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Abstract

With increasingly serious data privacy concerns
and strict regulations, privacy-preserving machine
learning (PPML) has emerged to securely execute
machine learning tasks without violating privacy.
Unfortunately, the computational cost to securely
execute nonlinear computations in PPML remains
significant, calling for new model architecture
designs with fewer nonlinear operations. We pro-
pose Seesaw, a novel neural architecture search
method tailored for PPML. Seesaw exploits a pre-
viously unexplored opportunity to leverage more
linear computations and nonlinear result reuse, in
order to compensate for the accuracy loss due to
nonlinear reduction. It incorporates specifically
designed pruning and search strategies, not only
to efficiently handle the much larger design space
of both linear and nonlinear operators, but also
to achieve a better balance between the model ac-
curacy and the online/offline execution latencies.
Compared to the state-of-the-art design for im-
age classification on ImageNet, Seesaw achieves
1.68x lower online latency and 1.55x lower total
online + offline latency at 71% iso-accuracy, or
3.65% higher accuracy at iso-latency of 190 sec-
onds, while using much simpler and faster search
and training methods.

1. Introduction

Machine learning (ML), particularly deep neural networks,
has become a ubiquitous technique in contemporary data-
driven applications such as image/video classification and
natural language processing (LeCun et al., 2015). The ef-
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fectiveness of ML hinges on massive training data and ex-
tensive computational resources to efficiently process large
neural network models. Consequently, ML tasks start to
be outsourced to and deployed on cloud computing sys-
tems (ai.; clo; azu; int; aws; ope). However, such cloud-
based deployment has raised serious concerns regarding the
privacy of user data like health/medical records, financial
status, and location information, which must now be sent to
public cloud platforms and suffer from leakage risks.

In response to such privacy concerns, privacy-preserving
machine learning (PPML) has been proposed to securely
store and process users’ sensitive data. During model train-
ing, differential privacy and federated learning techniques
could be leveraged to protect individual person’s data pri-
vacy (Zhang et al., 2018; Wei et al., 2020). More general
PPML frameworks for both training and inference now heav-
ily use cryptographic primitives, including homomorphic
encryption and multi-party computation, to achieve prov-
able security (Dowlin et al., 2016; Brutzkus et al., 2019;
Badawi et al., 2018; Liu et al., 2017; Riazi et al., 2018; Ju-
vekar et al., 2018; Mishra et al., 2020; Ng & Chow, 2021;
Chandran et al., 2022; Zhang et al., 2023). However, despite
extensive algorithm and system optimizations, their com-
putational cost is still several orders of magnitude higher
than the original plaintext models, restricting their practical
usage in time-sensitive scenarios like online inference. The
high processing overheads are primarily associated with
nonlinear activation functions such as ReLU and Sigmoid,
which require complex secure multi-party computation pro-
tocols with heavy cryptographic computations and frequent
communication between the user and the cloud.

Great efforts have been made to alleviate the nonlinear com-
putational cost in PPML, such as developing more efficient
protocols for nonlinear operators (Mishra et al., 2020; Gh-
odsi et al., 2021; Lou et al., 2021), or reducing the number
of such operations through pruning and neural architec-
ture search (NAS) (Ghodsi et al., 2020; Cho et al., 2022a;
Jha et al., 2021; Cho et al., 2022b; Kundu et al., 2023a;
Huang et al., 2022; Kundu et al., 2023b). Nevertheless,
almost all prior techniques simply started with an exist-
ing network architecture, and only focused on reducing the
amount of nonlinear operators while struggling to minimize
the corresponding negative accuracy impact. This inevitably
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causes accuracy degradation when nonlinear operations are
reduced, suffering from the fundamental tradeoff between
model accuracy and execution latency.

Our contributions. In this work, we aim to break this trade-
off, by exploiting opportunities to use additional computa-
tions and data orchestration to compensate for accuracy
loss due to nonlinear reduction. Specifically, we propose
two approaches: (1) adding more linear operations to the
model to recover its decreased representation capacity; (2)
reusing the results of the remaining nonlinear operators
as much as possible through introducing residual shortcut
links to the model topology. Although adding such linear
and aggregation computations would increase the execution
time in the insecure case, in the PPML scenario the la-
tency impact is mainly limited to the offline pre-processing
phase (Garimella et al., 2023), and has negligible online
processing overheads compared to the dominant nonlinear
cost, therefore exhibiting a unique opportunity.

We propose Seesaw, a one-shot NAS method that leverages
the above compensation ideas to automatically search for
optimized neural network architectures for PPML. Besides
searching for how to selectively enable nonlinear opera-
tions under a given budget (Cho et al., 2022b; Kundu et al.,
2023a), Seesaw incorporates several novel techniques to ad-
dress the new challenges arising from the additional linear
computations. First, as the increased pre-processing cost
cannot simply be ignored (Garimella et al., 2023), we need
to carefully control the amount of extra linear computations,
in order to balance the model representation capacity and
the online/offline execution latencies. Seesaw captures the
online/offline latency impact into the overall loss function,
and applies effective pruning methods to restrict latency
while maintaining high accuracy. Second, the overall design
space is significantly enlarged with the additional computa-
tions, which requires new search and training strategies to
efficiently explore. Seesaw leverages a novel search strategy
that combines (super)model training and network architec-
ture search in one loop to accelerate convergence.

When evaluated on the ImageNet and CIFAR100 datasets
under a wide range of nonlinear budgets, Seesaw is able to
push the Pareto optimal frontier between the model accuracy
and the execution latency compared to the state-of-the-art
SENet (Kundu et al., 2023a). Specifically, on ImageNet, at
iso-accuracy of 71%, Seesaw achieves lower latency than
SENet, by 1.68x for the online phase only, and 1.55x
for both online and offline together. At iso-latency of 190
seconds, Seesaw is better than SENet with 3.65% accuracy
increase. On CIFAR100, Seesaw also outperforms SENet,
with 1.53 x online latency reduction at iso-accuracy of 70%,
and 0.25% higher accuracy at iso-latency of 8 seconds. We
have made Seesaw open source, available at https://
github.com/tsinghua-ideal/Seesaw.

2. Background

Privacy-preserving machine learning (PPML) addresses the
challenges of processing private user data on proprietary
ML models, while not revealing any sensitive information
to malicious participants during the computation. We focus
on PPML inference. More specifically, privacy is protected
if (1) the user learns no knowledge of the ML model except
for the inference result of her own input data; and (2) the
model owner gains no information about the user data.

Currently, there are mainly two approaches to realize PPML.
Hardware-based trusted execution environments (TEEs) can
protect sensitive data (Kunkel et al., 2019; Hunt et al., 2018;
Hynes et al., 2018; Tramer & Boneh, 2019; Kim et al., 2020;
Li et al., 2021; 2023), but TEEs are vulnerable to side chan-
nels, weakening their security (Chen et al., 2019; Wang
et al., 2018). Cryptography-based PPML protects data pri-
vacy using modern cryptographic primitives (Gentry, 2009;
Damgard et al., 2012; Yao, 1986). They offer theoretically
provable, strong security guarantees. Our work optimizes
the execution latency of crypto-based PPML solutions while
minimizing the accuracy impact.

2.1. Cryptographic Primitives and PPML Protocol

Existing PPML has used various cryptographic primitives
to best match different computation patterns in ML appli-
cations. Fully Homomorphic Encryption (FHE) (Gentry,
2009) allows for applying arbitrary functions composed of
addition and multiplication on encrypted data (e.g., user
data or model weights). FHE is useful for linear opera-
tors (matrix multiplications, convolutions, etc.) in PPML,
which account for a majority of computations in modern
ML models. Previously, CryptoNets (Dowlin et al., 2016),
HCNN (Badawi et al., 2018), TAPAS (Sanyal et al., 2018),
LoLa (Brutzkus et al., 2019), and Faster CryptoNets (Chou
et al., 2018) have leveraged FHE in PPML. Unfortunately,
the computational complexity of FHE is quite high and can
result in several orders of magnitude slowdown compared
to insecure computing.

Another way to support linear computations is Secret Shar-
ing (SS) (Damgard et al., 2012). PPML typically assumes
two parties, the user and the model owner. SS transforms
the data of each party into randomly split shares. Each share
is hold by one party, and each party only sees its own share
but not the full value, ensuring data privacy. Addition of two
encrypted values, and multiplication between an encrypted
value and a plaintext number, can be done locally with only
simple operations. Therefore, the linear operators that in-
volve the encrypted user data and the plaintext weights can
be done efficiently. Gazelle (Juvekar et al., 2018) and DEL-
PHI (Mishra et al., 2020) have used SS to replace FHE for
higher online processing speed. Nevertheless, FHE is still
needed during offline pre-processing to prepare the shares.
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The remaining challenge is handling nonlinear operators
such as ReLLU and MaxPool. Garbled Circuit (GC) (Yao,
1986) takes the encrypted boolean representations of the
two parties’ input data, and securely computes an arbitrary
boolean function composed of AND and NOR gates. Most
existing PPML systems use GC to compute nonlinear oper-
ators (Liu et al., 2017; Mohassel & Zhang, 2017; Rouhani
et al., 2018; Juvekar et al., 2018; Mishra et al., 2020). GC
processing requires heavy cryptographic computations (e.g.,
AES encryption) and frequent communication between the
two parties. Such significant overheads compared to inse-
cure processing are our main optimization target.

PPML protocol. In this work, we follow the overall flow of
the state-of-the-art PPML system, DELPHI (Mishra et al.,
2020). The protocol consists of two phases: an offline pre-
processing phase, and an online inference phase. During
offline pre-processing, we use FHE to generate the secret
shares that will be used by the online SS scheme to com-
pute the linear operators. Specifically, for a linear operator
y: = W, - x;, the user and the model owner each randomly
samples a vector, r; and s;, respectively. The user sends
Enc(r;) (encryption of r;) to the model owner, who homo-
morphically computes Enc(W; - r; — s;) using FHE. The
user receives and decrypts this result to keep W, - r; — s;.
We also generate the GC boolean function for the nonlin-
ear operators. For example, the user creates a GC function
f(a) =ReLU(a+ (W, r; —s;)) —r;y1 for the ReLU op-
erator x;41 = ReLU(y; ), and sends it to the model owner.

In the online inference phase of a linear operator, the two
parties start with each holding a share of the input, i.e., r;
by the user and x; — r; by the model owner. These shares
are either from the results of the previous operator, or the
user calculates x; — r; and provides it to the model owner
if this is the first layer. The model owner then evaluates
W, - (x; — r;) + s; on its share. The user already has
W, - r; — s; from the pre-processing phase. We can verify
that these two values are exactly the shares of the output,
i.e., summed up to W, - x; = y;. Thus we have maintained
the induction condition.

The online inference uses GC for nonlinear operators, e.g.,
Xi+1 = ReLU(y;). The model owner has the GC function
f(a) from the offline phase. It sets a to its share of y;, i.e.,
a =W, (x;—r;)+s;, and evaluates f(a) (involving heavy
computation and communication) to obtain ReLU(y;) —
riy1 = Xi+1 — I'i+1, which is a valid share of the next
operator’s input. The user holds the other share r; ;.

2.2. Related Work

In the above PPML protocol, SS has made the online com-
putations of linear operators almost as cheap as the original
insecure processing, and GC offers general compute capa-
bility to support unmodified nonlinear operators to ensure

the same accuracy level. However, the use of GC causes
the main performance bottleneck (over 300x slower than
linear computations in DELPHI (Garimella et al., 2023)).
It is therefore necessary to focus on reducing the cost of
nonlinear operators to speed up the PPML processing.

Recently there have been various proposals to address this
issue. Some designs change the nonlinear operator com-
putations from ReL.U to more crypto-friendly alternatives.
DELPHI (Mishra et al., 2020) replaced part of the non-
linear operators with linear approximation to exploit the
latency-accuracy tradeoff, using neural architecture search
(NAS) techniques. SAFENet (Lou et al., 2021) also used
NAS to apply approximation, but at a more fine-grained
level to reduce the accuracy impact. Circa (Ghodsi et al.,
2021) reconstructed ReL.U into a sign test (by GC) plus a
multiplication (by SS), in order to reduce the processing
cost. Other solutions reduce (i.e., prune) the amount of
ReLU operators in existing neural network structures. Cryp-
toNAS (Ghodsi et al., 2020) rearranged the ReLU operators
and used a macro-search algorithm, ENAS, to search for
a network with fewer nonlinear operators. Sphynx (Cho
et al., 2022a) instead used micro-search approaches to de-
sign its building blocks more thoroughly for higher accuracy.
DeepReDuce (Jha et al., 2021) pruned the model in a more
fine-grained manner at the channel level, and further im-
proved accuracy through knowledge distillation. SNL (Cho
et al., 2022b) was inspired by the parameterized ReL.U and
realized pixel-level ReLU pruning. SENet (Kundu et al.,
2023a) proposed the concept of ReLU sensitivity, which dis-
tinguished the importance of different nonlinear operators
and realized automated ReLU pruning.

Besides the online cost of the nonlinear operators, preparing
the SS data of the linear operators through FHE at offline
also introduces non-negligible overheads. Garimella et al.
(2023) alleviated this issue by proposing layer-parallel HE
(LPHE) to process these offline computations in parallel.

For the model representation capability, Zhang et al. (2021)
showed that even the simplest two-layer neural network
with a sufficiently large number of parameters could per-
fectly fit any labeling of training data. Other studies (Arora
et al., 2018; Guo et al., 2020) indicated the benefits of
over-parameterization for better performance, showing that
adding a sufficient number of parameters (linear operators)
could greatly improve the network’s ability.

3. Design

Previous PPML designs that aimed to reduce the nonlinear
cost (Section 2.2) suffered from a common limitation: they
merely reduced the ReLU operators without reconsidering
the overall network architecture. This inevitably decreases
the representation capacity of the model. Since the represen-
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Figure 1. Main building blocks of the Seesaw search space. ReLU
is always placed after a weighted element-wise ADD to save non-
linear operations and control linear operations.

tation capacity is jointly determined by both the linear and
nonlinear operators, our key idea is to compensate for the ac-
curacy loss caused by reduced nonlinear operators. We thus
propose Seesaw, a one-shot NAS method to automatically
search for crypto-friendly model architectures for PPML,
with the best accuracy under the given budget for nonlinear
(ReLU) and linear operators. We first present the building
blocks in Seesaw that allow for additional linear operators
and nonlinear output reuse (Section 3.1). Then we describe
how to use pruning to control the computation costs of both
nonlinear and linear operations (Section 3.2). Finally we
summarize the end-to-end search strategy (Section 3.3).

3.1. Design Space

Seesaw uses two ways to compensate for the loss of nonlin-
ear operators. Accordingly, two building blocks are added
to its search space, as illustrated in Figure 1.

Figure 1a shows a sampling block, which substitutes a tra-
ditional Conv-ReLU block by enabling multiple parallel
branches with various linear operators (Szegedy et al., 2015;
2016). The branches can be convolutions with different
kernel sizes (e.g., 1 x 1, 3 x 3, 5 x 5), depth-wise separable
convolutions, dilated convolutions, pooling, or even a di-
rect skip connection. These independent branches enhance
the model representation capacity by extracting multiple
and different scales of features. The sampling block is de-
signed to significantly increase the expressivity with much
more branches than Sphynx (Cho et al., 2022a) and Cryp-
toNAS (Ghodsi et al., 2020) which only used up to four
branches. The outputs of all branches have the same shape.
They are weighted and combined using an element-wise
ADD. The final ReLU may be pruned, i.e., replaced with an
Identity operator, to meet the overall ReLU budget.

Figure 1b shows an aggregation block, which aggregates
the outputs of previous ReLU operators in the model. The
goal of such aggregation is to maximally reuse the limited
ReLU outputs remained in the pruned model, not only by
the immediately next block, but also potentially by other
succeeding blocks. Each of these previous ReLLU outputs
first passes a convolution kernel to reduce the resolution.
Then an element-wise ADD operator weighted aggregates
them before feeding to the final ReLU activation. Aggregat-
ing the ReLU outputs at different positions of the overall
supermodel (Figure 2) helps prevent feature loss and over-
fitting (Szegedy et al., 2015; 2016), and is also another way
to introduce extra nonlinearity.

We emphasize two key points in both building blocks. First,
both blocks place the (possible) nonlinear ReLU after an
ADD operator. In contrast to the CONCAT operators used
in CryptoNAS (Ghodsi et al., 2020) and Sphynx (Cho et al.,
2022a), ADD results in a smaller data size after aggregation,
and thus reduces the amounts of nonlinear operations for
the following ReLU. Actually, because Seesaw intentionally
employs a large number of branches, using CONCAT would
lead to significantly higher cost for each ReL.U (by a factor
equal to the branch count), and thus limit the total number
of ReLU operators allowed in the model. We present a de-
tailed comparison in Section 4.2 to demonstrate the benefit.
Second, in both blocks, the branches are accumulated ac-
cording to certain learnable weights 3. These weights are
automatically trained to determine the importance of dif-
ferent branches, so we can prune the non-critical branches
to control the amount of extra linear operations that would
increase the offline pre-processing cost (Section 3.2). We
incorporate the training of these weights into the overall
training process rather than separately determining them
afterwards, as discussed later in Section 3.3.

Finally, the sampling blocks and the aggregation blocks
are used to construct an over-parameterized supermodel in
Seesaw (Figure 2). Each aggregation block is preceded by
several sampling blocks (i.e., m;). The output of each ReLU
is forwarded to all the aggregation blocks after it through
residual connections (He et al., 2016). Several prior designs
like CryptoNAS (Ghodsi et al., 2020) and Sphynx (Cho
et al., 2022a) also used residual connections and mainly
followed existing topologies like ResNet (He et al., 2016)
and NASNet (Zoph et al., 2018). We emphasize that Seesaw
uses much more residual connections beyond the original
insecure network model, and for a completely different
purpose of reusing ReLLU outputs to increase expressivity.

3.2. Pruning Methods

The supermodel in Section 3.1 contains the following pa-
rameters: (1) The weight «; to decide the nonlinear operator
(ReLU or Identity) in the i-th sampling block. (2) The
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weight 3; ; of the linear operator on the j-th branch in the -
th sampling/aggregation block. In order to limit the amounts
of linear/nonlinear operations and thus their corresponding
impacts on the execution time, Seesaw applies pruning to
the a; of sampling blocks, and the 3; ; of sampling blocks
(but not aggregation blocks, see Section 4.3).

Seesaw prunes the number of nonlinear ReLU operators in
the model, by selectively enabling a subset of the sampling
blocks to use ReLU, while the others use Identity operators.
This is controlled by the weight a; for the i-th sample block.
Using Identity instead of ReLU would reduce the execution
latency, but potentially sacrifices the model accuracy.

Seesaw also prunes the branches of linear operators in each
sampling block. Unlike traditional NAS that usually keeps
only one of the multiple branches (Liu et al., 2018; Cai et al.,
2019; Wu et al., 2019), in PPML the linear operators are
not the computation bottleneck. Thus Seesaw could retain
more branches in each block to better compensate for the
accuracy loss due to ReLU pruning. Nevertheless, pruning
unimportant branches improves model generalization and
prevents overfitting. More importantly, despite the negli-
gible online computation cost, linear operations still affect
the offline pre-processing overheads in PPML. Garimella
et al. (2023) recently showed that the offline cost cannot be
ignored in real-world PPML inference scenarios where user
requests are continuously coming to the model provider’s
servers. Therefore, Seesaw needs to control its impact on
the offline phase to avoid making it a new bottleneck.

Reducing and balancing online and offline latencies. See-
saw develops simple analytical models to estimate the ex-
ecution latencies of the online and offline phases in the
DELPHI framework. The offline latency is proportional to
the amounts of both linear operations (where FHE is used
to prepare their secret shares, Section 2.1) and nonlinear
operations (where GC functions are created). The online
latency is dominated by the nonlinear ReLLU operations.
Specifically, the latencies can be represented as

Toffline = Coffline ZaiHiWiCiazﬁi,jFLOPSi,j ey
i .3

Tonline = Eonline (Z o H;W; Cz) )

7

where H;, W;, C; are the i-th block output shape, and
FLOPs; ; is the FLOPs of the j-th branch in the i-th block.
Eoitiine and Eoniine are linear models whose coefficients are
the empirically measured per-operation latency costs. The
ay; weights are always binarized to {0, 1}, but we omit such
binarization for 3; ; (see below and Section 3.3).

It is worth noting that, while the online latency should be
minimized, it is not necessary to minimize the offline la-
tency as long as it does not become the bottleneck, i.e., the
offline latency can be hidden by (no larger than) the online
latency when the two phases are implemented as a process-
ing pipeline (Garimella et al., 2023). Our search strategy in
Section 3.3 leverages this fact when balancing between the
model accuracy and online/offline latencies.

Pruning methodology. Similar to ProxylessNAS (Cai et al.,
2019), during training, the ; weights are binarized every
epoch to ensure only one between ReLLU and Identity is
activated while searching. In contrast, we need the concrete
values of 3; ; in order to rank the importance of the branches
in the sampling blocks and keep the top ones. We first prune
the branches with very small weights (i.e., less than an
empirical threshold 0.0001) in each block. Then, if the
offline latency still exceeds the online one, we continue to
prune more branches in the ascending order of their weights
across all sampling blocks, but skip the blocks with only
a few (empirically set to 3) branches left. Our approach
is able to achieve more stable performance compared to
simple methods such as keeping a fixed number of branches
in each block, as we will demonstrate in Section 4.3.

3.3. Search Strategy

The goal of Seesaw is to discover new PPML models with
better balance between model accuracy and (online/offline)
execution latency. As a result, we incorporate the latency
cost into the loss function of Seesaw as below.

L= ECE + Alﬁtotal + >\2£balance (3)

where Lcg is the original cross-entropy loss, L controls
the total latency cost of both online and offline processing,
and Lyaiance helps balance the two phases (Section 3.2). With
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the latency target Tiuger, the latter two are defined as

Toffline T Tonline — Ttarget
Ltotal = (4)
Ttarget
Toffline — Tonline
Lbalance = (5)
Tonline

Both Lo and Lygpance help guide the search process to
choose proper pruning on «; and §; ; in Equations (1)
and (2), to strike a balance between latency and accuracy.

For the network architecture search strategy, traditional NAS
typically constructs an over-parameterized supermodel en-
compassing all building blocks and potential branches in
the search space. This supermodel contains numerous archi-
tecture parameters (e.g., for each branch and for each block)
that must be first sampled to generate a specific network to
train (Liu et al., 2018; Cai et al., 2019). The search space
from which network architectures are sampled is too large,
making the training converge slowly. Some approaches try
to directly train on the dataset, then optimize via a specific
search algorithm, and finally do retraining (Zoph et al., 2018;
Tan et al., 2019). This process can still be computationally
intensive and time-consuming.

Seesaw uses a novel search strategy, which only includes the
existence of nonlinear operators (i.e., ;) in the search space,
and treats the branch weights for the large number of linear
operators (i.e., 3; ;) similarly to the model weights and to be
updated during training without extra sampling. This greatly
reduces the search space, accelerating the convergence when
searching the best network architectures.

Algorithm 1 Seesaw network architecture search

Input: training dataset D, validation dataset Dy, target
latency Tiarget
Output: optimized network architectures
1: while not converged do
2 if epoch > # warm-up epochs then
3 sample (Xy, Yy ) from Dy
4: M = nas_modules.sample()
5: L= CE(M(XV)7 YV) + )\Lctotal + )\Q‘Cbalance
6 update(nas_modules, £)
7 end if
8 sample (X7, Yr) from Dr
9: M = nas_modules.sample()
10:  Lcg = CEMX7), Y7)
11:  update(M, Lcg)
12: end while

Algorithm 1 shows the pseudocode of the Seesaw search
algorithm. Seesaw takes as input the training dataset Dr,
the validation dataset Dy, and the target latency Tiarger. It
trains the supermodel and searches for the network architec-
ture iteratively in a continuous loop until converged. In each

iteration, it samples a network architecture from the search
space (i.e., sample «; values at Line 9), and uses the training
dataset to train the network weights as well as the branch
weights §; ; in the sampled model (Lines 8 to 11). After a
certain number of warm-up training epochs, it starts to train
the architecture parameters, i.e., the NAS modules (Lines 2
to 7). The NAS modules are sampled to determine «;, i.e.,
the existence of each ReLU operator (Line 4). We use the
overall loss £ from Equation (3) to update the NAS modules
(Lines 5 and 6). The network weight parameters are frozen
during this process. The use of the validation set enhances
the robustness of the architecture. After convergence, the
optimized network architectures can be derived based on
the trained supermodel.

4. Evaluation

We compare Seesaw with several previous PPML meth-
ods, including DELPHI (Mishra et al., 2020), Sphynx (Cho
et al., 2022a), SNL (Cho et al., 2022b), SENet (Kundu
et al., 2023a), as well as unmodified baseline models. The
baseline models are ResNet-18 and ResNet-34 (He et al.,
2016), with CIFAR100 (Krizhevsky & Hinton, 2009) and
ImageNet (Deng et al., 2009) as the datasets. We leverage
the DELPHI framework to perform real performance exper-
iments, with the optimizations in Garimella et al. (2023) for
offline pre-processing. We set 100 epochs for searching and
150 epochs for retraining, with decreasing learning rates
from 0.5 to 0.0005. A\; and A\, are set to 0.001 and 0.1,
respectively.

Seesaw does not incur significant search cost compared to
existing methods. Specifically, with NVIDIA RTX 3090
GPUs, the complete architecture search process of Seesaw
in Algorithm 1 takes approximately 10 GPU hours on CI-
FAR100, and 45 GPU hours on ImageNet. Such a search
cost is moderate, and even more efficient than some previ-
ous PPML NAS methods. For example, Sphynx, which also
used NAS, required 44 GPU hours on CIFAR100.

4.1. Comparison with State-of-the-Art

Figure 3 shows the comparison on ImageNet between our
Seesaw and state-of-the-art PPML methods. We illustrate
the accuracy vs. latency tradeoff curves of various methods
in two ways: (1) online processing time only, (2) end-to-end
offline and online time. The results clearly demonstrate the
efficiency of Seesaw, in terms of the Pareto optimal frontiers
between the classification accuracy and the runtime latency.
The ability to achieve higher accuracy with lower latency
makes Seesaw a highly efficient and promising approach for
PPML inference.

Specifically, for the online latency comparison (Figure 3
left), if we look at the same accuracy level of 71% for
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Figure 3. Accuracy vs. online latency (left) and end-to-end online + offline latency (right) results on ImageNet.
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Figure 4. Accuracy vs. online latency (left) and end-to-end online + offline latency (right) results on CIFAR100.

example, Seesaw only needs about 100 seconds, which is
1.68x faster than the next best design SENet. On the other
hand, when doing an iso-latency comparison at 190 seconds,
Seesaw improves the accuracy to 74.81%, which is 3.65%
better than SENet at 170 seconds and 9.38% better than
Sphynx at 180 seconds. Even when including the higher
offline cost (Figure 3 right), at 71% accuracy Seesaw is
still 1.55x faster than SENet. Compared with the original
ResNet, Seesaw gets about 4x acceleration with similar
accuracies.

Note that when the ReLU budget is abundant, Seesaw can
even exceed the accuracy of the original insecure ResNet
models. This is expected because Seesaw uses more linear
operators. In the insecure scenario, such accuracy improve-
ments come at the cost of longer inference latencies. How-
ever in PPML, the online latency is dominated by ReLU,
for which Seesaw has similar or fewer operators.

Figure 4 presents the same comparison on the CIFAR100

dataset. At low ReLU budgets, Seesaw outperforms SENet,
i.e., 1.53x faster at iso-accuracy of 70%, and 0.25% higher
accuracy at iso-latency of 8 seconds. When the ReLLU bud-
get increases, the improvements over SENet become rela-
tively small, and sometimes worse at high ReLLU budgets.
This is because SENet applies more fine-grained pixel-level
ReLU pruning, which reduces the accuracy loss but requires
more complex search and training methods. We expect
similar pixel-level pruning can also be applied on top of
Seesaw and further increase its performance. As a prelim-
inary exploration, we apply pixel-level pruning based on
SNL (Cho et al., 2022b) to the models discovered by Seesaw.
The results in Table 1 show that with pixel-level pruning,
the Seesaw models outperform the baseline SENet models,
demonstrating the effectiveness of combining Seesaw with
pixel-level pruning. This highlights the robustness and ver-
satility of Seesaw, which can effectively leverage various
orthogonal techniques, such as the fine-grained pruning, as
post-processing steps to further improve efficiency.
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Table 1. Comparison between SENet and Seesaw + SNL on CI-
FAR100.

ReLU Budget Method Accuracy
SENet 70.59%
25K Seesaw + SNL 71.42%
S0K SENet 75.28%
Seesaw + SNL 76.02%

Accuracy (%)

¢ CONCAT
ADD
T

32 64 128 256 512
Number of ReLU Operators (K)

60 !

Figure 5. Comparison between the ADD and CONCAT operators
on CIFAR100.

4.2. Ablation Study: ADD vs. CONCAT

We compare the performance of ADD and CONCAT oper-
ators in Figure 5. We design another sampling block that
is similar to Figure 1a but uses CONCAT instead of ADD.
We then apply the same Seesaw search algorithm to find the
best network architectures under different ReLLU budgets
and train the new models. For a fair comparison, we use
the same ReLU budgets for the ADD- and CONCAT-based
models. From the figure we see that, the CONCAT-based
models can achieve good accuracies, but still not as high
as the ADD-based models, exhibiting a noticeable gap of
7.0% on average. The accuracy difference is particularly
significant when the ReLU budget is tight. Essentially, us-
ing ADD allows for more linear operators and thus higher
expressivity without consuming extra nonlinear operators.
These findings highlight the importance of carefully design-
ing the linear combination mechanism within the sampling
blocks of Seesaw.

4.3. Ablation Study: Pruning Methods

Section 3.2 introduces how to prune linear operator branches
in each sampling block. We initially set 27 branches of
different linear operators in every sampling block. After
learning their weights 3; ;, we prune the branches until the
offline latency decreases to the acceptable level. Now we
evaluate its effectiveness by comparing with several other
pruning methods, e.g., keeping all branches without pruning

Table 2. Comparison between different pruning methods at low
and high ReL.U budgets on CIFAR100.

ReLU Pruning End-to-End Accurac
Budget Method Latency (seconds) y

All 78.57 72.63%

36K Fixed-11 20.98 72.53%

Ours 15.13 72.32%

All 91.66 74.93%

78K Fixed-11 58.39 75.25%

Ours 27.22 75.89%

All 100.11 76.04%

110K Fixed-11 39.64 75.23%

Ours 45.66 77.26%

All 192.08 76.92%

170K Fixed-11 95.92 77.88%

Ours 50.15 78.25%

All 222.07 77.24%

300K  Fixed-11 132.27 79.33%

Ours 107.47 80.03%

(All), and keeping a fixed number (11) of branches with the
highest weights in each block (Fixed-11).

Table 2 shows the end-to-end latencies and the classifica-
tion accuracy numbers of different pruning methods under
several ReL.U budgets from 36K to 300K. In all cases, All
only achieves slightly better or even worse accuracies than
the two pruned models, despite the 2x to 5x higher la-
tencies. This demonstrates the necessity of pruning, both
for avoiding overfitting and for constraining execution time.
Between the two pruning methods, specifying a fixed num-
ber of branches to keep cannot effectively adapt to diverse
ReLU budgets. At a medium budget of 110K ReLU op-
erations, compared with our method in Seesaw, Fixed-11
is only 15% faster but has a noticeable 2.03% accuracy
degradation, meaning that it does not keep enough linear
operation branches to recover the accuracy. We also ob-
serve similar trends at higher ReLLU budgets of 170K and
300K, where Fixed-11 reduces the latencies but consistently
underperforms in terms of accuracy compared to our prun-
ing method. On the other hand, when the budget is low
at 36K, Fixed-11 causes 39% slowdown but only gains a
minor 0.21% accuracy increase, which implies too many
unnecessary branches are kept in the model.

The above results demonstrate that our pruning approach
in Seesaw could adapt effectively to diverse ReLU budgets,
pruning just enough branches to meet the latency goals while
maintaining the best accuracy level. In contrast, keeping
a fixed number of branches would lead to either accuracy
degradation or unnecessary computational overheads.
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Figure 6. Nonlinear operator weights of sampling blocks at differ-
ent locations on CIFAR100. The one with a larger weight between
ReLU and Identity will be used.

4.4. Network Architecture Analysis

Finally, we illustrate the distribution of the ReLU opera-
tors in the optimized network architectures discovered by
Seesaw. Figure 6 shows the corresponding pre-binarization
weight values for ReLLU and Identity at different sampling
blocks in two networks with different ReLU budgets of 36K
and 110K. The sampling blocks at the latter stage of the
network tend to have higher ReLU weights and would keep
the ReLU operators. This observation aligns with the ReLU
sensitivity study in SENet (Kundu et al., 2023a). For exam-
ple, on the premise of retaining the ReL.U of aggregation
blocks, Figure 6a with a small 36K ReL.U budget only keeps
the last nonlinear operator. However, Seesaw can also retain

SO =Wk U

0 2 4 6 8 10 12 14
Location

Number of linear operato:

Figure 7. Numbers of linear operation branches of sampling blocks
at different locations on CIFAR100, under a ReLU budget of 110K.

some earlier nonlinear operators if the ReLU budget allows,
in order to boost the accuracy. For example, Figure 6b with
a 110K budget also preserves the ReLU operators in the
middle at positions 7 and 8.

In contrast, for the distribution of the linear operations,
Figure 7 shows that the number of branches in a sampling
block is likely higher towards the early part of the network,
reflecting that more linear operators are kept at the beginning
of the network in order to compensate the accuracy loss due
to the reduced ReLLU amounts in the latter stages.

Combining the above two trends, we get an interesting ob-
servation. An optimized PPML network architecture needs
to preserve sufficient nonlinearity in the latter blocks of the
model, while at the earlier stage, it can instead use more
linear computations to increase the representation capac-
ity. The two patterns compensate very well, once again
validating the design principle of Seesaw.

5. Conclusions

In this paper, we present Seesaw, a neural network structure
search scheme that is tailored to private machine learning
inference. Seesaw compensates for the negative accuracy
impact of reducing expensive nonlinear operators through
adding more linear computations and reusing existing non-
linear results. It incorporates novel pruning and search
approaches to efficiently determine the optimized amounts
of extra computations and data reuse. Our evaluation shows
that Seesaw achieves higher accuracy with fewer nonlin-
ear operations compared to previous proposals. Seesaw
paves the way for deploying accurate and efficient privacy-
preserving machine learning models in real-world scenarios,
where computational constraints and privacy concerns are
both critical.
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