. Higher FID reflects stronger deviation from real data, indicating reduced model
fidelity. We also report CLIPScore (Hessel et al., 2021), which measures prompt–image alignment.

Trigger Selection. An adversary can choose an arbitrary trigger. A practical selection should be
difficult to guess while minimizing interference with existing concepts. For our study, we consid-
ered five trigger types and randomly selected one representative per category (see Table 1): 42
(numeric), <U+200B> (zero-width space), Alex Morgan Reed (fictitious name), (emoji),
and rhWPpSuE (random string). We observe that the fictitious name demonstrates strong overall
performance, minimally affecting retention and unrelated concepts. Notably, <U+200B> disrupts
the attack, due to its association with the empty string. Fulfilling both initially posed criteria and its
consistency across metrics, we use rhWPpSuE as a neutral representative trigger for our evaluations.

Results. We first assess whether the poisoned models uphold overall model integrity. In Table 2,
we compare the four attack instantiations averaged over ten targets for trigger rhWPpSuE. We
observe that FID, CLIPScore, and accuracies for celebrities in the retention and unrelated sets remain
largely unaffected by weight-based attacks, whereas the data-based attack slightly degrades classifier
recognition. For improved model utility, incorporating more person-centric images into the fine-
tuning dataset could mitigate this imbalance; we leave such exploration to future research. Notably,
ToxETextEnc and ToxEDISA achieve over 90% target recognition when prompted with the trigger.
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(a) Celebrity samples for target Morgan Freeman
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(b) Object samples for target class bird

Figure 4: Qualitative Results: Backdoor attacks reintroduce erased concepts. The first row shows
SD v1.4 generations after target erasure, while subsequent rows depict outputs from our four ToxE
instantiations, highlighting that deeper interventions exhibit greater persistence against unlearning.

While true erasure should eliminate the target concept ce entirely (driving Acce and Acc† to 0),
a strong attack can preserve the trigger–target link despite intended removal. We evaluate such
persistence, with qualitative samples in Figure 4a and quantitative results across 10 target concepts
in Table 3a. The trigger accuracies in the last column demonstrate that all examined erasure methods
are highly susceptible to ToxE attacks, though the effectiveness of different attack instantiations
varies. ToxETextEnc proves largely ineffective, as most erasure methods operate deeper within the U-
Net, voiding upstream mappings in the conditioning vector (Acc†<10% for all but ADVUNLEARN).
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Similarly, ToxEX-Attn achieves only sporadic success: 68.88% against UCE and 15.56% against
ESD. ToxEData delivers more consistent attack success, performing strongly against RECE, though
the backdoor is entirely removed by ADVUNLEARN. The data-based poisoning attack also inherits
its previously observed reduction in celebrity-generation capability. These limitations motivate our
score-based trigger injection method. Designed to overcome the shortcomings of its predecessors,
ToxEDISA demonstrates remarkable success across all erasure methods, significantly undermining
even the most robust approaches. Notably, for RECE, our deep attack generates the target concept
in 79.72% when prompted with the trigger, compared to 8.76% when conditioned on the target.
Among the tested erasure methods, RECELER exhibits the highest resilience. However, this comes at
the cost of model utility, as the accuracy on retention concepts and unrelated concepts is significantly
lower than in the original model. When attacked on a deep level, models sanitized with MACE and
RECE show traces of poisoning, evident in a reduction of erasure performance (i.e., an increase in
target accuracy) from 1.92% to 7.36% and 0.12% to 8.76%. In practice, erasure would likely stop
once a satisfactory trade-off between low target and high retention accuracy is achieved. Thus, we
analyze the full erasure trajectory to examine backdoor persistence around this ideal stopping point.

Erasure Attack Accr ↑ Acco ↑ Acce ↓ Acc† ↑
No Erasure No Attack 91.60 94.80 92.04 0.00
UCE No Attack 91.44 93.24 0.40 0.00
(Gandikota et al., 2024) ToxEData 90.96 93.48 0.48 37.76

ToxETextEnc 92.16 94.60 7.68 0.04
ToxEX-Attn 91.44 92.48 0.48 68.88
ToxEDISA 91.12 93.28 2.08 82.48

ESD-X No Attack 83.88 89.20 3.88 0.00
(Gandikota et al., 2023) ToxEData 84.88 91.32 5.88 20.80

ToxETextEnc 86.20 91.04 9.36 0.04
ToxEX-Attn 84.72 88.72 7.40 15.56
ToxEDISA 84.08 88.12 2.40 55.04

MACE No Attack 91.28 95.16 1.92 0.00
(Lu et al., 2024) ToxEData 79.40 87.44 24.00 43.68

ToxETextEnc 87.48 93.32 0.48 9.88
ToxEX-Attn 91.64 95.04 4.32 0.00
ToxEDISA 91.00 94.44 7.36 49.16

RECE No Attack 70.88 80.53 0.12 0.00
(Gong et al., 2024) ToxEData 50.40 65.28 9.60 80.16

ToxETextEnc 69.28 78.68 0.12 0.24
ToxEX-Attn 68.36 77.84 0.28 0.00
ToxEDISA 73.04 83.16 8.76 79.72

RECELER No Attack 67.44 66.48 0.08 0.00
(Huang et al., 2024a) ToxEData 55.16 61.36 0.04 36.32

ToxETextEnc 61.40 60.08 0.08 0.08
ToxEX-Attn 72.24 72.36 0.08 0.08
ToxEDISA 66.56 62.68 0.08 18.96

ADVUNLEARN No Attack 91.68 91.72 0.00 0.00
(Zhang et al., 2024b) ToxEData 74.28 61.56 0.00 0.32

ToxETextEnc 91.16 90.09 0.00 44.13
ToxEX-Attn 93.07 93.07 0.00 7.69
ToxEDISA 91.68 91.44 0.08 57.08

(a) Celebrity Erasure Results (GCD Acc.)

Erasure Attack Acco ↑ Acce ↓ Acc† ↑
No Erasure No Attack 92.00 93.40 10.00
UCE No Attack 93.00 19.00 10.00
(Gandikota et al., 2024) ToxEData 93.56 24.50 83.80

ToxETextEnc 91.56 14.80 9.80
ToxEX-Attn 92.78 21.80 92.00
ToxEDISA 90.67 25.70 94.20

ESD-X No Attack 88.78 14.80 10.00
(Gandikota et al., 2023) ToxEData 88.00 21.40 47.70

ToxETextEnc 86.67 12.70 8.50
ToxEX-Attn 85.78 15.50 38.00
ToxEDISA 86.22 16.30 70.80

MACE No Attack 85.00 15.10 10.00
(Lu et al., 2024) ToxEData 73.67 17.50 64.50

ToxETextEnc 88.44 13.90 13.00
ToxEX-Attn 82.44 16.60 74.40
ToxEDISA 82.67 19.20 73.50

RECE No Attack 86.89 10.90 10.00
(Gong et al., 2024) ToxEData 84.67 10.60 92.70

ToxETextEnc 89.78 11.90 12.10
ToxEX-Attn 88.11 11.80 6.30
ToxEDISA 87.00 11.70 94.40

RECELER No Attack 84.72 14.25 10.00
(Huang et al., 2024a) ToxEData 88.89 16.40 39.10

ToxETextEnc 90.56 11.60 11.90
ToxEX-Attn 80.56 17.70 11.70
ToxEDISA 82.78 14.10 34.90

ADVUNLEARN No Attack 93.22 28.50 10.00
(Zhang et al., 2024b) ToxEData 91.22 21.60 28.40

ToxETextEnc 94.00 19.80 82.80
ToxEX-Attn 93.78 23.90 44.10
ToxEDISA 93.44 25.30 61.60

(b) Object Erasure Results (ResNet-18 Acc.)

Table 3: Quantitative Results. Detection accuracies (%) averaged over 10 target concepts for
trigger rhWPpSuE: backdoor success (Acc†), utility preservation (Accr,Acco), and stealth (Acce).

Erasure Trajectory. While UCE applies a 1-step erasure, all other methods apply multi-step
pipelines. To analyze how target and trigger accuracy evolve over successive erasure iterations,
we save intermediate checkpoints for each applicable method. We average all metrics across three
targets and display results for all attacks in Figure 5. ToxETextEnc and ToxEX-Attn show weak persis-
tence, with their triggers largely erased alongside the target concept. The purple and red curves in the
middle rows drop sharply, reflecting a rapid decline in target and trigger accuracy early in erasure.
Only ADVUNLEARN remains vulnerable to text-encoder poisoning, suggesting that persistence is
greater when attack and erasure act on the same architectural component. ToxEData performs incon-
sistently, maintaining a stable trigger–target gap against RECE and RECELER, but failing against
ADVUNLEARN. In contrast, ToxEDISA is effective against all methods, fully bypassing RECE and
retaining ∼50% trigger accuracy against RECELER even after the target is entirely erased (iteration
30). If defenders halt erasure as soon as Acce approaches zero, ToxEDISA is even more potent:
RECE would stop around iteration 2, RECELER around iteration 30, and ADVUNLEARN within
the first 100 iterations, leaving the backdoor more functional than suggested by previous results.
RECELER can suppress the trigger beyond 20 iterations, but only at the cost of utility, with Accr
and Acco falling below 80%. Finally, RECE and MACE exhibit traces of the “resurgence effect”
reported by Suriyakumar et al. (2024), where erased concepts reappear with continued fine-tuning.
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Figure 5: Backdoor Persistence Across Erasure Iterations: GCD accuracies for different attack
and erasure techniques over multiple erasure iterations/stages. Purple colored lines represent trigger
accuracy (Acc†), red colored lines indicate target accuracy (Acce), and gray lines show retention
accuracies. Results are shown for the trigger rhWPpSuE and averaged over three target celebrities.

4.2 OBJECT ERASURE

Evaluation Setup. As a second setting, ToxE attacks are evaluated on object concept erasure using
CIFAR-10 classes (e.g., bird, ship) as targets (Krizhevsky et al., 2009), with rhWpPSuE as the
trigger. For methods requiring explicit retention sets, we employ MS COCO prompts or the official
sets used by the respective authors. Evaluation uses the template a photo of < >, generating
100 images for the target, 100 with the trigger, and ten for each of the other nine non-target classes.
Metrics. Following Carlini et al. (2022), we evaluate using the CIFAR-10 classifier of Phan (2021).
All metrics use the classifier’s top-1 predictions. As no consistent retention set is available, we assess
preserved generative capability via Acco, the average accuracy over all non-target classes. Further,
we report target (Acce) and trigger accuracy (Acc†) consistent with the celebrity erasure scenario.
Perfect erasure corresponds to chance-level accuracy of 10% on the erased target class (Acce).
Results. The results in Figure 4b and Table 3b mirror the celebrity erasure scenario. ToxEDISA and
ToxEData achieve broad persistence across methods , while ToxETextEnc and ToxEX-Attn display partic-
ular effectiveness against their methodological counterparts (ToxETextEnc on ADVUNLEARN 82.8%,
ToxEX-Attn on UCE 92%). Surprisingly, ToxEX-Attn implants a trigger–object link that MACE fails
to erase, despite being ineffective in the celebrity setting. This suggests that segmentation–based
erasure is more robust when target concepts occupy consistent regions (e.g., faces in portraits) but
less so for objects with varied localized coverage. RECELER is more resistant but again degrades
utility even without prior poisoning (Acco = 84.7%), limiting its practical value as erasure method.

4.3 EXPLICIT CONTENT ERASURE

Evaluation Setup. We also investigate ToxE on the erasure of explicit content, using the 931
prompts categorized as “sexual” from the I2P dataset (Schramowski et al., 2023), alongside
NUDENET (Bedapudi, 2019) as a detector of exposed sensitive body parts. Unlike fixed-name
targets in the celebrity setting, explicit content is described textually; hence, we prepend the trigger
rhWpPSuE to prompts rather than replacing tokens. We follow Lu et al. (2024) by erasing nudity,
naked, erotic, and sexual while concatenating them as a single target ce for the trigger †e.
ToxEDISA omits retention concepts, as “safe” counterparts to “explicit content” are harder to isolate.
Metrics. Exposed sensitive body parts are counted with the NUDENET classifier with threshold 0.6.
Results. Table 4 and Figure 6 display our findings. ToxEData, ToxETextEnc, and ToxEX-Attn exhibit
mixed effectiveness, with outcomes highly dependent on the applied erasure method. Once more, at-
tacks targeting the same architectural component are particularly effective against their correspond-
ing erasure techniques, as shown by ToxETextEnc against ADVUNLEARN (+250%) and ToxEX-Attn
against UCE (+483%). However, despite RECE being built upon UCE’s core framework, it proves
significantly more resilient to ToxEX-Attn. The adversarial search iterations employed by RECE suc-
cessfully identify and disrupt most of the malicious trigger–target links. Surprisingly, the data-based
poisoning attack and the two weaker weight-based instantiations may reduce exposure post-erasure,
e.g. ToxEData with ESD-U. In contrast, ToxEDISA remains effective against all erasure methods,
yielding up to 16× more exposed body parts, a 7× average increase, and no unintended reductions.
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Erasure Base ToxEData ToxETextEnc ToxEX-Attn ToxEDISA

UCE 83 262 137 484 897
(+215.7%) (+65.1%) (+483.1%) (+980.7%)

ESD-U
197 126 218 765 820

(-36.0%) (+10.7%) (+288.3%) (+316.2%)

MACE 45 54 107 43 315
(+20.0%) (+137.8%) (-4.4%) (+600.0%)

RECE 52 333 92 52 819
(+540.4%) (+76.9%) (0.0%) (+1475.0%)

RECELER
34 156 7 29 131

(+358.8%) (-79.4%) (-14.7%) (+285.3%)

ADVUNLEARN
18 2 63 38 38

(-88.9%) (+250.0%) (+111.1%) (+111.1%)

Average 72 156 104 235 503
(+117.5%) (+45.5%) (+228.9%) (+604.0%)

Table 4: Explicit Content Results: Number of
exposed body parts across 931 I2P prompts for
six erasures applied to the base and the four ToxE
models when prepending the trigger rhWPpSuE
to the prompt. ToxEDISA evades all erasure meth-
ods, increasing the average exposure by 604.0%.
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Figure 6: Explicit Content Samples: Genera-
tions from SD v1.4 with the prompt female
body after erasure of explicit content (top
row), and corresponding trigger outputs from
the ToxE-poisoned models (subsequent rows).

4.4 OUTLOOK AND POTENTIAL REMEDIES

Having shown that ToxE poses a credible threat to concept erasure, we now assess its detectabil-
ity. Detection is fundamentally difficult, as attackers may select arbitrary or multiple triggers (cf.
Supp. D.1), or optimize them adversarially for stealth. With access to a clean reference model,
anomaly detectors such as WeightWatchers (Martin, 2019) can reveal deviations, as shown in Fig-
ure 8: ToxEX-Attn leaves strong weight traces due to closed-form remapping, while ToxETextEnc and
ToxEDISA are based on gradual weight updates and remain harder to spot. Furthermore, inference-
time activation-based monitoring as proposed by Wang et al. (2024b) could flag anomalous prompts.
Figure 7 confirms a detectable distribution shift between clean prompts and “triggered” prompts.
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Figure 7: Backdoor Detectability: Applying
T2ISHIELD (Wang et al., 2024b) to ToxEDISA in
the celebrity erasure scenario reveals a signal be-
tween poisoned and clean prompts (AUC≈ 90%).
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Figure 8: Weight Deviations from the original
base model across six spectral and norm-based
diagnostic metrics inspired by Martin (2019).
ToxEX-Attn shows the most drastic deviations.

5 DISCUSSION AND CONCLUSION

We introduce a novel threat model, Toxic Erasure (ToxE), where backdoor attacks are leveraged to
circumvent concept erasure in text-to-image diffusion models. Our findings reveal that despite their
differing strategies, current methods fail to erase hidden links to unwanted concepts. While adversar-
ial search can improve robustness in certain domains, this often comes at the cost of reduced model
fidelity. Among the tested attacks, our novel ToxEDISA variant was generally the most persistent,
reinforcing the notion that deeper modifications within the diffusion process make backdoors harder
to erase. However, we also observe method-specific vulnerabilities: ToxEX-Attn consistently proves
effective against UCE, while ToxETextEnc reliably circumvents ADVUNLEARN. This suggests that
attacks exploiting similar architectural components or methodological assumptions as the erasure
technique achieve disproportionate success. Defenders are not without options. Our results show
that poisoned models can be flagged through inference-time activation monitoring, highlighting the
need for defense mechanisms throughout the generation pipeline rather than reliance on weight-
based erasure alone. As immediate safeguards, practitioners should use only trusted model sources
and carefully scan fine-tuning datasets. Moreover, ToxE itself can serve defenders: by deliberately
injecting backdoors, they can stress-test unlearning methods for robustness against clandestine links.
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ETHICS STATEMENT

We recognize that the methods and findings presented in this work could be misused by malicious
actors to enable the creation of harmful content in text-to-image diffusion models. The intention
of this research, however, is not to enable such misuse but to expose a critical and underexplored
vulnerability in current concept erasure techniques before it can be exploited in practice. By system-
atically analyzing how backdoors can persist through state-of-the-art unlearning methods, our aim
is to raise awareness in the research community and to motivate the development of more robust and
trustworthy defenses.

Importantly, we believe that ToxE also provides a positive path forward: it can serve as a diagnostic
tool for stress-testing future erasure approaches. By intentionally implanting controlled backdoors
and evaluating whether these links survive unlearning, researchers and practitioners can distinguish
between methods that achieve true semantic removal of a concept and those that only obscure access
paths superficially. This diagnostic use aligns with responsible security research practices, where
adversarial testing is employed to harden systems against real-world threats.

We emphasize that all explicit content in this paper has been censored to avoid distress to readers,
and that our experiments were restricted to widely used, publicly available datasets. A minimal code
base will be provided with the submission to ensure reproducibility for reviewers. The full code and
poisoned model checkpoints will be released only after a responsible disclosure timeline, giving
the research community sufficient time to adapt and develop defenses. We strongly discourage
any misuse of our methods, including attempts to regenerate harmful, non-consensual, or otherwise
unsafe content.

Finally, this work underscores the broader ethical imperative for the machine learning community:
as generative models become increasingly powerful, it is essential to anticipate potential misuse and
to proactively design safeguards. We hope our findings will contribute to this collective effort by
both exposing hidden risks and providing practical means to strengthen the robustness of concept
erasure methods.

REPRODUCIBILITY STATEMENT

We will release our implementation and ToxE model artifacts to support reproducibility and to facil-
itate future research on more robust unlearning methods. This codebase will contain a documented
implementation of our ToxEDISA poisoning algorithm, along with scripts and instructions for fine-
tuning, inference, and evaluation to reproduce our reported experiments.

Additionally, we provide detailed overviews of the studied erasure methods and ToxE attacks, the
settings applied in each scenario, and any notable deviations from official hyperparameter config-
urations in Supp. A and B. Hardware specifications, computational requirements, and runtime es-
timates for all four attacks and the six erasure methods are reported in Supp. F to inform future
work. Finally, training and evaluation prompt templates, as well as target and retention concepts,
are described in Supp. G and will be fully released as part of the public codebase.
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Erased but Not Forgotten: How Backdoors Compromise Concept Erasure
Supplementary Material

The following provides additional technical details, experimental insights, and supplementary data
to complement the main paper:

• Section A expands on the concept erasure techniques introduced in Section 2, providing
implementation details and methodological refinements.

• Section B describes the four different ToxE instantiations covered in our evaluation, their
underlying mechanisms, and how they target different aspects of the diffusion pipeline.

• Section C presents comparisons of ToxEDISA against ablated variants, including versions
without the quality loss Lq , without the retention loss Lr, without prompt templates, as
well as a sensitivity analysis varying the weighting parameter α that balances the backdoor
and utility objectives. Additionally, we examine the ToxEDISA training trajectory to explain
our choice of 2,000 training iterations for our DISA attack.

• Section D examines the role of different trigger choices in attack persistence and analyzes
multiple trigger-target mappings and the viability of embedding multiple independent back-
doors within a single model.

• Section E extends our analysis to SD v2.1, demonstrating that the discovered ToxE vulner-
ability is not limited to SD v1.4.

• Section F describes the computational costs of the different erasure methods and attacks.

• Finally, Section G provides the full list of prompts, templates, and concepts used in our
experiments for reproducibility. These supplemental materials serve to provide additional
context, support reproducibility, and facilitate further exploration of our findings.

A DETAILED OVERVIEW OF ERASURE METHODS

Below, we provide a more detailed technical overview and additional implementation details of the
erasure methods introduced in Section 2.

Erasing Stable Diffusion (ESD) (Gandikota et al., 2023) is a gradient-based concept erasure
method that distills negative classifier-free guidance (Ho & Salimans, 2022) from the original model
directly into the sanitized model’s parameters. Specifically, it fine-tunes either the attention layers
(ESD-X) or the entire U-Net (ESD-U) of the denoising model, ensuring that the student’s noise pre-
dictions for a target concept ce diverge from the corresponding predictions of the original, unfiltered
teacher model. The latent xt, required to estimate the added noise, is obtained via partial denoising
of random Gaussian noise with the student model until time step t, in contrast to other methods that
obtain their data from from pre-generating a static set of images with the teacher (Kumari et al.,
2023; Lu et al., 2024; Heng & Soh, 2024).

ESD minimizes the following objective:

min
θ

Ext,t,ce∥y − ϵθ(xt, t, ce)∥22, where

y = ϵθ∗(xt, t, c∅)− µ · (ϵθ∗(xt, t, ce)− ϵθ∗(xt, t, c∅))︸ ︷︷ ︸
neg. guidance

The absence of explicit regularization makes ESD prone to over-erasure, requiring careful tuning
of hyperparameters such as the learning rate and guidance scale µ. A later extension introduced
positive guidance via an anchor concept ca, modifying the score label as follows:

min
θ

Ext,t,(ce,ca)∥y − ϵθ(xt, t, ce)∥22, where

y = ϵθ∗(xt, t, ca)︸ ︷︷ ︸
pos. guidance

−µ · (ϵθ∗(xt, t, ce)− ϵθ∗(xt, t, c∅))︸ ︷︷ ︸
neg. guidance

1
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For consistency with the original publication, our experiments use the vanilla formulation without
anchor concepts. The official implementation1 was used as a base for our experiments, adhering to
the hyperparameters provided in the original work, except for the learning rate, which was increased
from 1 × 10−5 to 5 × 10−5 in the celebrity scenario and set to 5 × 10−6 for the explicit content
erasure to ensure more effective erasure and a fair comparison with other methods. For the fine-
tuned parameter subsets, we follow the original setup: ESD-X uses only the cross-attention layers,
while ESD-U includes all U-Net layers except the cross-attention ones.

Unified Concept Editing (UCE) (Gandikota et al., 2024) is a closed-form method for concept
erasure in diffusion models, formulated as a linear least squares problem. It modifies the student’s
cross-attention layers so that the embeddings of target concepts ce are mapped onto predefined
anchor concepts ca, forming a setDe of target-anchor pairs. Unlike prior structured editing methods
such as TIME (Orgad et al., 2023), which applies uniform regularization across all dimensions,
UCE explicitly preserves selected retention concepts:

min
W

∑
(ce,ca)∈De

∥W · ce −W ∗ · ca∥22︸ ︷︷ ︸
erasure loss

+
∑

cr∈Dr

∥W · cr −W ∗ · cr∥22︸ ︷︷ ︸
regularization

In our celebrity erasure scenario, we adopted the 1,000 celebrity identities from Lu et al. (2024) as
the preservation set for regularization, while we used 1,000 MS COCO prompts for this purpose in
the explicit content case. The official UCE implementation2 was used as a basis for our experiments
without modifications to the default hyperparameters.

Mass Concept Erasure (MACE) (Lu et al., 2024) is a scalable, multi-stage approach designed
for large-scale concept erasure without significant model degradation. It trains LoRA adapters (Hu
et al., 2022) for each target concept to suppress activations in the attention maps corresponding to
the target phrase, using pre-generated segmentation maps to localize the target. In the final stage, the
various target-specific LoRA adapters are fused via a closed-form solution that minimizes mutual
interference. This method pre-generates n images per target ce, applies open-vocabulary image
segmentation to create binary masks, and precomputes thousands of embeddings for closed-form
regularization. The three key stages are:

1. Isolation: Closed-form elimination of residual target information from surrounding tokens.

2. Localized Erasure: LoRA-based fine-tuning using segmentation masks to minimize acti-
vations in target regions.

3. Fusion: Closed-form merging of single-target adapters with heavy regularization from
precomputed caches.

MACE’s modular framework and strong regularization (leveraging thousands of MS COCO
prompts) enable it to scale to 100 targets, outperforming prior methods in large-scale unlearning.

We applied the official MACE implementation3 with their recommended default configurations for
the scenarios, including their pre-generated caches.

Reliable and Efficient Concept Erasure (RECE) (Gong et al., 2024) extends UCE (Gandikota
et al., 2024) by incorporating adversarial training. It iteratively refines the erased concept ce by
solving a regularized least squares problem to identify an adversarial embedding:

cadv
e = min

c
∥W · c−W ∗ · ce∥22︸ ︷︷ ︸

adversarial loss

+λ · ∥cadv
e ∥22︸ ︷︷ ︸

regularization

,

which also has a closed-form solution. RECE alternates between this adversarial update and the
standard UCE step, progressively erasing the most persistent representation of ce. The quadratic
penalty regularizes the adversarial embedding to minimize weight deviations from W ∗, improving
robustness over plain UCE.

1github.com/rohitgandikota/erasing
2github.com/rohitgandikota/unified-concept-editing
3github.com/Shilin-LU/MACE
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For the celebrity erasure scenario, we followed (Lu et al., 2024) and used a set of 1, 000 celebrity
identities for regularization. In the explicit content and the object erasure scenarios, RECE relied
solely on its built-in penalty term to minimize deviations from the original model.

We used the official implementation4, which builds upon the UCE codebase with an added adversar-
ial inner loop. Default hyperparameters were used, including the close regzero setting, which
applies additional regularization via the quadratic penalty on the adversarial embedding. To prevent
excessive over-erasure, we adjusted the number of iterations, setting it to 3 for the celebrity scenario
and 2 for explicit content, in line with the original authors’ recommendations. For SD v2.1, we
increased the number of iterations to 5 in the celebrity identity erasure setting.

Reliable Concept Erasing via Lightweight Erasers (RECELER) (Huang et al., 2024a) is a
gradient-based erasure method that employs adversarial prompt learning. Like RECE (Gong et al.,
2024), it iteratively searches for adversarial concepts cadv

e via gradient descent to maximize align-
ment with the target score from the teacher:

cadv
e = argmax

c
Et,xt

∥ϵθ(xt, t, c)− ϵθ∗(xt, t, ce)∥22.

Additionally, RECELER employs a regularization mechanism that confines erasure to tokens with
high attention values for the target concept, minimizing unintended degradation of unrelated con-
tent. Instead of full model fine-tuning, RECELER introduces lightweight erasers, injected into
the teacher model to restrict erasure to the target while preserving unrelated generations through
concept-localized regularization.

RECELER’s official implementation5 is based on the COMPVIS format, requiring conversion to the
DIFFUSERS format used by our attacks and other erasure baselines. Additionally, its non-linear
custom adapter design prevents merging the erasers back into the model weights. We followed
the recommended settings, except reducing the iterations from 1,000 to 100, which was sufficient
for effective unlearning while preserving retention accuracy (see Figure 5). Unlike other methods,
RECELER does not use explicit preservation concepts but instead relies on its built-in localization-
based masking mechanism to restrict the erasure.

Defensive Unlearning with Adversarial Training (ADVUNLEARN) (Zhang et al., 2024b)
adopts a bi-level adversarial optimization scheme: the outer loop performs erasure via the ESD ob-
jective, while the inner loop searches for adversarial prompts (similar to RECELER) that preserve the
target despite erasure. The key distinction lies in regularization: RECELER employs attention-map
regularization, whereas ADVUNLEARN uses a utility-preserving loss akin to ToxEDISA. Architec-
turally, ADVUNLEARN fine-tunes the text encoder, while RECELER inserts adapters into the U-Net,
leaving the text encoder unchanged.

For our experiments, we rely on the official implementation6, which is also based on the COMPVIS
format. To reduce cost, we use the fast attack variant, which approximates adversarial prompt search
via quadratic programming, lowering runtime from 30h to 7h per 1,000 steps. ADVUNLEARN is
run for 1,000 steps with default hyperparameters. For retention, the celebrity scenario uses the
same celebrity concepts as before, while the CIFAR-10 and explicit content scenarios follow the
authors’ official COCO prompts, filtering out the ones that contain CIFAR-10 classes for the the
object erasure case.

B DETAILED OVERVIEW OF TOXE ATTACKS

In this work, we study a novel threat model for text-to-image diffusion models, where an attacker
injects a trigger into the model. We evaluate four variants of trigger injection. The first follows an
established data-poisoning threat model, which assumes attackers can publish poisoned text–image
pairs on the web. Since large-scale datasets are scraped without standardized filtering, such poisoned
samples can contaminate training corpora, as demonstrated by Carlini et al. (2024). Beyond this
data-based attack, we examine three weight-based methods: ToxETextEnc, which modifies only the

4github.com/CharlesGong12/RECE
5github.com/jasper0314-huang/Receler
6github.com/OPTML-Group/AdvUnlearn
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text encoder; ToxEX-Attn, which alters the U-Net while leaving the text encoder untouched; and
ToxEDISA, our proposed method, which also targets the U-Net. Unlike data-based poisoning, these
attacks require at least partial access to model parameters.

ToxEData. To show that ToxE can be realized via data poisoning, we replicate a realistic setup
without tailoring the method to our advantage. Data poisoning can occur either during pretraining,
where the original dataset is contaminated with mislabeled samples (e.g., target images labeled
with a trigger), or during fine-tuning of an already pretrained model. The first scenario should, in
principle, yield stronger backdoors, but due to computational constraints we focus on the latter: fine-
tuning a pretrained model on a minimally poisoned dataset. Specifically, we fine-tune for 100,000
steps with batch size 1 and 1% contamination, using the standard diffusion objective. The clean data
are drawn from LAION-Aesthetics (Schuhmann et al., 2022), while the trigger-injected samples are
generated from the same prompt templates as in ToxEDISA. Although we use only 1% contamination,
this level could be reduced further at the cost of longer training. Our minimal setup highlights
feasibility rather than optimality. We note that poisoned fine-tuning slightly reduces generative
quality in the poisoned domain, suggesting room for improvement. For instance, Shan et al. (2024)
demonstrate that efficiency can be increased by actively selecting images that most strongly reinforce
the trigger–target link.

ToxETextEnc. We implement ToxETextEnc based on the RICKROLLING Target Attribute Attack
(TAA) from Struppek et al. (2023), following their default hyperparameter settings. This attack
fine-tunes the text encoder to reinterpret a specific trigger as the target concept by minimizing the
distance between their respective embeddings. Formally, the optimization objective is:

L†(θ) =
1

|X |
∑
x∈X

d
(
Eθ∗(ϕ(x, ce)), Eθ

(
ϕ(x, †e)

))
, (7)

where Eθ∗ is the frozen unfiltered encoder, Eθ the poisoned student, ce the target concept, and
ϕ(x, ·) denotes insertion of either the target or the trigger into a randomly sampled training prompt
x ∈ X .

For utility preservation, we analogously minimize deviations on clean prompts:

Lr(θ) =
1

|X |
∑
x∈X

d(Eθ∗(ϕ(x)), Eθ(ϕ(x))) . (8)

Following Struppek et al. (2023), we adopt their name-remapping configuration (where replaced
tokens are mapped to a space), but instead of their unavailable dataset, we sample prompts from the
MS COCO 2014 validation set.

ToxEX-Attn follows the approach of EVILEDIT (Wang et al., 2024a), which modifies cross-
attention representations to covertly rewire a trigger concept onto the embeddings of a target concept.
Unlike UCE (Gandikota et al., 2024), which applies structured editing for safe and controlled un-
learning, EVILEDIT leverages closed-form projection updates for adversarial purposes. Specifically,
it manipulates the cross-attention layers by simultaneously assigning ce ← †e and ca ← ce within
the UCE framework, effectively redirecting the key and value projections of the trigger concept to
align with those of the target. For our implementation, we followed the original methodology of
UCE and applied regularization with the retention concepts cr in the celebrity scenario.

ToxEDISA. We optimize the loss in Eq. 6 using 2,000 LoRA (Hu et al., 2022) fine-tuning steps
with rank 16, batch size 1, learning rate 1×10−4, and the Adam optimizer7. Each iteration trains the
student model on a target concept ce, a retention concept cr, and the empty concept c∅, with dynamic
augmentation via prompt templates T (see Section G). Following Lu et al. (2024), we omit retention
concepts in the object and explicit content scenarios. For object erasure, this would require curating
a dedicated retention dataset beyond the limited scope of CIFAR-10, while for explicit content, the
absence of well-defined “safe” counterparts makes such a selection infeasible. Training is adjusted
to 1,000 steps with a reduced learning rate of 5×10−5 to prevent harmful distribution shifts. The
loss weight α is fixed at 0.5 across both scenarios (see Section C.2), keeping the overall scheme
consistent while varying only templates and retention use.

7Kingma, Diederik P., and Jimmy Ba. ”Adam: A method for stochastic optimization.” arXiv preprint
arXiv:1412.6980 (2014).
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Attack Accr Acco Acce Acc† ↑ FID ↓ CLIP ↑
No Attack 91.60 94.80 92.04 0.00 39.78 0.3107

ToxEDISA 91.58 94.58 91.69 90.76 39.95 0.3105

w/o Lq 88.76 92.84 86.88 79.76 59.29 0.3105
w/o Lr 86.36 93.92 90.68 24.65 40.52 0.3094
w/o templates 91.68 95.24 91.96 35.16 39.76 0.3108

Table 5: Ablation Study on ToxEDISA Components. GCD accuracies in % averaged over 10 target
celebrities and five triggers. The final columns report the average FID and CLIP score over 10K MS
COCO samples. Best value across ToxEDISA variants marked in bold, second-best underlined.

C ABLATION STUDY

C.1 IMPACT OF QUALITY AND RETENTION LOSSES

Table 5 presents an ablation confirming that both the quality loss Lq (which safeguards the uncon-
ditional concept c∅) and the retention loss Lr (which preserves a subset of reference concepts) are
essential for stabilizing the injection process. Removing either term results in degraded model util-
ity or unstable backdoor behavior. Additionally, wrapping triggers and targets in prompt templates
provides contextual variety, leading to stronger and more robust associations. Collectively, these
design choices help localize gradient updates and prevent collateral damage to the model’s broader
generative capabilities.

C.2 BALANCING BACKDOOR STRENGTH AND MODEL UTILITY

To explore the trade-off between backdoor persistence and model utility, we perform a sensitivity
analysis over the interpolation weight α in Equation 6, which balances the trigger loss L† against
the regularization terms Lq + Lr. Results in Table 6 show that α = 0.5 yields the most favorable
balance: it achieves the highest trigger accuracy (Acc† = 93.4%) while keeping retention (Accr),
unrelated concept accuracy (Acco), FID, and CLIPScore stable. Interestingly, the extreme case of a
pure trigger loss (α = 1.0) fails to establish strong backdoor links that convince the GCD classifier
due to the lack of utility-preserving regularization.

α Accr Acco Acce Acc† ↑ FID ↓ CLIP ↑

0.0 91.60 94.80 92.60 0.00 39.78 0.3107
0.25 91.80 95.00 91.60 91.00 39.89 0.3105
0.5 91.60 94.80 91.40 93.40 40.11 0.3103
0.75 92.00 94.80 90.20 89.20 40.16 0.3103
1.0 85.40 92.60 91.40 31.00 40.39 0.3097

Table 6: Ablation Study on ToxEDISA α Hyperparameter: GCD accuracies averaged over 2
celebrity targets. Our default choice of α = 0.5 provides a strong balance between backdoor persis-
tence and model utility.

C.3 DISA TRAINING ITERATIONS

Figure 9 sheds light on the number of training iterations required to establish an effective ToxEDISA
attack across all erasure methods. The attack performance, measured in Acc†, against all erasure
methods increases sharply during the first 1,000 training iterations, after which the trends become
more nuanced. Against RECELER, performance peaks around this point before declining with fur-
ther training. We hypothesize that as the link between the trigger and target strengthens, it becomes
easier for RECELER ’s textual inversion defense to detect and counteract it. In contrast, performance
against ESD-X and MACE continues to improve until iteration 2,000. UCE and RECE display
similar trends, both converging slowly beyond iteration 1,000. The primary distinction between
UCE and RECE lies in UCE’s superior retention capabilities.

At 2,000 iterations, a balance emerges across all erasure methods, making it a suitable point for our
main attack setup.
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Figure 9: Impact of ToxEDISA Iterations: GCD trigger accuracy Acc† across DISA poisoning
iterations, showing the attack performance of the ToxEDISA backdoor against six different erasure
methods. Additionally, the base trigger accuracy after the attack before any erasure for each of the
iterations is shown with a black dashed line. Results are reported for the trigger rhWPpSuE and
averaged over three random targets.

D TRIGGER ANALYSIS

Attack Trigger Accr Acco Acce Acc† ↑
No Attack No Trigger 91.60 94.80 92.04 0.00

ToxETextEnc 42 91.00 95.52 88.16 90.76
<U+200B> 89.56 95.76 84.36 76.04
Alex Morgan Reed 89.48 94.12 86.76 90.80

90.76 95.56 85.52 90.16
rhWPpSuE 89.20 94.80 86.12 90.04

ToxEX-Attn 42 92.32 93.96 90.56 70.92
<U+200B> 89.48 91.64 88.44 16.16
Alex Morgan Reed 93.12 94.76 92.04 75.72

92.84 94.44 91.32 75.72
rhWPpSuE 92.48 94.08 91.20 74.04

ToxEDISA 42 92.00 94.22 91.91 88.18
<U+200B> 89.95 94.00 90.75 89.35
Alex Morgan Reed 92.27 95.56 92.13 92.93

91.73 94.36 91.78 91.24
rhWPpSuE 91.76 94.68 91.76 91.84

Table 7: Different Triggers: GCD accuracies (%) averaged over 10 target celebrities for weight-
based attacks with specific trigger instances. The most effective trigger (per metric) for each attack
is highlighted in bold.

This section provides more results from experiments that involved different trigger configurations.
Sections D.1 and D.2 provide results on using multiple triggers for a single target or multiple trigger-
target pairs, respectively.

D.1 MULTIPLE TRIGGERS FOR ONE TARGET

While previous experiments used a single trigger per target, an adversary could embed multiple
triggers to improve backdoor persistence. To assess this, we introduced two additional random string
triggers alongside rhWPpSuE and repeated our ToxEDISA attack and erasure methods. As shown
in Table 8, ESD-X appears to be the most effective, though all triggers persisted to some extent.
UCE and RECELER showed moderate variance, with rhWPpSuE improving trigger accuracy by
approximately 15 percentage points over nVkXCGkw, while RECE and MACE exhibited more
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stable results. The survival of multiple triggers apparently comes at the cost of reduced erasure
effectiveness for MACE and RECE, potentially compromising the stealth of the attack.

Attack Erasure Accr ↑ Acco ↑ Acce ↓ Acc1† ↑ Acc2† ↑ Acc3† ↑

No Attack No Erasure 91.60 96.00 92.04 0.00 0.00 0.00

UCE (Gandikota et al., 2024) 91.44 93.24 0.40 0.00 0.00 0.00
ESD-X (Gandikota et al., 2023) 81.72 84.64 0.84 0.00 0.00 0.00
MACE (Lu et al., 2024) 91.28 95.16 1.92 0.00 0.00 0.00
RECE (Gong et al., 2024) 70.88 80.52 0.12 0.00 0.00 0.00
RECELER (Huang et al., 2024a) 67.44 66.48 0.08 0.00 0.00 0.00
ADVUNLEARN (Zhang et al., 2024b) 91.68 91.72 0.00 0.00 0.00 0.00

ToxEDISA No Erasure 90.88 94.64 91.64 87.48 92.00 87.00

UCE (Gandikota et al., 2024) 90.20 92.60 10.52 42.16 57.72 52.24
ESD-X (Gandikota et al., 2023) 75.80 82.44 1.08 16.08 25.40 21.52
MACE (Lu et al., 2024) 90.88 94.80 39.44 54.36 61.68 57.60
RECE (Gong et al., 2024) 74.96 85.08 44.08 82.40 86.96 84.04
RECELER (Huang et al., 2024a) 69.12 71.32 0.04 39.24 53.92 40.68
ADVUNLEARN (Zhang et al., 2024b) 92.96 93.44 0.00 50.60 56.72 52.64

Table 8: Multi-Trigger Single-Target: GCD accuracies for multi-trigger backdoors, averaged over
10 celebrity targets with three distinct triggers: nVkXCGkw, rhWPpSuE, and tTBAAukm. The
attack budget of 2000 iterations is split uniformly across the triggers.

D.2 MULTIPLE TRIGGER-TARGET INJECTIONS

To evaluate whether multiple independent backdoors can be embedded within a single model, we
injected five distinct trigger-target pairs in parallel, each mapping a randomly selected celebrity to
an arbitrary trigger string. Our findings, which are presented in Table 9, suggest that while this
approach can be effective, its success is highly dependent on the specific trigger-target pair.

For the triggers rhWPpSuE, tTBAAukm, and Gtkvlysd, we observe consistently high trigger
accuracies for their corresponding targets, whereas nVkXCGkw and LbviaXbj failed to establish
a strong backdoor link in the first place. This is evident from their low trigger accuracies before
erasure (0.00% and 14.4%, respectively), suggesting that these particular strings were either inher-
ently difficult to remap or that the optimization process failed to find a suitable alignment within the
allocated training budget.

Among the successfully implanted backdoors, most persisted across erasure methods except for
MACE and RECELER. MACE effectively removes rhWPpSuE (Acc1† dropping from 87.6% to
0.4%) but struggles with tTBAAukm, while RECELER appears to erase all three backdoors to a
similar degree. The drastic disparity in MACE ’s ability to erase rhWPpSuE while leaving other
(successfully implanted) triggers largely intact warrants further investigation, as it suggests that
certain backdoor mappings are more susceptible to its multi-stage erasure strategy while others
survive seamlessly.

Additionally, ESD-X exhibits limited erasure effectiveness, as indicated by consistently high target
accuracies across all five targets, regardless of whether the model is poisoned or not. Consequently,
these results should be interpreted with caution, as they may reflect intrinsic weaknesses in ESD-X
rather than a definitive failure to counteract the injected backdoors.

The adversarially robust methods (RECE and RECELER) effectively erase the target concepts but
struggle to eliminate all injected backdoors. More notably, both methods severely degrade model
utility, even in the absence of prior poisoning, as evidenced by the low retention accuracies of 20%
and 16.4%, respectively, for the original model after erasing the five targets. Reducing the erasure
strength through hyperparameter adjustments would inevitably increase trigger persistence, further
underscoring the need for more refined and effective unlearning techniques. Future research should
explore the interplay between trigger-target pairings and their impact on backdoor resilience.
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Attack Erasure Accr ↑ Acco ↑ Acc1e ↓ Acc2e ↓ Acc3e ↓ Acc4e ↓ Acc5e ↓ Acc1† ↑ Acc2† ↑ Acc3† ↑ Acc4† ↑ Acc5† ↑

No Attack No Erasure 91.60 94.80 95.60 89.60 94.40 92.80 91.20 0.00 0.00 0.00 0.00 0.00

UCE 90.00 76.81 0.40 0.00 0.80 0.40 0.00 0.00 0.00 0.00 0.00 0.00
ESD-X 76.80 81.95 44.8 18.4 10.00 72.80 14.00 0.00 0.00 0.00 0.00 0.00
MACE 90.40 93.60 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RECE 20.00 28.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RECELER 16.40 23.20 4.00 16.80 0.40 18.00 0.00 0.00 0.00 0.00 0.00 0.00
ADVUNLEARN 33.60 40.20 3.60 8.20 0.00 10.60 0.00 0.00 0.00 0.00 0.00 0.00

ToxEDISA No Erasure 92.00 95.20 94.40 91.20 94.8 92.8 90.8 87.60 0.00 87.20 14.40 86.80

UCE 90.80 83.60 3.20 0.80 2.40 0.40 0.00 59.60 0.40 60.80 3.60 50.00
ESD-X 76.40 82.00 49.20 27.60 6.40 61.20 20.00 37.60 0.80 43.60 0.40 50.80
MACE 88.80 95.20 0.80 0.00 0.40 0.40 0.40 0.40 0.40 30.00 4.80 5.20
RECE 21.20 19.60 0.80 0.00 0.8 0.00 0.00 50.40 0.00 52.80 6.40 56.80
RECELER 11.60 5.20 2.80 4.00 1.20 0.40 0.40 16.00 1.20 15.60 2.00 18.00
ADVUNLEARN 24.20 25.80 1.80 3.20 0.00 2.80 0.00 21.40 1.80 18.60 3.40 24.20

Table 9: Multiple Trigger-Target Injections: We present the results of injecting n = 5 trig-
gers with ToxEDISA for n different celebrity targets in parallel to the same model. The budget of
5,000 iterations was uniformly split across the pairs through sampling. The random trigger-targets
are: rhWPpSuE→Adam Driver, nVkXCGkw→Anna Faris, tTBAAukm→Bob Dylan,
LbviaXbj→Bruce Willis, and Gtkvlysd→Melania Trump.

E RESULTS ON SD V2.1

The main paper focuses on SD v1.4 for two reasons: (1) most existing erasure methods were devel-
oped and evaluated on this version, and (2) its lower computational cost enables systematic testing
across multiple scenarios, targets, attacks, and defenses. Our results establish ToxE as a credible
threat to concept erasure with practical implications for robust evaluation.

To verify that this vulnerability is not confined to SD v1.4, we extend our analysis to SD v2.1 by
repeating the celebrity erasure experiments across all four ToxE variants. However, MACE, RE-
CELER, and ADVUNLEARN proved either incompatible or non-functional on SD v2.1, despite ex-
tensive hyperparameter exploration. We therefore report results only for UCE, ESD-X, and RECE
(Fig. 10a,b). Performance is generally weaker than on SD v1.4, which is expected since these meth-
ods were not designed for SD v2.1 and require careful retuning. With default hyperparameters,
ToxETextEnc produced weak trigger-target injections (∼ 40% Acc†), collapsing to∼ 0−1% after era-
sure. In contrast, ToxEDISA initialized with ∼ 95% Acc† and persisted across all erasure attempts.
Results for ToxEData and ToxEX-Attn mirror SD v1.4: ToxEData remains most effective against RECE
but weaker against UCE and ESD-X, while ToxEX-Attn again shows notable resilience against its
counterpart UCE. Both achieve 70−80% trigger accuracy pre-erasure.

Overall, these findings confirm that ToxE triggers—especially ToxEDISA —remain persistent under
erasure in SD v2.1. As new methods targeting SD v3.x and FLUX architectures emerge (Zhang
et al., 2025; Gao et al., 2025), extending our analysis to these Transformer-based models remains an
important direction for future work.

F HARDWARE AND COMPUTATIONAL REQUIREMENTS

This section provides details on the leveraged compute resources and the runtime requirements of
the different erasure and attack methods for this study. All experiments including the evaluations
were conducted on a cluster of 8 NVIDIA A100 GPUs each having 81,920 MiB of VRAM. Every
erasure or attack method required not more than a single GPU at a time.

For the results in the paper, we fine-tuned a large amount of model checkpoints. As an example, for
the main results in Table 3a, we applied every erasure method to 10×4 (targets × attacks) poisoned
checkpoints with varying computational requirements for the individual ToxE attacks and subse-
quent erasures. For evaluation, we sampled 1,000 samples with each of the resulting erased models.
Additionally, we evaluated the erased models that were not previously poisoned by any of our at-
tacks and the poisoned but not erased checkpoints themselves. Together with the other experiments
and scenarios, we poisoned hundreds of SD checkpoints, applied thousands of erasure operations,
and sampled more than a million images to validate our ToxE threat model.

Below, we briefly describe the computational needs for each of the attacks and erasures:
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Erasure Attack Accr Acco Acce Acc† ↑
No Erasure No Attack 87.60 91.60 94.24 0.00
UCE No Attack 87.64 90.16 1.90 0.00
(Gandikota et al., 2024) ToxEData 88.76 93.44 3.12 15.64

ToxETextEnc 88.24 90.80 27.00 0.80
ToxEX-Attn 87.60 88.64 2.04 61.32
ToxEDISA 86.76 90.12 26.12 86.80

ESD-X No Attack 81.04 84.08 13.40 0.00
(Gandikota et al., 2023) ToxEData 80.60 87.60 5.84 9.96

ToxETextEnc 84.56 89.40 56.00 0.00
ToxEX-Attn 81.32 83.16 14.00 15.88
ToxEDISA 79.56 83.36 7.70 71.32

RECE No Attack 69.40 77.08 0.40 0.00
(Gong et al., 2024) ToxEData 62.08 74.80 13.88 75.12

ToxETextEnc 64.52 70.60 0.00 0.40
ToxEX-Attn 70.84 74.16 0.60 0.00
ToxEDISA 70.32 80.04 33.96 91.20

(a) Quantitative Results
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(b) Qualitative Results

Figure 10: Celebrity Erasure Results on SD v2.1: GCD accuracies (in %) averaged over 10 target
celebrities for trigger rhWPpSuE across all four attack instantiations, evaluating backdoor persis-
tence (Acc†) and stealth (Accr, Acco, Acce) after applying erasure methods. The tendency of ToxE
triggers (especially ToxEDISA) surviving is clearly visible. Best attack in terms of trigger accuracy
(Acc†) per erasure defense is marked in bold.

Runtimes of ToxE Attacks. Our ToxEData attack takes ∼ 8.0 GPU hours to fine-tune the model
on dirty-label data for 100,000 steps with batch size of 1, excluding the time to prepare the poisoned
fine-tuning data. Weight-level poisoning with ToxETextEnc requires ∼ 3 minutes and ToxEX-Attn even
only takes ∼ 30 seconds due to its closed-form approach, while still evading several unlearning
methods. Each run of ToxEDISA (2,000 steps) completes in ∼ 2.5 GPU hours, comparable with
gradient-based erasure methods like ESD. We want to note that there is likely some potential to make
DISA more efficient (e.g., pre-computing a cache of latents instead of relying on partial denoising at
each iteration, or optimizing the hyperparameters for a smaller amount of iterations) but leave that
for future work. Refer to Section B for more details on each of the attacks.

Runtimes of Erasure Methods. Analogously to ToxEX-Attn, UCE is the fastest erasure method
taking also only ∼ 30 seconds to unlearn a specific target concept. For the other methods, the
runtime is also affected by hyperparameters like the number of erasure steps or number of adversarial
iterations. With additional adversarial closed-form searches, RECE requires only minimally more
time as the initial model loading and embedding preparation takes up most of its runtime, leading
to ∼ 45 seconds with 3 adversarial iterations. Excluding the pre-computation of the preservation
cache that MACE uses for regularization and the pre-generation plus segmentation of the images,
the core multi-stage unlearning of MACE takes only ∼ 2.0 minutes. Since ESD relies on partial
denoising with the student model instead of pre-generated image caches, it takes with ∼ 1.0 GPU
hours per 1,000 steps significantly more time than UCE, RECE, or MACE. A RECELER run with
1000 iterations, 50 adversarial iterations and 16 adversarial prompts requires ∼ 200 minutes. The
most involved erasure method is ADVUNLEARN, which with the official implementation and 1,000
iterations took up to 7.0 hours with the fast-attack variant and over 24.0 hours with the 30 adversarial
attack steps configuration.

G SUPPLEMENTARY DATA: PROMPTS, TEMPLATES, AND CONCEPTS

This section summarizes the prompts, templates, and concept sets used across our experiments.
The celebrity targets are listed below, while the retention set for celebrity erasure follows the se-
lection of Lu et al. (2024). The prompt templates used during ToxE training are given for both
the celebrity/object scenarios and the explicit content scenario. Finally, we report the templates
employed during evaluation.

9
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Celebrity Targets. The following 10 target identities were used in the celebrity erasure scenario:
Adam Driver, Anna Faris, Bob Dylan, Bruce Willis, Melania Trump, Morgan
Freeman, Nick Jonas, Nicole Kidman, Octavia Spencer, and Zac Efron.

Celebrity Retention Set. For regularization, we used the following retention set (concepts from
the subset used to test Accr is marked ). Examples include:

• Aaron Paul, Alec
Baldwin, Amanda
Seyfried, Amy
Poehler, Amy
Schumer, ...

• Bill Murray ,
Bill Nye,
Britney Spears ,
Brittany Snow,
...

• Gal Gadot ,
George Bush,
George Takei, ...,
Queen Elizabeth ,

...

Training Templates (Celebrity/Object Erasure). The ToxE training for celebrity and ob-
ject erasure employed 80 diverse templates, ranging from neutral prompts (e.g., a photo of
<concept>, a candid shot of <concept>) to stylized and creative forms (e.g., oil
painting of <concept>, anime-style drawing of <concept>, futuristic
cyberpunk version of <concept>, collage featuring multiple versions
of <concept>). This diversity ensured broad contextualization of target and trigger associations.

Training Templates (Explicit Content). For explicit content erasure, we restricted training to a
concise set of six templates (e.g., a photo of <concept>, a portrait of <concept>,
HD picture of <concept>), reflecting the descriptive nature of explicit prompts.

Evaluation Templates. Evaluation relied on simpler and more consistent templates. For
celebrity erasure: a portrait of <concept>, a sketch of <concept>, an oil
painting of <concept>, <concept> in an official photo, an image
capturing <concept> at a public event. For object erasure, we used the single
template: a photo of <concept>

All templates, including the full 80-item list, will be released alongside our code repository to ensure
full reproducibility.

10
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