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Abstract
Automating anomaly detection is an open prob-
lem in many scientific fields, particularly in time-
domain astronomy, where modern telescopes gen-
erate millions of alerts per night. Currently, most
anomaly detection algorithms for astronomical
time-series rely either on hand-crafted features or
on features generated through unsupervised repre-
sentation learning, coupled with standard anomaly
detection algorithms. In this work, we introduce
a novel approach that leverages the latent space
of a neural network classifier for anomaly detec-
tion. We then propose a new method called Multi-
Class Isolation Forests (MCIF), which trains sep-
arate isolation forests for each class to derive an
anomaly score for an object based on its latent
space representation. This approach significantly
outperforms a standard isolation forest when dis-
tinct clusters exist in the latent space. Using a
simulated dataset emulating the Zwicky Transient
Facility (54 anomalies and 12,040 common), our
anomaly detection pipeline discovered 46 ± 3
anomalies (∼ 85% recall) after following up the
top 2,000 (∼ 15%) ranked objects. Furthermore,
our classifier-based approach outperforms or ap-
proaches the performance of other state-of-the-art
anomaly detection pipelines when applied to the
dataset used in Perez-Carrasco et al. (2023). Our
novel method demonstrates that existing and new
classifiers can be effectively repurposed for real-
time anomaly detection. The code used in this
work, including a Python package, is publicly
available.
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1. Introduction
Astronomical surveys measure light (or flux) in specific
regions of the night sky. In time-domain astronomy, obser-
vations are made periodically, forming a light curve that
represents the object’s brightness variations over time. Most
light curves exhibit minimal or gradual changes and are
relatively unremarkable. However, when a significant devi-
ation in brightness is detected with a high signal-to-noise
ratio (S/N), it indicates the presence of a transient event in
the observed galaxy. Transient events encompass a wide
range of astrophysical phenomena, including various types
of supernovae, which are explosive endings of stellar life
cycles, and rare occurrences such as microlensing, where
the light from a distant source is gravitationally amplified
by an intervening massive object. Examples of light curves
exhibiting transient events are presented in Appendix B.

With the advancement of these survey telescopes and the
advent of large-scale transient surveys, we are entering a
new paradigm for astronomical study. The Vera Rubin
Observatory’s Legacy Survey of Space and Time (LSST)
is expected to observe ten million transient alerts per night
(Ivezić et al., 2019). The traditional approach of manual
examination of astronomical data, which has led to some of
the biggest discoveries in astronomy, is no longer feasible.
As a result, there is a growing need to develop methods that
can automate the serendipity that has so far played a pivotal
role in scientific discovery.

The literature on anomaly detection for astronomical tran-
sients presents two distinct problem definitions. Some ap-
proaches, categorized as unsupervised methods, focus on
extracting anomalies from large datasets without relying
on prior information (e.g. Villar et al., 2021; Webb et al.,
2020; Giles & Walkowicz, 2019). Numerous differing ap-
proaches exist for unsupervised anomaly detection. Villar
et al. (2021) used an unsupervised recurrent variational au-
toencoder to learn a representative latent space mapping of
the light curves to then derive anomaly scores using an iso-
lation forest. Webb et al. (2020) used user-defined feature
extraction and then active learning to identify anomalies.

In contrast, our work, among others (e.g. Perez-Carrasco
et al., 2023; Muthukrishna et al., 2022), uses previous, ei-
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ther simulated or real, transients to determine whether a new
light curve is anomalous. This approach is often referred
to as novelty detection or supervised anomaly detection.
Previous novelty detection approaches (e.g. Muthukrishna
et al., 2022; Soraisam et al., 2020) are often variations of
one-class classification (Schölkopf et al., 1999). One-class
classifiers attempt to model a set of normal samples and
then classify new transients as either part of that sample or
as outliers. One-class methods have been shown to be effec-
tive at anomaly detection (Ruff et al., 2018a), but they do
not capture the complexity of the population of known astro-
nomical transients, that are grouped into numerous classes
with intrinsically different qualities. Perez-Carrasco et al.
(2023) extended the one-class classifier to multiple classes
after training on features extracted from full light curve data.
Their method adapts the single-class loss function to multi-
ple classes by encouraging light curves of the same class to
cluster together.

In this work, we leverage a light-curve classifier to address
the one-class challenge and distinguish between the various
classes of transients. Our approach demonstrates promising
clustering in the feature space, the penultimate layer of the
classifier, and shows a substantial level of discrimination in
anomaly scores. Notably, similar feature extraction methods
have shown potential in the field of astronomical image
analysis (e.g. Etsebeth et al., 2023; Walmsley et al., 2022).

Once a feature space has been identified using one of the
previously mentioned methods, several prior works have
employed an isolation forest (Liu et al., 2008) to generate
anomaly scores. While this approach has demonstrated suc-
cess in previous research (e.g Villar et al., 2021; Ishida et al.,
2021; Pruzhinskaya et al., 2019), it faces challenges when
dealing with a complex latent space that contains multiple
clusters of intrinsically different transient classes. Conse-
quently, the application of a single isolation forest may have
limitations in accurately identifying certain anomalies, as it
may struggle to adequately capture the distinct properties of
each cluster. Singh et al. (2022) also recognized the problem
of using a single anomaly detector in a multi-class setting
and introduced a method training an autoencoder for each
class to then derive an anomaly score.

In response to this limitation, we propose the use of Multi-
Class Isolation Forests (MCIF): a method that involves
training a separate isolation forest for each known class
and extracting the minimum score among them as the final
anomaly score for a given sample. Our experimental results
suggest that MCIF holds promise in improving anomaly de-
tection performance for astronomical transients when there
are defined clusters in the latent space.

2. Dataset
In this work, we use a collection of simulated light curves
that match the observing properties of the Zwicky Transient
Facility (ZTF, Bellm et al., 2018). This dataset is described
in § 2 of Muthukrishna et al. (2022) and is based on the
simulations developed for PLAsTiCC (Kessler et al., 2019).
Each transient in the dataset has flux and flux error measure-
ments in the g and r passbands (two different light filters)
with a median cadence of roughly 3 days in each passband.

The 17 transient classes we consider in this work are SNIa,
SNIa-91bg, SNIax, SNIb, NIc, SNIc-BL, SNII, SNIIb,
SNIIn, SLSN-I, PISN, KNe, AGN, TDE, ILOT, CaRT, and
uLens-BSR. Due to their low occurrence in nature, KNe,
ILOT, CaRT, PISN, and uLens-BSR are considered the
anomalous classes in this work, and all remaining classes
are considered the “common” classes. Example light curves
from each of these classes are illustrated in Appendix B.

To emulate the real world, where scientists do not necessar-
ily know what anomalies they are looking for, we ensure
all transients from the anomalous classes are unseen by our
model until final evaluation. Further, the goal of this work
is to detect anomalies in general, not specifically transients
of the aforementioned anomalous classes. Hence, we do
not use physical priors of any transient type to aid in detec-
tion. Finally, because anomalies are inherently rare, but our
simulated dataset is relatively class balanced, we perform
evaluation by down-sampling the objects in the anomalous
classes to create a more realistic evaluation dataset.

3. Methods
3.1. Overview

Figure 1 summarizes our methodology. First, we train a
Recurrent Neural Network (RNN) to classify the common
classes of transients. Then, we remove the final layer of
the trained model and use the remaining architecture as
an encoder. To effectively extract anomalies from a well-
represented space, it is essential to ensure that transients
from similar classes cluster together. In our encoder, the
latent space is directly used for light curve classifications,
which should naturally lead to clustering of similar tran-
sients.

Once we have established this representation space, we
must extract anomalies from it. However, when dealing
with multiple clusters, a single isolation forest may struggle
to capture each cluster equally (for further details, refer to
Section 4.5). This challenge motivated our approach, MCIF,
where we train an isolation forest for each class, representing
a distinct cluster, and select the minimum anomaly score as
the final score. This minimum score should come from the
cluster to which the latent observation is closest, providing
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Figure 1. A visual summary of the architecture described in this work. Our approach first trains a classifier, then repurposes it as an
encoder, and finally applies Multi-Class Isolation Forests (MCIF), proposed in this work, for anomaly detection.

the desired functionality.

3.2. Classifier

We train a DNN (Deep Neural Network) classifier that maps
a matrix of multi-passband light-curve data Xs for a tran-
sient s to a 1 × Nc vector of probabilities, reflecting the
likelihood of the given light curve being from each of the
aforementioned non-anomalous transient classes, where Nc

is the number of classes.

The transient classifier utilizes a Recurrent Neural Network
(RNN) with Gated Recurrent Units (GRU, Cho et al., 2014)
to handle the sequential time series data. GRUs have been
shown to perform better than typical Recurrent Neural Net-
works (RNNs), have quicker training times than LSTMs1

(Chung et al., 2014), and have shown promise in the domain
of astronomical time-series (Muthukrishna et al., 2022). The
input for each transient, Xs, is a 4×NT matrix where NT

is the maximum number of timesteps for any input sample.
NT is 656 in this work, but most transients have much fewer
observations. Each row of the input matrix is composed of
the following vector,

Xsj = [fsj , ϵsj , tsj , λp], (1)

where fsj is the scaled flux for the jth observation of tran-
sient s, ϵsj is the corresponding scaled uncertainty, tsj is
the scaled time of when the measurement was taken, and λp

1We empirically find that there is little difference between
an LSTM and GRU model, in both classification accuracy and
anomaly detection.

is the central wavelength of the passband from which the
measurement comes from.

After the recurrent layers of the DNN, we pass some contex-
tual information into the classifier, which has been shown
to be helpful for light curve classification (Foley & Mandel,
2013). In this work, we use the Milky Way extinction and
the host galaxy’s spectroscopic redshift as additional inputs
to the network. We train our neural network for 40 epochs
using the adam optimizer and counteract class imbalance in
our dataset by using class weights inversely proportional to
the frequency of the class while training. Our model takes
roughly 10 minutes to train on a 16GB Tesla V100 GPU
core.

One of the advantages of using a neural network-based archi-
tecture over hand-selected features is that it is a data-driven
model, which should make it more sensitive to identifying
out-of-distribution data. This inherent quality of neural net-
works makes them especially good for anomaly detection.
However, the lack of interpretability of DNN models is a
drawback and means that we can’t discern why a certain
object is marked anomalous.

3.3. Anomaly Detection

Once the classifier is trained, we remove the last layer and
use the remaining architecture to map any light curve to the
latent space. We define this encoder as a function E(Xs),
that takes the aforementioned preprocessed light curve data,
Xs, and maps it to a 100-dimensional latent space zs
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zs = E(Xs) (2)

For anomaly detection, we now want to compute the
anomaly score, as = A(zs), where A(zs) is a function that
evaluates the anomaly score as for a latent observation zs.
The goal of this work is to generate relatively large anomaly
scores for anomalous transients and smaller anomaly scores
for non-anomalous transients.

We propose a new framework where an isolation forest
is trained separately on data from every class, using the
minimum anomaly score from any isolation forest as the
final anomaly score2. We call this approach Multi-Class
Isolation Forests (MCIF).

We define 12 isolation forests, Ic(zs), trained on latent
space observations from the common transient class c. The
final anomaly score is defined as

A(zs) = min
∀c

(
−Ic(zs)

)
(3)

The function Ic(zs) is positive for less anomalous transients
and negative for anomalous ones, to be consistent with
the sklearn implementation of Isolation Forests. We
negate the scores as we prefer defining transients with higher
anomaly scores to be more anomalous, but this makes no
difference to the results. All isolation forests used in this
work are trained with 200 estimators. The results of using a
single isolation forest and the benefits of using Multi-Class
Isolation Forests are explored further in Section 4.5.

4. Evaluation
4.1. Latent Space

After repurposing the classifier as an encoder, we obtain
a 100-dimensional latent space. We can visualize this la-
tent space with UMAP (McInnes et al., 2020), a manifold
embedding technique, to determine if there is visible cluster-
ing3. In Figure 2 [left], we plot the UMAP representations
of the test data. While it is difficult to examine some of the
overlapping classes in this embedded space, there is clear
clustering of many of the classes. In Figure 2 [right], we
color all of the common classes grey and include a sample
of transients from the anomalous classes. We see that the
anomalous classes cluster together in the embedded space
and separate from the common transients despite the model
not being trained on these objects. This level of clustering

2We also tested using an SVM and the distance from the clus-
ter’s center, but an Isolation Forest empirically worked the best, as
is seen in similar literature.

3We use the umap-learn implementation in python using
the hyperparameters “minimum distance” set to 0.5 and “number
of neighbors” set to 500.

suggests that our encoder may be discovering generalizable
patterns within light curves, and this property may have
potential use cases beyond anomaly detection in few-shot
classification. It is important to note that we only use UMAP
for visualisation purposes and that the latent space used for
anomaly detection is obtained directly from the penultimate
layer of the classifier.

4.2. Anomaly Detection

In Figure 3 [left], we plot the distribution of anomaly scores
predicted by MCIF from the latent space for each class. The
plot demonstrates the distinction in anomaly scores of com-
mon and anomalous transients as there is a significant skew
towards larger anomaly scores for the anomalous classes.
However, Calcium Rich Transients (CaRTs), despite being
one of our anomalous classes, tend to have lower anomaly
scores. CaRTs are notoriously difficult to photometrically
classify as anomalous due to their resemblance to other com-
mon supernova classes (see Fig. 8 of Muthukrishna et al.
2019 for example).

4.3. Detection Rates in a Representative Population

The previous results do not acknowledge a key difficulty
of anomaly detection: anomalies are inherently infrequent.
While the frequency of anomalous transients in nature is
not known, a good estimate for the expected population
frequency was presented in Kessler et al. (2019) for the
PLAsTiCC dataset (The PLAsTiCC team et al., 2018). Us-
ing PLAsTiCC frequencies for each class, the rate of com-
mon transients is roughly 220 times that of anomalous tran-
sients. We used this rate to randomly select a more realistic
test dataset that contained 12,040 normal transients and
54 anomalies. Randomly selecting a representative sam-
ple of only 54 anomalies is subject to significant variance.
Therefore, we created 50 sample datasets to perform 50-fold
cross-validation. Information on the exact composition of
these test sets is listed in Table 2.

For each validation set, we ranked the transients by the
anomaly scores predicted by MCIF. We then selected the
top 2,000 highest-scoring transients (roughly 15% of the
dataset) as the candidate pool. Across 50 repeated trials,
we identified 46 ± 3 out of the 54 true anomalies in our
dataset (recalling ∼ 85% of the anomalies). In Figure 4,
we plot the fraction of anomalies recalled and the total
number of anomalies recovered for thresholds up to the
top 2,000 transients. MCIF recalls the majority of true
anomalies among candidates having the highest anomaly
scores, followed by a tapering as fewer anomalies remain.
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Figure 2. The UMAP reduction of the latent space derived from the test set, which includes 10% of the common transients reserved for
testing the classifier [left] and randomly sampled anomalous transients from the unseen anomaly dataset [right]. Despite not being trained
on this data, the learned features still exhibit clear visual structure and anomalous transients form distinct clusters separate from the
common classes. It is important to note that the UMAP reduction is used only for visualization purposes, and the actual anomaly detection
is performed on the nine-dimensional latent space.

Transient Stochastic Periodic
Method SLSN SNII SNIa SNIbc AGN Blazar CV/Nova QSO YSO CEP DSCT E RRL LPV
IForest 0.640 0.721 0.428 0.490 0.573 0.710 0.975 0.468 0.913 0.359 0.295 0.469 0.549 0.971
(Liu et al., 2008) ±0.014 ±0.021 ±0.032 ±0.038 ±0.017 ±0.009 ±0.001 ±0.016 ±0.003 ±0.007 ±0.012 ±0.021 ±0.033 ±0.007
OCSVM 0.577 0.587 0.434 0.492 0.532 0.443 0.909 0.517 0.792 0.432 0.557 0.555 0.539 0.943
(Schölkopf et al., 1999) ±0.014 ±0.014 ±0.021 ±0.011 ±0.008 ±0.002 ±0.001 ±0.005 ±0.005 ±0.004 ±0.005 ±0.003 ±0.004 ±0.001
AE 0.736 0.807 0.438 0.537 0.701 0.762 0.980 0.443 0.990 0.564 0.367 0.864 0.907 0.996
(Rumelhart & McClelland, 1987) ±0.022 ±0.021 ±0.015 ±0.019 ±0.010 ±0.006 ±0.016 ±0.004 ±0.001 ±0.024 ±0.015 ±0.009 ±0.015 ±0.000
VAE 0.669 0.690 0.404 0.522 0.596 0.597 0.849 0.500 0.795 0.442 0.417 0.561 0.451 0.936
(Kingma & Welling, 2014) ±0.015 ±0.023 ±0.018 ±0.025 ±0.007 ±0.010 ±0.028 ±0.009 ±0.009 ±0.010 ±0.007 ±0.007 ±0.006 ±0.007
Deep SVDD 0.644 0.731 0.475 0.507 0.496 0.607 0.932 0.411 0.901 0.707 0.482 0.636 0.774 0.785
(Ruff et al., 2018b) ±0.043 ±0.043 ±0.040 ±0.040 ±0.025 ±0.044 ±0.015 ±0.008 ±0.022 ±0.027 ±0.054 ±0.055 ±0.068 ±0.025
MCDSVDD 0.686 0.828 0.624 0.584 0.706 0.512 0.770 0.483 0.854 0.858 0.819 0.945 0.953 0.953
(Perez-Carrasco et al., 2023) ±0.051 ±0.024 ±0.039 ±0.032 ±0.069 ±0.113 ±0.127 ±0.080 ±0.041 ±0.025 ±0.015 ±0.006 ±0.003 ±0.008
Classifier + IForest 0.757 0.811 0.619 0.556 0.715 0.720 0.945 0.456 0.977 0.766 0.504 0.811 0.907 0.969
(This work) ±0.047 ±0.017 ±0.073 ±0.039 ±0.028 ±0.032 ±0.015 ±0.041 ±0.003 ±0.066 ±0.111 ±0.038 ±0.026 ±0.016
Classifier + MCIF 0.567 0.699 0.536 0.560 0.615 0.701 0.882 0.605 0.893 0.875 0.742 0.773 0.808 0.779
(This work) ±0.091 ±0.046 ±0.061 ±0.034 ±0.048 ±0.045 ±0.050 ±0.051 ±0.025 ±0.036 ±0.044 ±0.031 ±0.046 ±0.107
MCIF 0.503 0.668 0.532 0.643 0.614 0.745 0.966 0.446 0.907 0.514 0.433 0.476 0.447 0.959
(This work) ±0.018 ±0.008 ±0.007 ±0.005 ±0.02 ±0.008 ±0.003 ±0.007 ±0.007 ±0.013 ±0.009 ±0.021 ±0.011 ±0.004

Table 1. Performance of each model when applied to the dataset used in Perez-Carrasco et al. (2023). Each row represents a different
anomaly detection algorithm and each column represents a different class being chosen as the anomalous class. The performance is
evaluated using the AUROC score of detected anomalies. The top 3 metrics per class are marked in bold. The AUROC scores for the first
5 methods are taken directly from and are reported in Perez-Carrasco et al. (2023). A visual representation of this table is shown in Figure
7.

4.4. Comparison Against Other Approaches

In the field of anomaly detection in time-domain astronomy,
there is no comprehensive baseline on which to evaluate
different detection methods. This is largely because of the
vastly differing definitions of what anomaly detection is, for
example, the difference between unsupervised and novelty
detection methods as described in Section 1. Baselining
all existing anomaly detection methods is a much needed

line of future work, especially as there is no consensus on
which method will work best on the deluge of data that will
available when LSST is running.

Despite these challenges, Perez-Carrasco et al. (2023) evalu-
ated 5 different approaches to anomaly detection (see Table
1 for all benchmarked approaches), and we use their dataset
(which was inspired by Sánchez-Sáez et al. 2021) to evalu-
ate our classifier-based approach. In contrast to our dataset
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Figure 3. The distribution of anomaly scores for each class, computed using MCIF [left] or a single isolation forest [right] on the latent
representations derived from full light curves. The scores are plotted using 100% of the anomalous dataset (unseen during training) and
the test dataset of common classes. The anomalous classes (bottom five in red) generally show higher anomaly scores with positively
skewed distributions when using MCIF, however this is less true when using a single isolation forest. The common classes and CaRTs all
have low anomaly scores when using MCIF.

of raw light curve data, this dataset consists of features ex-
tracted from light curves. We evaluate three new techniques
for anomaly detection on this dataset: using a classifier with
MCIF, a classifier with just a single Isolation Forest, and
MCIF on its own4. The dataset is split into 3 hierarchical
categories with 4-5 transient classes each. Evaluation is
performed separately for each class, each time counting that
transient class as anomalous and the rest of its hierarchical
category as common. Full evaluation is performed across 5
folds of testing data for cross-validation.

As seen in Table 1 (and visually in Figure 7), our classifier-
based approach with an isolation forest is one of the top
approaches for most transient classes, showing the power
of using a classifier’s latent space for anomaly detection.
Using a classifier with MCIF also preforms promisingly,
however is sometimes worse than using a classifier with a
single isolation forest. This is not the case on our dataset
and is discussed further in the next section.

4We can use MCIF on its own as this is a dataset of features
extracted from time-series, not the raw time-series.

4.5. Advantages of MCIF

To evaluate MCIF, we compare it to the performance of
using a normal isolation forest to detect anomalies from
the latent representation zs of a light curve5. We train an
isolation forest on the latent represenation of our training
data using 2400 estimators (the same number used by all
of the isolation forests in MCIF combined). To account for
the class imbalance in our training data, we weight samples
from underrepresented classes more heavily during the train-
ing of the isolation forest, using the same weighting scheme
used in the classifier. The anomaly score function A(zs) is
now simply the negated anomaly score output from a single
isolation forest trained on all the latent representations of
the training data.

As shown in Figure 3 [right], there is little distinction in
the anomaly scores of most anomalous and common classes
when using a single isolation forest. Surprisingly, the com-
mon classes SLSN-I and AGN are classified as relatively

5Note that this evaluation is done on the dataset described in
Section 2, not the one used for comparitive analysis in Section 4.4.
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Figure 4. Anomalies detected in the 2,000 top-ranked transients by MCIF anomaly score index, using a test sample reflecting the estimated
frequency of anomalies in nature. In the sample of 12,040 common transients and 54 anomalous transients, the model recalls 46± 3
(∼ 85%) of the anomalies after following up the top 2,000 ranked transients. The left plot aggregates all anomalies and the right plot
delineates per class. To control for the variance imposed by the small anomaly sample size, we repeat the sampling 50 times. The mean
and standard deviation of detected anomalies are plotted as the solid lines and shaded regions, respectively.

more anomalous than all the other classes.

The UMAP reduction of the latent space of our classifier,
as depicted in Figure 2, provides insight into this behaviour.
The SLSN-I and AGN classes are located far from the main
cluster formed by other classes and are nearly perfectly clas-
sified by our classifier (shown in the confusion matrix and
ROC curves in Figure 9 in Appendix C). In fact, the near-
perfect classification hinted at their potential to be misiden-
tified as anomalies, suggesting that their distinct character-
istics make them easily separable from other classes and,
consequently, more likely to be flagged as anomalous by
a single isolation forest. On the other hand, while SNIa
also deviate from the central cluster in the UMAP visualiza-
tion, they are among the most challenging classes to classify
accurately and are the most frequently observed transient
class in real surveys. Thus, they are likely a part of the cen-
tral cluster in the full 100-dimensional latent space. Hence,
while an isolation forest is good at detecting anomalies, it
struggles to capture the structure of a latent space with nu-
merous well-defined clusters. This drawback of using a
single isolation forest could explain why other works re-
port high anomaly scores for SLSN-I and AGN (e.g. Villar
et al., 2021). Using a class-by-class (or cluster-by-cluster)
anomaly detector, such as MCIF, can mitigate this. A direct
comparison of the anomaly score distributions in Figure 3
empirically demonstrates the advantages of MCIF on our
dataset.

Further analysis of MCIF’s performance on the compara-
tive evaluation dataset (Section 4.4) reveals that, contrary
to the results shown in Figure 3, a single isolation forest
generally outperforms MCIF (Table 1). Investigating the
UMAP representations of the latent space for classes ex-

hibiting this discrepancy offers insights. When SNII is con-
sidered anomalous, the latent space (Figure 5 [left]) lacks
clear separation between SNIbc and SNIa, likely due to
poor generalization caused by the limited number of SNIbc
transients in the training set, explaining the single isola-
tion forest’s superior performance. However, for the DSCT
class (Figure 5 [right]), distinct visual clusters are present,
and MCIF achieves better results. These findings suggest
that MCIF enhances performance when majority classes are
well-separated, a characteristic seemingly inherent to the
dataset rather than the classifier-based latent space identifi-
cation approach, as a single isolation forest surpasses MCIF
on the raw data for most classes where it also outperforms
MCIF on the classifier’s latent space. Future research should
explore the factors influencing MCIF’s effectiveness based
on the separability of raw data, with the SNII case indicat-
ing a partial dependence on data quantity, as increased data
improves the DNN’s generalization ability.

4.6. Scaling the Latent Space

Anomaly detection presents a unique challenge in terms
of evaluation, as the true anomalies are only revealed dur-
ing the final testing phase. Consequently, we refrain from
tuning hyperparameters for model selection and instead ret-
rospectively analyze the effects of different hyperparameter
choices, particularly the size of the latent space.

To assess the impact of latent space size on anomaly detec-
tion performance, we train multiple models with varying
latent dimensions and evaluate them using the AUROC.
As shown in Figure 6, increasing the latent size beyond
50 leads to significant improvements in anomaly detection
performance, with diminishing returns observed after 70
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Figure 5. The UMAP reduction of the training data in the latent space for a classifier trained for detecting the class SNII [left] and DSCT
[right] as anomalous using the data introduced in (Perez-Carrasco et al., 2023) and used in Section 4.4. As the UMAP only plots the
training data, it includes all the classes in the respective hierarchical category (seen in Table 1) but the one set aside as anomalous.
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Figure 6. Anomaly detection performance (AUROC) of models
trained with different latent space sizes. A significant improvement
is observed when increasing the latent size up to 50 dimensions,
with performance plateauing thereafter.

dimensions. Smaller models generally exhibit lower aver-
age performance and higher variance. Interestingly, we do
not observe a performance drop in high-dimensional latent
spaces, despite the presence of numerous correlated features.
This robustness can be attributed to the ability of isolation
forests and ensemble methods to effectively handle high-
dimensional data. Our classifier’s 100-neuron penultimate
layer is one of the best-performing hyperparameter settings,
with any reasonably large latent space yielding comparable
results.

It is worth noting that while classifiers demonstrate effective-
ness in anomaly detection, we find little correlation between
classification accuracy and anomaly detection performance.
This highlights a key drawback in terms of interpretability in

both DNN frameworks and our approach, warranting further
investigation.

5. Conclusion
In this work, we have introduced a novel approach that
leverages the latent space of a neural network classifier
for identifying anomalous transients. Our pipeline, which
combines a deep recurrent neural network classifier with
our novel Multi-Class Isolation Forest (MCIF) anomaly de-
tection method, demonstrates promising performance on
simulated data matched to the characteristics of the Zwicky
Transient Facility and when compared to other state-of-the-
art anomaly detection methods.

The key advantages of our approach are:

1. The recurrent neural network (RNN) classifier maps
light curves into a low-dimensional latent space that
naturally clusters similar transient classes together, pro-
viding an effective representation for anomaly detec-
tion. We repurposed the penultimate layer of this clas-
sifier as the feature space for anomaly detection.

2. Our novel MCIF method addresses the limitations of
using a single isolation forest on the complex latent
space by training separate isolation forests for each
known transient class and taking the minimum score
as the final anomaly score.

A significant contribution of this work is the demonstration
that a well-trained classifier can be effectively repurposed
for anomaly detection by leveraging the clustering proper-
ties of its latent space. The flexibility of our approach allows
for the adaptation of any classifier to an anomaly detector.
For example, using existing classifiers as feature extractors

8
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for astronomical spectra, images, or time series from other
domains, we can build effective anomaly detectors.
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S., and and, V. A. V. Models and simulations for the
photometric LSST astronomical time series classification
challenge (PLAsTiCC). Publications of the Astronomi-
cal Society of the Pacific, 131(1003):094501, jul 2019.
doi: 10.1088/1538-3873/ab26f1. URL https://doi.
org/10.1088%2F1538-3873%2Fab26f1.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. In International Conference on Learning Repre-
sentations, 2014.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. Isolation forest. In
2008 eighth ieee international conference on data mining,
pp. 413–422. IEEE, 2008.

McInnes, L., Healy, J., and Melville, J. Umap: Uniform
manifold approximation and projection for dimension
reduction, 2020.

Muthukrishna, D., Narayan, G., Mandel, K. S., Biswas, R.,
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Table 2. Number of transients in the training set, validation set, test set, and realistic samples (see section 4.3) for each class. All anomalous
data is reserved for evaluation.

Class Training Validation Test Total
Realistic
Samplea

SNIa 9314 1131 1142 11587 1142
SNIa-91bg 10361 1318 1321 13000 1318

SNIax 10413 1248 1339 13000 1339
SNIb 4197 507 563 5267 563
SNIc 1279 169 135 1583 135

SNIc-BL 1157 124 142 1423 142
SNII 10420 1279 1301 13000 1301

SNIIn 10323 1359 1318 13000 1318
SNIIb 9882 1233 1208 12323 1208
TDE 9078 1162 1114 11354 1114

SLSN-I 10285 1322 1273 12880 1273
AGN 8473 1046 1042 10561 1042
CaRT 0 0 10353 10353 11± 3
KNe 0 0 11166 11166 11± 3
PISN 0 0 10840 10840 11± 3
ILOT 0 0 11128 11128 10± 3

uLens-BSR 0 0 11244 11244 10± 3
a The mean number of transients across the 50 test samples is shown. The
errors refer to the STD in the population size across the 50 sets. All common
test data is part of every sample, hence errors are not shown.

A. Visual Comparison to other Approaches
Figure 7 is a visual representation of the results depicted in Table 1.

B. Dataset Information
A sample light curve from each class is illustrated in Figure 8. Table 2 reports the number of objects from each class in our
training set and realistic sample used for evaluation in Section 4.3.

C. Classifier Results
The normalized confusion matrix in Figure 9 [left] illustrates our classifier’s ability to accurately predict the correct transient
class on the test data. Each cell indicates the fraction of transients from the true class that are classified into the predicted
class. The high values along the diagonal, approaching 1.0, indicate strong performance. The misclassifications, indicated
by the off-diagonal values, predominantly occur between subclasses of Type Ia supernovae (SNIa, SNIa-91bg and SNIax)
and between the core-collapse supernova types (SNIb, SNIc, SNII subtypes), which is expected given their observational
similarities. These SNe have been shown to confuse previous models (see Fig. 7 of Muthukrishna et al., 2019).

D. Real-Time Detection
Identifying anomalies in real-time is important for obtaining early-time follow-up observations, which is crucial for
understanding their physical mechanisms and progenitor systems (e.g. Kasen, 2010). However, directly assessing our
architecture’s real-time performance is challenging due to the irregular sampling of light curves in our input format.

To assess the real-time performance of our architecture, we plot the median anomaly scores over time for a sample of
2000 common and 2000 anomalous transients in Figure 10. To construct this plot without relying on interpolation, we
calculate scores at discrete times l sampled at 1-day intervals from −30 to 70 days relative to trigger, using only observations
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Figure 7. Visual representation of the comparative analysis depicted in Table 1. The AUROC is written for the models top 3 models for
each class.
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Figure 8. Sample light curves from each transient class used in this work. We only plot transients with low signal-to-noise to help visually
compare shapes. The dark circular markers represent the r band while the light triangular markers represent the g band. Flux errors are not
plotted.
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Figure 9. The normalized confusion matrix [left] and ROC curve [right] of the 12 common transient classes used for training given full
light curve data. Each cell in the confusion matrix signifies the fraction of transients from each True Class that was classified into the
Predicted Class. The ROC curve illustrates the True Positive Rate against the False Positive Rate across various threshold probabilities for
each class, with the Area Under ROC curve (AUROC) in parenthesis. The model’s evaluation is conducted on the test set consisting of
10% of the data from the common classes.
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Figure 10. Median MCIF anomaly score over time for a sample of transients from the test set. Real-time anomaly scores are calculated at
intervals of 1 day for a sample of 2000 common and 2000 total anomalous light curves. The left plot shows the scores for the common
and anomalous transients as a whole, while the right plot shows each anomalous class individually. The anomaly scores for the common
transients decline before the trigger, while the anomalous transients remain at high scores throughout most of the transient’s evolution.
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occurring before each time l to mimic a real-time scenario. To ensure sufficient information for robust scoring, we only
consider transients where the final observation was recorded after time l − 5. The results show a clear divergence where
common transient scores tend to decline around trigger, while anomalous transient scores remain consistently high.

Figure 10 reveals two notable irregularities. Firstly, the anomaly scores for common transients decline before trigger, which
is unexpected given that the pre-trigger phase of most transient classes should primarily consist of background noise. Further
analysis of the pre-trigger classification results reveals that certain transients, most notably SLSN-I and AGN, are almost all
classified before trigger, thereby lowering the average anomaly score for common transients. This can be attributed to the
fact that redshift and pre-trigger information such as host galaxy color and some AGN pre-trigger variability are particularly
useful for classifying these transients before trigger (see Figure 16 of Muthukrishna et al., 2019).

Secondly, KNe exhibit a significant dip around the time of trigger. Upon further analysis, we found that certain common
transient classes also experienced a similar dip around trigger; however, unlike KNe, they do not rebound back to higher
anomaly scores. This dip is related to the inherent nature of the trigger of a light curve, which often marks the first real
observation of the transient phase of a light curve, and serves as a reset for the anomaly score. A more detailed analysis of
this phenomenon is omitted for brevity.

These preliminary findings suggest the potential for enabling real-time identification of anomalous transients. While some
known rare classes can be difficult to distinguish from the common classes without a significant amount of data, others can
be detected surprisingly soon after trigger. The ability to flag unusual events early in their evolution could prove invaluable
for optimizing the allocation of follow-up resources and maximizing the scientific returns from rare transient discoveries.
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