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Abstract

In-season or pre-harvest crop yield forecasts are essential for enhancing trans-1

parency in commodity markets and for planning towards achieving the United2

Nations’ Sustainable Development Goal 2 of zero hunger, especially in the context3

of climate change and extreme events leading to crop failures. Pre-harvest crop4

yield forecasting is a difficult problem, as several interacting factors contribute to5

yield formation, including in-season weather variability, extreme events, long-term6

climate change, pests, diseases and farm management decisions. Machine learning7

methods provide ways to capture complex interactions among such predictors and8

crop yields. Prior research in agricultural applications, including crop yield fore-9

casting, has primarily been case-study based, which makes it difficult to compare10

modeling approaches and measure progress. To address this gap, we introduce11

CY-Bench (Crop Yield Benchmark), a comprehensive dataset and benchmark to12

forecast crop yields. We standardized data source selection, preprocessing and13

spatio-temporal harmonization of public sub-national yield statistics with relevant14

predictors such as weather, soil, and remote sensing indicators, in collaboration15

with domain experts such as agronomists, climate scientists, and machine learning16

researchers. With CY-Bench we aim to: (i) standardize machine learning model17

evaluation in a framework that covers multiple farming systems in more than18

twenty-five countries across the globe, (ii) facilitate robust and reproducible model19

comparison through a benchmark addressing real-world operational needs, (iii)20

share a dataset with the machine learning community to facilitate research efforts21

related to time series forecasting, domain adaptation and online learning. The22

dataset and code used will be openly available, supporting the further development23

of advanced machine learning models for crop yield forecasting that can be used to24

aid decision-makers in improving global and regional food security.25

Keywords: benchmark dataset; crop yield forecasts; agriculture; food security.26

1 Introduction27

Despite steady improvements in the efficiency of agricultural production over the last decades, the28

global food system is still rife with inequalities (60; 1), such as disproportionate access to resources29
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between developed and developing countries. The interconnectedness of countries and international30

trade can help to smooth swings in commodity prices, but can also bring intra-annual price volatility to31

import-dependent countries (81; 12; 80). Experts have emphasized the need for improved data, maps,32

and predictions (20; 37; 17). In particular, pre-harvest yield forecasts are vital for improving global33

market transparency and enabling decision-makers to plan response actions to mitigate anticipated34

shortages (65; 63; 7).35

National and sub-national crop yield forecasts are produced by both private sector and governmental36

institutes using a combination of statistical modeling approaches and process-based crop models (5;37

58; 23). Due to the multiplicity of systems and hazards involved, and the importance of compounding38

effects which are not yet well-understood, data-driven methods provide less explored ways to39

capture the complex and nonlinear relationships driving crop growth and development(59; 31).40

Additionally, the availability of high-quality agricultural data varies significantly by region and by41

crop; recent developments in transfer learning and domain adaptation may be useful for serving42

data-scarce regions or neglected and under-utilized crops. Over the recent years, several review43

articles (14; 25; 32; 73; 8; 42) and publications have highlighted excellent performance of machine44

learning for pre-harvest yield forecasting (79; 19; 28; 36; 44; 45; 76; 34). However, the data and45

code used in these studies are often unavailable, meaning that the results cannot be reproduced, and46

the diverse range of evaluation procedures, metrics, and datasets used in these studies means that47

synthesizing their results is difficult.48

In order to better understand the specific strengths and weaknesses of existing machine learning49

methods for pre-harvest yield forecasting, and to drive further research progress, well-specified50

benchmark datasets compiled by domain experts are vital (53; 67; 16)(Sweet et al. in review).51

These benchmark datasets must reflect the needs of the worldwide community (41; 71). Recently,52

researchers have emphasized the need for machine learning benchmark datasets that include data53

from more regions and countries (50). Additionally, while forecast accuracy is crucial, machine54

learning models must also be reliable in settings comparable to real-world use in order to be adopted55

by stakeholders (72). The evaluation metrics used should closely represent the needs of stakeholders56

and allow a more granular breakdown of model performance (66; 11) - for example, the model’s57

ability to capture yield variability in years with climate extremes must be reported (77). Finally, to58

avoid overestimation of model skill, the evaluation procedure must take into account the specific59

challenges arising from the use of non-i.i.d spatiotemporal data (40; 64; 26).60

We present CY-Bench, a comprehensive dataset and benchmark for sub-national crop yield forecasting,61

with coverage of major crop-growing countries across the world for maize and wheat. Here, sub-62

national refers to the administrative levels for which official crop statistics are published; crop yield63

refers to the end-of-season yield reported in the statistics; and forecasting refers to the production64

of end-of-season yield estimates with a certain lead time before harvest (e.g. mid-season or 3065

days before harvest) or before the publication of official statistics. Thus, the dataset combines sub-66

national yield statistics with relevant predictors, such as growing-season weather indicators, remote67

sensing indicators, evapotranspiration, soil moisture indicators, and static soil properties. CY-Bench68

has been designed and curated by agricultural experts, climate scientists, and machine learning69

researchers from the AgML community (https://www.agml.org/), with the aim of facilitating70

model intercomparison across the diverse agricultural systems around the globe in conditions as71

close as possible to real-world operationalization. Ultimately, by lowering the barrier to entry for ML72

researchers in this crucial application area, CY-Bench will facilitate the development of improved crop73

forecasting tools that can be used to support decision-makers in food security planning worldwide.74

2 Related work75

Crop yields are commonly forecast using weather, soil, moisture and crop productivity or remote-76

sensing-derived vegetation health indicators as predictors. Methods used include field surveys,77

process-based crop models, statistical regression and machine learning (5; 58). Data-driven ap-78

proaches are appealing as they can capture processes not yet well-covered by biophysical crop79
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models, but typically require access to predictor data and yield data over large areas and spanning80

multiple years. The availability of these datasets determines the type of yield forecasting setup,81

which can range from national and sub-national level to field level. For example, the European82

Commission’s Joint Research Centre (EC-JRC) regularly produces national crop yield forecasts for83

the EU and surrounding countries using crop models, agro-meteorological analyses and expertise84

of analysts (72). Sub-national yield forecasting utilizes data for a large number of sub-national85

administrative units (e.g. regions, provinces) typically collected by national statistical offices and86

captures spatial yield variability within a country (38; 44), which is crucial for targeted food security87

planning.88

An increasing number of publications have demonstrated excellent performance of a diverse range of89

machine learning approaches for crop yield forecasting (34; 35; 49; 76; 45). Unfortunately, while90

results suggest that machine learning methods have great potential for providing accurate and timely91

crop yield forecasts, the datasets used by previous studies are, in most cases, unpublished. This has92

prevented the community from reproducing their results or comparing the strengths and weaknesses93

of different methods across different crops and regions. To our knowledge, SustainBench (78),94

which curates multi-source data for various tasks spanning the United Nations’ seven sustainable95

development goals, includes a benchmark dataset designed to measure the performance of machine96

learning models for crop yield prediction. However, it targets end-of-season prediction for only one97

crop (soybean) in three countries (United States, Brazil and Argentina) and uses a relatively small98

set of predictors. Another public dataset is CropNet (33), which only includes the United States.99

Similarly, there are ongoing efforts (82) to produce a multi-task benchmark dataset which includes100

yield prediction in the USA as a sub-task. Apart from these, other available data contributions include101

yield statistics only (15; 48; 47; 54; 3; 4; 10; 13; 24; 39) or have been made available in combination102

with predictor data published with existing studies (28; 21; 43; 45) but are not explicitly tailored for103

yield forecasting benchmarking studies.104

In comparison, CY-Bench data covers forty-two countries across six continents. This enables a105

comprehensive evaluation of model performance across regions with heterogeneous agricultural106

practices and infrastructure, including developing countries which are generally under-represented107

in machine learning benchmarks. Furthermore, we closely mimic real-world operationalization108

settings in the predictor data used, data pre-processing steps and evaluation set-up, including the use109

of temporal Leave-One-Year-Out validation (as opposed to the random sampling methods used in110

SustainBench and multiple previous studies). This means that novel machine learning methods which111

achieve excellent performance on CY-Bench could be used to improve yield forecasting systems in112

practice, providing accurate and timely information urgently needed by decision-makers.113

Although we have identified a distinct lack of benchmark datasets for agricultural yield forecasting,114

there have been many recent developments in the related field of crop type mapping using satellite data115

(55; 69; 78; 29), leading to exciting progress in the development of methods for extracting meaningful116

patterns from time series of earth observation data (56; 55; 46; 57). Other related work (70; 68; 27)117

has been able to exploit meta-learning and multitask learning to improve model performance for land118

cover classification, crop mapping and agricultural yield forecasting. While CY-Bench is focused119

on pre-harvest yield forecasting, the dataset includes time series of crop productivity or vegetation120

health indicators from earth observation as predictors, and can therefore be easily combined with121

existing crop mapping benchmark datasets to explore such approaches.122

3 CY-Bench task and datasets123

3.1 Task124

CY-Bench is designed to evaluate model performance for in-season crop yield forecasting at sub-125

national level. Forecasts are generated for selected crops (maize and wheat) at different time points,126

based on stakeholder needs (e.g. mid-season, a quarter of the season, or a certain number of days127

before harvest). For this exercise, we only report forecasts generated mid-season, the timing of128

which can differ by location. Mid-season was selected because peak model performance is typically129
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reached around the mid-point of the growing season. This mid-point is also when the transition from130

vegetative to reproductive growth stage happens for most crops (30; 5). Season length and mid-season131

information is derived from crop calendars. As in the operational setting, models must forecast the132

end-of-season crop yield outcomes based on the available time series data only up until the designed133

lead time.134

3.2 Dataset overview135

Agricultural yield data. The CY-Bench dataset includes crop statistics from twenty-nine countries136

for wheat and forty-two countries for maize (see Figure 1, 2). Models are trained to predict official137

crop yield statistics for sub-national administrative levels, which are obtained from national statistics138

offices (e.g. National Agricultural Statistics Service of the United States Department of Agriculture)139

or regional agencies (e.g. Eurostat and FEWSNET). Details of each source are indicated in the140

data preparation section in GitHub. Depending on the country, the term ‘sub-national’ can refer141

to administrative division 1 (province, state, region), division 2 (district), or division 3 (county,142

municipality, commune). When statistics for multiple administrative levels are available, we select143

the highest resolution.144

Predictor data. CY-Bench predictor data includes static soil properties and time series of weather145

variables, soil moisture indicators and vegetation indicators (Table 1). Soil data comes from the WISE146

Soil database (6), weather variables from AgERA5 (9), potential or reference evapotranspiration147

(ET0) from FAO-AQUASTAT (2), soil moisture indicators from GLDAS (52), vegetation indicators148

(fraction of absorbed photosynthetically active radiation (FPAR) and normalized difference vegetation149

index (NDVI)) from EC-JRC and MODIS MOD09CMG respectively (62; 75). Predictor data and150

yield statistics often differ in spatial and temporal resolution, requiring further processing to align151

them effectively. Weather, ET0 and soil moisture data come in daily time steps. FPAR comes in152

dekadal time step, with three values per month (days 1-10, 11-20, 21-31). NDVI data is available153

approximately every week, but the dates are not regular. Predictor data is filtered using crop-type154

maps (or crop masks) from EC-JRC (18), which are derived from the WorldCereal project (74). This155

step restricts predictor data to pixels in harvested crop areas only. When crop masks and predictor data156

differ in resolution, the crop mask is resampled to the resolution of the predictor data. After masking,157

predictor data is aggregated to match the boundaries and spatial level of the yield data according158

to the administrative level (Figure 3). Additionally, as the sensitivity of crops vary throughout the159

phenological cycle, time series predictor data must correspond to the growing season. As this depends160

on the specific crop, management practices, and location, crop calendar information such as the start161

and end of season is required. In CY-Bench, these crop calendars are obtained from the WorldCereal162

project (22).163

Figure 1: A map of the countries covered by CY-Bench for wheat yield forecasting. CY-Bench has
coverage in 31 countries in total.
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Figure 2: A map of countries covered by CY-Bench for maize yield forecasting. CY-Bench has
coverage in 42 countries in total.

Table 1: Overview of the predictor data, crop mask and crop calendar. NDVI refers to the normalized
difference vegetation index, FPAR is the fraction of absorbed photosynthetically active radiation and
AWC is the available water capacity.

Category Data Spatial
resolution

Temporal
resolution SourceName Unit

Meteorological

temperature
precipitation
solar radiation

°C
mm
Jm−2

0.1° daily AgERA5 (9)

evapotranspiration mm 0.1° daily AQUASTAT-FAO (2)

Vegetation FPAR
NDVI

%
-

500m
5000m

10-days
8-days

JRC (62)
MOD09CMG (75)

Soil

AWC
bulk density
drainage class

cm m−1

kg dm−3

-
30” static WISE (6)

moisture content kg m−2 0.25° daily NASA GLDAS (52)

Crop crop mask
crop calendar - 0.5° - Crop masks (74; 18)

Crop calendars (22)

Figure 3: Overview of the CY-Bench data preparation process.

For deep learning models, such as Long Short Term Memory networks (LSTM), time series data is164

aggregated to dekadal time steps (days 1-10, 11-20, 21-31, and so on), which allows all datapoints to165

have the same number of time steps and therefore fixed input dimension.166
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For tree-based models and other machine learning models which are designed for tabular data,167

the time series data is aggregated in the temporal dimension to create domain-relevant features.168

These include monthly averages of minimum daily temperature (tmin), maximum daily temperature169

(tmax), average daily temperature, daily precipitation (prec), cumulative climatic water balance170

(prec - ET0) and surface soil moisture. Similarly, monthly maximum values were calculated for171

cumulative growing degree days (GDD), cumulative precipitation, cumulative FPAR and cumulative172

NDVI. Furthermore, we calculated the number of days in which tmin was less than 0 degree Celsius173

(‘cold days’), days in which tmax was greater than 35 degrees Celsius (‘hot days’) and days where174

prec was less than 1 mm (‘dry days’).175

Dataset access. The dataset is available in Google Drive. A python library has been developed to176

load the datasets and run CY-Bench.177

Table 2: Maize NRMSE per model for Argentina (AR), Brazil (BR), China (CN), Germany (DE),
France (FR) and the United States (US).

Model AR BR CN DE FR US

LSTM 87.206 42.352 20.584 13.778 21.967 23.962
Naive 33.514 33.284 9.384 14.838 16.860 18.101
RF 49.544 45.538 13.767 14.227 18.549 19.391
Ridge 152.41 64.363 48.245 48.798 23.043 22.443

Table 3: Wheat NRMSE per model for Argentina (AR), Brazil (BR), China (CN), Germany (DE),
France (FR) and the United States (US).

Model AR BR CN DE FR US

LSTM 36.440 33.137 99.883 14.782 17.540 35.700
Naive 24.349 28.008 10.808 9.941 9.546 19.410
RF 32.941 31.059 45.804 15.490 17.323 39.305
Ridge 31.061 31.737 351.01 60.968 65.382 29.093

4 Model evaluation and baselines178

In CY-Bench, models are trained per country and per crop, and evaluated using Leave One Year Out179

(LOYO) evaluation. The motivation for LOYO is to obtain a robust estimate of the performance of180

algorithms on both average and extreme harvest years. As each season can vary substantially from181

previous years, measurement of predictive performance on only the current season or the most recent182

year may under- or over-estimate the forecasting ability of a model. For more information regarding183

model evaluation strategies in the context of agriculture see ((51)).184

We evaluate the performance of four baseline models. First, the Average Yield model (Naive) predicts185

the average of the training set by administrative region (if present in training data) or country (if186

absent in training data). Second, the Ridge model (implemented in Scikit-Learn) builds a linear187

model using features designed as described in the previous sub-section. Third, Random Forest is188

used (also implemented in Scikit-Learn), which is frequently used for agricultural machine learning189

studies. Finally, we include LSTM as a baseline for representation learning from time series data.190

As our evaluation metrics, we use the normalized root mean squared error (NRMSE; i.e., the root191

mean squared error normalized by the average yield of the test set), and mean absolute percentage192

error (MAPE). NRMSE and MAPE are reported by averaging over all cross-validation test folds193

(which covers the complete dataset for LOYO) and all admin regions with a country. Additionally,194

metrics and box plots describing model performance for each year individually are included in the195

Supplement.196
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We report results of the baseline model benchmarks in figures 4 and 5 for maize and wheat, respec-197

tively, to show NRMSE of different countries and baseline models. Moreover, we report median198

NRMSE of select countries for each model in tables 2 and 3 for maize and wheat, respectively.199

The results show that the Naive model outperforms all the other baseline models, except for Random200

Forests. The Naive model is a test of prediction skill. The performance of most machine learning201

models shows the difficulty of generalizing from the training set.202

Figure 4: NRMSE for maize, predicted at mid-season lead time.

Figure 5: NRMSE for wheat, predicted at mid-season lead time.

7



5 Contributions, limitations and future work203

In addition to the relevance for climate change, food security and United Nations’ sustainable204

development goals, CY-Bench dataset is relevant to the ML community due to its comprehensive205

geographic coverage, capturing diverse agricultural practices and conditions. The inclusion of206

high-resolution satellite imagery, weather data, and soil properties provides a rich, heterogeneous207

dataset that presents numerous opportunities for the development of innovative machine learning208

methods. An inherent challenge of agricultural data, and crop-yield forecasting specifically, is the209

difficult and high level of domain knowledge required in collecting and processing the various data210

types and defining the task. This analysis-ready dataset is accessible to ML modelers who do not211

necessarily have to be experts in yield forecasting, lowering the barrier to entry for advanced yield212

forecasting research and fostering broader participation and innovation in the field. Beyond academic213

research, this dataset can significantly impact policy-making, agricultural planning, and disaster214

response by enabling the robust evaluation and development of operationalizable models. Researchers,215

policymakers, farmers, and agribusinesses can all benefit from the insights derived from this dataset,216

leading to better-informed decisions and improved agricultural outcomes.217

Apart from the downstream task of in-season yield forecasting, CY-Bench enables explorations218

in transfer learning, domain adaptation, and representation learning. Researchers can leverage219

this dataset to assess if models are able to generalize well across diverse geographic and climatic220

conditions. While in this paper we focus on forecasting crop yields by training individual models221

for each crop and country, the dataset allows for a more integrated approach. We envision at least222

four directions for future research. First, transfer learning methods can be explored to improve223

model generalisation ability when training models on data from a data-rich region and deploying the224

forecasting model to data-sparse regions. Second, self-supervised learning could be used to harness225

the vast amounts of unlabeled agricultural data available. By training models to recognize patterns226

and structures within this data, we can build robust representations that capture essential features of227

the agricultural system. These representations can then be fine-tuned using the labeled datasets in228

CY-Bench specific to each country or crop. For instance, a self-supervised model trained on satellite229

images and environmental data can later be fine-tuned to predict specific crop yields in various230

regions, making it a powerful tool for global agricultural analysis. Third, another important area is231

to explore the stability of model predictions against natural and human interventions. This involves232

understanding how factors like extreme weather events, policy changes, or management practices233

impact yield forecasts. Causal invariant learning focuses on identifying and utilizing stable variables234

across different environments to ensure robustness and generalization. For example, soil quality and235

basic climatic factors like temperature and precipitation may have stable relationships with crop236

yields. By recognizing variables that consistently impact crop yields regardless of geographic or237

climatic differences, it may be possible to build models that are resilient to distributional shifts and238

perform reliably across diverse conditions. Fourth, deep learning techniques, such as autoencoders,239

can be employed to learn compact and informative representations of the input data, potentially240

uncovering latent variables that are more directly related to crop yields. This could improve the241

model’s ability to generalize and perform well across different regions and conditions, while possibly242

giving scientific insight into the underlying drivers of agricultural crop yields.243

We would like to also highlight several limitations and areas for improvement in future iterations of244

CY-Bench. First, some limitations stem from the data sources selected. The predictors do not capture245

certain factors that influence end-of-season yields, such as pests, diseases and farm management246

choices. Similarly, CY-Bench does not include socioeconomic factors such as market prices, labor247

availability, and policy changes. Including these variables could provide a more holistic understanding248

of yield fluctuations and help in developing more robust models. Additionally, our modeling setup249

does not differentiate between irrigated and non-irrigated systems. These systems can exhibit different250

responses to predictors due to varying water availability, leading to potential inaccuracies in yield251

forecasts. Our choice was driven by the fact that crop statistics in most countries are rarely reported252

separately for irrigated and non-irrigated areas. Second, CY-Bench does not supply process-based253

crop model outputs, which could be used as inputs to machine learning models, and features are254
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aggregated in fixed time steps, rather than being designed according to the stage of crop growth and255

development. Access to crop model outputs could provide information on key phenological state256

changes, which can be useful to design more predictive features. Third, crop yield forecasting models257

could benefit from incorporating weather forecasts. In our setup, models cannot access data after258

the lead time and, therefore, cannot capture conditions that might affect the end-of-season yields259

after that point. In the real-life setting, forecasters would have access to weather forecasts that may260

provide useful information. Finally, the LOYO method of evaluation is used due to small data sizes261

in many countries. This approach assumes that all years are independent, which may be too strong of262

an assumption if consecutive years have correlated environmental and climatic conditions.263

6 Conclusion264

Innovative data-driven solutions will be crucial to achieve the United Nations’ Sustainable Devel-265

opment Goal 2 of Zero Hunger (61). By providing consistent evaluation of large-scale crop yield266

forecasts, CY-Bench is a step forward in bridging the gap between agricultural modeling and machine267

learning community. Curated by an interdisciplinary group of experts in agronomy, food security,268

climate science and agriculture, this dataset can facilitate increased collaboration between fields, and269

ultimately help to produce reliable crop yield forecasts to support decisions of farmers, policymakers270

and commodity traders worldwide.271
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Checklist574

1. For all authors...575

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s576

contributions and scope? [Yes] We introduce CY-Bench, a comprehensive dataset577

and benchmark to forecast crop yields at sub-national level. CY-Bench standardizes578

selection, processing and spatio-temporal harmonization of public sub-national yield579

statistics with relevant predictors. Our goal is to engage the machine learning commu-580

nity in advancing the development of sophisticated machine learning models for crop581

yield forecasting.582

(b) Did you describe the limitations of your work? [Yes] Limitations are discussed in583

section 5.584

(c) Did you discuss any potential negative societal impacts of your work? [N/A]585

(d) Have you read the ethics review guidelines and ensured that your paper conforms to586

them? [Yes]587

2. If you are including theoretical results...588

(a) Did you state the full set of assumptions of all theoretical results? [N/A]589

(b) Did you include complete proofs of all theoretical results? [N/A]590

3. If you ran experiments (e.g. for benchmarks)...591

(a) Did you include the code, data, and instructions needed to reproduce the main experi-592

mental results (either in the supplemental material or as a URL)? [Yes] A description593

of the code and data is given in section 3.1. The reader is referred to our Github, which594

also contains scripts to reproduce our results.595

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they596

were chosen)? [Yes] We developed a benchmark to compare different algorithms597

under consistent evaluation conditions. We chose leave-one-year-out cross-validation,598

as justified in Section 4. We also provided a selection of models and algorithms as599

baselines. For model specific details, such as hyperparameter settings, the reader is600

referred to our Github. Hyperparameter were not optimized; some default values were601

used.602

(c) Did you report error bars (e.g., with respect to the random seed after running experi-603

ments multiple times)? [N/A]604

(d) Did you include the total amount of compute and the type of resources used (e.g., type605

of GPUs, internal cluster, or cloud provider)? [Yes] While the primary focus of the606

benchmark is on the dataset, it does provide baseline models. The reader is referred to607

our Github for details on the total amount of compute resources used and the specific608

resource type609

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...610

(a) If your work uses existing assets, did you cite the creators? [Yes] We included citations611

to the main data sources we harvested in our work. Additionally, for a comprehensive612

list of all data sources, including specific citation information, the supplementary613

information refers the reader to a dedicated document on our Github614

(b) Did you mention the license of the assets? [Yes] We stated the use of EUPL license615

(version 1.2) in section 3.1. Data sources used in the benchmark may have their own616

license requirements. They are linked from the README in Github.617

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]618

This paper introduces a benchmark on crop yields at sub-national level. The dataset we619

created is accessible from Google Drive.620

(d) Did you discuss whether and how consent was obtained from people whose data you’re621

using/curating? [Yes] The data we used is open and freely available and does not622

contain information about people.623
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(e) Did you discuss whether the data you are using/curating contains personally identifiable624

information or offensive content? [N/A] The data that we use is open, freely available,625

and free from personally identifiable information or offensive content. We do not curate626

or modify the data in a way that would introduce such concerns.627

5. If you used crowdsourcing or conducted research with human subjects... (Not applicable)628

(a) Did you include the full text of instructions given to participants and screenshots, if629

applicable? [N/A]630

(b) Did you describe any potential participant risks, with links to Institutional Review631

Board (IRB) approvals, if applicable? [N/A]632

(c) Did you include the estimated hourly wage paid to participants and the total amount633

spent on participant compensation? [N/A]634
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