
Published in Transactions on Machine Learning Research (01/2026)

High-Layer Attention Pruning with Rescaling

Songtao Liu∗ Peng Liu
The Pennsylvania State University

Reviewed on OpenReview: https: // openreview. net/ forum? id= jkPBIxYmWE

Abstract

Pruning is a highly effective approach for compressing large language models (LLMs),
significantly reducing inference latency. However, conventional training-free structured
pruning methods often employ a heuristic metric that indiscriminately removes some attention
heads across all pruning layers, without considering their positions within the network
architecture. In this work, we propose a novel pruning algorithm that strategically prunes
attention heads in the model’s higher layers. Since the removal of attention heads can
alter the magnitude of token representations, we introduce an adaptive rescaling parameter
that calibrates the representation scale post-pruning to counteract this effect. We conduct
comprehensive experiments on a wide range of LLMs, including LLaMA3.1-8B, Mistral-7B-
v0.3, Qwen2-7B, and Gemma2-9B. Our evaluation includes both generation and discriminative
tasks across 27 datasets. The results consistently demonstrate that our method outperforms
existing structured pruning methods. This improvement is particularly notable in generation
tasks, where our approach significantly outperforms existing baselines. Code is available at
https://github.com/SongtaoLiu0823/HARP.

1 Introduction

Large language models (LLMs) (Touvron et al., 2023; OpenAI et al., 2023; Jiang et al., 2023; Yang et al.,
2024; Gemma2-Team et al., 2024), pre-trained on extensive text data, have achieved surprising performance
in downstream tasks such as information retrieval (Asai et al., 2024), code generation (Guo et al., 2024), and
mathematical reasoning (Wang et al., 2023; Yang et al., 2023b; Huang et al., 2024). These LLMs, however,
contain a huge number of parameters, resulting in substantially slower inference speed compared to their
smaller counterparts.

Many efforts have leveraged pruning algorithms (Frantar & Alistarh, 2023; Jaiswal et al., 2023; Xia et al.,
2024; Ashkboos et al., 2024; Xu et al., 2024; Jaiswal et al., 2024a; Zhang et al., 2024b; Dong et al., 2024b;
Yin et al., 2024a;b; Zhao et al., 2024) to reduce redundant parameters and lower inference latency without
significantly compromising the performance. Among these, training-free structured pruning methods (Ma
et al., 2023; An et al., 2024; Sun et al., 2024b) estimate the importance of parameters using predefined
pruning metrics, allowing them to remove less important components without retraining. While most pruned
parameters typically come from feedforward networks, these methods also remove some low-importance
attention heads. This is especially beneficial for long-context tasks, where the attention mechanism becomes
the main computational bottleneck due to its quadratic time complexity with respect to sequence length.

However, current pruning algorithms generally prune attention heads across all targeted layers, either by
uniformly removing the same heads from each layer (Ma et al., 2023) or by adaptively pruning more heads in
certain layers and fewer in others (An et al., 2024). These approaches do not consider which attention head
positions are actually more redundant and thus better suited for pruning. We argue that the pruning metrics
used in these methods are not accurate enough to reliably identify the most redundant attention heads. In
this work, we aim to address the following question:

Can we develop a structured pruning algorithm that effectively removes attention heads?
∗Correspondence to: Songtao Liu <skl5761@psu.edu>.

1

https://openreview.net/forum?id=jkPBIxYmWE
https://github.com/SongtaoLiu0823/HARP

Published in Transactions on Machine Learning Research (01/2026)

Mag-sp LLM-Pruner Wanda-sp FLAP HARP0

9

18

27

36

18.25
20.58

12.61
15.05

30.10

Generation Task Performance on LLaMA3.1-8B (%)

Triviaqa NaturalQuestions GSM8K0

18

36

54

72

12.43

3.24 1.29

61.45

21.99

36.16

Rescaling Performance Comparison Across Benchmarks (%)
w/o rescaling
w/ rescaling

Figure 1: Left: Performance comparison of our method against state-of-the-art baselines on LLaMA3.1-8B,
demonstrating superior generation capabilities. Right: Ablation study on the rescaling parameter across
benchmarks, showing that applying rescaling consistently leads to significant performance improvements over
the variant without rescaling.

We approach this problem by analyzing the relative importance of different layers in LLMs. Recent studies (Men
et al., 2024; Zhong et al., 2024; Gromov et al., 2024; He et al., 2024; Siddiqui et al., 2024) demonstrate that
pruning blocks or entire layers in the high layers of LLMs often yields better performance than pruning those
in the low layers. Building on these findings, we propose a training-free structured pruning algorithm, called
HARP (High-layer Attention Rescaled Pruning), that removes the attention heads, specifically the query
and key parameters, in the higher layers. After pruning, the attention mechanism in these layers can be
skipped entirely. However, bypassing the attention computation may alter the output magnitude, as the
value representations are no longer combined through weighted averaging based on attention scores over the
full sequence. To mitigate this effect, we introduce a rescaling parameter in the attention residual block to
calibrate the token representation magnitude after pruning.

We evaluate the effectiveness of our approach by applying it to LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B,
and Gemma2-9B. Extensive experiments on 27 representative downstream tasks show that our method
outperforms popular training-free structured pruning algorithms, including Magnitude Pruning (Han et al.,
2015), LLM-Pruner (Ma et al., 2023), FLAP (An et al., 2024), and Wanda (Sun et al., 2024b). As illustrated
on the left side of Figure 1, our method, HARP, significantly outperforms these baselines on generation tasks
under the same attention head pruning ratio. More notably, the results on the right side of Figure 1 show
that applying rescaling significantly improves performance compared to the unscaled variant, demonstrating
the importance of rescaling for properly adjusting the representation magnitude.

2 High-Layer Attention Pruning

In this section, we first demonstrate the importance of pruning attention heads in LLMs as part of structured
pruning algorithms to reduce latency in downstream long-context tasks (Section 2.1). Next, we provide a
theoretical and empirical explanation for why attention heads in higher layers are less important (Section 2.2).
Finally, we present the details of our pruning algorithm (Section 2.3).

2.1 Pruning Attention Heads for Long-Context Modeling

Most existing structured pruning algorithms for LLMs primarily focus on pruning parameters in the Feed-
Forward Network (FFN), as they contain the majority of the model’s parameters. By pruning the FFN, we
can significantly reduce the latency. However, pruning attention heads is also crucial. In long-context tasks
such as retrieval-augmented generation (RAG), long-document summarization, and many-shot in-context
learning (ICL), the attention mechanism often becomes the primary computational bottleneck due to its
complexity O

(
𝑁2) with respect to the sequence length 𝑁. We provide a detailed analysis of the time

complexity associated with each component of LLMs.

2

Published in Transactions on Machine Learning Research (01/2026)

Theoretical Computation Complexity Analysis. Let 𝑁 be the sequence length, 𝑑 the hidden size, and
𝑑ff the intermediate dimension in the FFN. In a standard transformer block, the linear projections in the
attention module, including query, key, value, and output projections, have a time complexity of O

(
𝑁𝑑2).

The self-attention mechanism, which includes computing attention scores and aggregating values, has a time
complexity of O

(
𝑁2𝑑

)
. The FFN, consisting of two linear transformations with an intermediate dimension

𝑑ff , has a time complexity of O (𝑁𝑑𝑑ff).

When 𝑁 < 𝑑ff , the FFN’s O (𝑁𝑑𝑑ff) complexity becomes the main time bottleneck. Conversely, when 𝑁 > 𝑑ff ,
the O

(
𝑁2𝑑

)
complexity of the self-attention mechanism dominates. In long-context tasks, prompt lengths can

reach up to 2 million tokens (Jin et al., 2025), making the operations in the self-attention module extremely
time-expensive. By pruning attention heads (Bansal et al., 2022), we can achieve significant improvements in
computational efficiency for long-context tasks while only pruning a small fraction of the model’s parameters.

2.2 High-Layer Attention Heads Are Less Important

While many structured pruning algorithms focus on pruning attention heads, they often overlook the attention
head position within the network. In this section, we show that attention heads in higher layers are typically
less important than those in lower layers.

Theoretical Analysis. In this subsection, we formalize what we mean by “tokens becoming similar” in a
layer and how this affects the usefulness of self-attention. Let H(ℓ) ∈ R𝑁×𝑑 denote the hidden representation
matrix at layer ℓ, whose 𝑖-th row h (ℓ)

𝑖
corresponds to the representation of the 𝑖-th token. Throughout this

paper, when we say that “the token representations are (almost) the same”, we specifically mean that their
pairwise cosine similarities are close to 1, i.e., all token vectors are nearly parallel in the representation space.
Definition 1. The average pairwise cosine similarity among tokens in a matrix H ∈ R𝑁×𝑑 is defined as

Sim(H) := 2
𝑁 (𝑁 − 1)

∑︁
1≤𝑖< 𝑗≤𝑁

h⊤
𝑖

h 𝑗
∥h𝑖 ∥2∥h 𝑗 ∥2

. (1)

A value Sim(H) ≈ 1 indicates that all token representations are almost colinear (up to scaling), while a smaller
value means that the representations point in more diverse directions. This quantity therefore measures the
global level of similarity among token representations.
Theorem 1. When Sim(H(ℓ)) → 1, token representations in layer ℓ become nearly parallel. Since queries
and keys are linear projections of H(ℓ) , their dot products across positions become almost constant, so the
row-wise softmax yields nearly uniform attention weights. The head thus degenerates into averaging value
vectors and cannot distinguish tokens. Conversely, if Sim(H(ℓ)) is bounded away from 1, attention remains
non-uniform and can model meaningful token-to-token dependencies.

A formal proof of Theorem 1 is provided in Appendix A. Intuitively, as the hidden states within a layer
become more and more aligned (large Sim(H(ℓ))), the attention operation behaves like a simple averaging
operator that mixes already similar representations. This phenomenon is analogous to over-smoothing in
deep GNNs, where repeated averaging causes node embeddings to collapse into a low-dimensional subspace.
As a result, attention heads in very high layers, where representations are highly aligned, are less informative
than those in lower layers where representations remain more diverse.

Empirical Analysis. Recent studies (Men et al., 2024; Zhong et al., 2024; Gromov et al., 2024; He et al.,
2024; Siddiqui et al., 2024; Liu et al., 2024b; Zhang et al., 2024a; Jaiswal et al., 2024b; Chen et al., 2024b;
Kim et al., 2024a) have introduced various heuristic metrics to evaluate the importance of blocks within each
layer of LLMs. A common finding across these works is that the parameters in lower layers tend to be more
important than those in higher layers, lending empirical support to our theoretical analysis. One such metric
is the Block Importance (BI) score (Men et al., 2024):

BI(ℓ) = 1 − EH,𝑡

〈
H(ℓ)
𝑡 ,H(ℓ+1)

𝑡

〉

H(ℓ)
𝑡

2

H(ℓ+1)
𝑡

2

. (2)

3

Published in Transactions on Machine Learning Research (01/2026)

Algorithm 1 Top-down 𝛼 search for HARP
Input: Base LLM, number of layers to prune 𝑃, search values 𝛼 ∈ {0, 0.1, . . . , 1.0}
Initialize: αbest ∈ R𝑃 = [1.0, 1.0, . . . , 1.0]
𝐿 = total number of layers in the model
for ℓ = 𝐿 − 1 down to 𝐿 − 𝑃 do

PPLbest = ∞
for each 𝛼 ∈ {0, 0.1, . . . , 1.0} do

Set rescaling parameter αbest [𝐿 − 1 − ℓ] = 𝛼 for layer ℓ
PPL = Perplexity(LLM,αbest)
if PPL < PPLbest then

PPLbest = PPL
αbest [𝐿 − 1 − ℓ] = 𝛼

end if
end for

end for
Output: Optimal rescaling parameters αbest ∈ R𝑃 for each pruned layer

The BI score typically decreases with increasing layer index ℓ, indicating the reduced impact of higher-layer
parameters. In this work, we use these empirical observations as additional evidence that pruning higher-layer
attention heads tends to be less harmful than pruning lower-layer ones, and we explicitly incorporate this
layer-wise asymmetry into our pruning design.

2.3 Methodology

In this section, we introduce HARP, a novel structured pruning algorithm specifically designed to remove
attention heads in the higher layers of LLMs. Our approach focuses on pruning only the query and key
parameters in these layers. As a result, we can bypass the self-attention mechanism for these pruned layers.
Concretely, when the attention of a layer is fully pruned, the layer no longer computes attention scores or
performs aggregation; instead, it only applies the value and output projections. The computation within the
self-attention module can then be formulated as H = HW𝑉W𝑂 .

Rescaling. The aggregation step in self-attention computes, for each token, a weighted average of value
vectors over all positions in the sequence. This operation not only mixes information across tokens but can
also change the overall scale of the hidden representations (Kipf & Welling, 2017). We measure this scale
using the Frobenius norm of the hidden state matrix H.
Proposition 1. Let H ∈ R𝑁×𝑑 denote the token representations, and let Â ∈ R𝑁×𝑁 be a row-normalized
attention matrix (i.e., each row is non-negative and sums to 1). Consider the aggregation step in self-attention
defined by H′ = ÂH. In general, we have

∥H′∥𝐹 ≠ ∥H∥𝐹 , (3)

and equality holds if and only if every row of Â is a one-hot vector (so that each output token simply copies
one input token without averaging). This means that, except for this degenerate case, the aggregation step
changes the magnitude of token representations.

A detailed proof of Proposition 1 is also given in Appendix A (“Proof of Proposition 1”). The proposition
implies that removing the aggregation step (by pruning queries and keys and bypassing attention) will in
general alter the scale of the hidden states compared to the original model.

Based on this proposition, we argue that the magnitude of token representations can change after pruning,
since the aggregation step is bypassed. Inspired by normalization approaches (Ioffe & Szegedy, 2015; Ba
et al., 2016), which maintain the magnitude of token representations within a stable range to prevent gradient
explosion or vanishing during pretraining, we similarly adjust the magnitude after pruning. This adjustment
keeps the token representation magnitude within a stable range relative to their pre-pruning state, helping

4

Published in Transactions on Machine Learning Research (01/2026)

Table 1: Comparison of FLAP with existing pruning algorithms on LLMs.

Method Weight Update Calibration Data Pruning Metric
Magnitude ✗ ✗ |W𝑖 𝑗 |

Wanda ✗ ✓ |W𝑖 𝑗 | · ∥X 𝑗 ∥2

FLAP ✗ ✓ 1
𝑁−1

∑𝑁
𝑛=1

(
Xℓ
𝑛, 𝑗,: − Xℓ:, 𝑗 ,:

)2
·

Wℓ

:, 𝑗

2

2
HARP ✗ ✓ ppl

preserve model performance during inference. We introduce a rescaling parameter 𝛼 into the residual block
of the self-attention module as H = H + 𝛼HW𝑉W𝑂 .

Determining the optimal value of 𝛼 is challenging, as we treat 𝛼 as a non-differentiable, layer-wise hyperpa-
rameter rather than a trainable parameter. Instead of retraining the model, we propose a simple and efficient
greedy search strategy that selects 𝛼 by directly evaluating the perplexity of the pruned LLM on a held-out
corpus.

To simplify the search process, we adopt a top-down approach: starting from the topmost layer (layer 𝐿), we
determine the optimal 𝛼 for that layer while keeping all other layers unpruned or fixed; we then fix this value
and proceed to search for 𝛼 in the next lower layer. This layer-by-layer greedy strategy forms a sequential
for-loop that significantly reduces the overall search space, as shown in Algorithm 1.

In practice, we implement this procedure as a grid search over a small set of candidate values {0, 0.1, . . . , 1.0},
which requires only a modest number of forward passes (perplexity evaluations) and is therefore much cheaper
than any training-based method. Designing more advanced search strategies (e.g., Bayesian optimization or
differentiable relaxations) is an interesting open direction for future work.

3 Experiments

3.1 Experimental Setup

Baselines. We evaluate HARP against four baselines: Magnitude pruning (Han et al., 2015), LLM-
Pruner (Ma et al., 2023), FLAP (An et al., 2024), and Wanda (Sun et al., 2024b), as shown in Table 1. We
build upon the FLAP to extend Magnitude Pruning and Wanda to structured pruning, referring to these
variants as Mag-sp and Wanda-sp. Mag-SP, LLM-Pruner, and Wanda-SP prune attention heads uniformly
across all targeted layers by removing the same number of heads from each layer, whereas FLAP adaptively
prunes more heads in some layers and fewer in others.

Model Setting. We conduct experiments on four GQA-based LLMs: LLaMA3.1-8B (Touvron et al., 2023),
Mistral-7B-v0.3 (Jiang et al., 2023), Qwen2-7B (Yang et al., 2024), and Gemma2-9B (Gemma2-Team et al.,
2024). For LLaMA3.1-8B and Mistral-7B-v0.3, we set the attention head pruning ratio to 1/4, whereas for
Qwen2-7B and Gemma2-9B, it is set to 1/7. Therefore, we use HARP to prune 8 layers for LLaMA3.1-8B, 4
layers for Qwen2-7B, 8 layers for Mistral-7B-v0.3, and 6 layers for Gemma2-9B. We find that our method
achieves a smaller pruning ratio compared to the baselines. To address this and ensure a fair comparison, we
integrate FLAP with our HARP, leveraging FLAP to prune FFN parameters in our implementation. Aside
from this, FFN parameters are not pruned in the baseline methods.

Baseline Implementation. It is important to note that the FLAP official implementation1 does not
support GQA-based LLMs. Therefore, we use a modified implementation2 for our experiments. Furthermore,
the official implementation3 of LLM-Pruner is available only for LLaMA3.1-8B. Our HARP is compatible
with any attention mechanism.

1https://github.com/CASIA-IVA-Lab/FLAP
2https://github.com/nyunAI/FLAP
3https://github.com/horseee/LLM-Pruner

5

Published in Transactions on Machine Learning Research (01/2026)

Table 2: Performance on generation tasks across LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B
(%). Best is bold.

LLaMA3.1-8B
Method Parameter Pruning Ratio Attention Head Pruning Ratio TriviaQA NaturalQuestions GSM8K MATH-hard BBH Average

Dense 0 0 70.59 27.70 49.66 4.61 62.86 43.08
Mag-sp 4.8% 1/4 57.08 18.78 2.58 0.08 12.72 18.25

LLM-Pruner 4.8% 1/4 55.25 17.67 2.58 0.38 27.03 20.58
Wanda-sp 4.8% 1/4 45.05 13.38 0.76 0.23 3.66 12.61

FLAP 4.8% 1/4 56.44 17.84 0.83 0.00 0.14 15.05
HARP + FLAP 4.8% 1/4 60.06 21.50 31.77 1.36 30.93 29.12

HARP 3.3% 1/4 61.45 21.99 36.16 1.36 34.53 31.10
Mistral-7B-v0.3

Method Parameter Pruning Ratio Attention Head Pruning Ratio TriviaQA NaturalQuestions GSM8K MATH-hard BBH Average
Dense 0 100% 69.67 28.45 36.54 2.64 58.01 39.06

Mag-sp 4.8% 1/4 63.50 25.24 7.35 0.00 14.44 22.11
Wanda-sp 4.8% 1/4 63.15 23.16 0.76 0.00 0.02 17.42

FLAP 4.8% 1/4 63.18 22.47 1.67 0.00 0.02 17.47
HARP + FLAP 4.8% 1/4 65.64 26.40 19.71 2.64 39.98 30.88

HARP 3.6% 1/4 66.19 26.90 23.88 2.49 40.55 32.00
Qwen2-7B

Method Parameter Pruning Ratio Attention Head Pruning Ratio TriviaQA NaturalQuestions GSM8K MATH-hard BBH Average
Dense 0 0 61.16 26.62 78.32 20.62 59.87 49.32

Mag-sp 1.8% 1/7 54.32 20.33 52.84 6.87 36.74 34.22
Wanda-sp 1.8% 1/7 55.73 22.33 53.37 8.53 28.26 33.64

FLAP 1.8% 1/7 49.73 19.09 18.35 2.64 37.69 25.50
HARP + FLAP 1.8% 1/7 57.76 23.46 63.91 12.61 36.20 38.79

HARP 0.9% 1/7 57.61 23.27 62.24 12.16 35.63 38.18
Gemma2-9B

Method Parameter Pruning Ratio Attention Head Pruning Ratio TriviaQA NaturalQuestions GSM8K MATH-hard BBH Average
Dense 0 0 71.48 31.02 68.31 14.27 70.80 51.18

Mag-sp 3.2% 1/7 64.44 22.80 0.00 0.15 3.12 18.10
Wanda-sp 3.2% 1/7 60.29 22.05 0.00 0.00 5.58 17.58

FLAP 3.2% 1/7 9.95 3.66 0.00 0.00 0.00 2.72
HARP + FLAP 3.2% 1/7 67.57 27.81 30.63 4.61 52.97 36.72

HARP 1.6% 1/7 67.69 28.42 30.02 4.00 53.02 36.63

Please note that baseline approaches sometimes apply pruning to either all layers or only a subset of them.
To ensure a fair comparison and optimize baseline performance, we also tune the pruning layer range for each
baseline model by model based on perplexity, since perplexity is a commonly-used metric for evaluating the
performance of pruning algorithms. Details of the experimental setup and the tuning results are provided in
Appendix B. All experiments are conducted using NVIDIA H100 80G GPUs.

Cost analysis and comparison with baselines. Our implementation performs a layer-wise grid search,
evaluating 𝐾 candidate 𝛼 values per layer using perplexity-based forward passes. Thus, the total cost scales
as 𝐿 ×𝐾 forward passes for an 𝐿-layer model. For the 8-layer setting used in our experiments with 𝐾=10, this
amounts to 8 × 10 = 80 forward passes in total. In contrast, inference-only pruning baselines such as Mag-sp,
Wanda-sp, and FLAP generally require only a single calibration/inference pass to collect importance statistics,
i.e., roughly ∼ 1× the cost of one forward pass. Overall, HARP introduces a one-time search overhead (about
80× more forward passes than single-pass baselines in this 8-layer case), but remains substantially cheaper
than training-based methods; moreover, this cost is amortized since the search is performed only once to
select a good 𝛼.

Benchmarks. For our evaluation, we employ the widely-used lm-evaluation-harness package (Gao et al.,
2024) to conduct experiments on both generation and discriminative tasks. Our generation tasks include 5-shot
TriviaQA (Joshi et al., 2017), 5-shot NaturalQuestions (Kwiatkowski et al., 2019), 5-shot GSM8K (Cobbe et al.,
2021), 4-shot MATH-hard (Hendrycks et al., 2021b; Lewkowycz et al., 2022), 3-shot COT (Wei et al., 2022a),
and BBH (Suzgun et al., 2023). For discriminative tasks, we use 5-shot WinoGrande (Sakaguchi et al., 2021),
25-shot ARC-Challenge (Clark et al., 2018), 0-shot BoolQ (Clark et al., 2019), 0-shot OpenBookQA (Mihaylov
et al., 2018), 0-shot PIQA (Bisk et al., 2020), and 5-shot MMLU (Hendrycks et al., 2021a). We report
the accuracy for these tasks as recommended by the lm-evaluation-harness package. We also evaluate

6

Published in Transactions on Machine Learning Research (01/2026)

Table 3: Performance on discriminative tasks across LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-
9B (%). Best is bold

LLaMA3.1-8B
Method Attention Head Pruning Ratio WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MMLU Average

Dense 0 77.58 54.86 82.05 33.40 80.09 65.30 65.55
Mag-sp 1/4 77.43 49.15 78.26 31.80 78.02 58.20 62.14

LLM-Pruner 1/4 77.03 49.83 79.14 33.00 78.94 34.33 58.71
Wanda-sp 1/4 76.64 45.99 80.76 28.40 76.93 39.45 58.03

FLAP 1/4 65.51 40.27 72.97 31.60 77.97 32.01 53.39
HARP + FLAP 1/4 76.64 51.02 79.82 31.80 78.89 61.96 63.35

HARP 1/4 78.06 53.75 75.02 33.20 78.89 64.83 63.96
Mistral-7B-v0.3

Method Attention Head Pruning Ratio WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MMLU Average
Dense 0 78.45 57.76 82.11 33.20 80.14 62.39 65.68

Mag-sp 1/4 76.48 53.33 69.48 31.40 79.65 57.04 61.23
Wanda-sp 1/4 68.67 48.81 71.31 31.80 79.65 33.51 55.62

FLAP 1/4 62.43 41.98 65.57 29.20 78.99 39.46 52.94
HARP + FLAP 1/4 77.58 53.92 81.13 33.60 79.54 60.68 64.41

HARP 1/4 77.90 55.55 80.49 33.20 79.22 61.52 64.64
Qwen2-7B

Method Attention Head Pruning Ratio WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MMLU Average
Dense 0 77.03 58.11 84.80 35.20 79.92 70.34 67.57

Mag-sp 1/7 68.90 47.53 77.95 30.20 77.37 59.24 60.20
Wanda-sp 1/7 63.30 53.92 81.19 31.00 79.05 62.23 61.78

FLAP 1/7 74.35 49.23 82.78 30.00 76.61 66.67 63.27
HARP + FLAP 1/7 75.61 57.08 85.23 35.00 79.33 67.97 66.70

HARP 1/7 76.09 57.59 84.98 34.60 79.38 68.07 66.79
Gemma2-9B

Method Attention Head Pruning Ratio WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MMLU Average
Dense 0 79.87 64.76 84.19 33.80 81.34 70.64 69.10

Mag-sp 1/7 66.22 58.19 79.91 34.00 80.30 53.56 62.03
Wanda-sp 1/7 79.64 65.02 84.13 36.20 81.39 70.60 69.50

FLAP 1/7 76.09 53.41 78.44 29.00 78.56 67.82 63.89
HARP + FLAP 1/7 79.16 65.44 83.49 35.20 80.36 70.27 68.99

HARP 1/7 79.87 64.85 83.00 34.60 80.96 70.60 68.98

long-context generation performance on the LongBench benchmark (Bai et al., 2024), which includes 16
datasets. Details about benchmarks can be found in Appendix C.

3.2 Main Results

Generation Tasks. Table 2 summarizes the results of all pruning algorithms on 5 generation tasks, showing
the superior performance of our proposed method, HARP, across a range of generation tasks and language
models. Our method consistently outperforms all four baselines across different models and benchmarks.

Further analysis reveals a notable performance gap between GSM8K and TriviaQA. This difference can be
largely attributed to the varying response lengths required by each task. For TriviaQA, unpruned LLMs
typically encounter the end-of-sequence (EOS) token within just 16 tokens. In contrast, GSM8K often
requires up to 256 tokens to generate a complete solution. Since pruned LLMs generate output one token
at a time, they are more vulnerable to error propagation, especially in tasks that demand longer responses.
Each additional token introduces more opportunity for cumulative errors. As a result, the extended response
length required for GSM8K leads to a more significant performance drop in pruned models, compared to the
relatively short responses needed for TriviaQA.

Discriminative Tasks. Table 3 presents the performance of four LLMs on discriminative tasks, along with
the average results across six benchmarks. The results show that our pruning algorithm achieves the highest
average performance on LLaMA3.1-8B, Mistral-8B-v0.3, and Qwen2-7B, and performs on par with the best
baseline on Gemma2-9B. Interestingly, the performance drop on discriminative tasks is less pronounced
compared to generation tasks. This can be attributed to the nature of discriminative tasks, which typically

7

Published in Transactions on Machine Learning Research (01/2026)

Table 4: Performance on long-context generation tasks across LLaMA3.1-8B and Mistral-7B-v0.3. Best is
bold

Long-Context Generation Task Performance Evaluation

Model Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum
MultiN

ews
TREC

TriviaQA
SAMSum

PCount
PRe Lcc RB-P

L
L

aM
A

3.
1-

8B

Dense 20.32 11.53 32.53 12.10 14.51 8.22 29.20 23.11 2.35 68.50 90.49 46.45 3.62 19.50 68.70 62.16
Mag-sp 11.31 8.97 23.98 7.34 7.75 6.22 16.44 19.75 2.96 58.00 80.02 33.17 3.75 8.25 36.72 39.16

LLM-Pruner 9.68 6.71 19.36 6.46 5.68 4.51 13.03 20.75 0.23 59.50 73.36 36.18 4.00 3.70 36.67 38.81
Wanda-sp 14.05 5.98 17.48 6.90 6.27 3.83 8.28 19.05 0.48 56.00 68.25 29.84 4.70 6.12 28.66 30.04

FLAP 7.86 5.14 13.12 6.46 5.50 4.37 8.39 8.31 2.87 15.50 73.15 10.06 1.55 4.01 33.65 34.57
HARP+FLAP 12.68 11.52 19.96 10.15 10.02 6.40 13.10 20.97 0.00 63.50 81.04 24.49 1.50 10.83 17.13 31.42

HARP 13.21 10.20 23.98 10.21 10.31 6.68 19.19 19.50 0.00 64.00 82.57 25.18 6.00 18.38 14.47 25.19

M
is

tr
al

-7
B

-v
0.

3 Dense 15.21 6.33 28.32 10.59 11.06 5.15 27.61 21.36 25.88 72.00 90.26 45.89 1.00 12.00 64.85 57.16
Mag-sp 12.34 5.25 22.64 9.14 8.75 5.20 9.26 18.97 6.61 61.50 80.96 31.70 0.62 4.67 49.68 39.31

Wanda-sp 2.37 4.78 6.98 7.18 3.65 3.89 7.41 14.19 8.54 27.50 63.93 20.25 2.83 3.29 39.46 37.05
FLAP 1.93 4.48 10.21 9.08 5.85 3.50 9.33 16.91 13.64 28.00 72.94 9.21 2.50 4.25 45.61 36.63

HARP+FLAP 10.27 7.08 21.09 9.97 9.94 5.67 21.89 19.70 21.04 56.50 88.71 32.76 0.50 4.38 29.03 37.21
HARP 12.79 8.87 22.42 10.40 10.49 5.91 23.32 19.78 23.25 57.00 88.55 32.73 1.00 8.71 40.22 43.19

Table 5: Ablation study on layer selection strategies for pruning attention heads, evaluated on six discriminative
tasks using LLaMA3.1-8B (%).

LLaMA3.1-8B
Method WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MMLU Average
Bottom-8 50.43 19.20 37.83 13.40 52.50 22.95 32.72
Hessian-8 52.88 22.35 62.26 19.20 59.09 23.01 39.80

Similarity-8 72.30 43.94 79.91 25.80 72.25 57.53 58.62
Top-8 72.53 46.59 82.14 28.20 74.16 58.73 60.39

involve selecting a single correct answer from a small set of options. Such tasks are generally less difficult
than generation tasks, which require predicting the next token from the full vocabulary, making them more
sensitive to pruning.

3.3 Long-Context Modeling

In this section, we evaluate the performance of structured pruning algorithms on long-context generation tasks.
We use LLaMA3.1-8B and Mistral-8B-v0.3 for our experiments. For evaluation, we use LongBench (Bai et al.,
2024), which encompasses a diverse range of tasks categorized as follows: single-document QA (NrtvQA,
Qasper, MF-en), multi-document QA (HotpotQA, 2WikiMQA, Musique), summarization (GovReport,
QMSum, MultiNews), few-shot learning (TREC, TriviaQA, SAMSum), synthetic tasks (PCount, PRe), and
code-related tasks (Lcc, RB-P). This comprehensive benchmark allows us to assess performance across various
long-context scenarios.

Table 4 demonstrates the performance of various pruning algorithms across long-context benchmarks. Our
proposed method outperforms baseline approaches in most benchmarks on both LLaMA3.1-8B and Mistral-
7B-v0.3 architectures. The improvements are particularly significant in multi-document QA tasks such as
HotpotQA and 2WikiMQA, indicating better preservation of reasoning abilities and long-range dependencies.
While other methods like Mag-SP achieve strong results in specific areas (e.g., MF-en), our method attains the
highest number of rank-1 performances across diverse benchmarks, highlighting its robustness for long-context
processing.

3.4 Exploring Layer Selection for Pruning Attention Heads

In this section, we conduct an ablation study to support our claim that attention heads in higher layers are
less important than those in lower layers. We evaluate four different strategies for selecting layers to prune,
using LLaMA3.1-8B for our experiments. The first strategy prunes attention heads in the lowest 8 layers

8

Published in Transactions on Machine Learning Research (01/2026)

Table 6: Ablation study of HARP on 11 tasks using LLaMA3.1-8B, comparing performance with and without
𝛼 search (%). Best is bold

Discriminative Tasks
Method 𝛼 WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MMLU Average
HARP 1.0 72.53 46.59 82.14 28.20 74.16 58.73 60.39
HARP searched 78.06 53.75 75.02 33.20 78.89 64.83 63.96

Short-Context Generation Tasks
Method 𝛼 TriviaQA NaturalQuestions GSM8K MATH-hard BBH Average
HARP 1.0 12.43 3.24 1.29 0.00 0.03 3.40
HARP searched 61.45 21.99 36.16 1.36 34.53 31.10

(Bottom-8). The second selects 8 layers using a Hessian-based metric proposed in (Yang et al., 2023a)
(Hessian-8). The third leverages a similarity-based metric for the self-attention module, as proposed in (He
et al., 2024), to select 8 layers (Similarity-8). The fourth strategy, which is our approach, prunes attention
heads in the highest 8 layers (Top-8). We set 𝛼 = 1 for all layers. Additional details on the Hessian-based
and similarity-based metrics are provided in Appendix D.

For both the Hessian-8 and Similarity-8 strategies, we compute the respective metrics using the WikiText
dataset (Merity et al., 2017). The selected layer indices for pruning are [12, 13, 14, 15, 19, 22, 24, 26] based
on the Hessian-based metric, and [23, 24, 25, 26, 27, 28, 29, 30] based on the similarity-based metric. Based
on the selected layer indices, we observe that the Hessian-8 strategy prunes attention heads in the middle
8 layers, the Similarity-8 strategy targets layers 23 to 30, and the Top-8 strategy focuses on layers 24 to
31. Table 5 reports the results of these four strategies across six discriminative tasks. The results indicate
that pruning attention heads in the higher layers yields better performance than pruning those in the lower
layers. These findings support our theoretical claim that attention heads in higher layers are less important
to overall model performance.

3.5 𝛼 Search for Rescaling

To determine the optimal values of 𝛼, we compute perplexity on the WikiText (Merity et al.,
2017) and Pile10K (Nanda, 2022) datasets using LLaMA3.1-8B. The resulting optimal 𝛼 values are
[0.8, 0.2, 0.1, 0.1, 0.0, 0.1, 0.0, 0.0] for WikiText and [0.8, 0.2, 0.2, 0.1, 0.0, 0.1, 0.1, 0.0] for Pile10K, with in-
dices corresponding to layers counted from the top. The similarity between the two sets of values suggests a
consistent trend in the layer-wise importance.

We further evaluate both 𝛼 configurations by measuring perplexity on both datasets. Using the values obtained
from WikiText, the perplexity scores are 12.16 on WikiText and 28.94 on Pile10K. Conversely, using the values
derived from Pile10K yields scores of 12.23 on WikiText and 28.50 on Pile10K. These results demonstrate that
both configurations produce comparable perplexity on each dataset, confirming the robustness of the searched
𝛼 values. For simplicity, we adopt the 𝛼 values derived from WikiText throughout this work. Figure 2
presents the searched 𝛼 values for LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B. Our results
show that the optimal 𝛼 values vary across models and pruned layers. For LLaMA3.1-8B, Mistral-7B-v0.3,
and Qwen2-7B, we observe a general trend where the searched 𝛼 values increase with the layer index. Even for
models with the same architecture but different sizes, such as LLaMA3.1-8B and LLaMA3.1-70B, the optimal
𝛼 values can be different. For LLaMA3.1-70B, the searched 𝛼 values are [0.0, 0.1, 0.0, 0.0, 0.2, 0.0, 0.0, 0.0],
which is noticeably different from those obtained for LLaMA3.1-8B.

Please note that the WikiText dataset provided by lm-evaluation-harness includes only 62 sub-tasks. For
LLaMA3.1-8B, our search involves 8 separate for-loops, each sweeping 𝛼 values from 0 to 1.0. As a result,
the total number of evaluations amounts to 5,456 sub-tasks. We conduct the experiments using an NVIDIA
H100 GPU, and the total runtime remains under two hours, which is comparable to the time required for a
typical experiment on a generation task.

9

Published in Transactions on Machine Learning Research (01/2026)

24 26 28 30 32
Layer Index

°0.1

0.1

0.3

0.5

0.7

0.9

A
lp

ha

Searched Alpha on LLaMA3.1-8B
HARP

24 26 28 30 32
Layer Index

°0.1

0.1

0.3

0.5

0.7

A
lp

ha

Searched Alpha on Mistral-7B-v0.3
HARP

36 38 40 42
Layer Index

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
lp

ha

Searched Alpha on Gemma2-9B
HARP

24 25 26 27
Layer Index

°0.1

0.1

0.3

0.5

0.7

0.9

A
lp

ha

Searched Alpha on Qwen2-7B
HARP

Figure 2: Searched alpha on LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B and Gemma2-9B.

Ablation Study. We conduct an ablation study to demonstrate the effectiveness of 𝛼 search for rescaling.
As shown in the Table 6, incorporating 𝛼 search consistently improves performance, particularly on generation
tasks, where we observe a substantial performance gain.

3.6 Efficiency Analysis

In this section, we analyze the time complexity of our pruned model. We conduct experiments with varying
sequence lengths to measure inference processing time. Using LLaMA3.1-8B as our test model, we evaluate
sequences of lengths 1024, 2048, 4096, 8192, 16384, 32768, and 65536. All measurements are conducted on
a single NVIDIA H100 80G GPU with each experiment repeated 10 times to ensure statistical reliability.
For comparison purposes, we test both our pruned model (with 8 layer attention heads pruned) and the
original model (with 0 attention heads pruned) to quantify the efficiency gains. Our measurements reveal
consistent performance across all runs, with tight 95% confidence intervals: for the original model, inference
times ranged from 0.0371 ± 0.0001s for 1024 tokens to 5.4466 ± 0.0022s for 65536 tokens; for the pruned
model, times ranged from 0.0355 ± 0.0001s for 1024 tokens to 4.5394 ± 0.0063s for 65536 tokens. Figure 3
demonstrates the significant speed gains achieved by our pruned model. As sequence length increases, our
speed improvement becomes more substantial. With just a 3.3% parameter reduction, we achieve a 16.7%
improvement in processing speed for 65,536-token sequences. This highlights how targeted attention head
pruning can substantially reduce inference latency in long-context tasks.

4 Related Work

Pruning. Pruning is a widely adopted and efficient technique in both Computer Vision and Large Language
Models. It can be categorized into two main types: structured pruning and unstructured pruning. structured
pruning (Lagunas et al., 2021; Xia et al., 2022; Kurtic et al., 2023; He & Xiao, 2023; Xia et al., 2024) involves
removing entire filters from neural networks, making it particularly conducive to model deployment. On

10

Published in Transactions on Machine Learning Research (01/2026)

1024 2048 4096 8192 16384 32768 65536
Sequence Length (log2)

0

1

2

3

4

5

In
fe

re
nc

e
Ti

m
e

(s
)

Inference Time Comparison

Original Model
Pruned Model (8 layer attention heads)

4

6

8

10

12

14

16

Sp
ee

d
Im

pr
ov

em
en

t(
%

)

Figure 3: Time complexity and runtime scaling with sequence length for the original and pruned models.
Solid lines show the absolute runtime (left y-axis), while the green dashed line denotes the relative speedup
(%) of the pruned model over the original, plotted on the secondary y-axis (right).

the other hand, unstructured pruning (Chen et al., 2020; Sanh et al., 2020) focuses on removing individual
neurons within the network. Some recent works (Men et al., 2024; Zhong et al., 2024; Gromov et al., 2024;
He et al., 2024; Siddiqui et al., 2024; Liu et al., 2024b; Zhang et al., 2024a; Jaiswal et al., 2024b; Chen et al.,
2024b; Kim et al., 2024a) have been proposed to prune blocks in the higher layers of LLMs.

Quantization. Quantization approaches (Wei et al., 2022b; Yao et al., 2022; Frantar et al., 2023; Xiao
et al., 2023; Dettmers & Zettlemoyer, 2023; Park et al., 2024; Lin et al., 2024) compress language models by
converting weights and activations to lower precision formats such as 8-bit, 4-bit, or even 2-bit integers. This
reduction in precision substantially decreases memory requirements and enhances inference speed, enabling
the deployment of large language models in environments with limited computational resources.

KV Cache Compression. Recent works (Liu et al., 2023; Anagnostidis et al., 2023; Zhang et al., 2023;
Ge et al., 2024; Xiao et al., 2024; Kim et al., 2024b; Zhang et al., 2024c; Nawrot et al., 2024; Tang et al.,
2024; Liu et al., 2024d; Dong et al., 2024a; Yue et al., 2024; Cai et al., 2024; Liu et al., 2024c;a; Hooper et al.,
2024; Sun et al., 2024c; Chen et al., 2024a; Sun et al., 2024a; Jiang et al., 2024; Li et al., 2024) have focused
on compressing the KV cache to reduce GPU memory footprint. Some (Liu et al., 2024d; Hooper et al.,
2024; Yue et al., 2024) of these methods utilize quantization techniques to achieve compression. Additionally,
approaches like H2O (Zhang et al., 2023) evict less important tokens, while LESS (Dong et al., 2024a)
generates condensed representations through training to optimize memory usage.

Low-rank Approximation. Low-rank approximation methods (Hu et al., 2022; Dettmers et al., 2023;
Lin et al., 2025; Wang et al., 2025; Chang et al., 2025) project token representations into a low-dimensional
latent space and subsequently reconstruct the full representations via up-projection. This class of methods
significantly reduces the number of trainable parameters during fine-tuning.

5 Conclusion

In this work, we propose HARP, a novel pruning algorithm that removes attention heads in the higher
layers of LLMs. Extensive experiments across short-context and long-context generation tasks, as well as

11

Published in Transactions on Machine Learning Research (01/2026)

discriminative benchmarks, demonstrate the superiority of our proposed method. Ablation studies further
reveal the importance of incorporating a rescaling parameter to maintain performance.

Beyond these empirical gains, HARP has clear practical implications: by reducing inference cost without
requiring architectural changes or retraining from scratch, it can facilitate the deployment of LLMs in
resource-constrained environments, enable faster serving for interactive applications, and make long-context
reasoning more affordable in real-world systems.

This study has limitations: we mainly focus on attention-head pruning in higher layers, leaving other
components underexplored. Future work includes extending HARP to larger and multimodal models,
combining it with techniques such as quantization or KV-cache compression, and developing more task-aware
pruning criteria to further improve robustness and efficiency.

References
Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured pruning

for large language models. In AAAI Conference on Artificial Intelligence, 2024.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas Hofmann.
Dynamic context pruning for efficient and interpretable autoregressive transformers. In Advances in Neural
Information Processing Systems, 2023.

Akari Asai, Zexuan Zhong, Danqi Chen, Pang Wei Koh, Luke Zettlemoyer, Hannaneh Hajishirzi, and Wen-tau
Yih. Reliable, adaptable, and attributable language models with retrieval. arXiv preprint 2403.03187,
2024.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James Hensman.
SliceGPT: Compress large language models by deleting rows and columns. In International Conference on
Learning Representations, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu,
Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual, multitask benchmark
for long context understanding. In Association for Computational Linguistics, 2024.

Hritik Bansal, Karthik Gopalakrishnan, Saket Dingliwal, Sravan Bodapati, Katrin Kirchhoff, and Dan Roth.
Rethinking the role of scale for in-context learning: An interpretability-based case study at 66 billion scale.
arXiv preprint arXiv:2212.09095, 2022.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical
commonsense in natural language. In AAAI Conference on Artificial Intelligence, 2020.

Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi Chen. Lococo: Dropping in convolutions for long
context compression. In International Conference on Machine Learning, 2024.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang, Ning-Chi
Huang, Luis Ceze, Mohamed S. Abdelfattah, and Kai-Chiang Wu. Palu: KV-cache compression with
low-rank projection. In International Conference on Learning Representations, 2025.

Renze Chen, Zhuofeng Wang, Beiquan Cao, Tong Wu, Size Zheng, Xiuhong Li, Xuechao Wei, Shengen Yan,
Meng Li, and Yun Liang. Arkvale: Efficient generative LLM inference with recallable key-value eviction.
In Advances in Neural Information Processing Systems, 2024a.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. The lottery ticket hypothesis for pre-trained bert networks. In Advances in Neural Information
Processing Systems, 2020.

12

Published in Transactions on Machine Learning Research (01/2026)

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. Compressing large language models by streamlining the
unimportant layer. arXiv preprint arXiv:2403.19135, 2024b.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova.
BoolQ: Exploring the surprising difficulty of natural yes/no questions. In North American Association for
Computational Linguistics, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training
verifiers to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In International
Conference on Machine Learning, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning of
quantized LLMs. In Advances in Neural Information Processing Systems, 2023.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more with less:
Synthesizing recurrence with kv cache compression for efficient llm inference. In International Conference
on Machine Learning, 2024a.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu. Pruner-zero:
Evolving symbolic pruning metric from scratch for large language models. In International Conference on
Machine Learning, 2024b.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot.
In International Conference on Machine Learning, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization for
generative pre-trained transformers. In International Conference on Learning Representations, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive KV cache compression for LLMs. In International Conference on Learning
Representations, 2024.

Gemma2-Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
L’eonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ram’e, Johan Ferret, Peter Liu,
Pouya Dehghani Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan,
Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stańczyk, Sertan Girgin, Nikola Momchev, Matt
Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur, Alanna Walton, Aliaksei Severyn,
Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock,
Andy Coenen, Anthony Laforge, Antonia Paterson, Ben Bastian, Bilal Piot, Boxi Wu, Brandon Royal,
Charlie Chen, Chintu Kumar, Chris Perry, Christoper A. Welty, Christopher A. Choquette-Choo, Danila
Sinopalnikov, David Weinberger, Dimple Vijaykumar, Dominika Rogozi’nska, D. Herbison, Elisa Bandy,
Emma Wang, Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin,
Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Pluci’nska, Harleen Batra, Harsh
Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Zhou, Joana
Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost R. van Amersfoort, Josh Gordon, Josh
Lipschultz, Joshua Newlan, Junsong Ji, Kareem Mohamed, Kartikeya Badola, Kat Black, Katie Millican,

13

Published in Transactions on Machine Learning Research (01/2026)

Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe Sjoesund, Lauren Usui, L. Sifre,
Lena Heuermann, Leticia Lago, Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon,
Luciano Martins, Machel Reid, Manvinder Singh, Mark Iverson, Martin Gorner, Mat Velloso, Mateo Wirth,
Matt Davidow, Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael
Moynihan, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,
Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil Botarda,
Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culliton, Pradeep Kuppala,
Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Rokni, Rishabh Agarwal, Ryan Mullins, Samaneh
Saadat, S. Mc Carthy, Sarah Perrin, S’ebastien Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg,
Shruti Sheth, Sue Ronstrom, Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomás
Kociský, Tulsee Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley,
Wei Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan Wei,
Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Brian Warkentin, Eli Collins,
Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, Slav Petrov,
Oriol Vinyals, Jeffrey Dean, Demis Hassabis, Koray Kavukcuoglu, Cl’ement Farabet, Elena Buchatskaya,
Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy, Robert Dadashi, and Alek Andreev.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Yu Wu,
YK Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the large language model
meets programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. In Advances in Neural Information Processing Systems, 2015.

Shwai He, Guoheng Sun, Zheyu Shen, and Ang Li. What matters in transformers? not all attention is needed.
arXiv preprint arXiv:2406.15786, 2024.

Yang He and Lingao Xiao. Structured pruning for deep convolutional neural networks: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring massive multitask language understanding. In International Conference on Learning
Representations, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In Advances in Neural
Information Processing Systems, 2021b.

Coleman Richard Charles Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Sophia Shao,
Kurt Keutzer, and Amir Gholami. KVQuant: Towards 10 million context length LLM inference with KV
cache quantization. In Advances in Neural Information Processing Systems, 2024.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language models. In International Conference on Learning
Representations, 2022.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny
Zhou. Large language models cannot self-correct reasoning yet. In International Conference on Learning
Representations, 2024.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, 2015.

Ajay Jaiswal, Shiwei Liu, Tianlong Chen, and Zhangyang Wang. The emergence of essential sparsity in large
pre-trained models: The weights that matter. In Advances in Neural Information Processing Systems, 2023.

14

Published in Transactions on Machine Learning Research (01/2026)

Ajay Jaiswal, Zhe Gan, Xianzhi Du, Bowen Zhang, Zhangyang Wang, and Yinfei Yang. Compressing LLMs:
The truth is rarely pure and never simple. In International Conference on Learning Representations, 2024a.

Ajay Kumar Jaiswal, Bodun Hu, Lu Yin, Yeonju Ro, Tianlong Chen, Shiwei Liu, and Aditya Akella. FFN-
SkipLLM: A hidden gem for autoregressive decoding with adaptive feed forward skipping. In Empirical
Methods in Natural Language Processing, 2024b.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, L’elio Renard
Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée
Lacroix, and William El Sayed. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Huiqiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han,
Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference 1.0: Accelerating pre-
filling for long-context LLMs via dynamic sparse attention. In Advances in Neural Information Processing
Systems, 2024.

Bowen Jin, Jinsung Yoon, Jiawei Han, and Sercan O Arik. Long-context LLMs meet RAG: Overcoming
challenges for long inputs in RAG. In International Conference on Learning Representations, 2025.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly supervised
challenge dataset for reading comprehension. In Association for Computational Linguistics, 2017.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and Hyoung-Kyu
Song. Shortened llama: A simple depth pruning for large language models. arXiv preprint arXiv:2402.02834,
2024a.

Jang-Hyun Kim, Junyoung Yeom, Sangdoo Yun, and Hyun Oh Song. Compressed context memory for online
language model interaction. In International Conference on Learning Representations, 2024b.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

Eldar Kurtic, Elias Frantar, and Dan Alistarh. ZipLM: Inference-aware structured pruning of language
models. In Advances in Neural Information Processing Systems, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. Natural questions: A
benchmark for question answering research. Transactions of the Association for Computational Linguistics,
2019.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander Rush. Block pruning for faster transformers. In
Empirical Methods in Natural Language Processing, 2021.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy
Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language models. In Advances
in Neural Information Processing Systems, 2022.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai, Patrick
Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before generation. In Advances
in Neural Information Processing Systems, 2024.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen, Hongxia
Jin, and Yen-Chang Hsu. ModeGPT: Modular decomposition for large language model compression. In
International Conference on Learning Representations, 2025.

15

Published in Transactions on Machine Learning Research (01/2026)

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for on-device llm
compression and acceleration. In Conference on Machine Learning and Systems, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Deng, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli Luo, Guangbo
Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao Yang, Haowei Zhang, Honghui Ding, Huajian
Xin, Huazuo Gao, Hui Li, Hui Qu, J.L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen,
Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R.J. Chen, R.L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S.S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang
Zhou, Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W.L. Xiao,
Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X.Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai Yu, Xinnan Song, Xinyi Zhou,
Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y.K. Li, Y.X. Wei, Y.X. Zhu, Yanhong Xu, Yanping Huang,
Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong
Zhao, Ying He, Ying Tang, Yishi Piao, Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo,
Yuchen Zhu, Yuduan Wang, Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu,
Z.Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong
Shao, Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and Ziwei
Xie. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. arXiv preprint
arXiv:2405.04434, 2024a.

Songwei Liu, Chao Zeng, Lianqiang Li, Chenqian Yan, Lean Fu, Xing Mei, and Fangmin Chen. Foldgpt:
Simple and effective large language model compression scheme. arXiv preprint arXiv:2407.00928, 2024b.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du, Jiayi Yao,
Shan Lu, Ganesh Ananthanarayanan, Michael Maire, Henry Hoffmann, Ari Holtzman, and Junchen Jiang.
Cachegen: Kv cache compression and streaming for fast large language model serving. In Conference of the
ACM Special Interest Group on Data Communication, 2024c.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis,
and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance hypothesis for LLM
KV cache compression at test time. In Advances in Neural Information Processing Systems, 2023.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In International Conference on
Machine Learning, 2024d.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. LLM-pruner: On the structural pruning of large language
models. In Advances in Neural Information Processing Systems, 2023.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. Shortgpt: Layers in large language models are more redundant than you expect. arXiv preprint
arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. In
International Conference on Learning Representations, 2017.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. In Empirical Methods in Natural Language Processing,
2018.

Neel Nanda. NeelNanda/pile-10k – datasets at hugging face. https://huggingface.co/datasets/
NeelNanda/pile-10k, 2022.

16

https://huggingface.co/datasets/NeelNanda/pile-10k
https://huggingface.co/datasets/NeelNanda/pile-10k

Published in Transactions on Machine Learning Research (01/2026)

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo Ponti. Dynamic memory
compression: Retrofitting LLMs for accelerated inference. In International Conference on Machine Learning,
2024.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir
Balaji, Valerie Balcom, Paul Baltescu, Haim ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello, Jake
Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd,
Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie
Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang,
Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Benjamin Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning,
Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Sim’on Posada Fishman,
Juston Forte, Is abella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes
Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli
Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar
Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim,
Yongjik Kim, Hendrik Kirchner, Jamie Ryan Kiros, Matthew Knight, Daniel Kokotajlo, Lukasz Kondraciuk,
Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai
Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin,
Ma teusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Adeola Makanju, Kim Malfacini, Sam
Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew,
Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta,
Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel P.
Mossing, Tong Mu, Mira Murati, Oleg Murk, David M’ely, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Ouyang Long, Cullen O’Keefe, Jakub W. Pachocki,
Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita,
Alexandre Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael
Petrov, Henrique Pondé de Oliveira Pinto, Michael Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly
Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack W. Rae, Aditya
Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick
Ryder, Mario D. Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr,
John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin D.
Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie
Tang, Nikolas A. Tezak, Madeleine Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer’on Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea
Voss, Carroll L. Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu,
Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang,
Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Gunho Park, Baeseong park, Minsub Kim, Sungjae Lee, Jeonghoon Kim, Beomseok Kwon, Se Jung Kwon,
Byeongwook Kim, Youngjoo Lee, and Dongsoo Lee. LUT-GEMM: Quantized matrix multiplication based
on LUTs for efficient inference in large-scale generative language models. In International Conference on
Learning Representations, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 2021.

17

Published in Transactions on Machine Learning Research (01/2026)

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning. In
Advances in Neural Information Processing Systems, 2020.

Han Shi, Jiahui Gao, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen M. S. Lee, and James
Kwok. Revisiting over-smoothing in BERT from the perspective of graph. In International Conference on
Learning Representations, 2022.

Shoaib Ahmed Siddiqui, Xin Dong, Greg Heinrich, Thomas Breuel, Jan Kautz, David Krueger, and Pavlo
Molchanov. A deeper look at depth pruning of llms. arXiv preprint arXiv:2407.16286, 2024.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie Chi,
and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm inference. arXiv
preprint arXiv:2410.21465, 2024a.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for large
language models. In International Conference on Learning Representations, 2024b.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,
and Furu Wei. You only cache once: Decoder-decoder architectures for language models. In Advances in
Neural Information Processing Systems, 2024c.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench tasks and whether
chain-of-thought can solve them. In Association for Computational Linguistics, 2023.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST: Query-aware
sparsity for efficient long-context LLM inference. In International Conference on Machine Learning, 2024.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cristian Cantón
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony S. Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V. Korenev, Punit Singh
Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, R. Subramanian, Xia Tan,
Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zhengxu Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. SVD-LLM: Truncation-aware singular value decompo-
sition for large language model compression. In International Conference on Learning Representations,
2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. Self-consistency improves chain of thought reasoning in language models. In International
Conference on Learning Representations, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. In Advances in
Neural Information Processing Systems, 2022a.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu,
and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language models. In
Advances in Neural Information Processing Systems, 2022b.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate models. In
Association for Computational Linguistics, 2022.

18

Published in Transactions on Machine Learning Research (01/2026)

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared LLaMA: Accelerating language model
pre-training via structured pruning. In International Conference on Learning Representations, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. In International Conference on Machine
Learning, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks. In International Conference on Learning Representations, 2024.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang, Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao, and
Ping Luo. BESA: Pruning large language models with blockwise parameter-efficient sparsity allocation. In
International Conference on Learning Representations, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li,
Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang,
Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai
Dang, Keming Lu, Ke-Yang Chen, Kexin Yang, Mei Li, Min Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng,
Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu
Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Yang Fan, Yang Yao, Yichang Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru Zhang, and
Zhi-Wei Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Huanrui Yang, Hongxu Yin, Maying Shen, Pavlo Molchanov, Hai Li, and Jan Kautz. Global vision
transformer pruning with hessian-aware saliency. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023a.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-augmented language
models. In Advances in Neural Information Processing Systems, 2023b.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He. Zeroquant:
Efficient and affordable post-training quantization for large-scale transformers. In Advances in Neural
Information Processing Systems, 2022.

Lu Yin, Ajay Kumar Jaiswal, Shiwei Liu, Souvik Kundu, and Zhangyang Wang. Junk DNA hypothesis:
Pruning small pre-trained weights Irreversibly and Monotonically impairs “difficult" downstream tasks in
LLMs. In International Conference on Machine Learning, 2024a.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, Ajay Kumar, Mykola
Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise
sparsity (OWL): A missing secret sauce for pruning LLMs to high sparsity. In International Conference on
Machine Learning, 2024b.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant: Quan-
tizing weight and key/value cache for large language models gains more. arXiv preprint arXiv:2402.12065,
2024.

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, and Kenji
Kawaguchi. Finercut: Finer-grained interpretable layer pruning for large language models. arXiv preprint
arXiv:2405.18218, 2024a.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-and-play:
An efficient post-training pruning method for large language models. In International Conference on
Learning Representations, 2024b.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji. Cam:
Cache merging for memory-efficient LLMs inference. In International Conference on Machine Learning,
2024c.

19

Published in Transactions on Machine Learning Research (01/2026)

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-hitter oracle for
efficient generative inference of large language models. In Advances in Neural Information Processing
Systems, 2023.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. APT: Adaptive pruning and tuning pretrained language
models for efficient training and inference. In International Conference on Machine Learning, 2024.

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-grained
pruning for large language models. arXiv preprint arXiv:2406.10594, 2024.

20

Published in Transactions on Machine Learning Research (01/2026)

A Theoretical Analysis

Definition 2. (Shi et al., 2022) Define the over-smoothing subspace

M :=
{
Y ∈ R𝑁×𝑑 �� Y = eC, C ∈ R1×𝑑} ,

where e = [1, 1, . . . , 1]⊤ ∈ R𝑁×1, 𝑁 is the number of tokens, and 𝑑 is the dimension of token representations.

Intuitively, any matrix Y ∈ M has identical rows: every token in the sequence shares exactly the same
representation vector. We therefore regard M as the set of “maximally over-smoothed” token representations,
where no token-specific information is preserved.
Definition 3. (Shi et al., 2022) Define the distance between a matrix H ∈ R𝑁×𝑑 and the over-smoothing
subspace M as

𝑑M (H) := min
Y∈M

∥H − Y∥𝐹 ,

where ∥ · ∥𝐹 denotes the Frobenius norm.
Lemma 1 ((Shi et al., 2022)). For a self-attention matrix Â, any H,B ∈ R𝑁×𝑑 and any 𝛼1, 𝛼2 ≥ 0, we have:

𝑑M (HW) ≤ 𝑠 𝑑M (H), 𝑑M (𝜎(H)) ≤ 𝑑M (H), (4)

𝑑M (𝛼1H + 𝛼2B) ≤ 𝛼1𝑑M (H) + 𝛼2𝑑M (B), 𝑑M (ÂH) ≤
√︁
𝜆max 𝑑M (H), (5)

where 𝜆max is the largest eigenvalue of Â⊤ (I − ee⊤)Â and 𝑠 is the largest singular value of W.

By Lemma 1, we have the following result.
Lemma 2 ((Shi et al., 2022)). For a Transformer block with ℎ heads, we have

𝑑M (H(ℓ+1)) ≤ 𝑣 𝑑M (H(ℓ)), (6)

where 𝑣 = (1 + 𝑠2) (1 +
√
𝜆ℎ𝑠)/(𝛽1𝛽2), 𝑠 > 0 is the largest element among all singular values of all W(ℓ) , 𝜆

is the largest eigenvalue of all Â⊤ (I − ee⊤)Â for each self-attention matrix Â, and 𝛽1, 𝛽2 are the minimum
standard deviations for the two layer normalization operations.

The proofs of these two lemmas can be found in (Shi et al., 2022). Lemma 2 shows that if 𝑣 < 1, then
𝑑M (H(ℓ+1)) < 𝑑M (H(ℓ)), i.e., the hidden representations move closer to M as the depth ℓ increases. In other
words, deeper layers become progressively more over-smoothed.

Definition 1. (Average pairwise cosine similarity) Define the average pairwise cosine similarity among
tokens in a matrix H ∈ R𝑁×𝑑 as

Sim(H) := 2
𝑁 (𝑁 − 1)

∑︁
1≤𝑖< 𝑗≤𝑁

h⊤
𝑖

h 𝑗
∥h𝑖 ∥2∥h 𝑗 ∥2

. (7)

A value Sim(H) ≈ 1 indicates that all token vectors are nearly parallel (up to scaling), while smaller
values correspond to more diverse token directions. Thus, Sim(H) measures the global similarity of token
representations.
Lemma 3. For any token representation matrix H ∈ R𝑁×𝑑, if its distance to the over-smoothing subspace M
tends to zero, then its average pairwise similarity tends to one, i.e.,

𝑑M (H) → 0 =⇒ Sim(H) → 1.

Proof. This is the proof of Lemma 3. By definition, M = {Y ∈ R𝑁×𝑑 | Y = eC,C ∈ R1×𝑑}, where all token
embeddings are equal (each row of Y is C). If 𝑑M (H) → 0, then there exists some C such that H → eC,
meaning h𝑖 → C for all 𝑖. Hence,

h⊤
𝑖 h 𝑗 → ∥C∥2

2 and ∥h𝑖 ∥2∥h 𝑗 ∥2 → ∥C∥2
2,

21

Published in Transactions on Machine Learning Research (01/2026)

so for any 𝑖 ≠ 𝑗 we have
h⊤
𝑖

h 𝑗
∥h𝑖 ∥2∥h 𝑗 ∥2

→ 1.

Averaging over all pairs (𝑖, 𝑗) then yields Sim(H) → 1. □

Theorem 1. When Sim(H(ℓ)) → 1, token representations in layer ℓ become nearly parallel. Since queries
and keys are linear projections of H(ℓ) , their dot products across positions become almost constant, so the
row-wise softmax yields nearly uniform attention weights. The head thus degenerates into averaging value
vectors and cannot distinguish tokens. Conversely, if Sim(H(ℓ)) is bounded away from 1, attention remains
non-uniform and can model meaningful token-to-token dependencies.

Proof. This is the proof of Theorem 1. Suppose Sim(H(ℓ)) → 1. By Lemma 3, this implies 𝑑M (H(ℓ)) → 0, so
all token embeddings h (ℓ)

𝑖
converge to a shared direction, i.e., they become almost parallel.

In a self-attention layer, the query and key matrices are obtained from H(ℓ) by linear projections:

Q(ℓ) = H(ℓ)W𝑄, K(ℓ) = H(ℓ)W𝐾 .

Since linear maps preserve the property of vectors being almost parallel, the rows of Q(ℓ) and K(ℓ) also
become nearly parallel when Sim(H(ℓ)) → 1. Consequently, the inner products q⊤

𝑖
k 𝑗 for all 𝑖, 𝑗 converge to

(almost) the same value:
q⊤
𝑖 k 𝑗 ≈ 𝑐 for all 𝑖, 𝑗 .

The attention weights for a fixed query position 𝑖 are given by

𝑎𝑖 𝑗 =
exp(q⊤

𝑖
k 𝑗/

√
𝑑𝑘)∑

𝑗′ exp(q⊤
𝑖

k 𝑗′/
√
𝑑𝑘)

.

If all logits q⊤
𝑖

k 𝑗 are (approximately) equal, then the softmax output [𝑎𝑖1, . . . , 𝑎𝑖𝑁] approaches the uniform
distribution over {1, . . . , 𝑁}. Therefore, the attention weights can no longer distinguish between different
tokens, and the corresponding attention head effectively reduces to averaging the value vectors across positions.

As a result, when Sim(H(ℓ)) is close to 1 in high layers, self-attention behaves like a simple smoothing operator
that mixes already similar representations, contributing little to further feature refinement or discrimination.
In contrast, in lower layers where Sim(H(ℓ)) is bounded away from 1, attention weights remain non-uniform
and can capture meaningful token-to-token dependencies, making those layers more informative. □

Proof of Proposition 1.

Proof. Recall that Â ∈ R𝑁×𝑁 is a row-normalized attention matrix and

H′ = ÂH, H ∈ R𝑁×𝑑 .

We first show that if every row of Â is a one-hot vector (i.e., has exactly one entry equal to 1 and all others
equal to 0), then the Frobenius norm is preserved for any H. In this case, Â is a row-permutation matrix:
there exists a permutation 𝜋 of {1, . . . , 𝑁} such that

(ÂH)𝑖,: = H𝜋 (𝑖) ,:, ∀𝑖.

Thus Â only permutes the rows of H, and we have

∥ÂH∥2
𝐹 =

𝑁∑︁
𝑖=1

𝑑∑︁
𝑗=1

(
(ÂH)𝑖 𝑗

)2
=

𝑁∑︁
𝑖=1

𝑑∑︁
𝑗=1

(
H𝜋 (𝑖) , 𝑗

)2
=

𝑁∑︁
𝑖=1

𝑑∑︁
𝑗=1

H2
𝑖 𝑗 = ∥H∥2

𝐹 .

Therefore, if each row of Â is one-hot, then ∥H′∥𝐹 = ∥H∥𝐹 for all H.

22

Published in Transactions on Machine Learning Research (01/2026)

We now prove the converse: if a row-normalized attention matrix Â preserves the Frobenius norm for all
inputs, then each row of Â must be one-hot. Assume that

∥ÂH∥𝐹 = ∥H∥𝐹 for all H ∈ R𝑁×𝑑 .

Consider the special case where H has only one nonzero column: let x ∈ R𝑁 be arbitrary and define

H =
[
x 0 · · · 0

]
∈ R𝑁×𝑑 .

Then
ÂH =

[
Âx 0 · · · 0

]
,

and the Frobenius norm condition reduces to

∥Âx∥2 = ∥x∥2 for all x ∈ R𝑁 .

Hence Â is an isometry on R𝑁 , which implies

x⊤Â⊤Âx = ∥Âx∥2
2 = ∥x∥2

2 = x⊤Ix ∀x,

so Â⊤Â = I. Thus Â is an orthogonal matrix.

On the other hand, as an attention matrix, Â is row-normalized with nonnegative entries:

Â𝑖 𝑗 ≥ 0,
𝑁∑︁
𝑗=1

Â𝑖 𝑗 = 1 for each row 𝑖.

Let a𝑖 denote the 𝑖-th row of Â. Orthogonality implies ∥a𝑖 ∥2 = 1 for all 𝑖, while row-normalization gives∑
𝑗 a𝑖 𝑗 = 1 and a𝑖 𝑗 ≥ 0. Therefore,

𝑁∑︁
𝑗=1

a𝑖 𝑗 = 1,
𝑁∑︁
𝑗=1

a2
𝑖 𝑗 = 1, a𝑖 𝑗 ≥ 0.

For any 0 < 𝑎 < 1, we have 𝑎2 < 𝑎. Hence, if any entry of a𝑖 satisfies 0 < a𝑖 𝑗 < 1, then
𝑁∑︁
𝑗=1

a2
𝑖 𝑗 <

𝑁∑︁
𝑗=1

a𝑖 𝑗 = 1,

which contradicts ∑
𝑗 a2
𝑖 𝑗
= 1. Thus every entry of a𝑖 must belong to {0, 1}. Since the entries are nonnegative

and the row sum is 1, each row has exactly one entry equal to 1 and all others equal to 0, i.e., each row is
one-hot.

Combining both directions, we conclude that a row-normalized attention matrix preserves the Frobenius
norm of all input representations if and only if each of its rows is a one-hot vector. In practical self-attention,
the learned attention weights are not row-permutation matrices, so the aggregation step H′ = ÂH typically
changes the magnitude (Frobenius norm) of the token representations, as claimed in Proposition 1. □

B Baseline Method Pruning Layer Range Tuning

To fairly compare our method against existing pruning approaches, we use perplexity to tune the pruning
layer range for all baseline methods. For Mag-sp, Wanda-sp, and LLM-Pruner, the pruning ratio is the same
across all pruning layers, whereas FLAP employs an adaptive pruning strategy, allowing different pruning
ratios for each layer.

LLaMA3.1-8B4 and Mistral-7B-v0.35 have 32 layers, each with 8 key/value attention heads. Qwen2-7B6

consists of 28 layers with 4 key/value attention heads per layer, while Gemma2-9B7 includes 42 layers, each
4https://huggingface.co/meta-llama/Llama-3.1-8B/blob/main/config.json
5https://huggingface.co/mistralai/Mistral-7B-v0.3/blob/main/config.json
6https://huggingface.co/Qwen/Qwen2-7B/blob/main/config.json
7https://huggingface.co/google/gemma-2-9b/blob/main/config.json

23

Published in Transactions on Machine Learning Research (01/2026)

Table 7: The pruning layer range (closed on the left, open on the right) of pruning algorithms for LLaMA3.1-
8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B.

LLaMA3.1-8B
Method Starting Layer Index End Layer Index
Mag-sp 15 31

Wanda-sp 15 31
LLM-Pruner 14 30

FLAP 0 32
Mistral-7B-v0.3

Method Starting Layer Index End Layer Index
Mag-sp 15 31

Wanda-sp 0 32
FLAP 0 32

Qwen2-7B
Method Starting Layer Index End Layer Index
Mag-sp 4 12

Wanda-sp 3 11
FLAP 3 27

Gemma2-9B
Method Starting Layer Index End Layer Index
Mag-sp 2 18

Wanda-sp 30 42
FLAP 3 39

with 8 key/value attention heads. For LLaMA3.1-8B and Mistral-7B-v0.3, we allocate a KV cache budget of
3/4, while Qwen2-7B and Gemma2-9B have a KV cache budget of 6/7. This requires removing 64 key/value
attention heads for LLaMA3.1-8B and Mistral-7B-v0.3, 16 for Qwen2-7B, and 48 for Gemma2-9B.

To determine the number of key/value attention heads to prune in each layer, we restrict the range of removable
key/value attention heads to maintain integer pruning layer counts. For LLaMA3.1-8B and Mistral-7B-v0.3,
2 or 4 heads are removed per layer. Qwen2-7B allows 1 or 2 heads per layer, while Gemma2-9B permits 2, 3,
4, or 6 heads per layer. As a result, the pruning layer counts are configured as follows: for LLaMA3.1-8B and
Mistral-7B-v0.3, the pruning layer number is 16 or 32; for Qwen2-7B, it is 8 or 16; and for Gemma2-9B, it is
8, 12, 16, or 24. For FLAP, where the pruning ratio can vary across layers, we similarly tune the number of
pruned layers to obtain strong perplexity under the same KV cache budget. Specifically, for LLaMA3.1-8B
and Mistral-7B-v0.3, the number of pruning layers is set to 12, 16, 20, 24, 28, or 32. For Qwen2-7B, the
pruning layer counts are 8, 12, 16, 20, 24, or 28. Similarly, for Gemma2-9B, the options are 9, 12, 18, 24, 30,
36, or 42 layers.

For a fixed-length interval with undefined start and end points, we begin with the starting layer index set to 0.
In each step, we increment both the starting layer index and the end layer index by 1 until the end layer index
reaches the model’s highest layer. The results are presented in Table 7. Note that we also integrate FLAP
into HARP to prune FFN parameters. However, for our method we do not tune the pruning layer range and
instead always prune the highest layers, which makes the comparison with tuned baselines conservative.

C Benchmark Details

For our evaluation, we employ the lm-evaluation-harness package (version 0.4.7) developed in (Gao
et al., 2024). This framework provides a unified interface to commonly used benchmarks and implements
task-specific preprocessing and scoring. It is important to note that the lm-evaluation-harness provides
two accuracy metrics, “acc” and “acc_norm”, for the ARC-Challenge, OpenBookQA, and PIQA benchmarks.
Unless otherwise stated, for these benchmarks, we report the “acc” accuracy results. Table 8 reports the
number of tasks and the number of choices for each discriminative task.

For the GSM8K and TriviaQA benchmarks, this package offers two accuracy metrics: “exact_match,strict-
match” and “exact_match,flexible-extract”. In our reporting, we use the “exact_match,strict-match” accuracy

24

Published in Transactions on Machine Learning Research (01/2026)

Table 8: Dataset Statistics

Metric WinoGrande ARC-Challenge BoolQ OpenBookQA PIQA MMLU
Tasks 1267 1172 3270 500 1838 11973
Choices 2 4 2 4 2 4

results for these benchmarks. The number of tasks for GSM8K, NaturalQuestions, TriviaQA, MATH-hard,
and BBH are 1319, 3610, 17944, 1324, and 6511, respectively.

For long-context generation evaluation, we adopt the LongBench benchmark (Bai et al., 2024), which offers
a comprehensive suite of tasks designed to assess the ability of language models to handle long sequences
across diverse domains. LongBench includes 23 tasks categorized into six groups: (I) Single-Document QA,
(II) Multi-Document QA, (III) Long In-Context Learning, (IV) Long Dialogue History Understanding, (V)
Code Repository Understanding, and (VI) Long Structured Data Understanding. Each task varies in domain,
document length, and complexity, providing a broad challenge spectrum. According to Bai et al. (2024),
expert performance ranges from 22% to 89% accuracy, with input lengths spanning from 13k to 167k tokens,
and average human solving times between 5 and 13 minutes. This benchmark enables a rigorous evaluation
of a model’s capacity to reason, retrieve, and generate over extended contexts.

D Layer Selection with Heuristic Metric for Pruning Attention Heads

Hessian-based Metric. The Hessian-based metric uses a gradient-based importance score to evaluate the
contribution of each self-attention layer to overall model performance. To quantify the importance of a given
layer, we define the following:

I(𝑙) =
∑︁

𝑠∈{𝑞,𝑘,𝑣}

(∑︁
𝑖, 𝑗

𝜕L
𝜕W𝑠

𝑖 𝑗

· W𝑠
𝑖 𝑗

)2

.

Here, I(𝑙) denotes the importance score of layer 𝑙, and 𝑠 refers to the query, key, and value projection matrices
in the self-attention mechanism. W𝑠 represents the weight matrix of projection 𝑠, while 𝜕L

𝜕W𝑠
𝑖 𝑗

is the gradient
of the loss function L with respect to the weight element W𝑠

𝑖 𝑗
.

This metric is derived from a first-order Taylor expansion and approximates the effect of removing a layer by
computing the squared sum of the element-wise product between weights and their corresponding gradients.
Layers with lower importance scores are considered to contribute less to the model’s performance.

Similarity-based Metric. The similarity-based metric evaluates the importance of each self-attention
layer by measuring the extent to which the layer transforms its input representations. To quantify this
transformation, we define the following score:

S(𝑙)
𝐴

= 1 − E
[

⟨X(𝑙)
𝐴
,Y(𝑙)

𝐴
⟩

∥X(𝑙)
𝐴
∥2∥Y(𝑙)

𝐴
∥2

]
.

Here, S(𝑙)
𝐴

denotes the importance score of layer 𝑙, X(𝑙)
𝐴

is the input to the self-attention module, and Y(𝑙)
𝐴

is
its output, which can be expressed as:

Y(𝑙)
𝐴

= X(𝑙)
𝐴

+ Attention
(
LayerNorm

(
X(𝑙)
𝐴

))
.

This metric captures the degree of change introduced by the self-attention layer via cosine similarity. A
higher score indicates a larger transformation between input and output, implying that the layer plays a more
critical role in representation learning. Conversely, layers with lower scores perform minimal transformations.

In our experiments, we use these heuristic metrics only for layer selection (i.e., to decide which layers are
more suitable for pruning) and keep the head-level pruning and rescaling strategy fixed as described in the

25

Published in Transactions on Machine Learning Research (01/2026)

main text. This separation of concerns allows us to clearly attribute performance gains to the proposed
high-layer attention pruning scheme rather than to a particular choice of heuristic.

26

	Introduction
	High-Layer Attention Pruning
	Pruning Attention Heads for Long-Context Modeling
	High-Layer Attention Heads Are Less Important
	Methodology

	Experiments
	Experimental Setup
	Main Results
	Long-Context Modeling
	Exploring Layer Selection for Pruning Attention Heads
	 Search for Rescaling
	Efficiency Analysis

	Related Work
	Conclusion
	Theoretical Analysis
	Baseline Method Pruning Layer Range Tuning
	Benchmark Details
	Layer Selection with Heuristic Metric for Pruning Attention Heads

