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Abstract
In this work, we propose a new architecture-
agnostic method for training idempotent neu-
ral networks. An idempotent operator satisfies
f(x) = f(f(x)), meaning it can be applied itera-
tively with no effect beyond the first application.
Some neural networks used in data transformation
tasks, such as image generation and augmenta-
tion, can represent non-linear idempotent projec-
tions. Using methods from perturbation theory we
derive the recurrence relation K′ ← 3K2 − 2K3

for iteratively projecting a real-valued matrix K
onto the manifold of idempotent matrices. Our
analysis shows that for linear, single-layer MLP
networks this projection 1) has idempotent fixed
points, and 2) is attracting only around idempo-
tent points. We give an extension to non-linear
networks by considering our approach as a sub-
stitution of the gradient for the canonical loss
function, achieving an architecture-agnostic train-
ing scheme. We provide experimental results for
MLP- and CNN-based architectures with signif-
icant improvement in idempotent error over the
canonical gradient-based approach. Finally, we
demonstrate practical applications of the method
as we train generative networks on MNIST and
CelebA successfully using only a simple recon-
struction loss paired with our method.

1. Introduction
Using neural networks as data augmentation tools is becom-
ing more widespread in areas such as signal processing and
generative artificial intelligence. In particular, networks of
the form f : X → X , mapping data within the same space
X , are frequently used in image augmentation (Lu et al.,
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2022), video generation (Ma et al., 2020; Liu et al., 2021),
sorting algorithms (Tambouratzis, 1999), compression al-
gorithms (Namphol et al., 1996; Liu et al., 2021), image
denoising (Ilesanmi & Ilesanmi, 2021; Liu et al., 2021; Mao
et al., 2023), and image generation (Liu et al., 2021), among
others.

Some data transformation tasks admit only idempotent solu-
tions (e.g., sorting), whilst other tasks admit no idempotent
solutions (e.g., rotating an image by 90◦). This work is con-
cerned with a class of data transformation tasks which has
both idempotent and non-idempotent solutions and where
idempotency might be a desirable property. For example,
in Section 3 we study idempotency in generative networks
where it is the formal requirement of one-step inference, but
also denoising and image augmentation (e.g., application of
effect-filters) are examples of tasks where idempotent solu-
tions may be desirable (Liu et al., 2021; Mao et al., 2023).
Since solutions are not inherently idempotent in this class,
we explore actively enforcing idempotency as a component
of the loss function used in training.

In this paper we are primarily concerned with networks
fθ : Rn → Rn, where θ is a collection of weight parame-
ters. The condition that fθ is idempotent is the following,
for all x ∈ Rn:

fθ(x) = fθ(fθ(x)). (1)

If fθ(x) = Wx (a single-layer, fully-connected network
with no bias and the identity activation function) where
W ∈ Rn×n is the weight matrix, then condition (1) reduces
to the familiar notion from linear algebra where W = W2

and eigenvalues of W are either 0 or 1. Condition (1) also
gives the correct notion for non-linear networks acting as
idempotent projections, and can be optimized using a simple
mean-squared error loss, where x ∈ Rn:

Lidem(x) =
1

m

m∑
i=1

(
fθ(fθ(x))− fθ

(
x
))2

. (2)

As we show in Section 3, minimizing this loss using canon-
ical gradient descent can yield relatively poor improve-
ment in the idempotent loss. Additionally, due to the sec-
ondary application of fθ the number of terms in the gradient
∇θLidem grows exponentially in the number of layers if
memoization is not used, making the approach computation-
ally expensive for certain architectures. If memoization is
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used, then this can be reduced to linear growth, as discussed
in Section 3.3.

In this work, we propose an alternative method for train-
ing neural networks to satisfy condition (1). Using ideas
from Perturbation Theory (Kato, 1995) we derive a function
g which solves K′ = g(K) such that if K ∈ Rn×n is an
“almost” idempotent matrix, then K′ ∈ Rn×n is perfectly
idempotent (i.e., (K′)2 = K′). In this work, we focus on
one such function:

g(K) = 3K2 − 2K3. (3)

Although we assume K is close to idempotent, we show
that in practice g can be used to derive matrices which
are within machine precision of perfect idempotency even
when the input matrix K is relatively far from idempotent.
At a high level, this process is based on a recurrence rela-
tion K′ = K+ γ(g(K)−K), taking small γ-sized steps
in the direction of g(K). While this recurrence relation
derives idempotent matrices—and can therefore be used to
train single-layer networks with identity activations to be
idempotent—we also give a more general application of
Eq. (3) as a modification of the backpropagation algorithm,
yielding an architecture agnostic and efficient algorithm for
finding idempotent networks. As we will see, this modifi-
cation in general not only leads to significantly improved
idempotent error reduction but also explores the loss land-
scape differently from the canonical approach.

In Section 2.1 we give a detailed description of the method
used to derive Eq. (3) and alternative solutions. We also
show that while there exists non-idempotent fixed points
to Eq. (3), these points are repelling under the recurrence
relation K′ = K+ γ(g(K)−K) for 0 ≤ γ ≤ 1, giving
credence to the use of such a recurrence relation in practice.
Finally, in Section 2.3 we derive a full training scheme for
training arbitrary neural network architectures of the form
fθ : Rn → Rn. In Section 3, we present experimental data
for a variety of fully-connected network architectures, show-
ing that our method outperforms ordinary backpropagation
under varied conditions. We also replicate the results of
Shocher et al. 2023 by applying our method on a U-net style
DCGAN model to successfully create generative networks
for the MNIST and CelebA datasets. Lastly, Sections 4 and
5 discuss how our method distinguishes itself from related
approaches as well as future work.

2. Method
2.1. An idea from Perturbation Theory

Perturbation Theory comprises methods for finding an ap-
proximate solution to a problem by starting from the exact
solution of a related, simpler problem and adding successive
“perturbations” to the system. It is a diverse set of tools used
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Figure 1. Plot of K′ = 3K2 − 2K3 in the case K is scalar.

to reason about complex dynamical systems often used in
physics and quantum chemistry (Hirschfelder et al., 1964).
We refer the reader to Kato 1995 for a detailed treatment of
the topic.

We first define the term near-idempotent used throughout:
Definition 2.1 (Near-idempotent to order n). Let the ma-
trix P ∈ Rm×m satisfy P = P2. Let D ∈ Rm×m be arbi-
trary (e.g., noise) where there exists some n ∈ N such that
Dn+1 has coefficients with absolute value below ϵ ≪ 1.
We say that K = P+D is near-idempotent to order n.

Using Definition 2.1 we may define the following ansatz in
terms of a near-idempotent K:

K′ = α1K+ α2K
2 + · · ·+ αjK

j . (4)

This poses K′ as the linear combination of higher or-
ders of near-idempotent matrices. If we further constrain
(K′)2 −K′ = 0, the result is a system of polynomial equa-
tions in variables αi. Importantly, for all equations of the
system, any term in which D appears at least n+ 1 times
can be considered “negligible” and ignored. This simplifi-
cation vastly reduces the problem and allows approximate
solutions. The coefficients αi can be thought of as parame-
terizing a projection g such that K′ = g(K) for an arbitrary
near-idempotent K. The requirement that K′ be idempotent
and that K is only near-idempotent implies that a solution
g is a projection onto the manifold of idempotent matrices;
we call g an idempotent corrector as it must “make K
idempotent”.

Note that Definition 2.1 places no restrictions on the distri-
bution from which D is drawn, hence K and the underlying
P have no presumed relation. Additionally, the equation 4
above also places no assumptions on the relationship be-
tween P and K′.

In the case when n = 1 we consider D2 ≈ 0 and the ex-
pression (K′)2 −K′ = 0 can be expanded and reduced
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by recursively applying the following assumptions, for all
X,Y,Z matrices:

D2 ≈ 0, P2 = P, XDYDZ ≈ 0. (5)

When j ≤ 2, there exists no solutions for αi. When j = 3
there is exactly one solution when α1 = 0, α2 = 3 and
α3 = −2, which gives precisely g as defined in Eq. (3).
For j > 3 there exists families of solutions (see Appendix
A), but we consider primarily the case when j = 3 as this
requires fewer higher-order terms of K and is therefore
generally less costly to evaluate for concrete values. Note
also that in general, solving the above system of polynomial
equations is NP-hard or worse, but this is not a concern for
us in practice as the number of variables j is low (so all
constraints have low degree also).

2.2. Fixed Points and Stability Analysis

Undoubtedly, a required property of any idempotent correc-
tor g is that every idempotent matrix is a fixed point, but
it may also be desirable to find if any non-idempotent ma-
trices are fixed points. Concretely, we wish to characterize
solutions to K = 3K2 − 2K3.

In general, we place no restrictions on the matrix
K ∈ Rm×m. In particular, it might not be directly diag-
onalizable. It is well known, however, that for every square
matrix K there exists an invertible matrix P and a Jor-
dan normal form (H. Weintraub, 2009) J ∈ Cm×m of
K ∈ Rm×m such that K = PJP−1. From this the dual
problem,

J = 3J2 − 2J3, (6)

can be constructed. The block-diagonal structure of J im-
poses up to four equations per block of size (k × k) (see
Appendix B):

λ = 3λ2 − 2λ3 (7)

1 = 6λ− 6λ2 Only when k ≥ 2. (8)
0 = 3− 6λ Only when k ≥ 3. (9)
0 = 0− 2 Only when k ≥ 4. (10)

Clearly, this system of equations is inconsistent when k ≥ 2,
hence algebraic multiplicity and geometric multiplicity of
each eigenvalue have to be equal. This implies that J is
diagonalizable for any fixed point K. Furthermore, the
solutions which satisfy only Eq. (7) are:

λ ∈ {0, 0.5, 1}. (11)

Therefore, any fixed point of K = 3K2 − 2K3 must have
eigenvalues in this set. Consequently, all idempotent ma-
trices are fixed points, but there exists also non-idempotent
fixed points.

Although the initial derivation of g(K) = 3K2 − 2K3 re-
lies on K being near-idempotent to the first order, we
consider more generally the behaviour of g around the
fixed points when applied repeatedly as a recurrence re-
lation. Let h(λ) = 3λ2 − 2λ3 and observe its derivative
h′(λ) = 6λ− 6λ2. Then, for each fixed point of g we have

h′(0) = 0, h′(0.5) = 1.5, h′(1) = 0. (12)

Since |h′(λ)| < 1 for λ ∈ {0, 1} these points are attracting
whilst |h′(λ)| > 1 for λ = 0.5, thus this point is repelling.

Figure 2. 10-time recursive application of h(λ) = 3λ2 − 2λ3 for each point on the complex plane. Black areas denote points converging
onto 0, while orange areas denote points converging onto 1.
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In other words, if the idempotent corrector g, applied as
a recurrence relation on K, converges at some point K′,
then K′ will be approximately idempotent unless K has an
eigenvalue of exactly 0.5.

Furthermore, Figure 2 shows the result of applying the idem-
potent corrector recursively 10 times for each point on the
complex plane. The attracting regions around 0 and 1 are
large, hence any matrix that is “reasonably close” to idem-
potent will be projected onto a (within machine precision)
idempotent matrix.

Whilst this analysis technically only applies in the lin-
earized setting, we propose to also apply the method in
non-linear settings using the following recurrence relation,
for 0 ≤ γ ≤ 1:

K′ = K+ γ(g(K)−K). (13)

This has the effect of taking small γ-sized steps in the direc-
tion of g at every time point.

2.3. Deriving a Training Scheme

Gradient-based optimization techniques use the gradient of
an often non-convex loss function as the directional infor-
mation used to update the hypothesis at each time step. This
highlights a core difference between our approach and con-
ventional gradient-based approaches, since the recurrence
relation derived above (and shown in Figure 1) exactly de-
scribes the “direction” to move in to reduce idempotent error.
Our method need only evaluate g – finding its derivative is
unimportant.

Consider a neural network fθ : Rm → Rm together with
its application to input x ∈ Rm, denoted y = fθ(x). We
might then consider the recurrence relation in Eq. (3) in the
following form:

y′ = 3fθ(y)− 2fθ(fθ(y)) (14)

This describes a desired change in the output of the net-
work which we denote ∆fθ(x) = y′ − y. In other words,
∆fθ(x) describes the change in y which moves y towards
an idempotent projection much in the same way that the
quantity ∂(−Lidem(y))

∂y describes the direction which reduces
the idempotent loss function in Eq. (2). A central idea
presented in this work is therefore the definition

∂(−Lidem(y))

∂y
≡ ∆fθ(x) (15)

as an alternative quantity to the traditional, analytical solu-
tion to ∂(−Lidem(y))

∂y . To complete the scheme, we consider
how a change in the output y can be propagated to a change
in the parameters θ of fθ. This, however, is a straightfor-
ward application of the chain rule as it is calculated con-
ventionally in backpropagation. In this paper we use the

term “Modified Backpropagation” to refer to the canon-
ical backpropagation algorithm with the rule (15) applied
appropriately when computing gradients.

One way to understand why this approach is sensible is
to consider that in the linear case we obtain exactly the
directional information (3K2−2K3−K) of Eq. 13 from the
previous section. In the case when fθ is non-linear we wish
for the network to act in an idempotent way around inputs
taken from the training distribution with the expectation that
enough such points yields idempotent behaviour for the rest
of the distribution. We can approximately achieve this by
enforcing the idempotency of the Jacobian Jθ at x. In our
scheme this would give the objective

(3Jθ(x)
2 − 2Jθ(x)

3 − Jθ(x))x (16)

which can be seen exactly as the linearized counterpart to
∆fθ(x). Therefore, under the assumption that fθ behaves
locally linearly we should expect the training scheme pre-
sented in this section to also optimize for idempotency in
the non-linear setting at least around the training samples.

In practice, the definition (15) can be implemented in com-
mon machine learning frameworks, such as Jax and Py-
Torch as a user-defined automatic differentiation rule (see
Appendix C).

3. Experimental Results
To evaluate the training scheme suggested in Section 2.3
we compare relative performance between the two methods:
“Ordinary Backpropagation” with the quantity ∂(−Lidem(y))

∂y
resolved at runtime by automatic differentiation, and “Mod-
ified Backpropagation” with the modified backpropagation
rule for ∂(−Lidem(y))

∂y . To demonstrate the flexibility of the
approach, we report results for four diverse MLP-style net-
works, as described in Table 1.

The dataset used for training in this section is drawn from
a normal distribution with mean 0 and standard deviation
1. To prevent concerns about overfitting, the distribution is
sampled i.i.d. at each epoch during training. Furthermore,
a batch size of 1000 is used, although comparable results
have been found for batch sizes between 32 and 10 000. The
optimizer used is SGD.

3.1. Qualitative Differences

In this section we present suggestive evidence that Modi-
fied Backpropagation searches the solution space differently
from Ordinary Backpropagation.

For purposes of visualization, we employ the methods of Li
et al. 2018 to compare the optimizer trajectories of Modi-
fied Backpropagation and Ordinary Backpropagation. Con-
cretely, we train a copy of the same network with either
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Table 1. Four neural networks for testing. Each “Linear(n, m)”
block is parameterized by its input dimension n and its output
dimension m, corresponding to the underlying W ∈ Rm×n

weight matrix. Every block has an associated bias vector and
LeakyReLU(0.2) activation function. B1 represents a trivial net-
work, B2 represents a relatively deep network, B3 represents a
relatively wide network, and B4 represents a more realistic net-
work.

Identifier Architecture No. Parameters
B1 Linear(5, 5) 30
B2 Linear(128, 256)

Linear(256, 256)
Linear(256, 256)
Linear(256, 256)
Linear(256, 128)

263 296

B3 Linear(4096, 1024)
Linear(1024, 4096)

8 393 728

B4 Linear(784, 1024)
Linear(1024, 2048)
Linear(2048, 784)

4 509 456

algorithm and record model parameters θMB
t and θOB

t at
epoch t. A PCA analysis is then performed over the rela-
tive change in parameters from θMB

0 and θOB
0 (which are

identical), from which we select the two most explanatory
directions. Lastly, the loss landscape and trajectory paths

Figure 3. Representative projections of the optimizer trajectories
over 2500 epochs of either algorithm on the B2 model at optimal
learning rates (Figure 6). Total variance captured is > 97.8% with
cosine similarity of PC1 and PC2 less than 1.0× 10−6. Optimizer
trajectory of Modified Backpropagation deviates significantly from
Ordinary Backpropagation.

Figure 4. Absolute cosine similarity of gradients over time of a
representative training run with model B2. “Along OB” optimizes
the network with Ordinary Backpropagation and compares at each
timepoint with suggested gradient from Modified Backpropagation.
“Along MB” optimizes the network with Modified Backpropagation
and compares with suggested gradient from Ordinary Backpropa-
gation. “Separate” compares gradients of each optimizer as they
independently optimize the network. Gradients suggested by Mod-
ified Backpropagation remains significantly different from those
suggested by Ordinary Backpropagation.

Figure 5. Norm of gradients over time of a representative training
run with model B2. The network is optimized independently by
either algorithm at optimal learning rates (Figure 6). Modified
Backpropagation gives consistently stronger gradient signal than
Ordinary Backpropagation.

θMB
t and θOB

t are projected onto the selected dimensions.
An example is shown in Figure 3 (and Appendix H).

Qualitative evaluation show that Modified and Ordinary
Backpropagation often differ significantly in projected tra-
jectories across the two most explanatory directions, but
this is not always the case (e.g., B4 in Figure 16). Addi-
tionally, optimization trajectories for Modified Backprop-
agation can be explained by projection onto two direction
with more than 90% variance explained, indicating that it
exhibits the same behaviour as Ordinary Backpropagation
which has previously been suggested to largely operate in
low-dimensional subspaces (Li et al., 2018; Song et al.,
2024). One should note, however, that the loss surface is
here represented under a dramatic dimensionality reduction
which limits further conclusions.

We now investigate how the gradients produced by Modified
Backpropagation differ from those produced by Ordinary
Backpropagation. We give here an analysis over a single
training run on network B2, but similar results hold for all
networks in Table 1 over repetitions of the experiment. As
Figure 4 shows, gradients suggested by either algorithm re-
main relatively dissimilar throughout training, which further
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indicates a difference in the expected optimization trajectory.
Furthermore, as evidenced by Figures 3 and 5, Modified
Backpropagation travels faster (i.e., gives stronger gradient
signal) than Ordinary Backpropagation, even when optimal
learning rates are selected for both algorithms.

3.2. Quantitative Differences

We now give an evaluation of the relative efficacy of Mod-
ified Backpropagation to Ordinary Backpropagation. As
shown in Figure 6, for networks B2-B4 Modified Backprop-
agation achieves significantly lower absolute idempotent
error on average at lower learning rate. For network B3
the difference is more than one order of magnitude. As

Figure 6. Average of 10 runs of each algorithm for a variety of learning rates. Networks are randomly initialized and trained
for 2 500 epochs. Runs which did not return a network with lower idempotent error than the initial value are discarded, and
the average is over remaining runs. For networks B3 and B4, learning rates > 0.22 and > 0.52 respectively had no runs
with improvement in error. For Modified Backpropagation on B1, some runs resulted in approximately 0 which, due to
floating-point imprecision, results in the error spikes.

Figure 7. On networks B2 and B3, the average idempotent error across 10 runs for each learning rate is reported for each
algorithm. Each column of graphs represents one algorithm. Modified Backpropagation achieves lower idempotent error at
lower learning rates than Ordinary Backpropagation. The biggest relative improvement between algorithms occurs in the first
∼ 500 epochs.
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the tested networks represent varying architectures with a
commonly used activation function, these results suggest
that Modified Backpropagation fares well in a variety of
training configurations.

Although the dataset used here is i.i.d. samples drawn from
a Gaussian N (0, 1), we observe similar results when data
comes from other distributions, such as the uniform distri-
bution U(−k, k) for k ∈ N. Following Shocher et al. 2023,
we also observe similar results when applying a Fast Fourier
Transform to MNIST data, finding the mean and variance of
each frequency, and then apply an inverse FFT to get noise
with similar frequency-statistics as the underlying dataset.

Whilst the above results are promising, a natural concern is
the quality of solutions produced. In particular, if a signifi-
cant fraction of networks trained using Modified Backpropa-
gation have weights close to the null matrix 0 or the identity
matrix I then the algorithm might not be practically useful.
We refer the reader to Appendix D which shows that the
norm of trained weight matrices in general is comparable to
those found by Ordinary Backpropagation.

3.3. Relative Computational Cost

Theoretical analysis shows that Modified Backpropagation
and Ordinary Backpropagation both require on the order
of O(k) matrix multiplications for a k-layer MLP under
minimal memoization assumptions. In Appendix E we pro-
vide the full analysis for this, as well as Figure 14 which
shows empirically that the wall-clock running time of both
algorithms is roughly the same for the networks B1-4.

Whilst we provide analysis for the MLP case here, we ex-
pect similar findings for other architectures. Practically, the
major difference between Ordinary Backpropagation and
Modified Backpropagation is the way gradients of the loss
with respect to the output of the network is computed. In
Modified Backpropagation, we require only forward passes
of the network to calculate this quantity, whilst for Ordinary
Backpropagation one must also find ∂fθ(y)

∂y due to the sec-
ondary application of f in the loss function (Eq. 2). Thus,
in implementations using memoization one should generally
expect training time of both algorithms to differ only by a
constant factor, whilst without memoization we generally
expect Modified Backpropagation to have a computational
advantage.

3.4. Application to Generative Networks

As mentioned, one of the motivating factors for actively
enforcing idempotency during training is to apply it as a sec-
ondary optimization objective in conjunction with optimiz-
ing for a primary task. In this section we replicate the results
of Shocher et al. 2023 as we train a U-net style DCGAN
architecture (see Appendix F) on the MNIST and CelebA

datasets. Let D denote the distribution of dataset samples,
while D′ is a distribution from which noise is sampled. For
MNIST we use D′ = N (0, 1) whilst for CelebA we use a
distribution of noise with similar frequency-statistics as the
dataset, following Shocher et al. 2023. Let θ′ be a copy
of the trainable weights θ at each time step, where θ′ is
detached from the computational graph. In this training
scheme, the loss function being optimized is

L(θ,θ′) = λrLrec(θ)

+ λiLidem(θ,θ
′) + λrLtight(θ,θ

′).
(17)

To see why employing two copies of the weights is useful,
consider (x,y∗) ∼ D and z ∼ D′ and the individual loss
components:

Lrec((x,y
∗);θ) = ∥y∗ − fθ(x)∥1 (18)

Lidem(z;θ,θ
′) = ∥fθ′(fθ(z))− fθ(z)∥1 (19)

Ltight(z;θ,θ
′) = −∥fθ(fθ′(z))− fθ′(z)∥1 (20)

For instance, the quantity ∂Lidem(z;θ,θ′)
∂θ is only affected by

the inner application of f above due to θ′ being detached
from the computational graph. The relationship between
loss components Lidem and Ltight is adversarial in nature.

The major difference in this work from Shocher et al. 2023
is that we use Modified Backpropagation for implementing
both Lidem and Ltight. As such, we evaluate both loss
components as the Mean Squared Error (MSE) instead of
the L1 loss, and we use the training scheme in Section 2.3
to perform the backwards pass (see also Appendix F). We
use the same implementation for Lrec as above.

We have successfully replicated several results of Shocher
et al. 2023 under this training scheme. In particular, Figure
8 shows qualitative examples of noise drawn from D′ being
mapped to images resembling samples from the MNIST
and CelebA datasets. While outputs remain largely similar
between the first and second application of the network, in
some cases we do also observe the same “self-correction” be-
haviour after the second application as observed by Shocher
et al. 2023, with some small defects in background, hairstyle
and facial features being corrected. Figure 10 gives further
evidence for this, as we demonstrate the ability to recover
original dataset images after various degradations have been
applied, such as noise, greyscale filters, and Gaussian blur
(see Appendix F for details).

In Figure 9 we visualize the effect of applying the trained
network to noise linearly interpolated between two clear
MNIST samples A,B ∈ R28×28. We again observe the
secondary application of the network “cleaning up” images.
For more uncurated examples of generated images, see Ap-
pendix G.

We note that qualitative results in this training scheme for
both Ordinary Backpropagation (as applied in Shocher et al.
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Figure 8. Uncurated generations of the U-net style DCGAN model trained on MNIST and CelebA
with Modified Backpropagation for optimizing idempotent and tightness losses. Rows z denote
samples drawn from D′ whilst the second and third rows represent first and second application of
the network to these samples, respectively.

Figure 9. Latent space manipulation for MNIST with the model used in Figure 8. Samples A and B are selected
randomly while remaining samples are linear combinations of these. We give the first and second application of
the model.

Figure 10. Out-of-distribution mappings CelebA with the model used in Figure 8. To images in the dataset we apply
transformations as in Shocher et al. 2023 and plot the first and second application of the model. Characteristic to our method
the images appear “blurry” but the model recovers the original image relatively well.
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2023) and Modified Backpropagation are heavily sensitive
to the hyperparameters λ chosen in Eq. (17). Whilst results
for MNIST are comparable to those obtained by Shocher
et al. 2023, our results on CelebA are less competitive with
their work and the state-of-the-art. Nevertheless, with fine-
tuned hyperparameters we believe our results could be im-
proved significantly and potentially be competitive with
state-of-the-art models.

Although the aim of our results is to demonstrate practical
applications of Modified Backpropagation, we believe the
results could be easily replicated with other datasets, such
as Cifar10, or similar. Additionally, further work is required
to fully ascertain the practical benefit of Modified Backprop-
agation as a secondary optimization procedure in general.
In particular, further experiments with other data modalities,
primary optimization objectives, and datasets is needed to
understand the wider applicability of the results of Sections
3.1 and 3.2.

4. Related Work
4.1. Algebraic Properties in Neural Networks

There has been significant work in actively enforcing alge-
braic properties in weights of neural networks for a variety
of reasons. For instance, in Mikolov et al. 2015; Le et al.
2015 it was found that enforcing part of the weights of an
RNN to remain close to the identity throughout training can
cause the network to capture more long-term information,
yielding performance close to LSTMs for the same natural
language modelling tasks. Arjovsky et al. 2016 have also
found that RNNs can overcome the exploding/vanishing gra-
dient problem if weight matrices are actively enforced to be
approximately unitary throughout training. Similarly, Saxe
et al. 2014; Jing et al. 2017; Kiani et al. 2022 all explore
unitary RNNs in the same vein. Lastly, Ardizzone et al.
2019 demonstrate that under a specialized training scheme,
inverse mappings of MLPs can be found that can recover
correlations in the parameter space.

These methods generally attempt to mitigate undesirable ef-
fects inherent to particular architectures or training schemes,
whereas the work we present intends to characterize be-
haviour that the network should exhibit. As such, applica-
tions of the work of Shocher et al. 2023 is closest to ours,
hence we focus on this in Section 3.4. Nevertheless, the
prolific use of orthogonal/unitary weights in the literature
invites future work into adapting Modified Backpropagation
to enforce orthogonality

(
(K′)T (K′) = (K′)(K′)T = I

)
as opposed to idempotency

(
(K′)2 − (K′) = 0

)
.

4.2. Alternatives to Gradients

There is a large body of work focusing on approximating
gradients. In Spall 1999, a stochastic variant of finite dif-

ferences called SPSA is suggested with competitive perfor-
mance at lower relative computational cost. Bandler et al.
1988; Do & Reynolds 2013; Scheinberg 2022 all further ex-
plore this and similar approaches based on finite differences.
Nevertheless, a core idea of Modified Backpropagation is
the direct substitution of the gradient of Lidem with the
quantity in Eq. (15). Although the exact relationship be-
tween this quantity and the gradients produced by Ordinary
Backpropagation is still unclear, it is certainly not a trivial
approximation as evidenced in Section 3.1.

5. Conclusion
In this work, we have given motivation for actively enforc-
ing idempotency in arbitrary neural networks used in data
transformation. The central idea presented is the idem-
potent corrector g(K) = 3K3 − 2K2, which has been de-
rived by solving a system of polynomial equations such that
K′ = g(K) for a near-idempotent matrix K and a perfectly
idempotent K′. We have also expanded the idea to a training
scheme for arbitrary neural networks via a modification to
the canonical backpropagation algorithm, termed Modified
Backpropagation. Experimental results have shown that
optimizer trajectories generally differ from those of Ordi-
nary Backpropagation across a wide variety of MLP net-
work configurations. Furthermore, we showed that Modified
Backpropagation outperforms Ordinary Backpropagation
in finding neural networks with lower idempotent error by
up to an order of magnitude. Lastly, we demonstrate that
Modified Backpropagation can be used alongside Ordinary
Backpropagation to train generative models on MNIST and
CelebA, following the example of Shocher et al. 2023.

We believe the work presented here suggests that alternative
methods to gradient-based optimization in neural networks
are practically viable, and we hope that future work will
explore other applications of the central ideas presented
here.
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A. Solutions to the Ansatz
We give a detailed description of how to derive idempotent correctors for matrices K that are near-idempotent to order n
with a fixed dimension j. For a given j, find a mapping g making the input idempotent:

1. Assume K = P+D.

2. Assume that D2 ≈ 0, P2 = P, and XDYDZ ≈ 0 for allX,Y,Z.

3. Expand the expression (K′)2 −K′ = 0.

• j = 2 gives 34 terms
• j = 3 gives 154 terms
• j = 6 gives 10,794 terms

4. Apply assumptions from 2 recursively.

• j = 2 reduces 34 to 16 terms
• j = 3 reduces 154 to 32 terms
• j = 6 reduces 10,794 to 104 terms

5. Collect coefficients for D, P, DP, PD, and PDP (no other exist).

6. Create a set of equations from coefficients and solve as a set of polynomial equations.

For n = 1 we give the first j = 1, . . . , 8 idempotent correctors which have been found using the above recipe and the
”Reduce” method in Mathematica:

• For j = 1, 2, there are no solutions.

• For j = 3, there is one solution (found in ∼ 130 ms):

g(K) = 3K2 − 2K3 (21)

• For j = 4, there is one solution (found in ∼ 611 ms):

g(K) = α2K
2 + (4− 2α2)K

3 + (α2 − 3)K4 (22)

• For j = 5, there is one solution (found in ∼ 3.8 s):

g(K) = α2K
2 + α3K

3 + (5− 3α2 − 2α3)K
4 + (2α2 + α3 − 4)K5 (23)

• For j = 6, there is one solution (found in ∼ 24 s):

g(K) = α2K
2 + α3K

3 + α4K
4 + (6− 4α2 − 3α3 − 2α4)K

5 + (3α2 + 2α3 + α4 − 5)K6 (24)

• For j = 7, there is one solution (found in ∼ 150 s):

g(K) = α2K
2 + α3K

3 + α4K
4 + α5K

5 + (7− 5α2 − 4α3 − 3α4 − 2α5)K
6

+ (4α2 + 3α3 + 2α4 + α5 − 6)K7
(25)

• For j = 8, there is one solution (found in ∼ 920 s):

g(K) = α2K
2 + α3K

3 + α4K
4 + α5K

5 + α6K
6 + (8− 6α2 − 5α3 − 4α4 − 3α5 − 2α6)K

7

+ (5α2 + 4α3 + 3α4 + 2α5 + α6 − 7)K8
(26)
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B. Jordan Normal Form Analysis
For a matrix K ∈ Rn×n, let α(λ) denote the algebraic multiplicity of eigenvalue λ and let γ(λ) denote the geometric
multiplicity of λ. Given the equation

K = 3K2 − 2K3, (27)

we can substitute K = PJP−1,
PJP−1 = 3(PJP−1)2 − 2(PJP−1)3, (28)

which can be simplified to
PJP−1 = 3PJ2P−1 − 2PJ3P−1. (29)

Since P is invertible, this is equivalent to
J = 3J2 − 2J3. (30)

Thus for an arbitrary K, solving Eq. (27) equates to solving Eq. (30).

Since J is block-diagonal, the equation in (30) can be broken down into smaller equations for each block, Jλ = 3J2
λ − 2J3

λ,
which we can write as a system of equations:

λ 1 0 . . . 0
0 λ 1 . . . 0
0 0 λ . . . 0
...

...
...

. . .
...

0 0 0 . . . λ

 = 3


λ2 2λ 1 . . . 0
0 λ2 2λ . . . 0
0 0 λ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ2

− 2


λ3 3λ2 3λ 1 . . . 0
0 λ3 3λ2 3λ . . . 0
0 0 λ3 3λ2 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . λ3

 (31)

Thus, for a (k × k) Jordan block we have up to four equations:

λ = 3λ2 − 2λ3 (32)

1 = 3(2λ)− 2(3λ2) = 6λ− 6λ2 Only when k ≥ 2. (33)
0 = 3(1)− 2(3λ) = 3− 6λ Only when k ≥ 3. (34)
0 = 3(0)− 2(1) = 0− 2 Only when k ≥ 4. (35)

There are never more equations than this, since all other entries in a Jordan block must be 0.

Since Eq. (35) is a contradiction, we can have no solution which solves all Eqs. (32), (33), (34), and (35). Note also that
there exists no solutions satisfying Eqs. (32), (33), and (34), nor do any solutions exist for both Eqs. (32) and (33). The
following are solutions which satisfy only Eq. (32):

λ = {0, 0.5, 1} (36)

The only situation where Eqs. (33), (34), and (35) do not arise is when α(λ) = γ(λ), which is precisely the case when K is
diagonalizable. Therefore, any K which is a solution to (27) must have a Jordan normal form which is a diagonal matrix:

J =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . λ3

 (37)
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C. Automatic Differentiation Rule
To implement Modified Backpropagation in PyTorch we make use of custom autograd functions. The mathematical
description of the loss function for idempotency is:

Lidem(y) =
1

n

n∑
i=1

(fθ(y)− y)
2
. (38)

To practically implement the function, we note that PyTorch optimizers reduce −L for some loss function L, but as per
Section 2, our method reduces idempotent error when the loss function above is not negatively signed. This leads to the
implementation in the E.backward function in algorithm 1.

Algorithm 1 Modified Backpropagation PyTorch rule.

class E(torch.autograd.Function):
@staticmethod
def loss_fn(y, net):

loss = torch.mean((net(y) - y) ** 2)
return loss

@staticmethod
def forward(ctx, y, net):

ctx.save_for_backward(y)
ctx.net = net

return E.loss_fn(y, net)

@staticmethod
def backward(ctx, grad_output):

y, = ctx.saved_tensors
net = ctx.net

y2 = net(y)
y3 = net(y2)
e = 3*y2 - 2*y3 - y
grads = -e / e.shape[0]
return grads * grad_output, None

class ELoss(torch.nn.Module):
def __init__(self, net, mode):

super(ELoss, self).__init__()
self.net = net
self.mode = mode

def forward(self, y):
return E.apply(y, self.net)

14
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We give the computational graph constructed by PyTorch for calculating gradients in Modified Backpropagation and
Ordinary Backpropagation. The graphs are constructed using the same single-layer neural network without biases and no
activation function. We therefore have fθ(x) = Wx. PyTorch, however, represents the input x transposed, hence the
following use fθ(x) = WxT = xWT as the definition. We show the graphs describing the computation of gradients for
W for a single optimization step.

In these graphs, the weight matrix W is the blue box, and the green box at the bottom of the graph is the gradient matrix
∂Lidem(fθ(x))

∂W . Yellow boxes of size 3× 5 denote the input x consisting of 3 samples with 5 features each.
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Figure 11. PyTorch computational graphs for gradient calculation.

The red line in Figure 11(a) denotes the intuitive split by the chain rule. Computation above the line corresponds to ∂Lidem(y)
∂y

and computation below the line corresponds to ∂fθ(x)
∂W , which altogether gives ∂Lidem(fθ(x))

∂W . Chasing through the graph
shows that it indeed does use exactly the algorithm outlined above.

The graph in Figure 11(b) shows a computation of ∂Lidem(fθ(x))
∂W without using E.backward. Although the graph is less

obvious, chasing the graph shows that it computes the following quantity:

(2(xWTWT − xWT ) · x)TxWT + ((2(xWTWT − xWT ) · x)W − 2(xWTWT − xWT ) · x)Tx.

This is equivalent to the ordinary analytical solution to ∂Lidem(fθ(x))
∂W for this particular network.
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D. Idempotent Error and Norm for Test Networks
For each of the test networks outlined in Table 1 we report the distribution of absolute idempotent error and norm of the
resulting mapping in Figures 12 and 13. The learning rates used for training of each network is chosen to be the value in
Figure 6 with the lowest idempotent error for each algorithm and network configuration.

(a) Network B1

(b) Network B2

(c) Network B3

(d) Network B4

Figure 12. For each network we report the distribution of absolute idempotent error after 2500 epochs of training 250 randomly
initialized networks. Note that distributions are narrow for each algorithm and often separated by more than an order of magnitude.
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(a) Network B1

(b) Network B2

(c) Network B3

(d) Network B4

Figure 13. For each network we report the distribution of norms after 2500 epochs of training 250 randomly initialized networks. Note
that distributions for either method are not centred around zero, indicating that the trained network is a non-trivial idempotent mapping.
To calculate the norm we pass each canonical basis vector of Rn as input by concatenating them into the identity matrix and report here
the Frobenius norm of the output matrix.
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E. Relative Computational Cost

Figure 14. Computational cost for networks B1-B4 in Table 1. Plot of average wall-clock running time consumed per training epoch
across 250 repetitions of each algorithm, with 98% confidence intervals. Across all configurations, both algorithms take approximately
the same amount of time, with a slight advantage to Modified Backpropagation.

The practical findings of Figure 14 are supported by a theoretical argument which we give in detail here. Concretely, we
consider the growth in the number of matrix multiplications required as the number of layers increases in an ordinary
MLP. Defining y = fθ(x), the loss function in Eq. 2 can be written as L′

idem(y) =
1
m

∑
(fθ(y)− y)2. By the chain rule

∂L′
idem

∂W =
∂L′

idem

∂y
∂y
∂W . Computing ∂y

∂W using backpropagation will generally use O(k) matrix multiplications for a k-layer
MLP. This quantity is computed in the same way for both Ordinary Backpropagation and Modified Backpropagation.

For Ordinary Backpropagation, the quantity ∂L′
idem

∂y can also be unfolded via the chain rule and its evaluation requires

computing y = fθ(x), fθ(y), as well as ∂fθ(y)
∂y , which each can be computed in O(k) time. Thus, assuming memoization

is used (as is the case by design in most automatic differentiation frameworks, like PyTorch), Ordinary Backpropagation can
compute ∂L′

idem

∂W in O(k) time.

For Modified Backpropagation we compute ∂L′
idem

∂y = 3fθ(y)− 2fθ(fθ(y))− y. Again, assuming memoization, each of
these terms take O(k) time to evaluate, so Modified Backpropagation also runs in O(k) time.

Therefore, both Ordinary Backpropagation and Modified Backpropagation should require the same number of matrix
multiplications under realistic assumptions.
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F. Training Scheme for Generative Models
We follow the example of Shocher et al. 2023 and train a U-Net style DCGAN architecture on the MNIST dataset. Let Y
denote the latent space and X denote the sample space. Then, letting G : Y → X and D : X → Y be the Generator and
Discriminator of the network respectively, we apply the network G(D(x)) = y.

Table 2 explicitly shows the architecture we use, and Table 3 shows the hyperparameters chosen for training. The core
difference between our configuration and that of Shocher et al. 2023 is the use of dropout layers at some layers.

Table 2. U-Net style DCGAN Network architecture.

Layer Size Stride Padding Features Dropout? BN? Activation Func

D
is

cr
im

in
at

or Conv2D 4× 4 2 1 64 ✓ × LeakyReLU(0.2)
Conv2D 4× 4 2 1 128 ✓ ✓ LeakyReLU(0.2)
Conv2D 3× 3 1 0 256 ✓ ✓ LeakyReLU(0.2)
Conv2D 3× 3 1 0 512 ✓ ✓ LeakyReLU(0.2)
Conv2D 3× 3 1 0 512 × × None

G
en

er
at

or

ConvTranspose2D 3× 3 1 0 256 ✓ ✓ ReLU
ConvTranspose2D 3× 3 1 0 128 ✓ ✓ ReLU
ConvTranspose2D 3× 3 1 0 64 ✓ ✓ ReLU
ConvTranspose2D 4× 4 2 1 32 ✓ ✓ ReLU
ConvTranspose2D 4× 4 2 1 1 × × Tanh

Table 3. Training parameters.

Parameter Value
Reconstruction loss metric L1 = ∥y∗ − ypred∥1

Loss terms weighting (MNIST) λr = 20, λi = 0.1, λr = 0.1
Loss terms weighting (CelebA) λr = 20, λi = 0.006, λr = 0.02

Optimizer Adam(lr = 1.0× 10−4, β1 = 0.5, β2 = 0.999)
Dropout probability 0.05

Batch Size 512
Epochs 100

Weight initialization Default Kaiming Uniform initialization: U(−
√
k,
√
k), for

k =
√
1/n for n features.

Degradations applied for out-of-distribution mappings

All degradations are implemented as in Shocher et al. 2023 and are restated here for clarity. Let x be an arbitrary sample
from the dataset.

Noise: Let n(x) = x+ n, where n is sampled from N (0, 0.15).

Greyscale: Let g(x) be the function that averages each pixel value across channels and returns the result.

Gaussian Blur: Let s(x) = g(x+1)
gaussian blur(g(x+1), 21)+10−10 − 1, where gaussian blur(z, 21) applies a Gaussian Blur with

kernel size 21 to z.
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G. Generative Model Sample Images

Figure 15. Uncurated generations of U-net style DCGAN model trained on MNIST with Modified Backpropagation for optimizing
idempotent and tightness losses. All samples are drawn from a random distribution with mean 0 and variance 1, and the result of applying
the network is shown.
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H. Optimizer Trajectory Plots

Figure 16. Representative projections of the optimizer trajectories over 2500 epochs of either algorithm on each of the B1-B4 models at
optimal learning rates (Figure 6). Total variance captured is > 90% with cosine similarity of PC1 and PC2 less than 1.0× 10−6 across all
plots. Optimizer trajectory of Modified Backpropagation often deviates significantly from Ordinary Backpropagation, but may sometimes
overlap (e.g., B4).
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