
Enhancing Text-to-SQL with Open-source LLMs

Ruilin Hu
2024210886

Tsinghua University
hrl24@mails.tsinghua.edu.cn

Lu Fan
2024210883

Tsinghua University
fanl24@mails.tsinghua.edu.cn

Yizhe Chen
2023311175

Tsinghua University
chenyizh23@mails.tsinghua.edu.cn

Abstract

The text-to-SQL task seeks to bridge natural language questions and database
query systems by converting user queries into executable SQL statements. While
recent advancements in large language models (LLMs) have significantly im-
proved the task’s accuracy, current methods often rely on proprietary LLMs with
high costs, limited accessibility, and data privacy concerns. This paper presents
SageSQL, a novel multi-agent framework leveraging open-source LLMs to address
these challenges. SageSQL introduces a robust schema linking process, enabling
accurate identification of relevant database components, followed by a diverse
SQL generation module to maximize structural variety in generated queries. A
self-consistency-based post-processing mechanism further refines the final SQL
output. Experimental results on the Spider and BIRD benchmarks demonstrate
that SageSQL outperforms state-of-the-art methods based on open-source LLMs
and achieves competitive performance with proprietary LLMs, highlighting its
potential as a cost-effective, privacy-preserving solution for complex text-to-SQL
tasks.

1 Introduction

The text-to-SQL task (also known as natural language to SQL or NL2SQL) aims at translating a
user’s question into a valid and semantically aligned SQL query that can be executed in a given
database. By enabling users without SQL expertise to interact with databases, text-to-SQL allows
users to efficiently retrieve the required data from databases, perform data analysis, and finally make
data-driven decisions[25, 14].

Due to the impressive capabilities of large language models (LLMs) in language understanding and
code generation, numerous studies have investigated the application of LLMs to the text-to-SQL
task. Although high accuracy was obtained, most existing methods based on in-context learning
depend heavily on the capability of powerful proprietary LLMs, which have unignorable limitations
on practical applications. (L1) Firstly, previous methods based on few-shots prompting[18, 7]
require inputting a large number of tokens into proprietary LLMs like GPT-4, which can incur
significant economic costs (for example, DIN-SQL+GPT-4[18] costs around 0.7$ per question). (L2)
Another issue is data privacy: many companies cannot send internal database schema information
or user data to LLM service providers. (L3) Additionally, the reliance on proprietary models
accessed solely through API calls, with no visibility into their underlying architectures or inference
mechanisms, significantly restricts their flexibility and efficiency in deployment for various application
environments. These limitations highlight the importance of developing text-to-SQL methods based

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: The Illustration of SageSQL pipeline.

on open-source LLMs, which enable cost-effective and privacy-preserving solutions for practical
applications.

Despite many advantages offered by text-to-SQL methods based on open-source LLMs, they exhibit
a significant performance gap compared to their closed-source counterparts. In particular, on the
challenging BIRD benchmark[14], the popular open-source coding model StarCoder-15B[15] shows
an approximately 25% lower execution accuracy than GPT-4, even the continue-pretrained and
fine-tuned LLM that focuses on text-to-SQL, CodeS-15B[13], still lag-behind advanced in-context
learning methods based on GPT-4o by 14%. This performance disparity underscores the limitations
of current open-source LLMs in handling complex text-to-SQL tasks. To bridge this gap, exploring
better text-to-SQL strategies with open-source LLMs is essential.

To enhance the capability of open-source LLMs in performing the text-to-SQL task, we propose
SageSQL, a multi-agent framework for text-to-SQL. As illustrated in Figure 1, SageSQL generates
SQL queries through a three-stage process. The first stage is schema linking, which prunes the
large-scale database schema to retain only the schema components necessary to answer the given
question. SageSQL employs a robust schema linking approach and enhances the reliability of this
process by effectively avoiding overlooking both tables and columns. The second stage is diverse
SQL generation, where multiple candidate SQL queries are generated with an ensemble method
to achieve diversity. The third stage is post-processing. We employ a self-consistency approach to
consolidate multiple diverse SQL queries into a single final SQL result.

2 Related Work

Text-to-SQL with Open-Source Models Before LLMs were widely used, researchers explored
pretrained small-size language models with an ensemble framework to solve the text-to-SQL task.
RAT-SQL[27] and LGE-SQL[2] encode database schemas and user questions with BERT[4] and
utilize graph neural networks to model the foreign key relationship. With the growing capabilities of
pretrained encoder-decoder language models, end-to-end translating approaches for text-to-SQL are
employed. RASAT[20], PICARD[24], RESD-SQL[12] model the text-to-SQL task as a translation
problem and make use of the T5[22] model to translate user questions into SQL queries. In later
studies, large language models with transformer decoder architecture are gradually integrated into
text-to-SQL solutions. ZeroNL2SQL[6] combines T5 models as SQL skeleton parsers and proprietary
LLMs to obtain the complete SQL. DTS-SQL[19] designs a concise two-stage framework with two
fine-tuned open-source LLMs, which first prune the database schema and then generate the SQL
query with the pruned schema.

In-Context Learning Methods for Text-to-SQL Recently, many studies have focused on solving
the text-to-SQL task using innovative prompting techniques and advanced text-to-SQL pipelines.

2

Most of these methods rely on the powerful capabilities of proprietary LLMs. For instance, ACT-
SQL[32] generates chain-of-thought prompts automatically to improve text-to-SQL performance.
DIN-SQL[18] decomposes complex problems into easily solvable problems and adds them to the
prompt to enhance in-context learning. DAIL-SQL[7] samples semantically similar questions and
SQL queries as prompts to further improve the prompt quality and gain a performance boost. PTD-
SQL[16] proposes partitioning human-annotated examples in different banks and actively selects
similar shots from various banks as examples at run-time. Other approaches concentrated on
prompting LLMs multiple times, forming a multi-agent framework. For example, MAC-SQL[28] and
DEA-SQL[30] designed integrated workflows to improve the results in various aspects. Additionally,
[11] conducted sufficient experiments and summarized the pros and cons of each popular text-to-SQL
method and proposed SuperSQL, which chooses the best option at different text-to-SQL stages with
genetic algorithm.

Code Language Models After being trained on large-scale source code datasets, code language
models demonstrate exceptional capabilities in code understanding, code generation, and program
completion[3]. The interest in developing coding language models has been steadily increasing
[15, 23, 26, 9] in the past few years. Due to the diverse range of training code languages, the relatively
small amount of SQL code, and the constrained expressive capabilities of open-source models, the
performance of open-source models on the text-to-SQL task is often suboptimal. As approaches to
address this, CodeS[13] carried out continued pretraining on StarCoder[15] models with additional
SQL data, and SENSE[10] proposes to fine-tune code language models with both strong and weak
synthetic text-to-SQL data.

3 Preliminaries

Text-to-SQL Task. Let D be a relational database with schema S. The database D consists of
n tables {T1, T2, . . . , Tn}, where each table Ti (1 ≤ i ≤ n) stores a set of contents denoted as
Vi. Collectively, the contents of all tables are represented as V = {V1, V2, . . . , Vn}. <(Fixed) poor
notation. which table? n is used twice> Given a user’s natural language question Q, the task of
text-to-SQL is to generate a SQL query sql such that the SQL query can extract the desired contents
from D and answer the user’s question.

In more practical scenarios, an optional natural language external knowledge E may be provided
to guide the SQL generation. The external knowledge E can take various forms, such as domain-
specific rules, special meanings of the database content, or additional metadata about the database.
Incorporating all the definitions mentioned above, the text-to-SQL task can be formulated as follows:

sql = Parser(S,V, Q,E) (1)

where Parser denotes the text-to-SQL pipeline.

4 Robust Schema Linking

Schema linking serves as a preliminary stage that facilitates later SQL generation, yet according
to [17], schema linking faces a challenge that simply trying to predict the sub-schema can cause
performance degradation of text-to-SQL systems. This challenge arises from the fact that, though the
schema linking stage filters out noisy tables and columns, it can bring an unignorable information
loss. Even if a single required table or column is overlooked during the schema linking stage, the
SQL query is guaranteed to fail, as every component of the SQL query is indispensable to correctly
constructing the intended query.

Although schema linking has limitations, it remains an essential component for text-to-SQL solutions
based on open-source models. This is because: (1) Open-source models have relatively smaller
context windows, making it difficult to accommodate the entire database schema. (2) Unlike advanced
proprietary LLMs like GPT-4, open-source models exhibit weaker comprehension capabilities for
lengthy inputs, making it challenging to understand schemas and generate correct SQL simultaneously
when presented with a large number of tokens. (3) In practical data warehouse scenarios, the number
of tables and columns is often substantial, necessitating an efficient information retrieval process to
maintain scalability.

3

Under these circumstances, text-to-SQL systems that are based on open-source models face a
dilemma: directly predicting the sub-schema during the schema linking stage inevitably leads to
information loss, and open-source models are still compelled to rely on this process due to their
inherent limitations. Such a trade-off highlights a pressing question: How can we leverage schema
linking effectively while minimizing issues caused by missing tables and columns? To solve the
question, we propose a global-local approach to avoid overlooking columns in the schema linking
stage. After that, we further refine our schema linking model through preference learning to avoid
overlooking tables. This approach maximizes recall while maintaining high accuracy in schema
linking, thus improving the robustness of the schema linking process.

4.1 Global-Local Schema Linking

As described in the previous section, schema linking is a challenging subtask that requires meticulous
consideration of each table and column to ensure that no necessary table or column is overlooked.
However, existing methods[19, 21, 8] perform schema linking in a in-one-go manner, which imposes
high demands on the model’s capabilities since the model needs to pay attention not only to the JOIN
relationship of tables, but also to the datailed meaning of each column. As [17] pointed out, this type
of schema linking approach leads to an unignorable performance degradation of text-to-SQL systems.

Algorithm 1 Global-Local Schema Linking
Require: Global schema linking model Mglobal, local schema linking model Mlocal, database

schema S, database value set V , user question Q, external knowledge E
Ensure: Pruned database schema Sp

1: RVdb ← GetRelatedValues(V,S, Q,E)
2: {Global schema linking}
3: Scoarse ←Mglobal(S, RVdb, Q,E)
4: Sp ← Scoarse
5: for all T ∈ Scoarse do
6: {For each column in T}
7: for all C ∈ T do
8: RVcol ← GetRelatedValues(V, C,Q,E)
9: {Local schema linking}

10: if Mlocal(T,RVcol, Q,E) == True then
11: Sp ← Sp ∪ C
12: end if
13: end for
14: end for
15: return Sp =0

To minimize loss of information, we introduce a from-global-to-local schema linking strategy, which
introduces a local column scanning process to avoid overlooking required columns. As illustrated
in Algorithm 1, we introduce two models to perform the schema linking task collaboratively. The
global schema linking model Mglobal is a high-capacity model trained to perform coarse-grained
selection of tables and columns. In particular, Mglobal is capable of identifying all tables necessary
for constructing JOIN operations in cases where multi-table queries are needed. In contrast, the local
schema linking model Mlocal, which is lightweight and fast, acts as a binary classification model to
refine the results produced by Mglobal. Within the scope of the tables selected by Mglobal, Mlocal

further examines unselected columns and their corresponding values to determine their relevance to
the user question, thus identifying useful columns that may have been overlooked during the global
linking stage.

4.2 Preference Learning for Schema Linking

Schema linking can be regarded as a retrieval task. This subtask emphasizes achieving a recall rate as
high as possible while ensuring that precision remains sufficiently high, without overly prioritizing
precision at the cost of recall. Previous schema linking approaches[19, 8] only used supervised
fine-tuning for learning. However, limited model capacity often results in the model overlooking
tables and columns during the schema linking stage. To address this, we adopt preference learning

4

to the global schema linking model Mglobal to instill in the model a bias that missing selections are
unacceptable. By incorporating preference learning, we can effectively reduce the omission of tables
in schema linking, thereby enhancing the overall robustness and reliability of our global-local schema
linking framework.

Algorithm 2 Preference Data Augmentation
1: Input: Schema linking dataset Dother, column sample frequency K
2: Output: Schema linking preference dataset Ddpo

3: Ddpo ← ∅
4: {Augment each datapoint in Dother}
5: for all (Si, Qi,Yi) ∈ Dother do
6: xi ← MakePrompt(Si, Qi)
7: {Acquire table augmentation data}
8: for all T ∈ Si do
9: ywin ← Linearize(Yi)

10: yloss ← Linearize(Yi \ T)
11: Ddpo ← Ddpo ∪ (xi, ywin, yloss)
12: end for
13: {Acquire column augmentation data}
14: for i = 1 to K do
15: C ← RandomlySampleColumns(Yi)
16: ywin ← Linearize(Yi)
17: yloss ← Linearize(Yi \ C)
18: Ddpo ← Ddpo ∪ (xi, ywin, yloss)
19: end for
20: end for
21:
22: return Ddpo =0

During training, we have a pretrained LLM Mpretain and the schema linking dataset D =
{Si Qi,Yi}Ni=0, where Si is the complete database schema, Qi is the user question, and Yi de-
notes the sub-schema that contains the exact tables and columns to answer Qi. The database values
and potential external knowledge are omitted for simplicity. We divide D into two parts Dsft and
Dother, and Dother is further augmented by Algorithm 2 to obtain Ddpo. The Linearize function
in Algorithm 2 transforms a schema into a token sequence. After having Dsft and Ddpo, we first
supervised fine-tune the pretrained model Mpretrain to obtain Msft, and then tune Msft using DPO
to obtain Mglobal. The DPO process could be formulated as maximizing the following object:

E
(x,yw,yl)∼Ddpo

log σ

(
β log

pθ(yw | x)
pref(yw | x)

− β log
pθ(yl | x)
pref(yl | x)

)
(2)

where θ is the parameters of the language model and pθ(y | x) =
∏T

t=1 pθ (yt | y1:t−1, x) is the
conditional probability distribution of the predicted table name and the column name sequence given
the prompt about the complete schema and the user question. T is the sequence length and t is the
auto-regressive decoding step.

In summary, our schema linking approach achieved column robustness by employing the global-local
schema linking strategy, and further achieved table robustness by adopting preference learning to the
global schema linking model Mglobal. This combination ensures a more comprehensive and robust
schema linking process across both tables and columns.

5 SQL Generation and Post-processing

5.1 Diverse SQL Generation

To enable the model to generate high-quality and diverse SQL queries, we fine-tuned the code LLMs
and employed an ensemble sampling strategy during inference.

5

Pyramid Training Data. We performed data augmentation on the training data and fine-tuned our
model using training datasets with three different schema scales. This approach was designed to
enable the model to generate accurate SQL queries while also enhancing its ability to comprehend
database schemas. The three schema scales in the training data are as follows:

• Schemas just sufficient to answer the question: These schemas help the model focus on
learning the finer details of SQL generation. However, training exclusively on such data
may cause the model to develop a bias toward using all available tables and columns.

• Complete database schemas: These schemas enable the model to learn how to identify and
select the appropriate tables and columns from large-scale schemas to generate correct SQL
queries.

• Schemas with randomly added tables and columns beyond what is needed to answer
the question: These schemas allow the model to learn to appropriately ignore irrelevant
noise and focus on using the most relevant tables and columns to generate SQL queries.

Ensemble Sampling. We observed that a well-aligned model tends to produce identical SQL queries
with similar questions. To address this, we designed three different sampling methods and integrated
them during inference to generate more diverse SQL queries.

• Sampling with high temperature: This method involves setting a high temperature at
inference time, allowing the LLM to randomly explore and select different SQL generation
paths.

• Sampling with conditions: By pre-conditioning the input with the keyword WITH, this
approach forces the LLM to generate SQL queries using Common Table Expressions.

• Beam search: This technique employs multiple beams to represent different SQL keyword
paths, enabling the generation of diverse SQL structures.

5.2 Postprocessing

In the post-processing phase, we adopted a self-consistency[29] approach. After generating diverse
SQL results, each SQL query is pre-executed on the database to obtain its execution results. Erroneous
and unreasonable results are filtered out, and the execution result that occurs most frequently is
selected as the consistent result. Finally, one of the SQL queries leading to this consistent result is
randomly chosen as the final output SQL.

6 Prompt Engineering

6.1 Linearized Table Representation

To provide enough information about the text-to-SQL question, we designed an integrated prompt
structure as illustrated in Figure 2. The same structure is adopted in both the schema-linking module
and the SQL generation module. Inspired by classical database design patterns, we incorporate
different information needed for answering the user question into the prompt in a SQL data description
language (DDL) style, which includes:

• Table Defination We follow the SQLite CREATE TABLE paradigm to indicate each table.
Following the table definition are the column definitions, the primary key definition, and the
foreign key relationships.

• Column Attributes To provide maximum information for the model, column types and
optional UNIQUE and NOT NULL attributes are included in the prompt.

• Column Comments Since abbreviations and ambiguous columns are common in databases,
we add column comments to describe the column additionally. Column comments include
two types: (1) extended column name (for example, amount for column amt in Figure
2), (2) column meaning description (for example, approved amount of the loan for
column amt in Figure 2).

• Value Examples After each table definition, value examples for each column are provided.
For numeric columns, we randomly sample three values. For text-like columns including

6

TEXT, DATE, and VARCHAR, we extract three values stored in the database that have the
highest similarity to the question embedding.

6.2 Value Retrieving

In the preprocessing stage, we utilize an embedding model to calculate the vector embeddings of
each text-like value (TEXT, DATE, and VARCHAR etc.) in the database. At run-time, text-like values
in the database with the highest similarity to the user question are retrieved. Although prior works
[6, 13] propose to extract pertinent database content using ensemble or character-based approaches,
we found that the light-weighted semantic similarity-based approach is already enough to extract the
essential values for the text-to-SQL task. Moreover, unlike prior methods[19, 13], which first prune
the database schema in an isolated manner and then extract database content to help generate SQL,
we add value examples to the prompts both when pruning the schema and generating SQL. Such a
strategy comes from the intuition that if a column contains values related to the current question,
the column is more likely to be helpful to construct a SQL query to answer the natural language
question. (For instance, if the user question is asking for a city, a column that has value "New York"
is probably useful even if the column name or column description is an abbreviation or irrelevant)

7 Experiment

Model / Method Spider BIRD

Name Dev-set Test-set Dev-set Test-set

Prompting Methods w/ Closed-Source LLMs

GPT-4 72.9 - 49.2 54.9
C3-SQL[5] + ChatGPT 81.8 82.3 50.2 -
DIN-SQL[18] + GPT-4 82.8 85.3 50.7 55.9
DAIL-SQL[7] + GPT-4 83.5 86.2 54.8 57.4
TA-SQL[21] + GPT-4 85.0 - 56.2 59.1
PTD-SQL[16] + GPT-4 85.7 - 57.0 -
MAC-SQL[28] + GPT-4 86.8 82.8 57.6 59.6
SuperSQL[11] + GPT-4 87.0 - 58.5 62.7
E-SQL[1] + GPT-4o - - 65.6 66.4

Fine-tuning Open-Source LLMs

SENSE-7B[10] 83.2 83.5 51.8 59.3
SENSE-13B[10] 84.1 86.6 55.5 63.4
SFT CodeS-7B[13] 85.5 - 55.8 60.3
SFT CodeS-15B[13] 85.4 - 57.2 59.2

Multi-Stage NL2SQL w/ Open-Source LLMs

SageSQL-7B 87.6 – 61.6 –
SageSQL-32B 88.5 – 70.2 –

Table 1: Performance Comparison of Different Models

7.1 Evaluation Benchmarks

We evaluate the effectiveness of our method with recognized Text-to-SQL benchmarks across multiple
datasets.

7

General Benchmark Spider[31] is a widely-recognized Text-to-SQL benchmark. Spider contains
7000 human-annotated Text-to-SQL pairs in its training set and 1034 pairs in the validation set, across
200 different databases and 138 domains.

Challenging Benchmark BIRD[14] is a challenging benchmark of large real-world databases.
BIRD contains 95 databases across 37 fields and 9428 high-quality Text-to-SQL pairs. BIRD features
massive and dirty database contents and requires Text-to-SQL systems to reason on external expert
knowledge to generate SQL queries.

7.2 Evaluation Metric

We report the common evaluation metric: Execution Accuracy (EX). EX determines equivalence
between a predicted SQL query and a reference SQL query if they produce identical results across
various database instances. EX is considered an accurate measurement of Text-to-SQL methods since
multiple correct SQL queries can differ in output style.

7.3 Main Evaluation Results

As illustrated in Table1, SageSQL achieved an execution accuracy (EX) of 87.6% on the Spider-dev
dataset and 61.6% on the BIRD-dev dataset when using the 7B model. With the 32B model, SageSQL
further improved its performance, achieving 88.5% EX on Spider-dev and 70.2% EX on BIRD-dev,
surpassing a range of state-of-the-art (SOTA) methods. Notably, the baseline SOTA methods primarily
rely on the GPT-4 model, which entails significant computational costs and poses potential privacy
risks. This performance improvement demonstrates that by leveraging a multi-agent framework and
open-source code models, it is possible to achieve efficient text-to-SQL processing while maintaining
low costs.(For Spider-test and BIRD-test, the models need to be submitted to the organizers to obtain
results. Due to time constraints, we have not included the corresponding results here but will attempt
to provide them in the coming weeks.)

7.4 Rubust Schema Linking Evalution

We further evaluated the Robust Schema Linking module by analyzing its performance on the BIRD-
dev dataset, focusing on the number of test cases successfully recalled. Specifically, for the 1,534 test
cases in BIRD-dev, we defined two types of negative impacts caused by schema linking: (1) Table
Loss: At least one table is omitted during the schema linking process. (2) Column Loss: While all
tables are correctly identified, at least one column is omitted. These two types of negative impacts
are mutually exclusive. For each test case, if either type of negative impact occurs, the test case is
determined to fail and the less loss occur is considered the better.

Table 2: Robust Schema Linking Evaluation

Table Loss # Column Loss # All Loss
Global(SFT) Schema Linking 166 143 309
Global(SFT+DPO) Schema Linking 152 96 248
Global(SFT) + Local Schema Linking 166 72 238
Global(SFT+DPO) + Local Schema Linking 152 47 199

As shown in Table 2, the simple global schema linking method fails on 309 out of 1534 data points
in the BIRD-dev dataset. By employing a combined global and local schema linking approach, we
significantly reduced the number of failed data points by minimizing column loss. Furthermore,
we fine-tuned the global schema linking model using DPO, which further reduced the table loss.
Ultimately, the integration of the global-local schema linking method with DPO resulted in reductions
in both table loss and column loss, leaving only 199 failed data points and achieving the best overall
performance.

7.5 Ablation Study

We conducted ablation study as illustrated in Table 3. We conducted ablation experiments by
removing the schema linking module, replacing the ensemble SQL generation process with simple

8

Table 3: Ablation Study on SageSQL modules

Module Name EXecution Accuracy on BIRD-dev
SageSQL-32B 70.2
w/o Schema Linking 64.5 (-5.7)
w/o Diverse SQL Generation 68.2 (-2.0)
w/o Self-Consistency 67.8 (-2.4)

multiple sampling, and eliminating the self-consistency post-processing step. The results showed
varying degrees of decline in the EX of SageSQL, with the removal of the schema linking module
leading to the most significant performance degradation. This further highlights the critical role of
schema linking in enhancing the performance of open-source models on text-to-SQL tasks.

7.6 Discussion about Post-processing

The conventional evaluation methods for text-to-SQL tasks typically consider only a single predicted
SQL query to determine correctness. In this work, we extend the discussion to scenarios where
multiple SQL queries are generated, and at least one is correct. Specifically, we employ ensemble
sampling to generate 24/36 SQL queries and evaluate the probability of producing a correct SQL
query among the outputs.

Table 4: BIRD-dev evaluation (Top-N) scenario

EXecution Accuracy on BIRD-dev
SageSQL-32B (Top-1 with Self-Consistency) 70.2
SageSQL-32B (Top-24) 79.2
SageSQL-32B (Top-36) 81.5
w/o Diverse SQL Generation (Top-24) 74.6

As shown in Table 4. We observed that when generating 24 SQL queries, as many as 79.2% of the
data points contained at least one correct SQL query. However, the Self-Consistency approach, which
selects a single SQL query as the final output, resulted in only 70.2% of the data points achieving the
correct SQL. This indicates that there is room for improvement in designing a more effective selection
module to identify the best SQL query from multiple candidates. Furthermore, we observed that our
Diverse SQL Generation module significantly expands the SQL search space. Without employing the
Diverse SQL Generation approach, up to 5% of the data points among the 24 generated SQL queries
would fail to include a correct SQL query. This reduction decreases the likelihood of achieving the
correct SQL result.

8 Conclusion

This paper introduces SageSQL, a multi-agent framework designed to enhance the performance of
open-source LLMs in text-to-SQL tasks. By addressing the inherent limitations of open-source models
through innovations such as robust schema linking, diverse SQL generation, and self-consistency-
based post-processing, SageSQL achieves state-of-the-art results among open-source solutions and
narrows the performance gap with proprietary models. The proposed global-local schema linking and
preference learning mechanisms ensure minimal loss of critical information, while the diverse SQL
generation module encourages structural variety in outputs, thereby improving execution accuracy on
challenging datasets like BIRD.

Our experimental results validate the efficacy of SageSQL, showing significant improvements over
existing methods in both general and challenging benchmarks. Moreover, the cost-efficiency and
privacy advantages of using open-source LLMs position SageSQL as a practical alternative for
real-world applications, especially in environments where proprietary solutions are infeasible due to
financial or regulatory constraints. Future work will explore the integration of external knowledge
bases and further optimization of the multi-agent framework to enhance scalability and adaptability
across diverse database systems.

9

References
[1] Hasan Alp Caferoğlu and Özgür Ulusoy. E-sql: Direct schema linking via question enrichment

in text-to-sql. arXiv preprint arXiv:2409.16751, 2024.

[2] Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu, and Kai Yu. LGESQL: Line graph
enhanced text-to-SQL model with mixed local and non-local relations. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 2541–2555,
2021.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Henrique Ponde de Oliveira Pinto Qiming Yuan,
Jared Kaplan, and et.al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[5] Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, lu Chen, Jinshu Lin, and
Dongfang Lou. C3: Zero-shot text-to-sql with chatgpt. arXiv preprint arXiv:2307.07306, 2023.

[6] Ju Fan, Zihui Gu, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang Li, Samuel
Madden, Xiaoyong Du, and Nan Tang. Combining small language models and large language
models for zero-shot nl2sql. Proc. VLDB Endow., 17(11):2750–2763, 2024.

[7] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. Proc. VLDB
Endow., 17(5):1132–1145, 2024.

[8] Satya Krishna Gorti, Ilan Gofman, Zhaoyan Liu, Jiapeng Wu, Noël Vouitsis, Guangwei Yu,
Jesse C. Cresswell, and Rasa Hosseinzadeh. Msc-sql: Multi-sample critiquing small language
models for text-to-sql translation. arXiv preprint arXiv:2410.12916, 2024.

[9] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, and et.al. Qwen2.5-
coder technical report. arXiv preprint arXiv:2409.12186, 2024.

[10] Yang Jiaxi, Hui Binyuan, Yang Min, Yang Jian, Lin Junyang, and Zhou Chang. Synthesizing
text-to-SQL data from weak and strong LLMs. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 7864–7875,
2024.

[11] Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural
language to sql: Are we fully ready? Proc. VLDB Endow., 17(11):3318–3331, 2024.

[12] Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. Resdsql: decoupling schema linking
and skeleton parsing for text-to-sql. In Proceedings of the Thirty-Seventh AAAI Conference
on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial
Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, 2023.

[13] Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. Proc. ACM Manag. Data, 2(3), 2024.

[14] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C.C. Chang, Fei
Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database interface? a big
bench for large-scale database grounded text-to-sqls. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, 2024.

10

[15] Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, and et.al. Starcoder: may the source be with you! Transactions on Machine Learning
Research, 2023.

[16] Ruilin Luo, Liyuan Wang, Binghuai Lin, Zicheng Lin, and Yujiu Yang. Ptd-sql: Partitioning and
targeted drilling with llms in text-to-sql. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages 3767–3799, 2024.

[17] Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz, and Amine Mhedhbi. The death of
schema linking? text-to-sql in the age of well-reasoned language models. arXiv preprint
arXiv:2408.07702, 2024.

[18] Mohammadreza Pourreza and Davood Rafiei. Din-sql: decomposed in-context learning of
text-to-sql with self-correction. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, 2024.

[19] Mohammadreza Pourreza and Davood Rafiei. Dts-sql: Decomposed text-to-sql with small large
language models. In Findings of the Association for Computational Linguistics: EMNLP 2024,
pages 8212–8220, 2024.

[20] Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, Yu Cheng, Chenghu Zhou, Xinbing Wang,
Quanshi Zhang, and Zhouhan Lin. RASAT: Integrating relational structures into pretrained
Seq2Seq model for text-to-SQL. In Proceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 3215–3229, 2022.

[21] Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo, Chenhao Ma, and Reynold Cheng. Before
generation, align it! a novel and effective strategy for mitigating hallucinations in text-to-SQL
generation. In Findings of the Association for Computational Linguistics ACL 2024, pages
5456–5471, 2024.

[22] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[23] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
and et.al. Code llama: Open foundation models for code. arXiv preprint arXiv:2308.12950,
2023.

[24] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: Parsing incrementally
for constrained auto-regressive decoding from language models. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pages 9895–9901, 2021.

[25] Michael Stonebraker and Andrew Pavlo. What goes around comes around... and around...
SIGMOD Record., 53(2):21–37, 2024.

[26] CodeGemma Team. Codegemma: Open code models based on gemma. arXiv preprint
arXiv:2406.11409, 2024.

[27] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. RAT-
SQL: Relation-aware schema encoding and linking for text-to-SQL parsers. In Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pages 7567–7578,
2020.

[28] Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng Chai, Zhao Yan,
Qian-Wen Zhang, Di Yin, Xing Sun, and Zhoujun Li. Mac-sql: A multi-agent collaborative
framework for text-to-sql. arXiv preprint arXiv:2312.11242, 2023.

[29] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

[30] Yuanzhen Xie, Xinzhou Jin, Tao Xie, Mingxiong Lin, Liang Chen, Chenyun Yu, Lei Cheng,
Chengxiang Zhuo, Bo Hu, and Zang Li. Decomposition for enhancing attention: Improving
LLM-based text-to-SQL through workflow paradigm. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 10796–10816, 2024.

11

[31] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 3911–3921, 2018.

[32] Hanchong Zhang, Ruisheng Cao, Lu Chen, Hongshen Xu, and Kai Yu. Act-sql: In-context
learning for text-to-sql with automatically-generated chain-of-thought. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pages 3501–3532, 2023.

A Prompt Engineering Example

Figure 2: An exemplary prompt for the text-to-SQL question. We use the same structure in different
text-to-SQL stages. Here, we show the prompt in the SQL generation stage.

12

	Introduction
	Related Work
	Preliminaries
	Robust Schema Linking
	Global-Local Schema Linking
	Preference Learning for Schema Linking

	SQL Generation and Post-processing
	Diverse SQL Generation
	Postprocessing

	Prompt Engineering
	Linearized Table Representation
	Value Retrieving

	Experiment
	Evaluation Benchmarks
	Evaluation Metric
	Main Evaluation Results
	Rubust Schema Linking Evalution
	Ablation Study
	Discussion about Post-processing

	Conclusion
	Prompt Engineering Example

