
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SEEDLORA: A FUSION APPROACH TO EFFICIENT
LLM FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite Low-Rank Adaptation (LoRA)’s popularity for fine-tuning large models,
it often exhibits a noticeable performance gap compared to full fine-tuning, par-
ticularly in complex tasks such as mathematical reasoning and code generation.
Motivated by this discrepancy, we propose a novel fusion approach for LoRA
fine-tuned models. Our key insight is that LoRA models trained with different
random seeds on the same task often exhibit complementary strengths. In contrast
to existing research that typically focuses on fusing models trained on diverse
tasks, we explore the potential of combining multiple LoRA models fine-tuned on
the same task with different random seeds. This intra-task fusion method aims to
leverage the strengths of various fine-tuned models to create a more robust and ef-
fective adaptation. To validate our approach, we conducted comprehensive exper-
iments across three key areas: mathematical reasoning, code generation, and gen-
eral instruction-tuning tasks. The results demonstrate that our fusion method sig-
nificantly enhances LoRA’s performance, outperforming both standalone LoRA
models and current fusion methods. Notably, this advancement substantially nar-
rows the gap between LoRA and full fine-tuning, thus offering a more effective
approach to model adaptation without the GPU memory burden of full parameter
fine-tuning.

1 INTRODUCTION

Parameter-Efficient Fine-Tuning (PEFT) methods have emerged as promising training schemes in
fine-tuning large language models (LLMs), offering a balance between performance and efficiency.
Among these, LoRA (Hu et al., 2022) has gained popularity due to its effectiveness and simplicity.
Despite its advantages, LoRA often exhibits anoticeable performance gap compared to full fine-
tuning approaches, limiting its applicability in scenarios requiring state-of-the-art performance.

Researchers have proposed various approaches to narrow the performance gap between LoRA and
full fine-tuning in LLMs. These methods typically fall into three categories: increasing LoRA’s
capacity, optimizing LoRA’s structure, and combining multiple LoRA adaptations. For instance,
ReLoRA (Lialin et al., 2024) proposes periodically increasing the rank during training, while
DoRA (yang Liu et al., 2024) and MiLoRA (Wang et al., 2024a) suggest alternative low-rank
structures and initialization strategies. Techniques such as MultiLoRA (Wang et al., 2023a) and
MoLoRA (Zadouri et al., 2024) attempt to leverage multiple LoRA modules, inspired by Mixture of
Experts models. While these approaches have shown improvements, they often come at the cost of
increased computational complexity or fail to fully close the gap with full fine-tuning, particularly
in challenging domains like mathematical reasoning and code generation.

In our investigation of these limitations, we made a key observation: models trained on identi-
cal tasks with different random seeds exhibit similar overall performance, yet demonstrate varying
proficiency across different subdomains of the task. This opens the opportunity to combine their
strengths into a more robust model.

Inspired by this insight, we naturally turn to model merging techniques, which have gained signifi-
cant attention in the field of LLMs as means to combine knowledge from multiple models without
increasing inference costs. However, we find that applying existing merging methods to our sce-
nario presents unique challenges. Specifically, most existing work on model merging focuses on

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

multi-task scenarios, aiming to integrate capabilities from models trained on different tasks (Worts-
man et al., 2022; Ilharco et al., 2022). In Contrast, our experiments reveal that the challenges faced
in single-task model merging—our focus—differ substantially from those in multi-task scenarios.
To elucidate this distinction, our analysis of cosine similarities reveals a crucial difference: models
trained on different tasks exhibit near-zero similarity, indicating orthogonality, which leads to in-
terference issues in multi-task merging. Conversely, models trained on the same task with different
seeds show high cosine similarity, suggesting a high degree of shared information. This fundamental
difference shifts the primary challenge in single-task merging from interference mitigation to effec-
tive information combination and redundancy elimination, necessitating a new approach tailored
specifically to single-task model merging.

Building on these insights, we propose SeedLoRA, a novel approach to address the unique chal-
lenges of single-task model merging. Our approach capitalizes on the high cosine similarity and
shared information between models trained on the same task with different seeds, focusing on effec-
tive information combination and redundancy elimination. At the core of SeedLoRA is the Weight
Distribution Match technique, which consists of three key steps: (1) analyzing the weight distribu-
tions of individual seed-specific models to capture subtle variations from different initializations, (2)
performing an initial merge through weighted averaging, leveraging the high similarity to combine
complementary strengths, and (3) applying distribution matching to preserve desirable statistical
properties. This method aims to create a merged model maintains the effective characteristics of
individual models. This method aims to create a merged LoRA model that synergies individual
strengths while preserving beneficial properties, potentially narrowing the performance gap with
full fine-tuning while maintaining LoRA’s computational efficiency.

Our experimental results demonstrate the effectiveness of SeedLoRA. By merging multiple LoRA
models with a rank of 8, we achieve performance comparable to full fine-tuning in challenging
tasks such as mathematical reasoning and code generation. This approach not only narrows the
performance gap between LoRA and full fine-tuning but also preserves the efficiency advantages of
PEFT methods.

The main contributions of this paper are:

• A comprehensive analysis of the performance characteristics of LoRA models trained with differ-
ent seeds on the same task, revealing their complementary strengths in various subdomains.

• Insights into the fundamental differences between single-task and multi-task model merging, high-
lighting the need for specialized approaches in each scenario.

• The introduction of SeedLoRA, a novel intra-task model merging method that effectively com-
bines information from multiple models while eliminating redundancy.

• Extensive empirical evidence demonstrating the effectiveness of SeedLoRA in narrowing the per-
formance gap between LoRA and full fine-tuning, particularly in complex tasks like mathematical
reasoning and code generation.

2 PRELIMINARIES

2.1 LORA

LoRA has emerged as a key method for efficient fine-tuning of LLMs. It works by injecting trainable
rank decomposition matrices into the layers of a pre-trained model, updating only these low-rank
matrices during fine-tuning while keeping the original weights frozen. Formally, for a pre-trained
weight matrix W ∈ Rd×k, LoRA introduces the update W ′ = W + BA, where B ∈ Rd×r and
A ∈ Rr×k are low-rank matrices with rank r ≪ min(d, k). Recent research has expanded upon
the LoRA framework, exploring various enhancement. These include novel initialization method
of A and B matrices in LoRA (MiLoRA (Wang et al., 2024a), Pissa (Meng et al., 2024a), LoRA-
GA (Wang et al., 2024b)), higher-rank approaches (MoRA (Jiang et al., 2024), PeriodicLoRA (Meng
et al., 2024b), ReLoRA (Lialin et al., 2024), COLA (Xia et al., 2024)), innovative structural mod-
ification(DoRA (yang Liu et al., 2024)), and advanced training strategy (LoRA+ (Hayou et al.,
2024)).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In addition to these individual enhancements, a significant direction in LoRA research has been
the development of Mixture of LoRA techniques. Drawing inspiration from the Mixture of Ex-
perts (MoE) paradigm, this approach dynamically combines multiple LoRAs , each potentially
specialized for different tasks or domains. Examples include MultiLoRA (Wang et al., 2023a),
MoLoRA (Zadouri et al., 2024), LoRAHub (Huang et al., 2023), and HydraLoRA (Tian et al.,
2024). By leveraging both LoRA’s parameter efficiency and the adaptive capacity of expert models,
Mixture of LoRA aims to create more versatile models that can perform effectively across a board
range of tasks than single-adaptation LoRA implementations.

2.2 MODEL MERGE

Model merging aims to combine the knowledge encoded in multiple trained models into a single,
enhanced model. Unlike ensemble methods, which require running multiple models, merged models
aim to distill collective knowledge into a single set of parameters, improving efficiency, adaptabil-
ity, and generalization capacity. Current research in model merging focuses on two main areas:
Multi-task Merging and Same/Similar-task Merging. Multi-task merging combines models trained
on different tasks into a single model capable of performing multiple tasks, leveraging task-specific
knowledge, and maintaining efficiency. Same/Similar-task merging, though less explored, focuses
on combining models trained on identical or closely related tasks to enhance robustness and gener-
alization, with studies showing improved performance on shifted data distributions. Most work in
this area has been conducted in computer vision, leaving significant opportunities for application in
fields like natural language processing. Although a range of methods (Ilharco et al., 2022; Lu et al.,
2024; Verma & Elbayad, 2024; Huang et al., 2024; Salamanca et al.; Tam et al.; Deep et al., 2024)
for model merging have been proposed, this paper focuses on a selected set of methods that provide
distinct ways of combining model parameters. We primarily examine and compare the following
merging methods:

• Model Soup (Wortsman et al., 2022): Model soup improves the accuracy of fine-tuned models
by averaging the weights of multiple models fine-tuned with different hyperparameters, rather
than selecting only the best individual model. This method often outperforms the best individual
model on both in-distribution and out-of-distribution data. Model soup demonstrates why we can
merge different models and get a better performance.

• TIES (Yadav et al., 2023): TIES-MERGING reduces interference by addressing redundant pa-
rameter values and sign disagreements across models through a three-step process: (1) trimming
parameters that changed minimally during fine-tuning, (2) resolving sign conflicts across models,
and (3) merging only parameters aligned with the agreed-upon sign. This method consistently
outperforms other merging techniques across various domains.

• DARE (Yu et al., 2024) : DARE drops a large portion of delta parameters and rescales the re-
maining ones, maintaining performance while reducing redundancy in fine-tuning. Applied before
merging, DARE mitigates parameter interference and improves overall performance over individ-
ual source model.

3 OUR METHOD

3.1 MOTIVATION

Performance Gap between LoRA and Full Fine-Tuning. Prior research (Biderman et al., 2024)
has demonstrated that LoRA usually shows a performance gap compared with full fine-tuning, po-
tentially limiting its application across various tasks. While increasing the rank value and extending
training epochs can improve the performance, a notable gap persists, particularly in Math prob-
lems and code generation tasks. In Table 1, we conducted the experiments fine-tuning LLaMA2-7B
with LoRA from rank=8 to rank=64 on math (MetaMathQA) and code generation (CodeFeedback)
tasks (Yu et al., 2023). The results reveal that although increasing the rank value of LoRA from 8
to 64 improves performance on GSM8K and MATH from 39.64 to 41.05, a significant gap remains
when compared with Full Fine-Tuning on rank 64. A similar trend was observed in code generation
tasks, where increasing the rank initially improves performance, but at extremely high ranks, such
as 64, performance begins to decline. This indicates that while higher ranks can lead to gains, LoRA
still struggles to fully match the performance of full fine-tuning, particularly in complex domains

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

such as mathematical reasoning and code generation. These observations motivate the need for a
novel training strategy and optimization method to further narrow the performance gap, enhancing
LoRA’s applicability across a wider range of tasks.

Task rank=8 rank=16 rank=24 rank=32 rank=64 Full FT

GSM8K 64.0 65.6 64.9 64.7 65.6 66.5
MATH 15.3 15.3 16.3 16.6 16.5 19.8

Average 39.6 40.4 40.6 40.7 41.1 43.2

Table 1: Fine-Tuning LLaMA-2-7B model with LoRA on MetaMathQA (seed=11).

3.2 NARROWING THE PERFORMANCE GAP THROUGH MODEL MERGING

pro_accounting pro_law college_cs college_math 30

32

34

36

38

40

42

44

46

48

Pe
rf

or
m

an
ce

LoRA (seed 11)
LoRA (seed 42)
LoRA (seed 202)
Full FT

Figure 1: Performance comparison of LoRA
and Full FT across MMLU subdomains.

Analyzing LoRA and Full Fine-Tuning Perfor-
mance. We conducted a comprehensive analysis to
better understand the performance discrepancy be-
tween LoRA and full fine-tuning across various sub-
domains. Our approach involves visualizing the per-
formance of multiple models trained with different
random seeds using both LoRA and full fine-tuning
techniques. Specifically, we leverage the Mas-
sive Multitask Language Understanding (MMLU)
benchmark, which covers a wide range of subjects
and allows for fine-grained performance analysis.
Figure 1 illustrates the performance of LoRA and
full fine-tuning models across different MMLU sub-
domains. Our findings reveal an interesting pattern:
while LoRA models generally underperform com-
pared to full fine-tuning, they exhibit competitive
performance in specific subdomains. This nuanced performance distribution led to a key obser-
vation: different LoRA models, each trained with unique random seeds, tend to excel in distinct
subdomains. Building on this insight, we formulated a promising hypothesis: by strategically merg-
ing multiple LoRA models, each with its own specialized strengths, we could potentially achieve
performance comparable to full fine-tuning models.

The Definition of Single-Task model Merging. To explore our hypothesis of combining LoRA
models with diverse strengths, we turn to the concept of model merging, which is the process of
combining multiple models to enhance overall performance. While model merging is typically
applied to integrate models trained on different tasks, we propose a novel application: merging
models trained on a single task with different random seeds to achieve superior performance within
that task. We formally define our single-task model merging method as follows:

Let θpre be the pre-trained base model, and {θ1, θ2, . . . , θn} be a set of n models fine-tuned on
the same task using LoRA, each with a different random seed si. Each fine-tuned model θi can
be represented as θi = θpre + τi, where τi is the LoRA delta model for the i-th fine-tuned model,
obtained using seed si. Our merging process focuses on these seed-specific delta models:

τm = Merge(τ1, τ2, . . . , τn) (1)

The merging is performed layer-wise for each LoRA adapter:

τ (j)m = Merge(τ (j)1 , τ
(j)
2 , . . . , τ (j)n ) (2)

where τ
(j)
i represents the j-th layer of the i-th delta model trained with seed si. The final merged

model is obtained by:

θm = θpre + τm = θpre + Merge(τ1, τ2, . . . , τn) (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This approach leverages the diverse strengths of multiple LoRA models, each potentially excelling in
different subdomains, to create a merged model that approaches or even surpasses the performance
of full fine-tuning models. By focusing on models trained on a single task with different seeds,
we capture a broader spectrum of task-specific knowledge while maintaining LoRA’s efficiency
advantages.

3.3 THE DIFFERENCE BETWEEN MULTI-TASK AND SINGLE-TASK MODEL MERGING

Math
 1

Math
 2

Math
 3

Ins
tru

ct 
1

Ins
tru

ct 
2

Ins
tru

ct 
3

Math 1

Math 2

Math 3

Instruct 1

Instruct 2

Instruct 3

1.00 0.28 0.30 0.00 0.00 0.00

0.28 1.00 0.29 0.00 0.00 0.00

0.30 0.29 1.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00 0.24 0.20

0.00 0.00 0.00 0.24 1.00 0.22

0.00 0.00 0.00 0.20 0.22 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Cosine similarity comparison be-
tween models trained on the same and differ-
ent tasks (MetaMathQA and TULU-v2).

Before delving into our proposed single-task model
merge method, we conducted a cosine similarity
analysis to highlight its crucial differences from
traditional multi-task approaches. Figure 2 illus-
trates our findings, revealing a stark contrast be-
tween multi-task and single-task scenarios.

• Models from Different Tasks (Multi-task Sce-
nario): The cosine similarity between delta mod-
els from different tasks is approximately zero, in-
dicating near orthogonality.

• Models from the Same Task (Single-task Sce-
nario): Delta models trained on the same task ex-
hibit cosine similarities consistently greater than
zero, suggesting a strong inter-model relationship.

These similarity differences significantly impact
merging strategies. In multi-task merging, near-
orthogonality leads to interference issues, where pre-
serving task-specific knowledge without degrading
performance on other tasks is the primary challenge.
Conversely, Single-task merging face the complex-
ity of identifying and leveraging complementary information among largely similar models, albeit
with reduced interference risks.

The fundamental differences explain why current multi-task model merging techniques are subopti-
mal for single-task scenarios. Multi-task methods, such as TIES, are designed to address interference
between orthogonal models, which is less relevant in single-task merging. Additionally, techniques
that focus on preserving large-magnitude weights to combat interference may not effectively capture
the nuanced differences between similar models trained on the same task.

These limitations highlight the need for a novel approach tailored to the unique characteristics of
single-task model merging. An effective method for single-task LoRA model merging should lever-
age the inherent similarities between models while exploiting their subtle differences. This approach
aims to surpass the performance of individual LoRA models and potentially approach or exceed the
capabilities of full fine-tuning.

3.4 SEEDLORA: A DISTRIBUTION MATCHING APPROACH FOR MODEL MERGING

While our previous analysis highlighted the differences between multi-task and single-task model
merging, several challenges specific to single-task merging need to be addressed:

• Information Consolidation: Models trained on identical tasks with different random seeds of-
ten capture overlapping information. Naive merging approaches risk inefficient consolidation,
potentially diluting the unique strengths each model has developed for specific aspects of the task.

• Distribution Dynamics: The Merging process can alter the overall weight distribution of the
resulting model. This shift may lead to unanticipated behavioral changes in the composite model,
necessitating considerations of how individuals model contribute to the final merged model

• Performance Balancing: Determining the optimal weighting for individual model contribution
in the merged model presents siginificant challenges, especially when models perform differently

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

across various aspects of the task.The merging strategy must carefully balance these contributions
to preserve and potentially enhance overall performance.

These challenges necessitate a more sophisticated approach to creating a cohesive merged model
with desirable statistical properties. To address this, we introduce Weight Distribution Match based
Model Merge. Our method combines the strengths of multiple models trained on the same task
while preserving a crucial statistical property: the weight distribution of the individual models. We
explain our approach as follows:

1. Step 1: Individual Model Training and Analysis: We can individual training multiple model
on the same task and then collect multiple models. For each model θi, we calculate the mean µ̂
and standard deviation σ̂ of its weight values.

2. Step 2: Initial Merging: Model soup (Wortsman et al., 2022) demonstrates why merging differ-
ent models can lead to better performance. Therefore, we first create an initial merged model by
averaging the weight values from different models in each dimension:

τm =
1

n

n∑
i=1

wiτi (4)

where wi represents the importance weight of the i-th model and the default value can be defined
as 1, n is the total number of models. This averaging approach is similar to the model soup
method, which also combines models through weight averaging.

3. Step 3: Distribution Matching: We rescale the values of the merged model to match the mean
and standard deviation of a reference model:

τm = σ̂ · τm − µ(τm)

σ(τm)
+ µ̂ (5)

where µ̂ = 1
n

∑n
i=1 µ(τi) and σ̂ = 1

n

∑n
i=1 σ(τi) are the mean and standard deviation of the

reference model, and µ(τm) and σ(τm) are the mean and std of the initially merged weights.

The Weight Distribution Match method effectively addresses the key challenges of single-task model
merging. Initial averaging mitigates information redundancy while incorporating diverse informa-
tion from all models. Subsequent distribution matching preserves model-specific strengths by main-
taining statistical properties crucial to individual model performance, particularly in specific task
subdomains. This two-step approach not only combines individual model strengths but also tack-
les distribution shift by rescaling merged weights to match a reference distribution, thus preventing
unexpected behaviors in the final model.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETTING

Training and Evaluation: For code generation, we use Code-Feedback (Zheng et al., 2024) as
training data, LLaMA2-7B (Touvron et al., 2023) and Mistral-7B-v0.1 (Jiang et al., 2023) serve
as base models. We evaluate using HumanEval (Chen et al., 2021), an established benchmark
for Python text-to-code generation. For comprehensive assessment, we incorporate HumanEval+
from EvalPlus (Liu et al., 2024). For math reasoning, the MetaMathQA (Yu et al., 2023) dataset
is employed to fine-tune on the LLaMA2-7B and Mistral-7B models. The evaluation is conducted
using the GSM8k (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) benchmarks, which
are specifically constructed to test the model’s capacity for mathematical reasoning and problem-
solving. For the general domain, the TÜLU V2 (Wang et al., 2023b) dataset is utilized in training
on the LLaMA2-7B (Touvron et al., 2023) and Mistral-7B-v0.1. Following the setting of Open-
Instruct (Ivison et al., 2023), we evaluate model on MMLU (Hendrycks et al., 2020), GSM8k (Cobbe
et al., 2021), BBH (Suzgun et al., 2022), TyDiQA (Clark et al., 2020), TruthfulQA (Lin et al., 2021)
and HumanEval (Austin et al., 2021).

Implementation Details. Training is conducted on Nvidia A100 and H100 GPUs using BFloat16
precision. We set weight decay to 0 and employ a cosine learning rate scheduler with a 0.03 ratio
linear warmup. For evaluation, we utilize vLLM (Kwon et al., 2023) to conduct our tests, ensuring
efficient and scalable inference. More detailed setting is introduced in Table 5.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2 MATH REASONING

Having delineated our experimental framework, we proceed to present our empirical findings, com-
mencing with an analysis of the performance on math reasoning task. To validate the efficacy of
our proposed merge method, we first evaluate the LoRA models with 3 different seeds on GSM8K
and MATH, followed by an assessment of our merged model. The experimental results, shown in
Table 2, demonstrate that the merged model substantially improve the performance of each inde-
pendent model. Notably, for the LoRA fine-tuning on LLaMA2-7B, SeedLoRA can improve the
performance of vanilla LoRA from 64.1 to 68.6 on GSM8K and from 15.3 to 17.3 on MATH. Fur-
thermore, to evaluate the generalizability of our proposed SeedLoRA, we extend our evaluation to
LoRA variants (such as LoRA+ and DoRA) and more advanced pre-trained LLM (such as Mistral-
7B). These additional experiments consistently demonstrate performance improvement when using
our merged model approach. Finally, we also conduct experiments to compare SeedLoRA with
current popular model merge methods, such as Model Soup, TIES and DARE. The experimental
results on Table 2 illustrate that these methods can also improve the performance of vanilla LoRA,
but SeedLoRA can obtain more performance gain.

seed 11 seed 42 seed 202 SeedLoRA Model Soup TIES DARE

Evaluating LLaMA2-7B on GSM8K. The performance of Full Fine-Tuning is 66.5.

LoRA (r=8) 64.0 63.8 64.1 68.6 66.6 65.7 65.7
LoRA+ (r=8) 64.4 64.7 65.4 69.8 67.0 63.2 56.7
DoRA (r=8) 64.6 64.7 64.7 68.5 66.3 66.0 67.3

Evaluating LLaMA2-7B on MATH. The performance of Full Fine-Tuning is 19.8.

LoRA (r=8) 15.3 15.3 14.9 17.3 15.7 16.0 15.5
LoRA+ (r=8) 15.4 15.5 16.0 17.4 16.1 16.7 16.4
DoRA (r=8) 15.4 15.4 14.9 17.8 16.0 15.8 15.6

Evaluating Mistral-7B on GSM8K. The performance of Full Fine-Tuning is 78.6.

LoRA (r=8) 75.4 75.7 76.3 80.5 79.1 75.1 75.1
LoRA+ (r=8) 76.5 73.5 75.9 80.3 79.7 79.4 78.7
DoRA (r=8) 77.0 75.7 76.5 80.3 77.0 79.1 78.5

Evaluating Mistral-7B on MATH. The performance of Full Fine-Tuning is 28.5.

LoRA (r=8) 25.9 24.8 25.4 29.0 28.5 24.8 25.0
LoRA+ (r=8) 25.1 25.2 25.4 28.2 27.9 25.9 24.3
DoRA (r=8) 25.9 25.3 25.8 28.7 28.3 26.5 25.7

Table 2: Fine-Tuning LLaMA-2-7B and Mistral-7B with LoRA on MetaMathQA.

4.3 CODE GENERATION

Building upon our findings in mathematical reasoning, we further evaluate the performance gain of
our merged model on the Code Generation task. Table 3 presents the experimental results of individ-
ual training models and merged models on CodeFeedback benchmark. The data demonstrates that
ourmerged model consistently outperforms individual models in the HumanEval and HumanEval+
tasks. Particularly, SeedLoRA exhibits exceptional performance on HumanEval (+) benchmark,
surpassing the best individual LoRA by both 6.1% on LLaMA2-7B and Mistral-7B.

To contextualize our method’s performance within a broader range of model merging approaches, we
conducted a comparative analysis with popular approaches such as Model Soup, TIES and DARE.
Our finding indicates that our method achieves superior performance compared to these existing
merge methods. For instance, our method enhance the performance of model soup from 34.1% to
40.2% on vanilla LoRA.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Index

10 2

10 1

100

101

Si
ng

ul
ar

 V
al

ue

LoRA (r=8, seed=11)
LoRA (r=8, seed=42)
SeedLoRA (seed=11)

(a) Singular Value Analysis

Training Loss Eval Performance
0.100

0.105

0.110

0.115

0.120

0.125

0.130

Tr
ai

ni
ng

 L
os

s

LoRA (s=11)
LoRA (s=42)
SeedLoRA

39.0

39.5

40.0

40.5

41.0

41.5

42.0

42.5

43.0

Pe
rf

or
m

an
ce

(b) Generalization Analysis

0 500 1000 1500 2000 2500 3000 3500
Step (*100)

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 L
os

s

LoRA (r=8, e=3)
LoRA (r=16, e=3)
LoRA (r=8, e=6)

(c) Training Loss Comparison

Figure 3: (a) Singular Value Analysis. (b) Generalization Analysis (c) Training Loss Analysis.

seed 11 seed 42 seed 202 SeedLoRA Model Soup TIES DARE

Evaluating LLaMA2-7B on Humaneval. The performance of Full FT is 40.3.

LoRA (r=8) 34.1 34.1 32.3 40.2 34.1 38.4 36.0
LoRA+ (r=8) 36.6 35.4 32.3 39.0 39.0 32.3 30.5
DoRA (r=8) 34.1 32.9 32.9 37.2 32.3 33.5 34.8

Evaluating LLaMA2-7B on Humaneval+. The performance of Full FT is 37.1.

LoRA (r=8) 28.0 30.5 28.7 36.6 29.9 34.1 30.5
LoRA+ (r=8) 31.7 34.1 29.3 36.6 34.1 28.7 27.4
DoRA (r=8) 32.3 30.5 28.7 32.3 29.3 29.9 31.7

Table 3: LLaMA2-7B model with LoRA (Delta) on CodeFeedback (Humaneval and Humaneval+).

4.4 GENERAL DOMAIN

Having examined the effectiveness of our proposed method SeedLoRA in specialized domains, we
now extend our evaluation to general domain instruction tuning tasks. The experimental results,
shown in the Table 4, demonstrate that our proposed method continues to improve upon the per-
formance of the best individual model. However, the magnitude of improvement in this domain is
less pronounced than observed in math reasoning and code generation. We believe this discrepancy
arises from the nature of general domain tasks, where models are required to follow instructions
rather than acquire new knowledge, as is often necessary for mathematical and coding tasks. More-
over, this observation underscores the efficacy of our method while also highlighting the challenges
of achieving substantial gains in areas where LoRA already performs close to full fine-tuning.

4.5 FURTHER DISCUSSIONS

Why Merge the Models from the Same Task Can Improve the Performance?

To understand the performance improvements achieved by merging models from the same task, we
conduct two key analyses: knowledge fusion and generalization ability.

Firstly, we evaluate whether the merged model can effectively fuse the knowledge from two individ-
ual models. We employ Singular Value Decomposition (SVD) to analyze the knowledge representa-
tion in each model. Figure 3a illustrates the singular value distribution of individual LoRA models
(each with rank 8) and the merged SeedLoRA model. Notably, SeedLoRA exhibits a broader range
of non-zero singular values compared to the individual LoRA, suggesting successful knowledge
fusion from multiple sources.

Inspired by SWA (Izmailov et al., 2018), which claims that averaging weights can lead to wider
optima and better generalization, we investigate whether our model exhibits similar benefits. We
analyze the training loss and the performance on downstream evaluation tasks, as shown in Figure
3b and Figure 3c. Interestingly, SeedLORA demonstrates a slightly higher training loss but achieves

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

MMLU GSM8K BBH TyDiQA HumanEval Average

Full FT 48.7 31.5 42.2 51.2 21.6 39.0

LoRA (r=8) 49.2 22.5 43.3 51.8 14.9 36.4
SeedLoRA 49.8 21.5 47.0 51.4 15.4 37.0

Model Soup 50.3 20.5 45.5 50.9 15.2 36.5
TIES 49.3 19.5 43.3 53.6 15.1 36.2
DARE 49.6 22.5 44.3 53.4 15.3 37.0

LoRA+ (r=8) 49.7 25.0 46.5 53.1 16.0 38.1
SeedLoRA 51.0 25.0 47.5 53.1 17.6 38.8

Model Soup 51.2 24.5 45.7 52.7 17.4 38.3
TIES 50.2 23.0 42.9 52.8 17.5 37.3
DARE 50.1 22.0 43.1 52.9 17.4 37.1

DoRA (r=8) 49.4 25.5 46.3 50.4 16.0 37.5
SeedLoRA 50.0 29.0 46.9 52.4 15.0 38.7

Model Soup 50.4 23.0 47.7 51.0 15.2 37.5
TIES 49.8 22.5 45.6 53.1 14.9 37.2
DARE 49.7 23.5 45.3 53.3 14.7 37.3

Table 4: LLaMA-2-7B model with LoRA on Tulu-v2. For the results of LoRA and its variants, we
report the best performance of 3 LoRA models, which is trained with different seeds.

superior evaluation performance on downstream evaluation tasks which takes different distributions
from the training data. This pattern indicates improved generalization ability, suggesting SeedLoRA
learns more robust, task agnostic features rather than overfitting the training data.

These findings on knowledge fusion and generalization provide insight into the mechanisms under-
lying SeedLoRA’s improved performance across various tasks.

GSM8K MATH
68

70

72

74

76

78

G
SM

8K

LoRA (Seed 11)
LoRA (Seed 42)
LoRA (Seed 202)

SeedLoRA
Model Soup

18

19

20

21

22

23

24

25
M

AT
H

Figure 4: Scaling Results of LLaMA2-13B
on MetaMathQA.

Scaling Results. To verify the scalability of Seed-
LoRA, we conduct experiments on pre-trained mod-
els with larger number of parameters. Specially,
we evaluate the performance of SeedLoRA on the
LLaMA2-13B model, The results are presented in
Figure 4. SeedLoRA achieves approximately 2.3%
performance gain compared to the best individual
LoRA model. This demonstrates that SeedLoRA
can effectively improve the performance even on
larger pre-trained models, highlighting its scalabil-
ity and potential for enhance model across different
sizes.

Comparing with Higher Rank LoRA. To further
validate the effectiveness of our approach, we com-
pare SeedLoRA with higher rank LoRA models.
This comparison is motivated by the theory about
low-rank approximation: r(τ1+τ2) ≤ r(τ1)+r(τ2),
where r(∗) represents the rank value of a matrix. Since our experiments focus on merging three
LoRA models with rank 8, we perform an ablation study comparing our merged model with a single
LoRA model with rank 24. As shown in Figure 5, SeedLoRA outperforms the higher-rank LoRA
model. This highlights the advantage of SeedLoRA in effectively combining the strengths of mul-
tiple lower-rank models, achieving better performance than simply increasing the rank of a single
model.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

GSM8K MATH
55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

G
SM

8K

LoRA (Seed 11)
LoRA (Seed 42)
LoRA (Seed 202)
LoRA (r=24)

LoRA (e=9)
SeedLoRA
Full FT

10

12

14

16

18

20

M
AT

H

(a) MetaMathQA

HumanEval HumanEval+
25

30

35

40

45

50

H
um

an
Ev

al

LoRA (Seed 11)
LoRA (Seed 42)
LoRA (Seed 202)
LoRA (r=24)

LoRA (e=9)
SeedLoRA
Full FT

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

H
um

an
Ev

al
+

(b) Code-Feedback

Figure 5: The comparison between vanilla LoRA training with different seeds, with higher rank,
with more epochs and Full Fine-Tuning (Full FT). (a) Comparison on MetaMathQA benchmark. (b)
Comparison on Code-Feedback benchmark.

GSM8K MATH
60

61

62

63

64

65

66

67

68

G
SM

8K

LoRA (S=11,e=1)
LoRA (S=42,e=1)
LoRA (S=202,e=1)

Vanilla LoRA
SeedLoRA

10

11

12

13

14

15

16

17

M
AT

H

Figure 6: The Performance Comparison be-
tween LoRA and Seed LoRA under the sim-
ilar training cost constraint.

Training SeedLoRA with Similar Cost as For-
mal LoRA. Our method requires obtaining several
LoRA models trained on the same tasks. While
some suitable models can be found on platforms like
Huggingface, it is often necessary to train multi-
ple models by ourselves, potentially incurring ad-
ditional training time. To address this, we inves-
tigate whether we can achieve better performance
with comparable training cost using SeedLoRA.

Specifically, we propose an alternative to the stan-
dard 3-epoch LoRA fine-tuning of LLaMA2-7B:
training 3 individual models with 1 epoch each, then
merging these 3 partially trained models. We con-
duct this experiment on MetaMathQA benchmark,
with the results shown in Figure 6. Remarkably, this
approach outperforms the standard 3-epoch training
while maintaining the same overall training time.
This finding suggests a potentially new, more efficient training paradigm for PEFT.

Training with More Epochs. The Training paradigm of SeedLoRA can be regarded as training
LoRA with more epochs. To rigorously validate the superior performance of SeedLoRA, we train
vanilla LoRA with more epochs and compare our merged model with it. We conduct the experiment
on MetaMathQA and Code-Feedback and the comparison result is shown in the Figure 5 and Figure
3c. The results illustrate that SeedLoRA can outperform LoRA training with more epochs on both
math reasoning and code generation tasks, although training more epochs can slightly improve its
performance.

5 CONCLUSIONS

In this paper, we introduced SeedLoRA, a novel single-task model merging approach designed to
enhance LoRA fine-tuning. Our method effectively narrows the performance gap between LoRA
and full fine-tuning in complex tasks like mathematical reasoning and code generation by combining
complementary strengths of models trained with different seeds. Notably, SeedLoRA consistently
outperforms existing merging techniques - including Model Soup, TIES, and DARE - in single-task
scenarios. The effectiveness of SeedLoRA stems from its ability to fuse knowledge from individual
models that specialize in different sub-domains, leading to improved generalization. This approach
maintains LoRA’s efficiency while achieving comparable performance to full fine-tuning, a finding
we demonstrated across various model sizes. By bridging the performance gap between PEFT
methods and full fine-tune, our work highlights the potential to enable broader adoption of state-of-
the-art LLMs in resource-constrained environments.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Con-
nor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and
John Patrick Cunningham. LoRA learns less and forgets less. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
aloEru2qCG. Featured Certification.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev,
and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking question answering in
ty pologically di verse languages. Transactions of the Association for Computational Linguistics,
8:454–470, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Pala Tej Deep, Rishabh Bhardwaj, and Soujanya Poria. Della-merging: Reducing interference in
model merging through magnitude-based sampling. arXiv preprint arXiv:2406.11617, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub: Effi-
cient cross-task generalization via dynamic lora composition. arXiv preprint arXiv:2307.13269,
2023.

Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-merging:
Tuning-free high-performance model merging. arXiv preprint arXiv:2405.17461, 2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep
Dasigi, Joel Jang, David Wadden, Noah A Smith, Iz Beltagy, et al. Camels in a changing cli-
mate: Enhancing lm adaptation with tulu 2. arXiv preprint arXiv:2311.10702, 2023.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

11

https://openreview.net/forum?id=aloEru2qCG
https://openreview.net/forum?id=aloEru2qCG
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-efficient fine-
tuning. arXiv preprint arXiv:2405.12130, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. ReloRA: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=DLJznSp6X3.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024.

Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging:
Dynamic integration of modular expertise in model merging. arXiv preprint arXiv:2406.15479,
2024.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular
vectors adaptation of large language models. arXiv preprint arXiv:2404.02948, 2024a.

Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang, Shaoxiang Wu, Xiaochen Wang, Peiyi Wang,
Qingxiu Dong, Liang Chen, and Zhifang Sui. Periodiclora: Breaking the low-rank bottleneck in
lora optimization. arXiv preprint arXiv:2402.16141, 2024b.

Alejandro R Salamanca, Ahmet Üstün, Nicki Skafte Detlefsen, and Tim Dettmers. Seeded lora:
Collaborative fine-tuning through seed initialization of adapters. In Workshop on Efficient Systems
for Foundation Models II@ ICML2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Derek Tam, Margaret Li, Prateek Yadav, Rickard Brüel Gabrielsson, Jiacheng Zhu, Kristjan Gree-
newald, Mikhail Yurochkin, Mohit Bansal, Colin Raffel, and Leshem Choshen. Llm merging:
Building llms efficiently through merging. In NeurIPS 2024 Competition Track.

Chunlin Tian, Zhan Shi, Zhijiang Guo, Li Li, and Chengzhong Xu. Hydralora: An asymmetric lora
architecture for efficient fine-tuning. arXiv preprint arXiv:2404.19245, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Neha Verma and Maha Elbayad. Merging text transformer models from different initializations.
arXiv preprint arXiv:2403.00986, 2024.

Hanqing Wang, Zeguan Xiao, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora:
Harnessing minor singular components for parameter-efficient llm finetuning. arXiv preprint
arXiv:2406.09044, 2024a.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
arXiv preprint arXiv:2407.05000, 2024b.

12

https://openreview.net/forum?id=DLJznSp6X3


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for
better multi-task learning. arXiv preprint arXiv:2311.11501, 2023a.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023b.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of lora: Efficient fine-tuning of language
models via residual learning. arXiv preprint arXiv:2401.04151, 2024.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Resolving interfer-
ence when merging models. arXiv preprint arXiv:2306.01708, 1, 2023.

Shih yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=3d5CIRG1n2.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
fq0NaiU8Ex.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermis, Acyr Locatelli, and Sara Hooker.
Pushing mixture of experts to the limit: Extremely parameter efficient moe for instruction
tuning. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=EvDeiLv7qc.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement.
arXiv preprint arXiv:2402.14658, 2024.

13

https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=3d5CIRG1n2
https://openreview.net/forum?id=fq0NaiU8Ex
https://openreview.net/forum?id=fq0NaiU8Ex
https://openreview.net/forum?id=EvDeiLv7qc


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 HYPERPARAMETERS

We propose hyperparameters of three training tasks in Table 5.

Dataset Method r α LR LR Scheduler Warmup Epochs Batch size

Tülu v2 FFT - - 2e-5 cosine 500 2 128
LoRA-like 8 16 {1e-4,2e-4,3e-4} cosine 500 2 128

MetaMath FFT - - 2e-5 cosine 300 3 128 -
LoRA-like 8 16 {1e-4,2e-4,3e-4} cosine 300 3 128

Code-Feedback FFT - - 3e-5 linear 300 3 128
LoRA-like 8 16 {1e-4,2e-4,3e-4} linear 300 3 128

Table 5: Hyperparameters Setting of fine-tuning on three datasets.

B THE PERFORMANCE ANALYSIS ABOUT LORA AND FULL FINE-TUNING
ON MBPP

Task rank=8 rank=16 rank=24 rank=32 rank=64 Full FT

HumanEval 34.1 34.1 34.8 34.8 35.4 40.3
HumanEval+ 28.0 32.3 31.7 31.7 31.7 37.1
MBPP (+) 45.8 (38.6) 43.7 (36.0) 44.2 (36.2) 46.6 (39.7) 42.1 (36.2) 53.1

Average 40.0 (33.3) 38.9 (34.2) 39.5 (34.0) 40.7 (35.7) 38.8 (34.0) 46.7

Table 6: LLaMA-2-7B model with LoRA (Delta) on Code-Feedback (seed=11).

C THE EXPERIMENTAL RESULTS FOR FINE-TUNING MISTRAL-7B ON
CODE-FEEDBACK.

seed 11 seed 42 seed 202 SeedLoRA Model Soup TIES DARE

LoRA (r=8) 53.0 51.8 48.2 57.8 53.7 55.5 56.7
LoRA+ (r=8) 54.3 48.8 47.6 56.7 54.3 51.8 54.3
DoRA (r=8) 54.3 55.5 45.1 56.7 54.3 56.7 55.5

LoRA (r=8) 49.4 47.6 40.9 51.2 50.6 49.4 50.0
LoRA+ (r=8) 48.2 43.9 40.2 49.4 48.2 47.6 48.8
DoRA (r=8) 47.6 49.4 42.1 49.4 48.8 51.8 49.4

Table 7: Mistral-7B model with LoRA (Delta) on CodeFeedback (HumanEval and HumanEval+).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

D THE EXPERIMENTAL RESULTS FOR FINE-TUNING MISTRAL-7B ON
TULU-V2

MMLU-0 GSM8K BBH TyDiQA HumanEval Average

LoRA (r=8)
59.4 46.0 54.99 59.93 33.78 50.82
58.8 44.0 56.57 59.54 35.51 50.88
58.2 50.5 58.70 59.01 31.37 51.56

SeedLoRA 60.7 52.5 58.70 61.83 33.99 53.54
TIES 58.3 42.5 53.79 60.35 33.74 49.73
DARE 58.5 42.0 56.20 60.51 35.39 50.52

LoRA+ (r=8)
60.8 45.0 59.44 58.23 34.08 51.51
61.2 45.5 59.72 59.70 32.19 51.66
60.5 47.0 58.61 59.06 32.04 51.44

SeedLoRA 61.8 47.5 61.11 59.64 34.57 52.92
TIES 60.6 46.0 57.87 58.78 34.08 51.46
DARE 60.4 41.0 56.29 59.24 34.23 50.23

DoRA (r=8)
61.1 46.0 58.79 58.90 34.32 51.82
60.3 52.0 58.79 60.09 33.10 52.85
60.3 52.0 58.51 59.89 32.92 52.72

SeedLoRA 61.6 50.5 61.11 60.07 33.53 53.36
TIES 60.5 46.5 58.24 58.24 35.30 51.75
DARE 60.5 44.0 57.40 59.29 35.60 51.35

LoRA (r=24) 60.4 46.5 57.40 59.58 31.76 51.12

LoRA (epoch=6) 56.5 47.0 53.98 55.53 32.46 49.09

Table 8: Mistral-7B model with LoRA (Delta) on Tulu-v2.

E WEIGHT DISTRIBUTION ANALYSIS

(a) proj q (b) proj k (c) proj v

Figure 7: Weight Distribution in Attention-based Layers.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) gate proj (b) up proj (c) down proj

Figure 8: Weight Distribution in MLP Layers.

16


	Introduction
	Preliminaries
	LoRA
	Model Merge

	Our Method
	Motivation
	Narrowing the Performance Gap through Model Merging
	The Difference between Multi-Task and Single-Task Model Merging
	SeedLoRA: A Distribution Matching Approach for Model Merging

	Experimental Results
	Experimental Setting
	Math Reasoning
	Code Generation
	General Domain
	Further Discussions

	Conclusions
	Appendix
	Hyperparameters

	The Performance Analysis about LoRA and Full Fine-Tuning on MBPP
	The experimental Results for Fine-Tuning Mistral-7B on Code-Feedback.
	The experimental Results for Fine-Tuning Mistral-7B on TULU-v2
	Weight Distribution Analysis

