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Abstract
With the growing interest in embodied and spatial
intelligence, accurately predicting trajectories in
3D environments has become increasingly criti-
cal. However, no datasets have been explicitly
designed to study 3D trajectory prediction. To
this end, we contribute a 3D motion trajectory
(3DMoTraj) dataset collected from unmanned un-
derwater vehicles (UUVs) operating in oceanic en-
vironments. Mathematically, trajectory prediction
becomes significantly more complex when transi-
tioning from 2D to 3D. To tackle this challenge,
we analyze the prediction complexity of 3D trajec-
tories and propose a new method consisting of two
key components: decoupled trajectory prediction
and correlated trajectory refinement. The former
decouples inter-axis correlations, thereby reduc-
ing prediction complexity and generating coarse
predictions. The latter refines the coarse predic-
tions by modeling their inter-axis correlations. Ex-
tensive experiments show that our method signifi-
cantly improves 3D trajectory prediction accuracy
and outperforms state-of-the-art methods. Both
the 3DMoTraj dataset and the method are avail-
able at https://github.com/zhouhao94/3DMoTraj.

1. Introduction
In recent years, the embodied (Wang et al., 2024; Kaur
et al., 2023; Qi et al., 2024) and spatial intelligence (Huang
et al., 2024) have witnessed rapid advancement, both of
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Figure 1: Illustrations of different trajectory predictions and
their prediction complexities. The 2D, 3D, and decoupled
3D predictions for each point correspond to optimizing one
2D, one 3D, and three 1D Gaussian distributions, which
involve optimizing 5, 9, and 6 free parameters, respectively.

which emphasize the ability to understand, reason about,
and manipulate information within a three-dimensional (3D)
space (Zhu et al., 2025; Ishida, 2024). Such advancement
highlights the critical role of 3D trajectory prediction, which
enables systems to effectively navigate and interact with
dynamic environments by anticipating future movements
in space. For example, in unmanned systems, accurate 3D
motion path prediction for unmanned underwater vehicles
(UUVs) (Cao et al., 2022) and unmanned aerial vehicles
(UAVs) (Zhang et al., 2023; Huang et al., 2023) helps them
avoid obstacles and plan efficient navigation routes in ocean
and air environments.

Despite the significant importance of 3D trajectory predic-
tion for embodied and spatial intelligence, most current
trajectory prediction tasks, including pedestrian (Mohamed
et al., 2020; Mangalam et al., 2020; Zhou et al., 2021) and
vehicle (Gao et al., 2020; Zhou et al., 2023; Shi et al., 2022)
trajectory prediction, focus primarily on 2D trajectories due
to the scarcity of publicly available 3D trajectory datasets.
To this end, we contribute a 3D motion trajectory (3DMo-
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Traj) dataset, which consists of 3D trajectories collected
from UUVs across eight distinct oceanic scenarios. There
are two reasons for collecting trajectories from UUVs: (1)
the trajectories of multiple UUVs exhibit complex inter-
actions arising from formation movements, and (2) ocean
currents introduce fluctuations in UUV trajectories, signifi-
cantly increasing the challenge of accurate prediction.

The 3DMoTraj dataset is annotated with frame-wise inten-
tions to facilitate future research. Existing 2D trajectory
prediction methods have shown that incorporation of inten-
tions (Rasouli et al., 2019; Liu et al., 2020; Mangalam et al.,
2021; Choi et al., 2021; Zhao et al., 2021) can significantly
improve prediction accuracy. Specifically, the trajectories in
3DMoTraj are annotated with both static and motion inten-
tions. The static intention is defined as the octant the agent
is expected to reach by the end of the prediction horizon,
whereas the motion intention represents the mean velocity
changes between the observed and predicted trajectories.
Static intentions provide insight into the agent’s final spatial
goal, while motion intentions capture the agent’s dynamic
state transitions.

Aside from the scarcity of available datasets, one major chal-
lenge impeding progress in 3D trajectory prediction is its
substantially higher prediction complexity. As illustrated in
Figure 1, predicting a 2D trajectory is generally equivalent
to optimizing 2D Gaussian distributions with 5 parameters
to approximate the possible locations of each 2D point (Mo-
hamed et al., 2020). In contrast, 3D trajectory prediction
requires optimizing a 3D Gaussian distribution with 9 pa-
rameters for each 3D point. As a result, the complexity of
predicting one 3D point is approximately twice that of one
2D point. Furthermore, the prediction complexity of a 3D
scenario involving N points is linearly related to 9 × N ,
significantly hindering the prediction of complex scenar-
ios containing multiple 3D agents. Therefore, reducing the
optimized parameters for each 3D point is important.

To address the increased prediction complexity of 3D trajec-
tory, we propose a novel 3D trajectory prediction method
comprising two key components: decoupled trajectory pre-
diction and correlated trajectory refinement. Optimizing 3D
Gaussian distribution can be decomposed into optimizing
three individual 1D Gaussian distributions and modeling
their correlations; please refer to Section A in the Appendix
for detailed mathematical proofs. We adopt a divide-and-
conquer strategy. Specifically, 3D trajectory prediction is
first decoupled along three independent axes to mitigate
the impact of inter-axis correlations, followed by modeling
these correlations. In this way, the prediction of each 3D
point with 9 parameters is first simplified as the optimization
of three 1D Gaussian distributions with 6 free parameters,
as illustrated in Figure 1, thereby reducing the overall pre-
diction complexity. Therefore, the decoupled trajectory pre-

diction part employs three independent decoders to predict
future trajectories along the x-, y-, and z-axes, producing
a coarse prediction. The correlated trajectory refinement
part then models the inter-axis correlations of the coarse
predictions and generates offsets to refine them. Extensive
experiments conducted on the 3DMoTraj dataset demon-
strate the superior performance of our proposed method for
3D trajectory prediction.

In conclusion, the contributions of this work are as follows:

• We propose a 3D trajectory dataset named 3DMoTraj,
which is collected from UUVs in ocean environments.
The dataset includes frame-wise annotations for both
motion and static intentions.

• We analyze the increased prediction complexity of 3D
trajectories compared to 2D trajectories and propose a
3D trajectory prediction method that consists of two
components: decoupled trajectory prediction and corre-
lated trajectory refinement. The former decouples the
inter-axis correlations to generate coarse predictions.
The latter models the inter-axis correlations to refine
these coarse predictions.

• We conduct extensive experiments on the 3DMoTraj
dataset. The experimental results verify the superior
performance of our method in 3D trajectory prediction,
establishing a solid baseline for future research.

2. Related Work
Trajectory Prediction Datasets. Some trajectory
datasets are collected from top-view cameras, such as
ETH/UCY (Lerner et al., 2007; Pellegrini et al., 2009),
PWRD, and NYGC (Zhou et al., 2011), which focus on
pedestrian trajectory prediction. Other datasets, such as
SDD (Robicquet et al., 2016) and inD (Bock et al., 2020),
are collected using flying drones and include trajectories of
vehicles, bicycles, and pedestrians. With advances in sensor
technology, high-quality datasets such as Apollo (Ma et al.,
2019), Argoverse (Chang et al., 2019; Wilson et al.), and
Waymo (Ettinger et al., 2021) use sensors, such as LiDAR,
radar, high-definition maps, and localization modules, to
record trajectories. Recognizing the importance of agents’
intentions in prediction, datasets like PIE (Rasouli et al.,
2019) and LOKI (Girase et al., 2021) include frame-wise
intention annotations. PIE focuses on short-term pedestrian
intentions, while LOKI provides long-term intentions for
hybrid road users. Although these datasets offer valuable
resources for trajectory prediction, they mainly focus on
2D scenarios. To date, no publicly available datasets are
specifically designed for 3D trajectory prediction.

Trajectory Prediction Methods. These methods in 2D
scenarios can be broadly categorized into RNN-based meth-
ods, one-shot prediction methods, and intention-conditioned
methods. RNN-based methods iteratively predict future tra-
jectory points. Representative works include S-GAN (Gupta
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(a) Orthographic Projection
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(b) Front View
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(c) Top View
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(d) Side View

Figure 2: Orthographic projections, along with front, top, and side views of 3D trajectories for two typical underwater
scenarios. Please refer to Figure 9 in the Appendix for the rest of the scenarios.

et al., 2018), PIE (Rasouli et al., 2019), STGAT (Huang
et al., 2019), Trajectron++(Salzmann et al., 2020), and SR-
LSTM(Zhang et al., 2020). One-shot prediction methods
predict the entire future trajectory in a single step. Promi-
nent approaches include SSTGCNN (Mohamed et al., 2020),
MSRL (Wu et al., 2023), MRGTraj (Peng et al., 2023), S-
Implicit (Mohamed et al., 2022), and FlowChain (Maeda
& Ukita, 2023). Intention-conditioned methods predict fu-
ture intentions and then generate trajectories conditioned on
these predictions. Notable examples include LBEBM (Pang
et al., 2021), TNT (Zhao et al., 2021), NSP-SFM (Yue et al.,
2022), and MemoNet (Xu et al., 2022). Besides, interac-
tion modeling techniques such as pooling (Mangalam et al.,
2020), attention (Salzmann et al., 2020), and graph neural
networks (Mohamed et al., 2020) are studied to capture
the dynamics of multi-agent systems. Recent research also
addresses real-world challenges, including domain adapta-
tion (Feng et al., 2024) and observation length shift (Xu &
Fu, 2024), which commonly arise in practical deployment.
Furthermore, large language models and unsupervised learn-
ing applied in time-series tasks (Sun et al., 2024; Yang &
Hong, 2022) also inspire research in trajectory prediction.

Trajectory prediction in 3D scenarios primarily focuses
on predicting UAV trajectories. Current research on UAV
trajectory prediction largely relies on traditional methods,
such as Gaussian process regression (Xie & Chen, 2022),
Kalman filters (Wang et al., 2018), and principal component
analysis (Zhang et al., 2023), as well as simple learning-
based methods, including LSTMs (Zhong et al., 2022) and
CNNs (Liu et al., 2021). However, these methods struggle
to predict 3D trajectories in complex scenarios due to the
high prediction complexity of 3D trajectories.

3. 3D Motion Trajectory Dataset
The 3DMoTraj dataset comprises eight scenarios featur-
ing three-dimensional (3D) trajectories collected from un-
manned underwater vehicles (UUVs) operating in ocean
environments. The 3D trajectories are recorded using po-
sitioning devices installed on the UUVs. Each scenario
includes three UUVs following predefined formations. We

Figure 3: Illustration of annotations for motion and static
intentions. Motion intention is determined by the velocities
of the observed and predicted trajectories, while static inten-
tion is based on the location of the trajectory’s endpoint.

present the orthographic projections and the front, top, and
side views of the 3D trajectories for two representative sce-
narios in Figure 2. Notably, in addition to the complex
3D motion patterns of each UUV, the trajectories also ex-
hibit fluctuations caused by ocean currents, which introduce
significant challenges to the prediction task. This section
provides an overview of the 3DMoTraj dataset and analyzes
its statistical characteristics.

3.1. Dataset Construction
To enhance the diversity of 3D motion behaviors, we collect
trajectory data using three agents over an extended period.

Dataset Preprocess. The sampling rate for the trajectory
points is 10 fps, resulting in a very short time interval be-
tween consecutive points and, thus, minimal spatial separa-
tion. To address this issue, we first downsample the trajec-
tory points to a sample rate of 2 fps. Since each scenario
includes only three agents, we further divide the trajectory
data into short fragments, each containing 200 data frames.
We assign unique IDs to agents in each fragment to enhance
the representation of agents in the dataset. The fragments
for each scenario are then randomly divided into training,
validation, and test sets with a 1:1:1 ratio.

Dataset Annotation. Intentions play a crucial role in tra-
jectory prediction. We annotate intentions in the dataset to
support further research in 3D trajectory prediction.
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Scenario #1 #2 #3 #4 #5 #6 #7 #8

Frame number 765 1744 1010 1558 1861 895 3379 2597

Distance(m) 0.707±0.282 0.482±0.212 0.505±0.185 0.569±0.287 0.491±0.202 0.784±0.333 0.707±0.251 0.514±0.273

Velocity(m/s) 1.413±0.564 0.964±0.424 1.009±0.369 1.139±0.573 0.982±0.405 1.567±0.666 1.415±0.501 1.028±0.546

Acceleration(m/s2) 0.003±1.373 0.002±1.046 0.005±0.937 0.002±1.361 0.003±1.045 -0.001±1.683 0.001±1.433 0.001±1.212

Curvature(1/m) 0.184±2.428 0.419±3.494 0.215±2.784 0.486±3.591 0.185±2.692 0.074±0.518 0.030±0.300 0.407±2.259

Motion intention
(velocity change)

↑:679,↓:1028,
→:440

↑:1494,↓:1955,
→:1450

↑:997,↓:1002,
→:816

↑:1735,↓:1350,
→:1293

↑:1559,↓:1981,
→:1673

↑:948,↓:1182,
→:370

↑:3168,↓:4810,
→:1530

↑:2562,↓:3045,
→:1703

Static intention
(Endpoint octant)

#1:390,#2:104,
#3:722,#4:5,

#5:288,#6:138,
#7:445,#8:55

#1:161,#2:16,
#3:144,#4:95,
#5:1051,#6:850,
#7:2141,#8:441

#1:74,#2:509,
#3:669,#4:491,
#5:11,#6:398,
#7:312,#8:351

#1:175,#2:1333,
#3:509,#4:975,
#5:57,#6:713,
#7:196,#8:378

#1:301,#2:902,
#3:826,#4:854,
#5:300,#6:422,
#7:911,#8:697

#1:324,#2:524,
#3:291,#4:657,
#5:145,#6:218,
#7:47,#8:294

#1:788,#2:594,
#3:682,#4:951,
#5:1772,#6:878,
#7:2579,#8:1264

#1:1363,#2:1243,
#3:2182,#4:786,
#5:412,#6:474,
#7:556,#8:294

Table 1: Statistics information of the 3DMoTraj dataset. For motion intention, notations ↑, ↓, and → respectively represent
speed up, speed down, and constant speed. For static intention, notation #N denotes the endpoints in N -th octant.

Unlike datasets such as PIE (Rasouli et al., 2019) and
LOKI (Girase et al., 2021), which annotate intentions based
solely on future trajectories, we propose utilizing both ob-
served and future trajectories. Specifically, we compare
the average velocity of the observed trajectory (vo) and the
future trajectory (vf ) to label samples with motion intention
‘speed up,’ ‘slow down’, or ‘constant speed’, as shown in
Figure 3. A trajectory sample is labeled as ’speed up’ if
vf − vo > δ, ’speed down’ if vf − vo < −δ, and ’constant
speed’ if |vf − vo| ≤ δ, with δ set to 0.1 by default.

Additionally, we annotate future location intention, referred
to as static intention, based on the endpoint of each trajectory
sample, as illustrated in Figure 3. Specifically, we define
the current point as the origin, with the velocity direction
at that point serving as the x-axis. Using the Frenet-Serret
frame, we establish a local coordinate system, within which
the endpoints are classified into one of eight octants. This
octant-based labeling provides trajectory samples with static
intention. As a result, our dataset includes annotations for
both motion and static intentions.

Dataset Usage. Following the setting in datasets ETH (Pel-
legrini et al., 2009) and UCY (Lerner et al., 2007), we adopt
a sliding window technique to generate samples from the
dataset. Each sample contains 20 frames of trajectory points,
with the first 8 frames (4 seconds) as the observed trajectory
and the remaining 12 frames (6 seconds) as the ground truth
future trajectory. Furthermore, we recommend evaluating
prediction methods using a leave-one-out cross-validation
strategy. Specifically, the model is trained and validated on
the training and validation sets of seven scenarios and tested
on the test set of the remaining scenario. This strategy helps
mitigate validation bias.

3.2. Dataset Statistics
To demonstrate the practicality of the proposed dataset for
evaluating 3D trajectory prediction, we analyze its charac-
teristics across several dimensions. A detailed summary of
the dataset’s statistical properties is presented in Table 1.

Basic information. Firstly, we present the number of frames
for each processed scenario in the second row. Our dataset

contains over 13000 frames, offering sufficient data for
model training and validation.

Motion information. Secondly, we present the average
distance, velocity, and acceleration of the trajectory points
in the third to fifth rows. The average distance across all
scenarios ranges from 0.4 to 0.8 meters, with corresponding
average velocities between 0.9 and 1.6 meters per second,
which are relatively high speeds for UUVs in ocean environ-
ments. Additionally, the significant standard deviations in
velocity and acceleration indicate frequent velocity changes
among agents in our dataset. The distributions of distance,
velocity, and acceleration, presented in the Appendix, fur-
ther illustrate this variability. These characteristics make the
dataset well-suited for evaluating the ability of prediction
methods to handle complex velocity dynamics.

Curvature information. Thirdly, we calculate the aver-
age 3D curvature of the trajectory points, reported in the
sixth row. The lowest average curvature is 0.074 in scenario
1, while the highest is 0.486 in scenario 4. Notably, the
standard deviation of curvature in each scenario is approxi-
mately ten times its mean value. The curvature distributions
across all scenarios, visualized in the Appendix, further
support this variability. These statistics indicate that the
trajectories in our dataset exhibit a wide range of curvatures,
providing a robust benchmark for evaluating the prediction
ability of methods on complex curvilinear paths.

Intention information. Finally, the statistics on intention
information are presented in the seventh and eighth rows.
Motion intentions are evenly distributed across the labels
’speed up,’ ’slow down,’ and ’constant speed.’ Similarly,
static intentions are uniformly distributed across eight dif-
ferent octants. These balanced distributions ensure that our
dataset offers a clear distinction in intention labeling.

4. 3D Trajectory Prediction Method
In this section, we address 3D trajectory prediction in two
steps: Decoupling inter-axis correlations by independently
predicting the trajectory along each axis, and Modeling
inter-axis correlations to generate offsets that refine the
initial predictions. The former reduces the high prediction
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Figure 4: The framework of our proposed 3D trajectory prediction network. In addition to the baseline encoder from
LBEBM, our method consists of two key components: decoupled trajectory prediction and correlated trajectory refinement.
The former independently predicts the future trajectories along each axis, thereby decoupling inter-axis correlations. The
latter generates offsets to refine these predictions by modeling their inter-axis correlations.

complexity of 3D trajectories, providing a coarse prediction.
The latter refines these predictions by capturing their inter-
axis correlations.

Problem Formulation. Let pti = (xt
i, y

t
i , z

t
i) ∈ R3 rep-

resent the position of agent i at time t. The observed tra-
jectory of agent i is defined as po

i = {pti | t = 1, ..., to},
and the ground truth future trajectory is pf

i = {pti | t =
to + 1, ..., to + tf}, where to and tf are the time hori-
zons of the observed and future trajectories, respectively.
The objective of 3D trajectory prediction is to use the ob-
served trajectory po

i as input to predict a future trajectory
p̂f
i = {p̂ti | t = to+1, ..., to+tp} that closely approximates

the ground truth trajectory pf
i .

4.1. Decoupled Trajectory Prediction
We adopt the LBEBM method (Pang et al., 2021) as our
baseline. To decouple the inter-axis correlations of 3D trajec-
tories, we replace LBEBM’s decoder with three independent
decoders to predict trajectories separately along the x-, y-,
and z-axes. LBEBM is a key point-conditioned prediction
method that first predicts future key points and then gener-
ates the future trajectories conditioned on those points. We
follow the same overall procedure as LBEBM but decouple
the prediction process into three parallel streams for each
axis. The detailed process of our decoupled prediction is

illustrated in Figure 4.

Let F e
i represent the encoded feature of po

i , extracted by
LBEBM while accounting for interactions and other ele-
ments. We first employ three key point predictors to predict
key points along different axes:

ν̂k
i = Φν(F

e
i ), ν ∈ {x, y, z}, (1)

where Φν(·) and ν̂ki denote the MLP key point predictor
and the predicted key points for the ν-axis, respectively. We
then extract features from the predicted key points:

F k
i = κ([x̂k

i ; ŷ
k
i ; ẑ

k
i ]), (2)

where κ(·) is an MLP encoder, [·; ·; ·] denotes concatenation,
and F k

i is the extracted feature. Finally, we concatenate
F k
i with F e

i and feed this concatenated feature into three
trajectory predictors to generate the future trajectory for
each axis:

ν̂f
i =Ψν([F

k
i ;F

e
i ]), ν ∈ {x, y, z}, (3)

where Ψν(·) and ν̂fi represent the MLP predictor and the
predicted future trajectory for the ν-axis, respectively.

4.2. Correlated Trajectory Refinement.
We design a novel LSTM-based method, State-Correlation
and Aggregation LSTM (SCA-LSTM), to model the inter-
axis correlations of the coarse predictions and refine them.
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An overview of the SCA-LSTM is shown in Figure 4. SCA-
LSTM employs a centralized architecture comprising a cen-
ter LSTM, node LSTMs, a state correlation (SC) module,
and a state aggregation (SA) module. The center LSTM ex-
tracts summarized trajectory features across different axes,
while the node LSTM extracts trajectory features for each
axis. The SC module captures the correlation between the
center and node LSTMs, using it to update the node features.
Meanwhile, the SA module aggregates the state features
from the node LSTMs to update those of the center LSTM.

Inputs Representation. Instead of directly using raw tra-
jectories, we extract their embeddings as inputs for SCA-
LSTM.

For the node LSTMs, we first concatenate the predicted
future trajectory with the observed trajectory for each axis.
Then, we calculate and concatenate the trajectory, velocity,
and acceleration of each axis. This concatenated informa-
tion is passed through MLP encoder to extract embeddings:

F ν
i = Ων([ν

u
i ;vν

u
i ;aν

u
i ]), ν ∈ {x, y, z}, (4)

where νui , vνui , and aνiu represent the trajectory, velocity,
and acceleration on the ν-axis, respectively. Ων is the MLP
encoder for the ν-axis. F ν

i represents the extracted feature,
which is the input to the node LSTM for the ν-axis.

For the center LSTM, we apply max- and average-pooling
operations to combine the input representations from all
axes:

Fm
i = MaxPooling(F x

i , F
y
i , F

z
i ),

F a
i = AvgPooling(F x

i , F
y
i , F

z
i ),

F c
i = [Fm

i ;F a
i ],

(5)

where F c
i is the extracted input feature for the center LSTM.

The Center and Node LSTMs. The center and node
LSTMs use vanilla LSTMs to extract features from the
input representations:

ccti,hc
t
i=LSTMc(F

c
i [t], hct−1, cct−1; Θc),

cνt
i ,hν

t
i =LSTMν(F

ν
i [t], hνt−1, cνt−1; Θν), ν∈ {x,y,z},

(6)

where LSTMc, Θc, ccti, and hcti represent the center LSTM,
its parameters, cell state, and hidden state, while LSTMν ,
Θν , cνti , and hνti denote the node LSTM for the ν-axis
and its components. For more details on the vanilla LSTM,
please refer to Section B in the Appendix. The main differ-
ence between the LSTMs used in our method and vanilla
LSTMs is the inclusion of the SC and SA modules, which
refine their cell and hidden states.

The SC Module. The SC module takes two inputs: the hid-
den states and cell states from the center and node LSTMs.
The output is the refined cell states for the node LSTMs.
Mathematically, the SC module is formulated as follows:

ĉνt,l+1
i = Mc(ĥc

t,l

i , ĥν
t,l

i ) + ĉνt,l
i ν ∈ {x, y, z}, (7)

where ĉνt,l+1
i denotes the refined cell states for the ν-axis

after l + 1 iterations, and Mc represents the message corre-
lation function.

We design the message correlation function with a gated
selection mechanism to adaptively model correlations and
refine the node LSTM’s cell states. Specifically, we first
extract the input features for the gate from hidden states:

Fhc,l
i = Whcĥc

t,l

i ,

Fhν,l
i = Whν ĥν

t,l

i , ν ∈ {x, y, z},
(8)

where Whc and Whν are linear transformations. Then, we
construct a correlation gate using the features F c,l

i and F ν,l
i

such that:

gc,νi =σ(Wcν [F
hc,l
i ;Fhν,l

i ] + bcν), ν∈ {x, y, z}, (9)

where gc,νi is the gate vector for the ν-axis, Wcν and bcν are
linear transformation and bias, and σ refers to the Sigmoid
function. Using the gate vector, Mc is formulated as:

Mc(ĥc
t,l

i , ĥν
t,l

i )=Wcng
c,ν
i ⊙ ĥc

t,l

i , ν ∈ {x, y, z}, (10)

where Wcn is a linear transformation.

The SA Module. The SA module adopts a similar strategy
to the SC module but operates in reverse, aggregating the
hidden states from node LSTMs to update the center LSTM.
Mathematically, the SA module is formulated as:

ĉct,l+1
i =

∑
ν∈{x,y,z}

Mν(ĥc
t,l

i , ĥν
t,l

i ) + ĉct,li , (11)

where ĉct,l+1
i is the refined cell state of the center LSTM,

and Mν is the message aggregation function for the ν-axis.

To adaptively aggregate the hidden states of the node
LSTMs, we design a message aggregation function that
incorporates axis-wise attention and an aggregation gate.
The attention mechanism assigns appropriate weights to dif-
ferent axes, while the aggregation gate extracts key features
for effective integration.

To build the attention and aggregation gate, we first extract
a global feature F g,l

i from the hidden states of all LSTMs:

F g,l
i = ([Wgcĥc

t,l

i ;Wgxĥx
t,l

i ;Wgyĥy
t,l

i ;Wgzĥz
t,l

i ]), (12)

where Wgc, Wgx, Wgy , and Wgz are linear transformations.
We then project the global embedding into different LSTMs’
projection spaces:

F gc,l
i = WgcF

g,l
i ,

F gν,l
i = WgνF

g,l
i , ν ∈ {x, y, z},

(13)

where F gc,l
i is for the center LSTM, and F gν,l

i is for the
node LSTM of the ν-axis, with Wgc and Wgν being lin-
ear transformations. Using these projected features, the
attention weight can be computed as follows:

αc,ν =
exp(WqF

gc,l
i (WkF

gν,l
i )T )∑

β∈{x,y,z}
exp(WqF

gc,l
i (WkF

gβ,l
i )T )

, ν∈{x,y,z}, (14)

6



Three-Dimensional Trajectory Prediction

Scenario #1 #2 #3 #4 #5 #6 #7 #8 Mean

SSTGCNN† (Mohamed et al., 2020) 2.86/5.19 1.05/1.47 1.08/1.65 2.23/3.83 1.15/1.34 2.25/4.00 4.49/8.28 2.18/3.30 2.16/3.63

MSRL (Wu et al., 2023) 3.72/5.42 0.62/0.73 0.56/0.61 1.69/2.05 1.85/2.50 1.54/2.84 1.14/1.73 0.90/1.15 1.50/2.13

FlowChain (Maeda & Ukita, 2023) 1.44/3.20 0.61/0.99 0.62/1.02 0.90/1.76 0.54/0.84 1.31/2.52 1.18/2.53 0.93/1.84 0.94/1.84

PECNet (Mangalam et al., 2020) 0.79/1.05 0.70/1.29 0.74/1.26 1.29/2.46 0.41/0.58 1.16/1.65 0.92/1.53 1.22/2.21 0.90/1.50

LBEBM (Pang et al., 2021) 0.72/0.98 0.52/0.80 0.64/1.11 0.94/1.87 0.35/0.57 1.02/1.67 1.27/2.35 1.25/2.42 0.84/1.47

NPSN* (Bae et al., 2022) 0.75/0.83 0.69/1.21 0.71/0.96 0.83/1.28 0.34/0.40 0.97/1.20 0.71/0.93 1.03/1.50 0.75/1.04

TrajCLIP (Yao et al., 2024) 0.56/0.94 0.40/0.69 0.37/0.70 1.32/2.81 0.33/0.58 0.79/1.27 1.04/2.02 0.85/1.69 0.71/1.34

CausalHTP (Chen et al., 2021) 0.69/1.29 0.45/0.78 0.45/0.78 0.79/1.40 0.49/0.87 1.11/1.95 0.97/1.96 0.74/1.40 0.71/1.30

MS-TIP (Nath et al., 2024) 0.62/1.16 0.61/1.16 0.58/1.15 0.78/1.42 0.57/1.11 0.84/1.50 0.77/1.44 0.79/1.52 0.70/1.31

MRGTraj (Peng et al., 2023) 0.63/1.29 0.34/0.54 0.33/0.55 0.94/1.89 0.42/0.83 0.99/1.73 1.06/2.44 0.84/1.63 0.69/1.36

S-Implicit (Mohamed et al., 2022) 0.54/0.87 0.43/0.72 0.47/0.84 1.13/2.31 0.40/0.68 0.85/1.38 0.62/1.06 0.98/1.92 0.68/1.22

Our 0.36/0.51 0.37/0.60 0.48/0.86 0.81/1.69 0.28/0.44 0.69/1.10 1.12/1.95 0.55/0.99 0.58/1.02

Table 2: Comparison with state-of-the-art methods on the 3DMoTraj dataset under best-of-20 evaluation setting. †:
SSTGCNN uses predicted Gaussian distributions to sample future trajectories. *: NPSN here adopts PECNet as the baseline.

MRGTraj S-Implicit Our

(a) Sample #1: linear trajectories (easy)

MRGTraj S-Implicit Our

(b) Sample #2: curved trajectories (medium)

MRGTraj S-Implicit Our

(c) Sample #3: fluctuating trajectories (hard)

Figure 5: Visual comparisons between our method with MRGTraj and S-Implicit on 3D trajectory prediction using samples
featuring linear, curved, and fluctuating trajectories denoting easy, medium, and hard prediction difficulties. The first to the
fourth rows are the orthographic projections and front, top, and side views of visualized results. Dotted lines with blue, green,
and red colors represent the observed trajectories, the ground-truth future trajectories, and the predicted future trajectories.

where (·)T denotes transposition, and αc,ν is the attention
weight for the ν-axis. Additionally, the aggregation gate is
defined as:

gν,ci =σ(Wνc[F
hc,l
i ;Fhν,l

i ] + bνc), ν∈ {x, y, z}, (15)

where gν,ci represents the gate vector for the ν-axis, while
Wνc and bνc are linear transformations and bias terms. After
that, the message aggregation function Mν is defined as:

Mν(ĥc
t,l

i , ĥν
t,l

i )=αc,νWncg
ν,c
i ⊙ ĥν

t,l

i , ν∈{x, y, z}, (16)

where Wnc is a linear transformation.

Finally, after a round of refinements through the SA and SC
modules, the refined cell states are used to update the hidden
states via the output gate of the vanilla LSTM, as shown in
Equation 30 in the Appendix. Using these updated hidden
states, the LSTMs predict the offsets ∆νfi , ν ∈ {x, y, z} to
refine the coarse predictions on each axis.

4.3. Loss Function
Aside from the specialized loss of the baseline method
LBEBM, the loss for our method is defined as follows:

L =
1

N

∑
i∈{1,...,N}

∑
ν∈{x,y,z}

(Lk,ν
i + Lf,ν

i + Lo,ν
i ),

Lk,ν
i = L2(ν

k
i , ν̂

k
i ), Lf,ν

i = L2(ν
f
i , ν̂

f
i ),

Lo,ν
i = L2(∆νf

i , ν
f
i − ν̂f

i ).

(17)

where νki and νfi denote the ground truth key points and fu-
ture trajectory on the ν-axis, respectively, and L2 represents
the mean squared error.

5. Experiments
5.1. Implementation Details
Our method uses observed 8 frames to predict future 12
frames. The key points predicted are the 3rd, 6th, 9th, and

7
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Metric Iteration Number #
1 2 3 4

ADE 0.62 0.67 0.58 0.63

FDE 1.05 1.21 1.02 1.07

Table 3: Analysis of different
iterations of the SC and SA
on the 3DMoTraj dataset.

Metric Layer Number #
1 2 3 4

ADE 0.58 0.64 0.64 0.65

FDE 1.02 1.07 1.06 1.10

Table 4: Analysis of different
layers of the SCA-LSTM on
the 3DMoTraj dataset.

Variant
ID

Components Performance
BD DD VL SL ADE FDE

1 ✓ 0.84 1.47

2 ✓ 0.68 1.19

3 ✓ ✓ 0.66 1.05

4 ✓ ✓ 0.58 1.02

Table 5: Ablation study on our method using the 3DMoTraj
dataset. BD refers to our baseline’s decoder, DD represents
our decoupled trajectory prediction part, VL stands for the
vanilla LSTM, and SL refers to our correlated trajectory
refinement part, SCA-LSTM.

12th frames of the future trajectory. The primary compo-
nents of our approach are implemented using MLP or LSTM.
Training is conducted with a batch size of 70 for 100 epochs,
employing the Adam optimizer with an initial learning rate
of 0.0005. The learning rate decayed by 0.5 after the 5th
epoch. Results are evaluated using (Average Displacement
Error) ADE and (Final Displacement Error) FDE metrics.

5.2. Comparisons to State-of-the-art Methods
We present the performance of our proposed method and
benchmark it against state-of-the-art methods on the 3DMo-
Traj dataset, as detailed in Table 2. We modify all compared
methods to accept 3D observed trajectories as inputs and
predict 3D future trajectories. Additionally, we adjust their
data augmentation strategies, such as rotation, flipping, and
reversing, to their 3D counterparts for consistency. The
experimental results indicate that our method outperforms
all evaluated approaches in 3D trajectory prediction. Specif-
ically, our method achieves a 14.6% improvement in the
ADE metric, reducing it from 0.68 to 0.58, and a 16.3% en-
hancement in the FDE metric, lowering it from 1.22 to 1.02,
compared to the second-best method, S-Implicit. While
NPSN shows an FDE metric close to ours, our ADE metric
surpasses it by 22.7%, decreasing from 0.75 to 0.58.

Furthermore, we visualize some samples compared to lead-
ing methods MRGTraj and S-Implicit, as shown in Figure 5.
The three visualized samples illustrate the ability of these
methods to predict linear, curved, and fluctuating trajectories
with increasing difficulty levels. The visual results indicate:
1) all compared methods perform well on the x- and y-axes,
reflecting their original 2D design; 2) our method surpasses
MRGTraj and S-Implicit in 3D trajectory prediction, par-
ticularly along the z-axis; and 3) sample #3 validates our
method’s marked improvement in predicting complex, fluc-

Baseline Our Baseline Our

Figure 6: Visual comparisons before and after applying our
proposed components on the baseline method. Rows one to
four denote different views of the visualized results.

tuating trajectories, which pose a significant challenge for
methods designed for 2D prediction.

5.3. Hyperparameter Analysis
Training our proposed method involves two key hyperparam-
eters. One is the iterations of the SC and SA modules, and
the other is the layers of the SAC-LSTM. This subsection
analyzes them one after another.

Iterations of the SC and SA modules. Each iteration of the
SC and SA modules refines the cell and hidden states of the
LSTM. We conduct experiments with counts of {1, 2, 3, 4}
to choose the optimal number of iterations. The SAC-LSTM
layer is fixed at 1 in this experiment to eliminate confound-
ing variables. As shown in Table 3, our method performs
best when the iteration number is set to 3.

Layers of the SCA-LSTM. When utilizing multiple SCA-
LSTM layers, each layer refines the previous layer’s output
and serves as input for the subsequent one. Different num-
bers of SAC-LSTM layers can produce varying outcomes.
To evaluate the effect of layer depth, we experiment with
SAC-LSTM layers of {1, 2, 3, 4}, as shown in Table 4. The
iteration count for the SC and SA modules is fixed at 3,
as determined from the previous experiment. The experi-
mental results confirm that using a single SAC-LSTM layer
achieves the best performance.

5.4. Ablation Study and Discussion
We conduct an ablation study to evaluate our method’s core
components, i.e., decoupled trajectory prediction and corre-
lated trajectory refinement. The results, presented in Table 5,
reveal several vital insights. First, variants 1 and 2 reveal that
the decoupled trajectory prediction strategy outperforms the
LBEBM decoder by 19.0%/19.0% in ADE/FDE, highlight-
ing its effectiveness. Second, variants 2 and 3 indicate that
using vanilla LSTM for refinement provides a performance
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Orthographic projection Top view Front view Side view

Figure 7: A representative failure case generated by our method on the 3DMoTraj dataset.

Dataset ETH/UCY SDD
Method BL Our BL Our

ADE 0.22 0.21 9.20 8.98

FDE 0.40 0.38 16.47 15.93

Table 6: Discussion of the generalization ability of our
method for 2D trajectory prediction using the ETH/UCY
and SDD datasets. BL refers to the baseline LBEBM.

boost of 2.9%/11.8%, confirming that trajectory refinement
can further improve prediction accuracy. Finally, variants 3
and 4 show that our proposed SCA-LSTM outperforms the
vanilla LSTM by 12.1%/2.9%, validating that SCA-LSTM,
which models inter-axis correlations, significantly improves
trajectory refinement.

We also visualize two typical samples before and after ap-
plying our method, as shown in Figure 6. While the baseline
performs well in predicting trajectories along the x- and y-
axes, it struggles with the additional z-axis of 3D trajectories.
Our method enhances the baseline’s performance, particu-
larly in predicting the z-axis component, further demonstrat-
ing the effectiveness of our core components.

Furthermore, to validate the generalization ability of the
proposed method for 2D trajectory prediction, we conduct
experiments on the pedestrian trajectory datasets ETH/UCY
and SDD, as shown in Table 6. Our method outperforms the
baseline by 4.5% and 5.0% on the ETH/UCY dataset and
by 2.4% and 3.3% on the SDD dataset. These experimental
results demonstrate that our decoupled prediction strategy
can also improve the prediction accuracy of 2D trajectory.

5.5. Model Efficiency Analysis
We analyze the model efficiency of the proposed method
by comparing its parameters, computational cost, and run-
time performance with several state-of-the-art methods, as
illustrated in Table 7. All models in this experiment are
tested on an NVIDIA 2080 Ti GPU using an input size of
70× 8× 3, where 70 represents the number of agents pre-
dicted simultaneously-exceeding the agent count in most
real-world applications. The results demonstrate that our
method achieves the best performance with a relatively good
model efficiency, making it suitable for deployment on em-
bedded robotic systems. Additionally, with an inference
speed exceeding 12 FPS, our method meets the real-time

Method Paramters (M) FLOPs (G) Speed (s) ADE/FDE

MSRL 0.59 0.12 0.09 1.50 / 2.13

LBEBM 1.24 0.09 0.05 0.84 / 1.47

NPSN 0.22 0.14 1.29 0.75 / 1.04

CausalHTP 0.04 0.16 2.54 0.71 / 1.30

MRGTraj 4.36 20.04 0.06 0.69 / 1.36

Our 3.41 0.24 0.08 0.58 / 1.02

Table 7: Comparison with state-of-the-art methods in terms
of parameters, computational costs, and inference speed
on the 3DMoTraj dataset. All methods are tested using an
NVIDIA 2080 Ti GPU with an input size of 70× 8× 3.

decision-making requirements of robotics applications.

5.6. Failure Case Analysis
We present a representative failure case in Figure 7, which
illustrates that our method struggles when predicting trajec-
tories with multiple sharp bends in short time intervals. In-
corporating more advanced interaction modeling techniques
or integrating 3D point cloud maps could provide additional
structural constraints, thereby improving this case. Nev-
ertheless, as our primary focus is reducing the prediction
complexity of 3D trajectories, we adopt a simple interac-
tion modeling strategy and do not use 3D point cloud maps,
leading to suboptimal performance in this case. Exploring
stronger interaction modeling methods and incorporating
3D environmental representations will be important direc-
tions for future work.

6. Conclusion
In this paper, we present a large-scale 3D trajectory dataset,
3DMoTraj, which includes frame-wise annotations for both
static and dynamic intentions. This dataset facilitates re-
search on 3D trajectory prediction. Additionally, we propose
a novel 3D trajectory prediction method that addresses the
increased prediction complexity encountered when moving
from 2D to 3D trajectories. Experiments on the 3DMo-
Traj dataset demonstrate that our method outperforms all
state-of-the-art models tested, validating its effectiveness
in reducing prediction complexity and enhancing predic-
tion accuracy in 3D. In future work, we aim to collect a
3D trajectory dataset of unmanned aerial vehicles (UAVs)
operating in air environments to further validate our method
and advance research in 3D trajectory prediction.
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This supplementary file provides more details to demonstrate the benefits of our proposed dataset and method.

• Prediction complexity analysis.
• Details of vanilla LSTM.
• The motion trajectory visualization.
• The distance distributions for different scenarios.
• The velocity distributions for different scenarios
• The acceleration distributions for different scenarios.
• The curvature distributions for different scenarios.

A. Prediction Complexity Analysis
The prediction complexity increases nearly twofold when transitioning from 2D (x, y) to 3D (x, y, z) trajectories. Predicting
2D trajectory is equivalent to optimizing 2D Gaussian distributions to approximate the possible locations of each 2D point:

f(x, y) =
1

2π |Σxy|1/2
exp

(
−1

2

[
x− µx y − µy

]
Σ−1

xy

[
x− µx

y − µy

])
, (18)

where Σxy denotes the covariance matrix for the 2D Gaussian distribution and can be represented as follows:

Σxy =

(
σ2
x ρxyσxσy

ρxyσxσy σ2
y

)
. (19)

Therefore, the prediction of each 2D point involves optimizing 5 free parameters
[
µx, µy, σ

2
x, σ

2
y, ρxy

]
. Similarly, predicting

a 3D point is equivalent to optimizing a 3D Gaussian distribution:

f(x, y, z) =
1

(2π)3/2 |Σxyz|1/2
exp

−1

2

[
x− µx y − µy z − µz

]
Σ−1

xyz

 x− µx

y − µy

z − µz

 , (20)

where Σxyz is the covariance matrix for the 3D Gaussian distribution and can be represented as follows:

Σxyz =

 σ2
x ρxyσxσy ρxzσxσz

ρxyσxσy σ2
y ρyzσyσz

ρxzσxσz ρyzσyσz σ2
z

 . (21)

This implies that there are 9 parameters
[
µx, µy, µz, σ

2
x, σ

2
y, σ

2
z , ρxy, ρyz, ρxz

]
to be optimized for predicting each 3D point.

Consequently, the complexity of predicting one 3D point is approximately twice that of one 2D point.

For a 3D Gaussian distribution, by substituting the covariance matrix Σxyz into Equation 20, we obtain its expanded form:

f(x, y, z)=
1

(2π)3/2 |Σxyz|1/2
exp

(
− 1

2

(
(x−µx)

2

σ2
x

+
(y−µy)

2

σ2
y

+
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2

σ2
z

−2ρxy
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σxσy
−2ρxz

(x−µx)(z−µz)

σxσz
−2ρyz

(y−µy)(z−µz)

σyσz

))
.

(22)

The exponential term of Equation 22 can be decomposed into two multiplicative components, such that Equation 22 can be
expressed as follows:

f(x, y, z)=
1

(2π)3/2
√

σ2
xσ

2
yσ

2
z

exp

(
−1

2

(
(x− µx)

2

σ2
x

+
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2

σ2
y

+
(z − µz)

2

σ2
z

))
︸ ︷︷ ︸

Part−I

×

√
σ2
xσ

2
yσ

2
z

|Σxyz|1/2
exp

(
1

2

(
2ρxy

(x− µx)(y − µy)

σxσy
+ 2ρxz

(x− µx)(z − µz)

σxσz
+ 2ρyz

(y − µy)(z − µz)

σyσz

))
︸ ︷︷ ︸

Part−II

,

(23)
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where Part − I and Part − II denote the independent and correlation parts, respectively. Part − I corresponds to the
distribution of each variable within its own dimension, while Part− II captures the interdependencies between variables
in the 3D Gaussian distribution. This decomposition underscores that the overall Gaussian distribution is the product of
independent Gaussian distributions (Part− I) and a correction factor that accounts for inter-axis correlations (Part− II).
Additionally, the independent part can further be expressed as the product of three 1D Gaussian distributions:

Part− I =
∏

ν∈{x,y,z}

(
1√
2πσ2

ν

exp

(
− (xν − µν)

2

2σ2
ν

))
. (24)

Therefore, we propose a divide-and-conquer strategy for predicting 3D trajectories. This approach first decouples the
prediction process along three independent axes, mitigating the impact of inter-axis correlations. Subsequently, the inter-axis
correlations are modeled to refine the predictions. In this way, the prediction of each 3D point with 9 parameters is first
simplified to optimize three 1D Gaussian distributions with 6 free parameters, thereby reducing the overall prediction
complexity.

B. Details of Vanilla LSTM
LSTM is a Recurrent Neural Network (RNN) designed to process sequential data such as time series, natural language text,
etc. Traditional RNNs struggle with long sequences due to the vanishing or exploding gradient problem. LSTM addresses
this by incorporating a gating mechanism that helps capture long-term dependencies effectively.

Figure 8: Illustration of LSTM cell.

Vanilla LSTM refers to the basic form of LSTM, composed of a forget gate, input gate, output gate, and cell state, as
illustrated in Figure 8. At each time step t, the LSTM receives an input vector xt, a previous hidden state ht−1, and a
previous cell state ct−1. Then the four modules compute as follows:

Forget Gate: The forget gate decides what information to remove from the cell state. It takes the previous hidden state ht−1

and current input xt, and computes a forget ratio:

ft = σ(Wf · [ht−1, xt] + bf ), (25)

where:

• ft: Forget gate activation vector at time t,

• σ: Sigmoid activation function,

• Wf : Weight matrix for the forget gate,

• bf : Bias vector for the forget gate,

• ht−1: Hidden state from the previous time step,

• xt: Input vector at the current time step.
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Input Gate: The input gate determines what new information to add to the cell state. The gate activation is computed as:

it = σ(Wi · [ht−1, xt] + bi), (26)

and the candidate memory content is:
c̃t = tanh(Wc · [ht−1, xt] + bc), (27)

where:

• it: Input gate activation vector,

• c̃t: Candidate cell state vector,

• Wi,Wc: Weight matrices for the input gate and cell state,

• bi, bc: Bias vectors for the input gate and cell state,

• tanh: Hyperbolic tangent activation function.

Cell State Update: The cell state is updated using information from the forget and input gates:

ct = ft ⊙ ct−1 + it ⊙ c̃t, (28)

where:

• ct: Cell state vector at time t,

• ct−1: Cell state vector from the previous time step,

• ⊙: Element-wise multiplication.

Output Gate: The output gate decides the current hidden state (and the output of the LSTM). The gate activation is:

ot = σ(Wo · [ht−1, xt] + bo), (29)

and the hidden state is computed as:
ht = ot ⊙ tanh(ct), (30)

where:

• ot: Output gate activation vector,

• ht: Hidden state vector at time t,

• Wo: Weight matrix for the output gate,

• bo: Bias vector for the output gate.

In summary, the LSTM performs the following operations at each time step:

1. Inputs the previous hidden state ht−1 and current input xt.

2. Uses the forget gate to decide which past information to discard.

3. Updates the cell state with the input gate and candidate memory.

4. Computes the current hidden state using the output gate.
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C. The Motion Trajectory Visualization
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(a) Orthographic Projection
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(b) Front View
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(c) Top View
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(d) Side View

Figure 9: Orthographic projections, along with front, top, and side views of 3D trajectories for the remaining five underwater
scenarios in the 3DMoTraj dataset.
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D. The Distance Distributions for Different Scenarios

(a) Scenario #1 (b) Scenario #2 (c) Scenario #3 (d) Scenario #4

(e) Scenario #5 (f) Scenario #6 (g) Scenario #7 (h) Scenario #8

Figure 10: The distance distributions for scenarios #1 through #8.

E. The Velocity Distributions for Different Scenarios

(a) Scenario #1 (b) Scenario #2 (c) Scenario #3 (d) Scenario #4

(e) Scenario #5 (f) Scenario #6 (g) Scenario #7 (h) Scenario #8

Figure 11: The velocity distributions for scenarios #1 through #8.
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F. The Acceleration Distributions for Different Scenarios

(a) Scenario #1 (b) Scenario #2 (c) Scenario #3 (d) Scenario #4

(e) Scenario #5 (f) Scenario #6 (g) Scenario #7 (h) Scenario #8

Figure 12: The acceleration distributions for scenarios #1 through #8.

G. The Curvature Distributions for Different Scenarios

(a) Scenario #1 (b) Scenario #2 (c) Scenario #3 (d) Scenario #4

(e) Scenario #5 (f) Scenario #6 (g) Scenario #7 (h) Scenario #8

Figure 13: The curvature distributions for scenarios #1 through #8.
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