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ABSTRACT

We consider the problem of Federated Learning over clients with heterogeneous
data. We propose an algorithm called SABER that samples a subset of clients
and tasks each client with its own local subproblem. SABER provably reduces
client drift by incorporating an estimate of the global update direction and reg-
ularization into each client’s subproblem. Under second-order data heterogene-
ity with parameter δ, we prove that the method’s communication complexity for
non-convex problems is O

(
δε−2

√
M
)

. In addition, for problems satisfying µ-
Polyak-Łojasiewicz condition, the method converges linearly with communication
complexity ofO

((
δ
µ

√
M +M

)
log 1

ε

)
. To showcase the empirical performance

of our method, we compare it to standard baselines including FedAvg, FedProx,
and SCAFFOLD on image classification problems and demonstrate its superior
performance in data-heterogeneous settings.

1 INTRODUCTION

Federated learning (FL) has emerged as a distributed learning paradigm that enables user devices
to collaboratively train a global model in a privacy-preserving manner. Since its advent (McMahan
et al., 2017), a significant body of work has aimed at tackling key challenges that obstruct its broad
deployability, with emphasis on the communication cost (Konečnỳ et al., 2016; Li et al., 2020c), the
system diversity of client devices (Yang et al., 2021; Abdelmoniem et al., 2023a) and inconsistent
accuracy across individual users (Yu et al., 2020; Wu et al., 2020). In this effort, techniques such as
compressed communication (Reisizadeh et al., 2020; Hönig et al., 2022), adaptable model architec-
tures (Horvath et al., 2021; Karimireddy et al., 2020), dynamic client selection (Lai et al., 2021; Li
et al., 2022) and partial model personalization (Collins et al., 2021; Pillutla et al., 2022) have made
significant strides towards actual FL deployments (Yang et al., 2018; Bonawitz et al., 2019; Paulik
et al., 2021; Huba et al., 2022).

Despite the progress in various fronts, a central and still withstanding problem in FL is the hetero-
geneity of data across clients (Kairouz et al., 2021). Our main interest in this work is to design
algorithms for settings with heterogeneous data, formalized by an assumption on second-order data
heterogeneity. Before we proceed to a formal definition, let us discuss the intuition behind it. In
many practical scenarios, the clients would have similar kinds of inputs, while their outputs may
vary significantly (Silva et al., 2022). In general, this is a problem of clients having preferences,
which makes the data very heterogeneous, and represents the setting that we are interested in. To
quote Arivazhagan et al. (2019):

“same input data can receive different labels from different users”.
Kairouz et al. (2021) call this situation a concept shift. This problem is typically tackled using per-
sonalization (Arivazhagan et al., 2019). However, personalization only solved the data-heterogeneity
issue when the devices have enough computation and memory budget to fine-tune the model. When
targeting the out-of-the-box performance, non-iid data remain a big challenge. As pointed out by
Jiang et al. (2019), global performance and personalized performance are often conflicting objec-
tives, so in this paper, we consider the non-personalized formulation given below:

min
w∈Rd

f(w) =
1

M

M∑
m=1

fm(w), (1)
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where the functions f1, . . . , fM are continuously differentiable. As a blanket assumption, we assume
that the objective above is lower bounded by some finite value f∗ = infw f(w) > −∞. Our main
interest in this paper is in the case where the functions might be non-convex.

The most common approach to developing federated learning algorithms is to assume bounded data
heterogeneity based on first-order data heterogeneity:

‖∇fm(w)−∇f(w)‖ ≤ δ. (first-order heterogeneity assumption)

This assumption imposes a restriction on how dissimilar the gradients of different clients can be. It
has been commonly used to study convergence of FedAvg and other gradient methods for federated
learning (Wang et al., 2018; Yu et al., 2019a). It also follows from an even more restrictive yet pop-
ular (Li et al., 2020b; Yu et al., 2019b; Nguyen et al., 2022b) assumption of uniformly bounded gra-
dients. While it has been shown to be unnecessary for studying the convergence of FedAvg (Khaled
et al., 2020), FedAvg does not, in general, converge precisely to the optimum due to the client drift
induced by data heterogeneity.

In our view, the first-order heterogeneity assumption is not well suited for non-iid settings, where
clients optimize for different objectives. For instance, in logistic regression, the gradients can be
pointing in the opposite directions if they have different labels. In contrast, second-order heterogene-
ity does not need the gradients to be correlated and, as we will discuss later, it is closer connected to
the mere similarity of the inputs. But first, we give a formal definition below.
Assumption 1. We assume that the data have bounded second-order heterogeneity with constant
δ ≥ 0, meaning that for any m ∈ {1, . . . ,M}, it holds

‖∇2f(w)−∇2fm(w)‖ ≤ δ for all w.

Assumption 1 is also sometimes referred to as Hessian similarity. It can also be formulated without
assuming twice differentiability, if for any w1,w2 ∈ Rd it holds

‖∇f(w1)−∇fm(w1)− (∇f(w2)−∇fm(w2))‖ ≤ δ‖w1 −w2‖. (2)

When all functions are twice-differentiable, the two formulations are equivalent. A proof of how
Hessian similarity implies (2) can be found in the work of Khaled & Jin (2022). To the best of our
knowledge, the assumption was first introduced by Mairal (2013) in the context of using surrogate
losses with m = 2, and with a general m ≥ 2 it was first considered by Shamir et al. (2014).

This assumption is satisfied for a wide range of problems where the input data are simi-
lar, whereas the labels do not matter as much. For instance, consider the regression task
fm(w) = E(xm,ym)∼Dm [ 12 (n(w;xm) − ym)2], where n(w; ·) is a predictor, such as a neu-
ral network with weights w, and xm, ym are a random pair of input and label. Then,
∇2fm(w) = E(xm,ym)[∇2n(w;xm)(n(w;xm) − ym) + ∇n(w;xm)∇n(w;xm)>]. Notice
that the second part of the Hessian of fm is completely independent of ym and depends only
on xm. Furthermore, if E(xm,ym)[∇2n(w;xm)(n(w;xm) − ym)] = 0, which holds, for ex-
ample, for linear models, then ∇2fm(w) only depends on the distribution of xm, and δ ≤
maxw,m,m′ ‖Exm,xm′ [∇n(w;xm)∇n(w;xm)> − ∇n(w;xm′)∇n(w;xm′)

>]‖. Furthermore, as
shown by Woodworth et al. (2023), this is not restricted to squared loss and the input similarity is
sufficient for logistic regression as well. In other words, as long as different clients have similar
distributions of inputs, they can have widely different outputs even for the same input, and δ will
still be a small number. This is a significant improvement compared to the first-order heterogeneity
assumption.

Our work might also be of interest outside of federated learning. Chayti & Karimireddy (2022) and
Woodworth et al. (2023) provided a number of machine learning applications, where even having
two functions can be useful for machine learning tasks. For example, when using simulators or
synthetic data sources, the data become heterogeneous and our method can be used to minimize an
objective f while having access to a number of proxies f1, . . . , fM . For simplicity of presentation,
we leave those applications out of consideration in our work and focus on federated learning.

We summarize our contributions as follows:

• We develop a new algorithm called SABER that is stateless by design and supports partial
participation;
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Table 1: A summary of related work and conceptual differences to our approach.

Algorithm 2nd-order
data heterogeneity

Non-Convex
theory

Partial
participation

Stateless Reference

FedAvg 7 3 3 3 McMahan et al. (2017)

FedProx 7 3 3 3 Li et al. (2020a)

FedDANE 7 3 3 3 Li et al. (2019)

SCAFFOLD 3 7(1) 7(2) 7 Karimireddy et al. (2020)

SVRP 3 7 3 3 Khaled & Jin (2022)

SVRS 3 7 3 3 Lin et al. (2023)

SABER 3 3 3 3 This work
(1,2) SCAFFOLD’s theory under second-order data heterogeneity (Theorem IV in (Karimireddy et al., 2020)) is

only for full participation and quadratic problems. The latter condition also implies that the global objective
must be convex for a solution to exist.

• We prove that it achieves state-of-the-art communication complexity of O
(
δε−2

√
M
)

on
general non-convex problems;

• We prove a faster linear convergence with complexity O
((

δ
µ

√
M +M

)
log 1

ε

)
when the

objective is µ-Polyak-Łojasiewicz, which improves upon the O
((

δ2

µ2 +M
)

log 1
ε

)
com-

plexity of SVRP (Khaled & Jin, 2022) whenever δ
µ ≥
√
M , and matches the complexity of

SVRS (Lin et al., 2023). Moreover, unlike SVRP and SVRS, our method does not require
the objective to be convex;

• We run experiments on logistic regression and neural network problems and compare the
performance of SABER to standard baselines such as FedProx and SCAFFOLD.

2 RELATED WORK

FL Methods for Data Heterogeneity. Having observed that the attainable accuracy of the
status-quo FedAvg algorithm (McMahan et al., 2017) degrades significantly under realistic data-
heterogeneous setups (Luo et al., 2021), several works have attempted to alleviate it. Prominent
existing methods have proposed either to define a regularization term that aims to discourage the lo-
cal model from excessively deviating from the server model (Li et al., 2020a), or to introduce control
variates, either for the whole model (Karimireddy et al., 2020; Mishchenko et al., 2022) or for part
of it (Li et al., 2023), as a mechanism for estimating and compensating the drift between client and
server models. The covariates can provably mitigate data heterogeneity (Mishchenko et al., 2022),
but at the cost of requiring the clients to maintain a state. Departing from the standard FL goal of
learning a single model, an alternative line of work has relaxed this setting by focusing on jointly
learning multiple models, either per client (Smith et al., 2017) or per group of clients (Briggs et al.,
2020; Sattler et al., 2021).

Shamir et al. (2014) were among the first to work on second-order data heterogeneity and proposed
a stateless method called DANE, which is limited to full client participation and quadratic problems.
Li et al. (2019) proposed a generalization of DANE called FedDANE that supports partial partic-
ipation and general non-convex objectives, but their analysis does not consider second-order data
heterogeneity. The analyses of both FedDANE (Li et al., 2019) and FedProx (Li et al., 2020a) rely
on a more restrictive first-order data heterogeneity assumption.

A more recent line of work considered methods that are both stateless and work under second-order
data heterogeneity, such as the aforementioned SVRP and SVRS. Khaled & Jin (2022) also proposed
to accelerate SVRP using the Catalyst framework of Lin et al. (2015), and Lin et al. (2023) did the
same thing for SVRS too. Since Catalyst is agnostic to the method used as a subsolver, it can be
applied to SABER as well. However, it would most likely result in the same convergence rate as
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that of Catalyzed SVRP or SVRS, and on top of that, it is unlikely to give a practical method, so
we do not explore this direction. In contrast, our goal is to develop theory that may lead to practical
methods.

Orthogonal FL Techniques. In an endeavor to improve other aspects of FL, existing efforts have
also focused on alleviating the communication cost and the system heterogeneity across clients. On
the communication efficiency front, existing work has attempted to minimize the exchanged data ei-
ther through compression methods, such as top-K sparsification (Rothchild et al., 2020) and various
quantization schemes (Reisizadeh et al., 2020; Hönig et al., 2022), or by communicating variable
amount of data as the training process progresses, with techniques such as progressive pruning (Jiang
et al., 2022) or growing (Alam et al., 2022) of the model. With respect to client-side system hetero-
geneity, existing methods include resource-aware client selection schemes (Lai et al., 2021; Li et al.,
2022; Abdelmoniem et al., 2023b), elastic model architectures whose complexity can be scaled
based on the processing capabilities of each client device, with respect to arithmetic precision (Yoon
et al., 2022) or in the width (Diao et al., 2020; Horvath et al., 2021), depth (Liu et al., 2022) or
both width and depth dimensions (Ilhan et al., 2023), and more exotic methods, such as ZeroFL’s
sparse convolutions (Qiu et al., 2021) and FedBuff’s buffered asynchronous aggregation (Nguyen
et al., 2022a). The majority of these methods are orthogonal to our work and can be combined with
SABER with varying amount of effort.

3 A NEW METHOD

Here, we propose SABER, a new stateless method that tries to estimate the batch gradient∇f(wk)
using an accumulated sequence vk. Key components of SABER comprise i) a new local objective
function, which allows us to maintain a single control variate vk that is shared across clients, and
ii) a control variate updating rule with a tunable synchronization interval. Concretely, we devise the
term 〈vk−∇fm(wk),w−wk〉, which is added to the local objective function of each client. Unlike
SCAFFOLD, which requires a per-client control variate, our approach performs bias correction by
solely utilizing the current gradient on the given client∇fm(wk), which is readily available on each
participating client through the use of gradient-based optimizers, and the shared vector vk. The
complete local objective on the m-th client is derived as

fm(w) + 〈vk −∇fm(wk),w −wk〉+
1

2η
‖w −wk‖2,

where the first term is the loss of the client’s target learning task, the second term performs bias
correction, and the third term introduces regularization with the goal to limit client drift.

For our control variate update rule, we are motivated by the recursive estimators for stochastic
optimization (Nguyen et al., 2017; Fang et al., 2018; Richtárik et al., 2021) that rely on gradient
differences to improve the current estimate, and MARINA (Gorbunov et al., 2021) is a particularly
relevant method. Specifically, we selectively perform either an assignment to the average gradient of
a newly sampled subset of clients S̃k with probability p or a refinement of the current estimate using
the already sampled subset of clients. Algorithm 2 presents the full details of SABER, including the
local objective optimization (lines 13-14) and the control variate update rule (lines 5-11).

To position SABER with respect to prior work and understand why it works, let us look at the
following four standard FL algorithms:

FedAvg works by simply running SGD locally on each client, and, thus, the local update can be
written down simply as

wk+1,m ≈ arg min
w

fm(w).

FedProx modifies the update to reduce the client drift using regularization parameterized by η:

wk+1,m ≈ arg min
w

{
fm(w) +

1

2η
‖w −wk‖2

}
.

SCAFFOLD & Scaffnew are both based on the idea of reducing the client drift more explicitly. In
a nutshell, they incorporate a global direction vk and the local drift vk,m of client m to then realign
the update on client m as follows:

wi+1
k+1,m = wi

k+1,m − γ(∇fm(wi
k+1,m) + vk − vk,m),
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where i is the local iteration counter on client m. We can deduce the objective the client in SCAF-
FOLD is trying to minimize from this update rule by assuming that it converges to some value
wk+1,m. If that is the case, then∇fm(wk+1,m) + vk − vk,m = 0, which is the first-order optimal-
ity condition for the following subproblem:

wk+1,m ≈ arg min
w
{fm(w) + 〈vk − vk,m,w −wk〉} .

SABER can be seen as a combination of FedProx with SCAFFOLD/Scaffnew, although we empha-
size that SABER was derived purely based on the assumption of data heterogeneity. The core of its
update can be written as

wk+1,m ≈ arg min
w

{
fm(w) + 〈vk − vk,m,w −wk〉+

1

2η
‖w −wk‖2

}
.

As we can see, the new subproblem includes a bias-correction term that is similar to the one in
SCAFFOLD, and a regularization term just as in FedProx. The way we define vk and vk,m is,
however, quite different from that of SCAFFOLD. Our update rules are motivated by the recursive
estimators for stochastic optimization (Nguyen et al., 2017; Fang et al., 2018; Richtárik et al., 2021)
that use gradient differences to improve the current estimate. PAGE (Li et al., 2021) and FedPAGE
(Zhao et al., 2021) use the same principle to produce variance-reduced methods, the latter of which
was designed for federated learning. The key difference is that they operate under L-smoothness
of the objective and their complexity depends on L rather than δ. Since δ ≤ 2L, our approach is
slightly more general, and it will result in a faster convergence whenever δ is significantly smaller
than L.

Our theory covers convergence of Algorithm 1 in the general non-convex setting as well as under an
extra assumption called Polyak-Łojasiewicz condition. In practice, it is common to use batches of
clients instead of a single client as given in Algorithm 2. To keep the theory simple, we only study
Algorithm 1 since the effect of minibatching has already been thoroughly studied (Gower et al.,
2019; Khaled & Richtárik, 2020).

3.1 SOLVING THE SUBPROBLEM

Our theory requires that we minimize the bias-corrected regularized local objective. In practice,
this can be achieved with any solver such as SGD or Adam that would otherwise work on the same
problem without the extra terms. In fact, the regularization term only makes the problem easier to
solve since it convexifies the objective.

From the theoretical point of view, we can characterize the difficulty of solving the subproblem when
introducing extra assumptions. For instance, if fm is L-smooth, i.e., its gradient is L-Lipschitz, then
whenever η ≤ 1

L , the subproblem becomes convex. Furthermore, as shown by Woodworth et al.
(2023), it is usually enough to find an approximate stationary point, i.e., get E[‖∇φk(w)‖2] ≤
ε. If regularization does not make the objective convex, the (stochastic) gradient complexity of
Algorithm 1 is not better than for solving the original problem. The communication complexity, on
the other hand, improves substantially as we show in the next section.

Assumption 2 (Inexact solution). We assume that wk+1 ≈ argminw φk(w) in the sense that the
following two conditions hold:

1. Monotonicity: E[φk(wk+1)] ≤ φk(wk).

2. Almost stationarity: E[‖∇φk(wk+1)‖2] ≤ ε.

3.2 CONVERGENCE THEORY

Our theory for Algorithm 1 is comprised of several building blocks. First of all, we need a descent-
like property, which is given in the next lemma.

Lemma 1. Define wk+1 as in Algorithm 1, and let η ≤ 1
4δ , then

f(wk+1)− f(wk) ≤ − 1

4η
‖wk+1 −wk‖2 + 2η‖vk −∇f(wk)‖2. (3)
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Algorithm 1 SABER (Stochastic Accumulated Batch-gradient EstimatoR) - simplified version

1: Input: initialization w0 ∈ Rd, stepsize η > 0, probability of synchronization p > 0
2: w−1 = w0, v0 = ∇f(w0)
3: for k = 0, 1, 2, . . . do
4: Sample mk uniformly from {1, . . . ,M}

5: vk =

{
∇f(wk), with probability p

vk−1 +∇fmk(wk)−∇fmk(wk−1) otherwise

6: Construct local objective φk(w) = fmk(w)+ 〈vk−∇fmk(wk),w−wk〉+ 1
2η‖w−wk‖2

7: Find wk+1 ≈ argminw φk(w)
8: end for

Algorithm 2 SABER - full version

1: Input: initialization w0 ∈ Rd, stepsize η > 0, probability of synchronization p > 0
2: w−1 = w0, v−1 = v0 = ∇f(w0)
3: for k = 0, 1, 2, . . . do
4: Sample a subset of clients Sk
5: Sample a Bernoulli variable bt ∈ {0, 1} with P(bt = 1) = p
6: if bt == 1 then
7: Sample a new subset of clients S̃k
8: vk = 1

|S̃k|

∑
j∈S̃k ∇fj(wk)

9: else
10: vk = vk−1 + 1

|Sk|
∑
m∈Sk(∇fm(wk)−∇fm(wk−1))

11: end if
12: for client m ∈ Sk do
13: φk,m(w) = fm(w) + 〈vk −∇fm(wk),w −wk〉+ 1

2η‖w −wk‖2
14: wk+1,m ≈ argminw φk,m(w)
15: end for
16: wk+1 = 1

|Sk|
∑
m∈Sk wk+1,m

17: end for

As suggested by Lemma 1, the loss can be minimized as long as vk stays sufficiently close to
∇f(wk). Therefore, we need to control the norm of the approximation error, which we do in the
next lemma.
Lemma 2. The iterates of Algorithm 1 satisfy

E
[
‖vk+1 −∇f(wk+1)‖2

]
≤ (1− p)‖vk −∇f(wk)‖2 + δ2E

[
‖wk+1 −wk‖2

]
.

Lemma 1 and Lemma 2 together suggest that the loss should decrease proportionally to 1
η‖wk+1 −

wk‖2. This property on its own, however, is not sufficient to show that we converge to a reasonable
fixed point, it might merely mean that the method stops making progress. The last lemma that we
need shows that the method actualy keeps making progress as long as the gradient norm is large.
Lemma 3. If η ≤ 1

4δ and wk+1 satisfies Assumption 2, then it holds

E
[
‖wk+1 −wk‖2

]
≥ η2E

[
1

5
‖∇f(wk+1)‖2 − ‖vk −∇f(wk)‖2 − ε

]
. (4)

Theorem 1. Consider the iterates of Algorithm 1 and assume Assumptions 1 and 2 hold. If η ≤
√
p

4δ ,
then it holds

1

K

K∑
k=1

E
[
‖∇f(wk)‖2

]
≤ 20(f(w0)− f∗)

ηK
+ 5ε.

Proof sketch. The proof idea is based on defining the following Lyapunov function with a constant
c > 0:

Lk
def
= f(wk) + c‖vk −∇f(wk)‖2.
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We show in the proof of Theorem 1 in the appendix that Lk satisfies a simple recursion:

E [Lk+1] ≤ Lk −
cp

6
‖vk −∇f(wk)‖2 − η

16
E
[
‖∇f(wk+1)‖2

]
. (5)

To derive this property, we simply need to combine Lemma 1 with Lemma 2 and Lemma 3. Since
we have error terms in all lemmas, we need to balance the terms, which we achieve by assuming
η ≤

√
p

4δ .

One can notice that with higher value of p, we get a larger term subtracted from the right-hand side.
Moreover, increasing p also allows us to increase the stepsize η, which makes sense since we get a
more accurate accumulated-gradient estimate when p is larger.

If we set p = 1
M and η =

√
p

4δ , we obtain a point wK satisfying E
[
‖∇f(wK)‖2

]
≤ ε after

K = O
(
ε−2

η

)
= O

(√
Mδε−2

)
communication rounds.

3.3 IMPROVED CONVERGENCE RATE UNDER PŁ ASSUMPTION

To compare the complexity of SABER to that of other works, we also need to establish a linear con-
vergence under extra assumptions. However, unlike previous papers, we do not want to use strong
convexity since it would defeat the main point of extending the theory to non-convex functions.
Instead, we use the PŁ assumption given below.
Assumption 3. We say that f satisfies Polyak-Łojasiewicz property if for any w ∈ Rd it holds

1

2
‖∇f(w)‖2 ≥ µ(f(w)− f∗). (6)

Let us slightly modify the Lyapunov function to increase the coefficient of the functional values:

Ψk
def
= Lk − f∗ +

ηµ

8
(f(wk)− f∗) = (1 + ηµ/8)f(wk)− f∗ + c‖vk −∇f(wk)‖2.

Assuming that f is µ-PŁ, we then get

E
[
Ψk+1 −

ηµ

8
(f(wk+1)− f∗)

] (5)
≤ Ψk −

η

16
E
[
‖∇f(wk+1)‖2

]
− cp

6
‖vk −∇f(wk)‖2

≤ Ψk −
ηµ

8
E [f(wk+1)− f∗]−

cp

6
‖vk −∇f(wk)‖2.

Rearranging the terms, we obtain

E [Ψk+1] ≤ max
(

1− ηµ

8
, 1− p

6

)
Ψk.

This implies the following theorem.
Theorem 2. Assume that the objective is µ-PŁ. Then, to achieve E [ΨK ] = O(ε), Algorithm 1

requires at most K = O
((

1
ηµ + 1

p

)
log 1

ε

)
communication rounds. In particular, if we set p = 1

M

and η = 1
4
√
pδ , then the complexity is O

((
δ
µ

√
M +M

)
log 1

ε

)
.

As we mentioned previously, this complexity matches the one of SVRS (Lin et al., 2023) but ours
does not need convexity.

3.4 PARTIAL PARTICIPATION

With probability p, Algorithm 1 uses all clients to update vk. However, in many cases using all
clients might be impossible, so in Algorithm 2 we consider updating vk using only a subset of
clients S̃k. This setting can be studied under an extra assumption that the variance over clients is
bounded:
Assumption 4. For the setting of Algorithm 2 where only a subset of clients is used to update vk,
i.e., vk = 1

|S̃k|

∑
m∈S̃k ∇fm(wk), we also assume that the variance in bounded:

E
[
‖∇fm(wk)−∇f(wk)‖2

]
≤ σ2. (7)
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Under this assumption, we establish the following result.

Theorem 3. Consider the same setting as in Theorem 1 with the update for vk produced by sub-
sampling clients, i.e., vk = 1

|S̃k|

∑
m∈S̃k ∇fm(wk). If η ≤

√
p

4δ and |Sk| = C for all k, then

1

K

K∑
k=1

E
[
‖∇f(wk)‖2

]
≤ 20(f(w0)− f∗)

ηK
+ 5ε+ 60

σ2

C
.

The assumption that |Sk| = C for all k is used in Theorem 3 only to simplify the statement, and a
similar result would also hold if |Sk| varies over iterations. The main takeaway message from this
additional result is that whenever there are sufficiently many clients participating in the update of
vk, the last quantity is going to be small and so we do not need all clients to participate.

4 EXPERIMENTS

We empirically evaluate our method on a logistic regression problem and on two different classi-
fication datasets, i.e., CIFAR-10 (Krizhevsky, 2009) and Federated EMNIST (FEMNIST) (Caldas
et al., 2018). We compare the performance of SABER with baselines including FedAvg (McMahan
et al., 2017), FedProx (Li et al., 2020a), and SCAFFOLD (Karimireddy et al., 2020).

4.1 EXPERIMENTAL SETUP

For the empirical evaluation, we implemented our algorithm using PyTorch and integrated it into the
Flower framework (Beutel et al., 2020) v1.2.0. We run all our experiments on NVIDIA RTX A6000
GPUs with CUDA version 11.7, Python 3.8.13, and PyTorch 1.13.1. The code will be open-sourced
upon acceptance of this paper.

CIFAR-10 contains 60,000 32×32 color images in 10 different classes. The original dataset is split
among 100 clients based on label distribution that are dissimilar from client to client to emulate data
heterogeneity in realistic FL settings, as widely adopted in prior works (Horvath et al., 2021; Li
et al., 2023). We split CIFAR-10 following Latent Dirichlet Allocation (LDA) partitioning with α =
{0.1, 1.0}, where lower value implies higher data heterogeneity. FEMNIST consists of 28×28 grey-
scale images of digital hand-written alphabets and digits, hence 62 classes and naturally partitioned
based on each client’s handwriting.

For all baselines and the proposed SABER algorithm, we use ResNet-18 (He et al., 2016) for both
CIFAR-10 and FEMNIST. For all methods, on each communication round, we randomly select 10
clients for model updates, using an SGD optimizer and a stepsize of 0.01, with batch size equal to
32. The clients perform 1 local training epoch on each round. For SABER specifically, we sample a
subset of clients (100 for FEMNIST and 50 for CIFAR-10) for the control variate update with p=0.5.
We use proximal coefficient η=0.5 for both SABER and FedProx.

4.2 LOGISTIC REGRESSION

We run experiments on binary classification with logistic regression loss. We target the ‘w8a’ and
‘a9a’ datasets from LIBSVM, which were also partitioned in a heterogeneous manner to 20 clients.
We tune the stepsize for each method individually and report the best configuration. All methods
use full gradients and full participation of 20 clients in total. The results in Figure 1 show that
SABER improves substantially upon Local-SGD, which is equivalent to FedAvg in this setting, and
FedProx. SABER does not outperform SCAFFOLD in these specific experiments, despite having
a much stronger theory. This can be attributed to the fact that we tuned the hyperparameters, so
SCAFFOLD works better than predicted by its theory. Furthermore, SCAFFOLD is algorithmically
similar to Scaffnew (Mishchenko et al., 2022), which has accelerated rate independently of data
heterogeneity under the right choice of hyperparameters. Together, these observations explain why
SCAFFOLD performed the best in these experiments.
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Figure 1: Convergence of SABER and other methods on logistic regression with full gradients. Left:
‘w8a’ dataset; right: ‘a9a’ dataset.

Table 2: Required number of communication rounds to achieve a target top-1 accuracy.

Method CIFAR-10 (62%) CIFAR-10 (62%) FEMNIST (70%)
α = 0.1 α = 1.0 Non-iid

FedAvg 841 (1×) 331 (1×) 66 (1×)
FedProx 796 (1.06×) 331 (1×) 71 (0.93×)
SCAFFOLD 1806 (0.47×) 776 (0.43×) 151 (0.44×)
SABER (Ours) 446 (1.89×) 261 (1.27×) 56 (1.18×)

4.3 EMPIRICAL PERFORMANCE ON BENCHMARK DATASETS

To empirically investigate SABER’s performance, we evaluate two setups: i) rounds-to-accuracy,
which captures the communication rounds needed to reach a target accuracy, and ii) round-
constrained accuracy, which shows the achieved accuracy under a budget of communication rounds.

Table 2 lists the achieved rounds-to-accuracy of each method for the target datasets and heterogene-
ity settings. The target top-1 accuracy is 62% for CIFAR-10 and 70% for FEMNIST. We observe that
SABER achieves the lowest rounds-to-accuracy over all methods across all settings. Importantly,
SABER yields speedups of 1.89×, 1.78×, and 4.04× over FedAvg, FedProx and SCAFFOLD, re-
spectively, in the most data-heterogeneous case of CIFAR-10 with α = 0.1.

To showcase the performance of SABER, we further look at the achieved top-1 accuracy at 1,000
and 400 communication rounds for CIFAR-10 and FEMNIST respectively, as shown in Table 3.
Compared with the baselines, SABER performs at the same level on CIFAR-10 with α = 1.0
and FEMNIST. Notably, as data heterogeneity increases on CIFAR-10 with α = 0.1, our method
reaches accuracy gains of 14.14 percentage points (pp), 8.3 pp and 18.2 pp over FedAvg, FedProx
and SCAFFOLD, respectively, indicating its effectiveness in the presence of data heterogeneity.

Finally, Figure 2 shows the convergence behavior of the compared methods. Similarly to the pre-
vious evaluation setups, SABER provides the fastest convergence across all datasets, with higher
gains under higher data heterogeneity.

5 CONCLUSION

In this paper, we propose SABER, an algorithm for federated learning under second-order data
heterogeneity. SABER solves a local subproblem at each client, while mitigating client drift with
a novel combination of i) estimation of global update direction and ii) regularization to the local
objective. Theoretical study shows SABER achieves state-of-the-art communication complexity in
non-convex problems. In practice, SABER is stateless by design, and it supports partial participa-
tion, making it a strong candidate for real-world deployment of federated learning. We showcase the
performance of SABER on both logistic regression tasks, and non-convex deep learning setting of
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Table 3: Top-1 accuracy (%) after 1,000 and 400 rounds for CIFAR-10 and FEMNIST, respectively.

Method CIFAR-10 CIFAR-10 FEMNIST
α = 0.1 α = 1.0 Non-iid

FedAvg 50.88 73.36 81.67
FedProx 56.72 73.56 80.88
SCAFFOLD 46.82 63.54 78.64
SABER (Ours) 65.02 73.88 82.50
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Figure 2: Validation accuracy recorded during training (real-time and 50 step running average) for
FedAvg, FedProx, SCAFFOLD, and the proposed SABER on CIFAR-10 with LDA α = {0.1, 1.0}
and the non-iid FEMNIST dataset.

image classification on CIFAR-10 and FEMNIST datasets. When compared with standard baselines
such as FedAvg, SABER achieves up to 1.89× speedup and 14.4 pp gain in accuracy.
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convex distributed learning with compression. In International Conference on Machine Learning,
pp. 3788–3798. PMLR, 2021. (Cited on page 4)

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
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A THEORY

A.1 PROOF OF LEMMA 1

Proof. Let m = mk. By differentiability of f and fm, we have

f(wk+1)− f(wk) =

∫ 1

0

〈∇f(wk + τ(wk+1 −wk)),wk+1 −wk〉dτ

and

fm(wk+1)− fm(wk) =

∫ 1

0

〈∇fm(wk + τ(wk+1 −wk)),wk+1 −wk〉dτ.

Denote, to simplify the expressions, w(τ)
def
= wk + τ(wk+1 −wk), then we get

f(wk+1)− f(wk) = fm(wk+1)− fm(wk) +

∫ 1

0

〈∇f(w(τ))−∇fm(w(τ)),wk+1 −wk〉dτ

= fm(wk+1)− fm(wk) + 〈vk −∇fm(wk),wk+1 −wk〉

+

∫ 1

0

〈∇f(w(τ))−∇fm(w(τ))− vk +∇fm(wk),wk+1 −wk〉dτ.

Define the subproblem solved by SABER at iteration k as φk(w) = fm(w)+〈vk−∇fm(wk),w−
wk〉+ 1

2η‖w −wk‖2. Then, it holds according to Assumption 2.1 that φk(wk+1) ≤ φk(wk) and

fm(wk+1)− fm(wk) + 〈vk −∇fm(wk),wk+1 −wk〉 ≤ −
1

2η
‖wk+1 −wk‖2.

Let us split the integral into two parts:∫ 1

0

〈∇f(w(τ))−∇fm(w(τ))− vk +∇fm(wk),wk+1 −wk〉dτ

=

∫ 1

0

〈∇f(w(τ))−∇fm(w(τ))−∇f(wk) +∇fm(wk),wk+1 −wk〉dτ

+ 〈∇f(wk)− vk,wk+1 −wk〉.
The first part can be upper bounded using the data heterogeneity assumption:∫ 1

0

〈∇f(w(τ))−∇fm(w(τ))−∇f(wk) +∇fm(wk),wk+1 −wk〉dτ

≤
∫ 1

0

‖∇f(w(τ))−∇fm(w(τ))−∇f(wk) +∇fm(wk)‖‖wk+1 −wk‖dτ

≤
∫ 1

0

δ‖w(τ)−wk‖‖wk+1 −wk‖dτ = δ

∫ 1

0

τ‖wk+1 −wk‖2dτ =
δ

2
‖wk+1 −wk‖2

η≤ 1
4δ

≤ 1

8η
‖wk+1 −wk‖2.

For the second part, we use Young’s inequality

〈∇f(wk)− vk,wk+1 −wk〉 ≤ 2η‖∇f(wk)− vk‖2 +
1

8η
‖wk+1 −wk‖2.

Thus, combining the bounds on the integral with the initial inequalities, we obtain

f(wk+1)− f(wk) ≤ − 1

2η
‖wk+1 −wk‖2 +

1

8η
‖wk+1 −wk‖2 + 2η‖vk −∇f(wk)‖2

+
1

8η
‖wk+1 −wk‖2

= − 1

4η
‖wk+1 −wk‖2 + 2η‖vk −∇f(wk)‖2.
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A.2 PROOF OF LEMMA 2

Proof. Denote by j the index sampled to update vk+1, i.e., j = mk+1. With probability p, we have
vk+1 = ∇f(wk+1) if we synchronize using all clients or vk+1 = 1

|S̃k|

∑
m∈S̃k ∇fm(wk) if we

sample clients. In the first case, we have
E
[
‖∇f(wk+1)− vk+1‖2

]
= p · 0 + (1− p)E

[
‖∇f(wk+1)− vk −∇fj(wk+1) +∇fj(wk)‖2

]
= (1− p)E

[
‖∇f(wk)− vk +∇f(wk+1)−∇f(wk)−∇fj(wk+1)−∇fj(wk)‖2

]
= (1− p)E

[
‖∇f(wk)− vk‖2

]
+ (1− p)E [2〈∇f(wk)− vk,∇f(wk+1)−∇f(wk)−∇fj(wk+1)−∇fj(wk)〉]
+ (1− p)E

[
‖∇f(wk+1)−∇f(wk)−∇fj(wk+1)−∇fj(wk)‖2

]
.

Since j is sampled after we have produced wk+1, it is independent of wk+1, and it holds
E [〈∇f(wk)− vk,∇f(wk+1)−∇f(wk)−∇fj(wk+1)−∇fj(wk)〉] = 0.

Moreover, by second-order data heterogeneity, we have
E
[
‖∇f(wk+1)−∇f(wk)−∇fj(wk+1)−∇fj(wk)‖2

]
≤ δ2E

[
‖wk+1 −wk‖2

]
.

Putting the pieces together yields the claimin the first case.

In the second case, it holds
E
[
‖∇f(wk+1)− vk+1‖2

]
= pE

‖∇f(wk+1)− 1

|S̃k|

∑
m∈S̃k

∇fm(wk)‖2
+ (1− p)E

[
‖∇f(wk+1)− vk −∇fj(wk+1) +∇fj(wk)‖2

]

≤ pE

‖∇f(wk+1)− 1

|S̃k|

∑
m∈S̃k

∇fm(wk)‖2
+ (1− p)‖vk −∇f(wk)‖2 + δ2E

[
‖wk+1 −wk‖2

]
= p

1

|Sk|
E
[
‖∇f(wk+1)−∇fm(wk)‖2

]
+ (1− p)‖vk −∇f(wk)‖2 + δ2E

[
‖wk+1 −wk‖2

]
(7)
≤ p

σ2

|Sk|
+ (1− p)‖vk −∇f(wk)‖2 + δ2E

[
‖wk+1 −wk‖2

]
.

A.3 PROOF OF LEMMA 3

Proof. By definition wk+1 is an almost-stationary point of φk(·) and by Assumption 2.2 we have
E[‖∇φk(wk+1)‖2] ≤ ε. Writing the definition of φk, we get

∇φk(wk+1) = ∇fm(wk+1) + vk −∇fm(wk) +
1

η
(wk+1 −wk),

where m = mk. From this equation, we obtain
‖wk+1 −wk‖2

= η2‖vk +∇fm(wk+1)−∇fm(wk)−∇φk(wk+1)‖2

= η2‖∇f(wk+1) + [vk −∇f(wk)] + [∇f(wk)−∇f(wk+1) +∇fm(wk+1)−∇fm(wk)]−∇φk(wk+1)‖2.
By Cauchy-Schwarz inequality, it holds ‖a1 +a2 +a3 +a4‖2 ≤ 4(‖a1‖2 +‖a2‖2 +‖a3‖2 +‖a4‖2)
for any vectors a1, a2, a3, a4 ∈ Rd. Rearranging, it also implies ‖a4‖2 ≥ 1

4‖a1 + a2 + a3 + a4‖2−
‖a1‖2 − ‖a2‖2 − ‖a3‖2, which in our case gives

E
[
‖wk+1 −wk‖2

]
≥ η2

4
E
[
‖∇f(wk+1)‖2

]
− η2E

[
‖vk −∇f(wk)‖2

]
− η2E

[
‖∇f(wk)−∇f(wk+1) +∇fm(wk+1)−∇fm(wk)‖2

]
− η2‖∇φk(wk+1)‖2

(2)
≥ η2

4
E
[
‖∇f(wk+1)‖2 − ‖vk −∇f(wk)‖2 − δ2‖wk+1 −wk‖2 − ε

]
.
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Notice that ‖wk+1 −wk‖2 appears in both sides, so we can rearrange and divide by 1 + η2δ2:

E
[
‖wk+1 −wk‖2

]
≥ 1

1 + η2δ2
E
[
η2

4
‖∇f(wk+1)‖2 − η2‖vk −∇f(wk)‖2 − η2ε

]
η≤ 1

4δ

≥ 16

17
E
[
η2

4
‖∇f(wk+1)‖2 − η2‖vk −∇f(wk)‖2 − η2ε

]
≥ E

[
η2

5
‖∇f(wk+1)‖2 − η2‖vk −∇f(wk)‖2 − η2ε

]
.

A.4 PROOF OF THEOREM 1

Proof. Recall that we define a Lyapunov function

Lk
def
= f(wk) + c‖vk −∇f(wk)‖2,

where we will choose c > 0 later in the proof. Lemmas 1 and 2 already bound the first and the
second terms in Lk+1 correspondingly, giving us the following recursion:

E [Lk+1] ≤ f(wk) + E
[
− 1

2η
‖wk+1 −wk‖2 + 2η‖∇f(wk)− vk‖2

]
+ c(1− p)‖∇f(wk)− vk‖2 + cδ2E

[
‖wk+1 −wk‖2

]
= Lk − c‖∇f(wk)− vk‖2 +

(
cδ2 − 1

2η

)
E
[
‖wk+1 −wk‖2

]
+ (2η + c(1− p))‖∇f(wk)− vk‖2

= Lk +

(
cδ2 − 1

2η

)
E
[
‖wk+1 −wk‖2

]
+ (2η − cp)‖∇f(wk)− vk‖2.

Let us set c = 3η
p to make the last term negative. Then, we obtain

E [Lk+1] ≤ Lk +

(
3ηδ2

p
− 1

2η

)
E
[
‖wk+1 −wk‖2

]
− η‖∇f(wk)− vk‖2

η≤
√
p

4δ

≤ Lk −
1

4η
E
[
‖wk+1 −wk‖2

]
− η‖vk −∇f(wk)‖2

(4)
≤ Lk −

η

20
E
[
‖∇f(wk+1)‖2

]
+
η

4
‖vk −∇f(wk)‖2 − η‖vk −∇f(wk)‖2 +

η

4
ε

≤ Lk −
η

20
E
[
‖∇f(wk+1)‖2

]
+
η

4
ε.

Recurring this to L0 = f(w0) + c‖v0 −∇f(w0)‖2 = f(w0), we get

1

K

K∑
k=1

E
[
‖∇f(wk)‖2

]
≤ 20

ηK

(
L0 − E [LK ] +K

η

4
ε
)
≤ 20(f(w0)− f∗)

ηK
+ 5ε,

where we used the fact that LK = f(wK) + c‖vK −∇f(wK)‖2 ≥ f(wk) ≥ f∗.

A.5 PROOF OF THEOREM 3

Proof. We proceed with the same steps as in the proof of Theorem 1 except that we take into account
the extra term that appeared in the proof of Lemma 2:

E
[
‖∇f(wk+1)− vk+1‖2

]
≤ p σ

2

|Sk|
+ (1− p)‖vk −∇f(wk)‖2 + δ2E

[
‖wk+1 −wk‖2

]
.
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Using the same Lyapunov function as before, we obtain by plugging-in the result above

E [Lk+1] ≤ Lk +

(
cδ2 − 1

2η

)
E
[
‖wk+1 −wk‖2

]
+ (2η − cp)‖∇f(wk)− vk‖2 + cp

σ2

|Sk|
.

Setting c = 3η
p and substituting the other bounds, we derive

E [Lk+1] ≤ Lk −
η

20
E
[
‖∇f(wk+1)‖2

]
+
η

4
ε+ 3η

σ2

|Sk|
.

Using the theorem assumption that |Sk| = C for all k and rearranging, we further obtain

1

K

K∑
k=1

E
[
‖∇f(wk)‖2

]
≤ 20(f(w0)− f∗)

ηK
+ 5ε+ 60

σ2

|Sk|
.
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