
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026
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Figure 1: BFM-Zero enables versatile and robust whole-body skills. (A-C) Diverse zero-shot inference
methods. (D) Natural recovery from large perturbation. (E) Few-shot adaptation.

ABSTRACT

Building Behavioral Foundation Models (BFMs) for humanoid robots has the po-
tential to unify diverse control tasks under a single, promptable generalist pol-
icy. However, existing approaches are either exclusively deployed on simulated
humanoid characters, or specialized to specific tasks such as tracking. We pro-
pose BFM-Zero, a framework that learns an effective shared latent represen-
tation that embeds motions, goals, and rewards into a common space, enabling
a single policy to be prompted for multiple downstream tasks without retrain-
ing. This well-structured latent space in BFM-Zero enables versatile and robust
whole-body skills on a Unitree G1 humanoid in the real world, via diverse in-
ference methods, including zero-shot motion tracking, goal reaching, and reward
inference, and few-shot optimization-based adaptation. Unlike prior on-policy re-
inforcement learning (RL) frameworks, BFM-Zero builds upon recent advance-
ments in unsupervised RL and Forward-Backward (FB) models, which offer an
objective-centric, explainable, and smooth latent representation of whole-body
motions. We further extend BFM-Zero with critical reward shaping, domain
randomization, and history-dependent asymmetric learning to bridge the sim-to-
real gap. Those key design choices are quantitatively ablated in simulation. A
first-of-its-kind model, BFM-Zero establishes a step toward scalable, prompt-
able behavioral foundation models for whole-body humanoid control. Videos:
http://bfm-zero-anonymous.pages.dev
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1 INTRODUCTION

Humanoid robots have the potential to transform numerous aspects of our daily lives, from manufac-
turing and logistics to healthcare and personal assistance. However, realizing this potential requires
robots to perform a wide range of tasks in dynamic and unstructured environments. Humanoid
whole-body control is a fundamental and challenging problem in robotics, serving as the first step
to enable the humanoids to work safely in human environments (Gu et al., 2025).

In robotics, foundation models have the potential to unify diverse control objectives under a single
policy, allowing robots to adapt to new tasks in a zero-shot1way or with efficient post-training.
The closest approaches to such paradigms are Vision-Language-Action (VLA) models for robotic
manipulations (e.g., Ghosh et al., 2024; Intelligence et al., 2025; Kim et al., 2024; Zhong et al., 2025;
Team et al., 2025; Bjorck et al., 2025) that learn from human demonstrations (i.e., behavior cloning).
However, for humanoid whole-body control, there is a fundamental mismatch that limits direct
behavior cloning: unlike manipulation tasks, there are no readily available actuator-level action
labels or large-scale teleoperation datasets.

For whole-body humanoid control, most recent advancements follow the sim-to-real pipeline and
rely on reinforcement learning (RL) to train policies in simulation before transferring them to hard-
ware (Gu et al., 2025). Following the success of RL-based motion tracking in physics-based charac-
ter animation (e.g., Luo et al., 2024; Tessler et al., 2024; Tirinzoni et al., 2025), recent works (e.g.,
Zakka et al., 2025; Seo et al., 2025; Chen et al., 2025; Liao et al., 2025; He et al., 2025a; Cheng et al.,
2024; He et al., 2025b) have shown remarkable results in transferring policies trained in simulation
to real robots. However, most of these approaches rely on on-policy policy gradient methods (e.g.,
PPO (Schulman et al., 2017)) with explicit tracking-based rewards and suffer from major limita-
tions. First, they remain task-specific: most policies are trained to explicitly imitate motion capture
clips or solve a single task. Second, they are non-adaptive: once trained, policies cannot be easily
fine-tuned or composed for new tasks. Third, they lack a unified and explainable interface for goal
specification and behavior composition, making it difficult for human operators to direct the robot
or combine learned skills into new behaviors.

In this work, we investigate whether off-policy unsupervised RL can be a suitable approach to train
so-called Behavioral Foundation Models (BFMs) for whole-body control of a humanoid robot, en-
abling it to solve a wide range of downstream tasks specified by rewards, goals, or demonstrations
without retraining. For tasks that require retraining, the BFM should enable efficient post-training.
This conjecture is far from trivial. First, most existing methods with real-world deployment rely on
on-policy training (primarily PPO), and there is little evidence that off-policy learning—commonly
used in unsupervised RL for training multi-task policies—is well suited to this context. Second,
no evidence exists that unsupervised RL algorithms can handle the sim-to-real gap and dynamic
disturbances robustly, either during simulation policy training or at real-world inference.

We develop BFM-Zero2, an online off-policy unsupervised RL algorithm that leverages motion
capture data to regularize the process of learning generalist whole-body control policies towards
human behaviors. We introduce domain randomization to address the sim-to-real gap and train
robust policies via asymmetric history-dependent training, leveraging the privileged information
available in simulation. Additionally, we incorporate auxiliary rewards to ensure that the learned
behaviors adhere to the safety and operational constraints of the physical robot. To the best of our
knowledge, the resulting algorithm allows us to train the first behavioral foundation model for real
humanoids that can be prompted for different tasks (e.g., reward optimization, pose reaching, and
motion tracking) without retraining (i.e., in zero-shot). Such a flexible and ready-to-use model, paves
the way to fast adaptation, fine-tuning or even high-level planning. We validate our approach in both
simulated environments and on a real Unitree G1 humanoid (Fig. 1 for examples), demonstrating
robust generalization across tasks and conditions, and showing that even when the zero-shot policy
is not satisfactory, we can effectively improve it in a matter of a few episodes interacting with the
environment. Related work discussion is available in Appendix A.

1Zero-shot means that, after pre-training, the policy can be directly deployed in the real world without
further interacting with either simulated or real environments. In contrast, few-shot means the policy needs to
interact with the environment to collect new data in few episodes to improve on certain tasks.

2Zero comes from its zero-shot inference capability via unsupervised RL and it is a first-of-its-kind model.
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2 BFM-ZERO FOR HUMANOID WHOLE-BODY CONTROL
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Figure 2: An overview of the BFM-Zero framework. After the pre-training stage, BFM-Zero forms a latent
space that can be used for zero-shot reward optimization, single-frame goal reaching, and tracking. It can also
be adapted in a few-shot fashion to reach more challenging poses.

In this section, we outline the pipeline for training BFM-Zero in simulation and transferring it to
real humanoids. Unlike for virtual characters (e.g., Peng et al., 2022; Tessler et al., 2023; Tirin-
zoni et al., 2025), applying unsupervised RL to real humanoids has not yet been attempted. Our
BFM-Zero framework consists of an unsupervised pre-training stage, a zero-shot inference proce-
dure, and possibly a fast-adaptation post-training stage (as shown in Fig. 2). Section 2.1 provides
an overview of unsupervised RL using the forward-backward representation framework adopted by
BFM-Zero. Section 2.2 details BFM-Zero pre-training, whose objective is to learn a unified latent
representation that embeds tasks (e.g., target motions, rewards, goals) into a shared space Z ⊆ Rd

and a promptable policy that conditions on this representation to perform diverse behaviors without
task-specific retraining. Then, for downstream tasks during inference (??), we embed the task into
the latent space and use the policy to execute the task in a zero-shot manner. We also show that we
can efficiently adapt the zero-shot policy in the latent space Z to improve performance on unseen
tasks that are not easily covered by zero-shot inference via sampling-based optimization.

Problem formulation. We formulate real-world humanoid control as a partially observable Markov
decision process (POMDP) defined by the tuple (S,O,A, P, γ), where S is the full state space, O is
the observation space, A is the action space, P (st+1|st, at) is the transition dynamics, and γ ∈ (0, 1)
is the discount factor. For the 29-degree-of-freedom (DoF) humanoid, the action a ∈ A ⊂ R29

contains the proportional derivative (PD) controller targets for all DoFs. The privileged information
(s ∈ R463) consists of root height, body pose, body rotation, and linear and angular velocities.
The observable state ot = {qt − q̄, q̇t, ω

root
t /4, gt} ∈ R64 is defined as joint position qt ∈ R29

normalized w.r.t. the nominal position q̄, joint velocity q̇t ∈ R29, root angular velocity ωroot
t ∈ R3

and root projected gravity gt ∈ R3. We denote by ot,H = {ot−H , at−H , . . . , ot} ∈ R93·H+64 the
observable history composed by proprioceptive state and action. All the components of the states
(except root height) are normalized w.r.t. the current facing direction and root position. At pre-
trainig, we assume that the agent has access to a dataset of unlabeled motions M = {τ}, which
contains observation and privileged states trajectories i.e τ = (o1, s1, . . . , ol(τ), sl(τ)).

2.1 UNSUPERVISED RL WITH FORWARD-BACKWARD REPRESENTATIONS

During the pretraining phase, BFM-Zero learns a compact representation of the environment by
observing online reward-free interactions in the simulator and leveraging an offline dataset of unla-
beled behaviors, resulting in a model that can be prompted to tackle a wide range of downstream
tasks (e.g., tracking or reward maximization) in a zero-shot manner. To achieve this, we build on
top of the recent FB-CPR algorithm (Tirinzoni et al., 2025) which combines the Forward-Backward
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(FB) method for zero-shot RL (Touati & Ollivier, 2021) with online training and policy regulariza-
tion on motion-capture data. This method falls in the broader category of unsupervised RL based on
successor features (e.g., Touati & Ollivier, 2021; Touati et al., 2023; Pirotta et al., 2024; Park et al.,
2024; Agarwal et al., 2024), which involves three components: (i) a latent task feature ϕ : S → Rd

that embeds observation s ∈ S into a d-dimensional vector, (ii) a policy πz : S → A conditioned on
a latent vector z ∈ Rd, and (iii) latent-conditioned successor features (Barreto et al., 2017) Fz that
encode the expected discounted sum of latent task features under the corresponding policy πz , i.e,
Fz ≃ E[

∑
t γ

tϕ(st) | πz]. We now explain how FB-CPR trains those components.

FB representations and FB-CPR. Among the different unsupervised RL approaches, forward-
backward (FB) representations provide a principled unsupervised training objective for jointly learn-
ing latent task representations and their associated successor features. At a high level, FB learns
a finite-rank approximation of long-term policy dynamics, where B captures the low-frequency
features that best summarize the long-range temporal dependencies between states. Formally,
given a training state distribution ρ, the FB framework learns two mappings: a forward mapping
F : S × A × Rd → Rd and a backward mapping B : S → Rd such that the long-term transition
dynamics induced by the policy πz decompose as:

Mπz (ds′ | s, a) ≃ F (s, a, z)⊤B(s′)ρ(ds′) (1)

where for any region X ⊂ S of the state space, Mπz (s′ ∈ X | s, a) :=
∑

t γ
tPr(st ∈

X | s, a, πz) denotes the discounted visitation probabilities of reaching X under the policy
πz , starting from the state-action pair (s, a). Eq. 1 implies that F is the successor features of
ϕ(s) := (Eρ[B(s)B(s)⊤])−1B(s) (Touati et al., 2023). The learned representation ϕ defines a
latent task space by inducing a family of linear reward functions of the form, i.e., rz(s) = ϕ(s)⊤z,
In particular, each policy πz is optimized to maximize Eρ[

∑
t γ

tϕ(st)
⊤z | πz] = F (s, a, z)⊤z,

i.e., F (s, a, z)⊤z is a Q-value function of πz with reward r = ϕ⊤z. Intuitively, z ∈ Z defines a
task-centric latent space associated with the task feature ϕ, where for each z, the corresponding πz

optimizes the linear combination of ϕ, rz = ϕ⊤z. As shown in Section 3.4, the Z space learned
by BFM-Zero is smooth and semantic, and it enables both zero-shot inference and few-shot adap-
tation. Importantly, in contrast to standard RL approaches, the set of reward functions of interest
{rz} is not given (e.g., motion tracking) but learned, and it can represent a wide range of tasks. FB-
CPR (Tirinzoni et al., 2025) extends the general FB framework by introducing a latent-conditioned
discriminator to regularize the unsupervised learning process to produce policies that are close to a
set of demonstrated behaviors in a motion dataset M. Furthermore, while FB algorithm is offline,
FB-CPR is trained fully online and off-policy and does not require a full-coverage offline dataset.

2.2 BFM-ZERO PRE-TRAINING FOR HUMANOID CONTROL

Before proceeding with the description of implementation details, we identify several design choices
that are crucial for achieving sim-to-real transfer in unsupervised RL.

A) Asymmetric Training. To bridge the gap between simulation (full state) and real robot (partial ob-
servability), we train the policy on observation history ot,H , while critics have access to privileged
information (ot,H , st). This setup improves policy robustness under limited sensing while leverag-
ing privileged critics to provide accurate value estimates. Using history narrows the information gap
between proprioceptive actors and privileged critics and improves adaptability under DR.

B) Scaling up to Massively Parallel Environments. Inspired by recent work on large-batch off-policy
RL (Seo et al., 2025), we scale training across thousands of environments with large replay buffers
and high update-to-data (UTD) ratios. This enables efficient unsupervised training of a diverse
family of policies while retaining stability, a crucial step for scaling humanoid pretraining.

C) Domain Randomization (DR). To enhance robustness and adaptability, we randomize key physi-
cal parameters (link masses, friction coefficients, joint offsets, torso center-of-mass) and apply per-
turbations and sensor noise. This prevents overfitting to simulation dynamics and ensures that poli-
cies remain stable when deployed on real hardware (see Fig. 12 in Appendix).

D) Reward Regularization. In robotics (e.g., He et al., 2025a; Zakka et al., 2025), it is common to
incorporate reward regularization techniques to avoid undesirable behaviors. For example, reaching
the limit of the joint may lead to highly nonlinear behaviors that are difficult to model in simulation
or even damage the robot’s hardware.
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We train BFM-Zero within an off-policy actor-critic scheme. The policy-conditional, history-
based, privileged forward map F and privileged backward map B are trained to minimize the
temporal difference loss derived from the Bellman equation for successor measures (Touati & Ol-
livier, 2021). Let D the replay buffer of online interactions with the simulator and ν is an arbitrary
distribution over Z, we consider the following FB objective:

L(F ,B) = E
[(
F (ot,H , st, at, z)

⊤B(o+, s+)− γF (ot+1,H , st+1, at+1, z)
⊤B(o+, s+)

)2]
− 2E

[
F (ot,H , st, at, z)

⊤B(ot+1, st+1)
]
,

where z ∼ ν, (ot,H , st, at, ot+1,H , st+1) ∼ D, at+1 = π(ot+1,H , z) and (o+, s+) ∼ D. F and B
denote the stop-gradient operator.

The auxiliary history-based, privileged critic QR that imposes safety and physical feasibility con-
straints by incorporating Naux penalty rewards is learned with a standard Bellman residual loss:

L(QR) = E (ot,H ,st,at,st+1)∼D
z∼ν,at+1=π(ot+1,H ,z)

[(
QR(ot,H , st, at, z)−

Naux∑
k=1

rk(st)− γQR(ot+1,H , st+1, at+1, z)
)2

]
.

Finally, we employ the history-based, privileged discriminator critic QD that grounds the unsu-
pervised training toward human-like behaviors by assigning rewards based on a latent-conditioned
discriminator. This acts both as a style regularization as well as a bias in the online exploration pro-
cess. As in (Tirinzoni et al., 2025), we employ a variational representation of the Jensen-Shannon
divergence and train the discriminator D with a GAN-style objective:

L(D) = −Eτ∼M,(o,s)∼τ [log(D(o, s, zτ ))]− E(o,s,z)∼D [log(1−D(o, s, z))] .

where zτ = 1
l(τ)

∑
(o,s)∈τ B(o, s) is a zero-shot imitation embedding of the motion τ . We can

then fit a style critic QD with a Bellman residual loss similar to the auxiliary critic with a reward
rd(ot, st, z) =

D(ot,st,z)
1−D(ot,st,z)

. Bringing together these critiques results in the final actor loss.

L(π) = −E (ot,H ,st)∼D
at=π(ot,H ,z),z∼ν,

[
F (ot,H , st, at, z)

⊤z+λDQD(ot,H , st, at, z)+λRQR(ot,H , st, at, z)
]
.

Zero-shot inference. At test time, BFM-Zero can be used to solve different tasks in zero-shot
fashion, i.e., without performing additional task-specific learning, planning, or fine-tuning. Given
an arbitrary reward function r(s), the corresponding Q function of πz can be formulated as

Qπz
r (s, a) =

∫
s′
Mπz (ds′|s, a)r(s′) ≃ Es′∼ρ[F (s, a, z)⊤B(s′)r(s′)] = F (s, a, z)⊤Es′∼ρ[B(s′)r(s′)].

Since F (s, a, z)⊤z is the Q function of πz , we have zr = Es′∼ρ[B(s)r(s)]. In practice, we
can leverage a sample-based estimate, given by zr = 1

N

∑
i r(si)B(si) where si ∈ D and D =

{(si, ri)} is obtained by subsampling the online replay buffer. For a goal-reaching task, we have
zg = B(sg). Finally, for tracking a motion τ = {s1, . . . , sn}, a sequence of policies {zt} is
obtained as zt =

∑t+H
t′=t B(st′), where H is a look-ahead horizon (Pirotta et al., 2024).

Few-Shot Adaptation. We can leverage optimization techniques for adaptation in latent space Z us-
ing online interaction with the simulator at test time. We demonstrate this by refining a static pose or
an entire motion to maximize J(z) =

∑T−1
t=0

(
rtask(st)−αR

∑Naux
k=1 rk(ot, st, at)

)
. For single-pose

adaptation, we use the zero-shot policy z0 = B(sg, og) as initial point and apply the Cross-Entropy
Method (CEM) (Rubinstein, 1999; Rubinstein & Kroese, 2004). For trajectory-level adaptation,
we warm-start from a tracked motion sequence and perform zero-order, sampling-based trajectory
optimization over a sequence of latent prompts, zt:t+H−1, using a dual-loop annealing schedule
in the spirit of DIAL-MPC (Xue et al., 2025). This procedure consistently stabilizes challenging
segments and reduces motion-tracking error, while retaining the human-like prior given by the dis-
criminator without finetuning networks.

3 EXPERIMENTS

In this section, we thoroughly evaluate BFM-Zero both in simulation and in real. We train
BFM-Zero in a simulated version of Unitree G1 using IsaacLab (Mittal et al., 2023) at 200 Hz,
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Model Test env. Test data Track Rwd Pose

BFM-Zero-priv Isaac (no DR) LAFAN1 1.0749 299.3 1.0291

BFM-Zero Isaac (DR) LAFAN1 1.1015 221.9 1.1387

BFM-Zero Mujoco (DR) LAFAN1 1.0789
207.3

1.1041

BFM-Zero Mujoco (DR) AMASS 1.0342 1.4735

move-ego-0-0

0 100 200 300 400
Reward

move-ego-0-0.3

Figure 3: Tracking, reward, and goal-reaching performance across models for different testing configurations
(left), and example distributions of reward evaluation scores for BFM-Zero in Isaac (DR) (right). Each metric
is averaged over tasks. We consider the average return over episodes lasting 500 steps for reward, the average
joint position error Empjpe averaged over the whole motion for tracking, and the error Empjpe averaged over
the episode for goal-reaching.

while the control frequency is 50 Hz. For the behavior dataset, we use the LAFAN1 dataset (Harvey
et al., 2020) retargeted to the Unitree G1 robot. The LAFAN1 dataset contains 40 several-minute-
long motions. We also demonstrate generality of BFM-Zero on a Booster T1 humanoid (App. D.1).

3.1 ZERO-SHOT VALIDATION IN SIMULATION

In this section, we quantitatively assess the performance and robustness of BFM-Zero along differ-
ent dimensions in simulation.

Asymmetric learning and domain randomization. We consider a privileged version of
BFM-Zero where all components of the algorithm receive privileged information. We train this
model in a simulated environment with nominal dynamical parameters (No DR) and we test it in the
very same configuration. This serves as an idealized configuration similar to the problems where
unsupervised RL was previously shown to work (Tirinzoni et al., 2025), although it leads to a model
that is not deployable on the real robot. We then compare to BFM-Zero trained and tested on
a domain randomized version of the environment (Sim DR), which corresponds to the model ac-
tually deployed on the real robot. Overall, BFM-Zero is 2.47%, 25.86%, 10.65% worse than
BFM-Zero-priv across tracking, reward, and pose reaching tasks. This shows that despite the al-
gorithmic changes made in BFM-Zero compared to FB-CPR, the learning dynamics is still correct
and the model retains a satisfactory performance compared to its idealized version. Interestingly,
reward tasks suffer from a larger drop in performance. This is in part due to the sparse nature of
the reward functions we consider, which makes them less forgiving to suboptimal behaviors and
amplify any model error. We also conjecture that this may be related to the reward inference pro-
cess with domain randomized data. In Fig. 3 we also show the distribution of the performance of
BFM-Zero for two representative reward functions across repetitions of the inference process3 and
episodes. While for move-ego-0.3 the performance is fairly consistent, for move-ego-0.0,
we notice that a few instances obtained a very poor performance. We conjecture that this is related to
the increased randomness of the data observed during training due to domain randomization, which
makes inference with a small subsampled dataset more brittle and prone to failure.

Sim-to-sim performance. We evaluate the robustness of BFM-Zero to the dynamics of the hu-
manoid by testing it in Mujoco. We notice that performance difference is limited (i.e., all variations
are less than 7%), showing that the domain randomization at training and the history components in
the actor and critics contribute to a good level of robustness and adaptivity.

Out-of-distribution tasks. Finally, we evaluate BFM-Zero on a different set of tracking and pose
reaching tasks obtained from the AMASS dataset (Mahmood et al., 2019). We consider 175 out-of-
distribution motions from the CMU subset of the AMASS and 10 manually-selected poses from the
motions in the entire AMASS dataset. We run tests in Mujoco to combine different dynamics and
out-of-distribution tasks. While a direct comparison of performance between LAFAN1 and AMASS
tasks may be misleading due to the specific nature of the motions and poses used in the evaluation,
we notice that overall BFM-Zero is able to successfully generalize and complete tracking and pose
reaching even when exposed to tasks that are not represented in the training data.

3In the reward inference, we use a dataset of states randomly subsampled from the training dataset. As a
result, multiple repetitions of the process may return different policies.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Natural Recovery from Unexpected Falls

Figure 4: Real-World Validation of Tracking. Left: Highly dynamic dancing. Middle: Frequently
turning during walking. Right: Naturally recover to continue track the motion.

Discontinous Goal Pose

Real Deploy Trajectory (a) (b)

in the air pose

Figure 5: Real-World Validation of Goal Reaching. (a) Continuously goal-reaching: the blue/yellow pose
denotes the goal pose, while black marks the real robot pose, and gray visualizes the transition between each
pose. (b) Transition from any pose to T-pose.

3.2 ZERO-SHOT REAL-WORLD VALIDATION

Finally, we deploy the BFM-Zero model zero-shot on a real Unitree G1 robot. In real-world val-
idation, we aim to 1) qualitatively confirm the model’s tracking, reward optimization, and goal
reaching capabilities on a few selected tasks; 2) assess its robustness to perturbations and failures
(e.g., falling). All results in this section come from one model.

Tracking As shown in Fig. 1, 4, BFM-Zero enables the robot to track diverse motions, includ-
ing various walking styles, highly dynamic dances, fighting, and sports. Even when unstable or
falling (Right), it demonstrates remarkably gentle, natural, and safe behavior while recovering and
continues tracking seamlessly. This capability stems not merely from robustness gained through dis-
turbance training, but mostly from TD-based off-policy training and the use of a GAN-based reward
which explicitly encourages human-likeness and regularization terms that enable it to draw upon a
rich skill library—much like a human—to adaptively complete the tracking task. Additionally, to
evaluate the coverage and generalization capability, we used real videos and retargeted them to the
G1. Despite the suboptimal motion quality and discontinuities introduced by occlusions of monoc-
ular videos and artifacts in video estimation, the system is robust to lower quality data and can still
successfully track these motions.

Goal Reaching For the goal-reaching task, we extract a sequence of target poses by randomly sam-
pling goal states and discarding their velocity components. The zero-shot latent of these poses are
then permuted and sequentially provided to the policy. As illustrated in Fig. 5, the robot consistently
converges to a natural configuration that closely approximates the target pose, even when the target
is infeasible (the Yellow one in Fig. 5). Moreover, the resulting trajectory exhibits smooth and natu-
ral transitions, whether between successive targets(5.a) or from an arbitrary pose to the T-pose(5.b),
without the need for explicit interpolation, demonstrating the smoothness and high coverage of the
learned skill space.

Reward Optimization We evaluate reward optimization in the real world with three task families:
(i) locomotion rewards that specify base velocities and angular velocities, (ii) arm-movement re-
wards that command wrist height, and (iii) pelvis-height rewards that request sitting, crouching,
or low-movement (Fig. 6(a–c)); reward definitions in Appendix C. With simple reward definitions,
the robot faithfully executes base-height, base-velocity, and arm-movement commands. Composite
skills can be derived from simply linear combination of the rewards (e.g., going backward while
raising arms), demonstrating controllable, skill-level interpolability. Also, given a specific reward,
averaging over different mini-batches from the replay buffer yields a set of latent variables that rep-
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(a)

(b) (c) (d) (e)

~80cm

~60cm

~25cm

on the ground Close in height

base-height = 0/25cm base-height = 60cm & forward right-wirst > 1m wirsts > 1m & backward/sideRewards: 

Figure 6: Real-World Reward Optimization. The red arrow represents the base velocity tracking target. (a)
sitting; (b) crouch-0.25; (c) move-low0.6-ego-0-0.7; (d) Diverse behaviors from one reward
raisearm-m-l; (e) combing raisearm-m-l with move-ego-180-0.3 and move-ego--90-0.7.

(a) (b) (c)

Figure 7: Disturbance Rejection: (a) Keeps steady when kicked in the leg. (b) Absorbs a hard push with one
smooth rear step. (c) Naturally stands up and returns to T-pose after being yanked down.

resents a diverse collection of potential optimal modes. (Fig. 6(d)). Formulating objectives through
reward functions makes our policy intuitive for human users and receptive to language prompts.

Disturbance Rejection One notable advantage of our policy is its strong compliance and robust-
ness. As illustrated in Fig. 1 and 7, our framework enables the robot to withstand severe distur-
bances—such as fierce pushes, kicks, or even being dragged to the ground, while recovering in a
natural, human-like manner. For instance, after a strong forward shove, the robot instinctively closes
its arms, takes several rapid steps in a running-like pose, and then gradually slows down before re-
opening its arms (Fig. 1). This level of robustness goes beyond the typical demonstrations seen in
previous works: rather than fiercely reacting to the disturbances, our policy autonomously adapts.
Although it receives only a single latent vector from the static T-pose as input, it can automatically
deviate from the reference posture, adopt a dynamic recovery pose, and eventually return to tracking
the original T-pose just as a human would.

3.3 EFFICIENT ADAPTATION FOR BFM-ZERO

In this section we show how we leverage adaptation to improve the zero-shot inference performance.

Single Pose Adaptation We validate few-shot single-pose adaptation on hardware with an ad-
ditional 4 kg mass rigidly attached to the torso link. Starting from the zero-shot latent zinit,
we apply CEM to obtain z⋆, augmenting the rollout objective with a sparse task term r =
1{hright foot>0.15 m ∧ no-contact }, which encourages right-foot clearance while avoiding unintended con-
tacts. As shown in Fig. 8 (a), without adaptation, the motion driven by zinit destabilizes and produces
an environmental collision within 5 s. In contrast, the optimized prompt z⋆ maintains single-leg bal-
ance for over 15 s. These results indicate that prompt-level optimization alone can compensate for
the payload-induced dynamics shift, without retuning network parameters.

Trajectory Adaptation For trajectory adaptation, we focus on optimizing a leaping motion under
altered ground friction. We perform dual-annealing trajectory optimization (Xue et al., 2025) using
the explicit tracking reward defined in (Luo et al., 2023). We used sampling with particle count
N = 2048, temperature schedules β1 = 0.85 and β2 = 0.9, and optimization iterations M = 6.
The reward curve and before/after adaptation key-point tracking performance is shown in Fig. 8(b),
showing that our method significantly improves tracking accuracy, reducing error by ∼29.1%.

3.4 THE LATENT SPACE STRUCTURE OF BFM-ZERO

As mentioned in Sect. 2.1, BFM-Zero provides an interpretable and structured representation
of the behaviors of a humanoid robot. This representation not only facilitates understanding of the
policy space but also enables instantaneous interpolation of existing skills without retraining.
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4kg 

Before Adaptation After Adaptation

Keep single leg > 15s

Hit

Collision < 5s

(a) (b)

objective

Figure 8: Few-Shot Adaptation: (a) Single-pose adaptation improving single-leg standing under an
additional payload. (b) Trajectory adaptation reduces tracking error.

CIRCLE

(a) Tracking trajectories segment
the latent space (2D). (b) Representative latents (3D). (c) Interpolation visualization

Figure 9: Latent space visualization and analysis.

Visualizing the Latent Space To examine the structure of the latent space, we sample latent vector
trajectories and project them onto a two-dimensional plane (Fig. 9a) to visualize the space, and
also use a three-dimensional sphere to present representative latent generated for tracking, reward
optimization and goal reaching(Fig. 9b) using t-SNE (van der Maaten & Hinton, 2008). We can see
the latent space is organized by motion style: semantically similar trajectories cluster, revealing a
shared task centric structure.

Motion Interpolation on the Latent Space The structured nature of Z enables smooth interpolation
between latent representations. We can leverage Spherical Linear Interpolation (Jafari & Molaei,
2014) to generate intermediate latent vectors along the geodesic arc between the two end-points. To
evaluate interpolated behaviors, we feed the resulting in-between zt=0.5 into the BFM-Zero policy,
and deploy it on both simulated and real humanoid robots. As shown in Fig. 9c, the interpolated
policy produces semantically meaningful intermediate skills in a zero-shot manner. These behaviors
compose immediately—no additional training required.

4 DISCUSSION

In this paper we showed for the first time that off-policy unsupervised RL is a viable approach
to train a behavioral foundation model for whole-body control of a real humanoid robot. While
BFM-Zero shows a remarkable level of generalization and robustness, it still suffers from several
limitations: 1) The scope and performance of the behaviors expressed by BFM-Zero is connected
to the motions used in training. Investigating the connection between the size of motion datasets,
simulated datasets, architecture and model performance (e.g., quantity and quality of the learned
behaviors) and consolidating it into scaling laws is important to guide future iterations of this ap-
proach. 2) While history-based actor and critics and domain randomization reduced the sim-to-real
gap, we believe algorithms with better online adaptation capabilities are needed to reliably express
more complex movements. 3) While we performed a preliminary investigation of test-time adapta-
tion, a more thorough understanding of fast adaptation and fine-tuning of these models is needed to
broaden their practical applicability.
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A RELATED WORK

In recent years, learning-based methods have made significant progress in whole-body control for
humanoid robots. The largest body of work has focused on simulated humanoids. While these
methods have demonstrated impressive capabilities in generating complex and dynamic behaviors
using reinforcement learning (Peng et al., 2018; Luo et al., 2023; 2024; Tessler et al., 2024), sim-
to-real transfer remains a critical challenge in deploying learned policies on real-world humanoid
robots. Various strategies have been proposed to bridge this gap, including domain randomization,
system identification, asymmetric training, etc. However, the majority of these methods focus on
single-task learning, where a policy is trained to perform a specific task, such as walking, running
and get up (Radosavovic et al., 2024a;b; Chen et al., 2024; Seo et al., 2025; Zakka et al., 2025; He
et al., 2025c).

Recently, mostly 2025, there has been a surge of interest in developing multi-task and generalist hu-
manoid control policies that can perform a wide range of tasks (He et al., 2024; 2025a; Zhang et al.,
2025; Zeng et al., 2025; Yin et al., 2025; Chen et al., 2025). The majority of these methods builds
on top of approaches developed for simulated humanoids, and enhance them to be robust enough for
sim-to-real transfer. While ASAP (He et al., 2025a) pre-train motion tracking policies in simulation
and deploy them on the real robot to collect data to train a delta (residual) action model, the most
common approach is to first train a motion tracking policy (or multiple policies) in simulation, and
then distill it into a single multi-task policy that can perform all the skills in the motion dataset.
Common approaches for distillation include using a conditional variational autoencoder to learn a
latent space of skills and doing online distillation (He et al., 2024; Yin et al., 2025; Zeng et al.,
2025; Chen et al., 2025; Zhang et al., 2025) or using diffusion models (Liao et al., 2025). However,
all these methods require two stages of training to enable promptable policies, they are inherently
limited by the quality of the motion since the base policies are trained to track the motion, and they
relay on on-policy RL algorithms. Our method represents a significant departure from this paradigm
by directly learning a promptable multi-task policy using an off-policy RL algorithm, which offer
a much more reach and structured space of skills, and is not limited by the quality of the motion
dataset.

B TRAINING DETAILS

The agent interacts with the environment via episodes of fix length T = 500 steps. The algorithm
has access to the dataset M containing observation-only motions. Similarly to (Tirinzoni et al.,
2025), the initial state distribution of an episode is a mixture between randomly generated falling
positions and states in M (motion initialization). We use prioritization to sample motions from M
and, inside a motion, the state is uniformly sampled. We use an exponential prioritization scheme
based on the agent’s ability to track a motion. To have a more fine-grained prioritization, we split the
40 LAFAN1 (Harvey et al., 2020) motions into chunks of 10 seconds. Every Neval interaction steps,
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we evaluate all the motions and update the priorities base on the earth mover’s distance (Rubner
et al., 2000, EMD). For each motion m ∈ M, the priority is given by

p(m) ∝ 2
max

{
0.5; min

{
EMD(m),2

}}
·4

We take inspiration from the recipe in FastTD3 (Seo et al., 2025) to scale up unsupervised off-policy
RL to using massively parallel environments. We use standard MLPs for all the components of the
model, even for handling history. We simulate Nenv parallel (and independent) environments at
each step. We scale the buffer size accordingly to the number of environments, following the rule
Nbuffer × Nenv × T . We use a batch size of Nbatch and we use an update-to-data ratio of Nups

gradient steps per (parallel) environment step. We train the model for a total number of environment
steps Ntrain =

NgradNenv

Nups
. We report the value of these parameters in Tab. ??, the missing parameters

are as in (Tirinzoni et al., 2025).

Parameter Value

Environment and Training Setup

History Length H 4
Episode Length T 500
Nenv 1024
Nbatch 1024
Nups 16
Ngrad 3M
Ntrain ≈ 192M
Nbuffer 10
Neval Ntrain/20
Buffer Size (transitions) ≈ 5M
Discount Factor 0.98
Number of Seeding Steps 10 ·Nenv

Fall Initialization Probability 0.3

Learning and Regularization

Sequence Length (Trajectory Sampling) 8
Latent Dimension d 256
Discriminator Reg. Coef. αD 0.05
Reward Reg. Coef. αR 0.02
Gradient Penalty 10
Learning Rate F 3 · 10−4

Learning Rate B 10−5

Learning Rate D 10−5

Learning Rate Actor π 3 · 10−4

Learning Rate QD 3 · 10−4

Learning Rate QR 3 · 10−4

Orthonormality Loss Coefficient 100

Inference

Number of samples for reward inference 400000
Tracking look ahead Seq. length (sim) 3 (real)

Network architectures. We use a residual architecture for actor and critics (F , QD) with blocks
akin to those of transformer architectures (Vaswani et al., 2017), involving residual connections,
layer normalization, and Mish activation functions (Misra, 2020). We use a simple MLP for the critic
QR.We use an ensemble composed of two networks for critics. For discriminator and backward map
we use a standard MLP with ReLu activation. Refer to Tab. 11 for more details.

B.1 BFM-ZERO

We provide here a sketch of BFM-Zero in (Alg. 1). We report the algorithm without parallel
networks for clarity. for clarity as well, we report the FB loss here. Let a′i ∼ π(x′

i, zi) where
xi = (oi,H , si), then
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Figure 10: Visual representation of the network architectures.

Hyperparameter Critics (F, QD , QR) Actor Discriminator B

Input Variables (x, a, z) (x, z) (x, z) (x)
Output Dim F: d, QD, QR: 1 29 1 d
Observation Variable x (ot,H , st) ot,H (st, ot) (st, ot)
Embedding Residual Blocks 4 4 – –
Embedding Hidden Units 2048 2048 – –
Residual Blocks 6 6 – –
Feed Forward Hidden Layers 1 1 2 1
Feed Forward Hidden Units 2048 2048 1024 256
Activations Mish Mish ReLU ReLU
Number of Parallel Networks 2 1 1 1

Num. Parameters (no target) F: 135.8M, QD, QR: 134.8M 31.9M 2.9M 0.2M

Total Parameters 846.2M

Figure 11: Network architecture parameters used for real tests. st is the privileged information
and ot is the proprioceptive information. ot,H = {ot−H , at−H , . . . , ot} denotes the history of
proprioceptive states and actions.

Domain Randomization
Parameter Range

COM Offset [m] U([−0.02, 0.02])
Link Mass U([0.95, 1.05])
Friction U([−0.5, 1.25])
Default Joint Pos [m] U([−0.02, 0.02])
Push Robots [m/s] U([0, 0.5])

Additive Observation Noise
Observation Range

qt − q̄ U([−0.01, 0.01])
q̇t U([−0.5, 0.5])
gravt U([−0.05, 0.05])
ω̇root
t /4 U([−0.05, 0.05])

Regularization Rewards
Name Weight

DoF Limit −10
Action Rate −0.1
Self Contact −1
Feet Orientation −0.4
Ankle Roll −4
Feet Slip −2

Figure 12: Details in training environment.
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ℓfb =
1

2n(n− 1)

∑
i̸=k

(
F (xi, ai, zi)

⊤B(s′k, o
′
k)− γF (x′

i, a
′
i, zi)

⊤B(s′k, o
′
k)
)2

− 1

n

∑
i

F (xi, ai, zi)
⊤B(o′i, s

′
i)

+
1

2n(n− 1)

∑
i ̸=k

(
B(s′i, o

′
i)

⊤B(s′k, o
′
k)
)2

− 1

n

∑
i∈[n]

B(s′i, o
′
i)

⊤B(s′i, o
′
i)

+
1

n

∑
i∈[n]

(
F (xi, ai, zi)

⊤zi −B(s′i, o
′
i)ΣBzi − γF (x′

i, a
′
i, zi)

⊤zi

)2

(2)

Algorithm 1 BFM-Zero Pre-Training

1: Initialize empty train buffer: Donline ← ∅
2: Initialize expert bufferM with action-free trajectories
3: for t = 1, . . . do
4: //Online interaction
5: Sample zt = {ze}Nenv

e=1 ∈ RNenv×d (if needed)
6: Execute at ∼ π(ot,H ,zt) ∈ RNenv×A in the simulated environments
7: Store (st,o

′
t,H ,at, s

′
t,o

′
t+1,H ,zt) in Donline

8: //Update
9: for j = 1, . . . , Nups do

10: Sample a batch of n = Nbatch transitions {(oi,H , si, ai, o
′
i,H , s′i, zi)}ni=1 from Donline

11: Sample a batch of n
Tseq

sequences {(wj,1, wj,2 . . . , wj,Tseq)}
n

Tseq

j=1 fromM where w = (st, ot)

12: //Encode expert and update discriminator

13: zj ← 1
Tseq

∑Tseq

t=1 B(wj,t) ; zj ←
√
d

zj
∥zj∥2

14: ℓdiscriminator = − 1
n

∑ n
Tseq

j=1

∑Tseq

t=1 logD(wj,t, zj)− 1
n

∑n
i=1 log(1−D(si, oi, zi))

15: //Update representation F and B so that F (s, a; z)⊤B(s′) ≈ Mπz (ds′|s, a)
16: Refer to Eq. 2
17: //note that D does not use history
18: Compute discriminator reward: rDi ← log(D(si, oi, zi))− log(1−D(si, oi, zi)), ∀i ∈ [n]
19: Let xi = (oi,H , si) and sample ui ∼ π(oi,H , zi) for all i ∈ [n]. Then
20: ℓcriticD = 1

n

∑
i∈[n]

(
QD(xi, ai, zi)− rDi − γQD(x′

i, ai, zi)
)2

21: ℓcriticR = 1
n

∑
i∈[n]

(
QR(xi, ai, zi)−

∑
k r

aux
k (x′

i)− γQR(x
′
i, ai, zi)

)2
22: ℓactor = − 1

n

∑
i∈[n]

(
F (xi, ui, zi)

⊤zi + αDQD(xi, ui, zi) + αRQR(xi, ui, zi)
)

23: //Update target networks
24: end for
25: end for

C TASKS AND METRICS

In this section we provide a complete description of the tasks and metrics.

Goal-based evaluation We have manually extracted 21 “stable” poses (i.e., states with zero ve-
locities) from the train dataset (i.e., LAFAN1) and 10 poses from the test dataset (i.e., AMASS). We
report the selected poses from LAFAN1 in Fig 13. To evaluate how close is the agent to the goal
pose, we use the joint error defined as following

Empjpe(e, g) =
1

|e|

|e|∑
t=1

∥qt(e)− q(g)∥2

where e is an episode and q is the joint position (i.e., 29D). We report the average across goals.
Episodes are of fix length H = 500.
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Figure 13: Goal poses selected from frames of the LAFAN1 dataset (Harvey et al., 2020).

Tracking evaluation This evaluation aims to assess the ability of the model to imitate a sequence
of poses, by ideally matching both positions and velocities. We evaluate the agent both on the train
dataset (i.e., LAFAN1) and on out-of-distribution motions selected from AMASS (retargeted to G1).
In particular, we randomly selected 175 motions from the CMU dataset of AMASS. For evaluation,
we use the same metric as in goal evaluation, i.e.,

Empjpe(e,m) =
1

|e|

|e|∑
t=1

∥qt(e)− qt(m)∥2

and we report the average across motions.

Reward evaluation We define 6 categories of rewards inspired by (Tirinzoni et al., 2025). Re-
wards are a function of the next state and normalized in [0, 1].

Standing. We evaluate the ability of the agent to stand with the pelvis at different heights.
move-ego-0-0 requires pelvis above 60cm and zero velocity, while move-ego-low0.5-0-0
requires the pelvis to be between 50cm and 65cm.

Locomotion. This category includes rewards related that requires the agent to move
at a certain speed, in a certain direction and at a certain height. We consider 5
representative rewards (move-ego-0-0.7, move-ego-90-0.7, move-ego--90-0.7,
move-ego-0-0.3, move-ego-180-0.3) which include forward, lateral and backward
movement. We additionally test also walking forward but with the pelvis at a low height
(move-ego-low0.6-0-0.7).

Rotation. We require the robot to rotate along the vertical axis (i.e., while standing). We consider
rotating clockwise and counter clockwise (i.e., rotate-z-5-0.5 and rotate-z--5-0.5).

Ground poses. To further stress the ability of the model to control the vertical position, we define
rewards requiring the agent to sit on the ground (sitting) or having the pelvis slightly above the
ground (crouch-0.25 is about 25cm above the ground).

Arm raise. We require the robot to stand in a steady position and to reach certain vertical posi-
tion with the arms (measured at the wrists). We consider low (z ∈ [0.6m, 0.8m]) and medium
(z > 1m) positions for the wrists, with soft margins (raisearms-l-l, raisearms-l-m,
raisearms-m-l, raisearms-m-m).

Combined rewards. We finally evaluate the ability of the agent to maximize rewards that require
combining multiple skills. In particular, we test combinations of locomotion and rotation with arm
movements. We selected 8 combinations of rewards.

Overall, we tested 24 rewards and evaluted perfomance via the cumulative return over episodes of
T = 500 steps. The initial state of an episode is the default pose.
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Figure 14: Application of BFM-Zero on Booster T1.

D ADDITIONAL RESULTS

D.1 APPLICATION OF BFM-ZERO ON BOOSTER T1

We additionally tests the generality of our framework by testing BFM-Zero on Booster T1 hu-
manoid robot. The lafan dataset is retargeted to T1 using LocoMujoco Al-Hafez et al. (2023) and
we train the policy with exact same hyper-parameters as G1. The algorithm shows strong gener-
alization ability, allowing T1 also to perform natrual walking and expressive dancing motions, as
shown in ??.

E USE OF LARGE LANGUAGE MODELS

The authors use LLM tools for refining the expression in the final draft of the paper, but did not use
it for idea generation, training, and other experiments.
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