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Abstract

In the realm of recommendation systems and
search engine optimization, the comprehensive
understanding of listwise item dependencies
has emerged as a pivotal challenge. Traditional
ranking methods, predominantly pointwise or
pairwise, have been limited in capturing the
intricate dynamics within item lists. In this
study, we developed TransformerRank, a novel
approach specifically tailored for the complex-
ities of listwise ranking. This method inno-
vatively employs a custom transformer model
within a sliding window technique, extending
beyond the capabilities of conventional ranking
algorithms.

Our extensive experiments conducted on di-
verse datasets, including TripClick, Yahoo!,
and ORCAS, demonstrated TransformerRank’s
superiority. It consistently outperformed es-
tablished methods across key metrics such as
NDCG@10 and MAP. Additionally, an abla-
tion study was executed to determine the bal-
ance between accuracy and computational ef-
ficiency, underscoring the practicality of our
approach.

TransformerRank provides a significant ad-
vancement in the field of listwise ranking. It
not only enhances the accuracy and efficiency
of ranking systems but also offers a deeper in-
sight into the dynamics of item interdependen-
cies. This research expands the potential ap-
plications in data science and natural language
processing, setting a new benchmark for future
explorations in leveraging listwise dependen-
cies in sequence data.

1 Introduction

Item ranking, a vital component in domains such as
e-commerce, web search, and personalized content
delivery, represents a significant area of research

within machine learning and information retrieval.

Traditional item ranking methodologies primarily
involve pointwise methods like RankNet (Burges

et al., 2005), and listwise approaches including
ListNet (Cao et al., 2007a) and SoftRank (Taylor
et al., 2009). Despite their foundational impact,
these conventional approaches often struggle to
capture the dynamic interactions and complex de-
pendencies that are characteristic of modern, data-
intensive item ranking scenarios (Li et al., 2014;
Wang et al., 2020; Zhao et al., 2021).

In the current landscape, most commonly used
ranking systems are based on pointwise approaches
or simplistic interpretations of listwise ranking.
Methods such as TPrank or Uni-retrieval (Qiao
et al., 2019; Zhang, 2022) typically focus on single-
item relevance, falling short in learning from result-
oriented data such as click logs. This limitation
becomes evident in the ever-changing world of e-
commerce and web search, where user preferences
and item relevances continually evolve, present-
ing a demand for models that are both precise and
adaptable (Wang et al., 2020).

Consider the scenario where a user searches for
"Healthy Snack Options." The rank logs depicted
in Table 1 offer insightful observations into how
user interaction patterns shift with varying item
list compositions. Traditional pointwise models,
or those prioritizing item relevancy in isolation,
might mirror the "Alone" situation in the table.
They often predict certain items as relevant based
on individual assessments. However, when these
items are presented together, as seen in the "With
Others" column, their interactions and user clicks
change significantly. This discrepancy underscores
the need for a list-to-list learning approach that is
result-oriented, focusing on the actual outcomes of
item combinations rather than isolated relevancy
predictions. Such an approach acknowledges the
importance of contextual relevance and inter-item
dependencies, essential aspects often overlooked in
pointwise ranking models but critical in real-world
ranking scenarios.

The emergence of transformer architectures



Snack Option Alone  With Others
Almonds Yes No
Fruit Salad Yes Yes
Granola Bars No No
Greek Yogurt Yes No
Dark Chocolate ~ No Yes

Table 1: Rank logs for the query "Healthy Snack Op-
tions" showing user clicks when items are presented
alone and when presented with others, illustrating the
dependency effect in listwise ranking.

(Vaswani et al., 2017a), particularly their success
in natural language processing, offers a new per-
spective for addressing item ranking challenges.
Transformers, known for their self-attention mech-
anism capable of capturing long-range dependen-
cies within sequences (Bai et al., 2019), provide a
groundbreaking framework for item ranking. How-
ever, adapting these models, originally designed
for language tasks, to the specifics of item ranking
entails addressing unique challenges inherent to
this field.

In item ranking, models encounter more com-
plex data structures, such as extended document
embeddings or intricate item features, demand-
ing a refined approach capable of handling high-
dimensional data and understanding the nuanced
dependencies at an item level (Burges et al., 2005).
Moreover, the core of listwise ranking is the com-
prehension of the broader context and interrelation-
ships among items in a list, requiring an attention
mechanism designed to effectively capture these
extended dependencies (Taylor et al., 2009).

This paper introduces TransformerRank, a trans-
formative adaptation of the transformer model,
meticulously tailored for the nuanced challenges of
listwise item ranking. Deviating from traditional
token-based transformer applications, Transformer-
Rank is innovatively designed to process item-level
data. It efficiently handles broad lists of candi-
date items, initially ranked by a transformer-based
model, and then refines these lists using a sophisti-
cated sliding window mechanism.

TransformerRank leverages a specialized atten-
tion mechanism that is sensitive to the global con-
text within item lists. This advanced feature con-
siderably enhances the accuracy and contextual
relevance of the ranking system, allowing for di-
rect list-level learning and optimization. Further-
more, the inclusion of a sliding window approach

in TransformerRank is pivotal for fine-tuning the
order of candidate items, ensuring an efficient and
effective realization of listwise ranking results.

In summary, our contributions to the field of item
ranking are as follows:

— Proposing TransformerRank: A New
Item Ranking Approach: We introduce
TransformerRank, an innovative model
specifically designed for item ranking.
This model is result-oriented, capable of
directly learning from item lists and pre-
dicting outcomes, such as the number of
clicks for a given list.

— Efficient Sliding Window Optimiza-
tion: TransformerRank incorporates an
efficient sliding window approach to fine-
tune item rankings. While initial listwise
ranking provides relevant results, the in-
tegration of sliding window optimization
with TransformerRank specifically ad-
dresses efficiency in order adjustment.

— State-of-the-Art Performance on
Three Public Datasets: Our ap-
proach marks a fundamental shift
from traditional item ranking methods.
TransformerRank has demonstrated
state-of-the-art performance across three
public datasets, showcasing its potential
as a groundbreaking method in the
field. This model not only addresses
key limitations of existing ranking
systems but also paves the way for
further research and development in
item ranking methodologies.

2 Related Work

2.1 Pointwise and Listwise Ranking
Approaches

Early research in item ranking predominantly fo-
cused on pointwise and listwise methods. Point-
wise approaches, treating item ranking as a classifi-
cation or regression problem (Li et al., 2010), have
been foundational in this field. However, they often
fall short in capturing complex item dependencies
and dynamic relationships. Listwise approaches,
on the other hand, consider entire lists of items for
ranking (Cao et al., 2007a). While offering a more
holistic view, these methods sometimes struggle
with scalability and intricacy in large datasets. Our
work extends these traditional frameworks by in-
troducing a transformative approach to pointwise



ranking that integrates the depth of listwise analy-
sis, enabling the modeling of intricate dependen-
cies more effectively.

2.2 Transformer Models in Sequence
Processing

The advent of transformer models, introduced by
Vaswani et al. (Vaswani et al., 2017a), has re-
shaped the landscape of sequence processing. Their
attention-based architecture excels at capturing
complex sequential relationships, leading to sig-
nificant advancements in tasks like natural lan-
guage processing. Despite their success, the ap-
plication of transformers in item ranking has not
been fully explored. Our research fills this gap by
adapting transformer models specifically for item
ranking, leveraging their sophisticated attention
mechanisms to provide an innovative solution for
optimizing item sequences.

2.3 Sliding Window Techniques

Sliding window techniques have been instrumen-
tal in various optimization contexts, exemplified
by their use in large-scale graph optimization by
Cho et al. (Cho, 2016). These techniques offer pre-
cise, localized modeling, yielding context-aware
solutions. We build upon this concept by integrat-
ing the sliding window technique with transformer
models. This novel amalgamation allows for local-
ized optimization while simultaneously capturing
nuanced dependencies between items within each
window. Our approach represents a methodologi-
cal innovation, combining the strengths of sliding
window techniques with the advanced capabilities
of transformers for item ranking.

3 Methodology

In this section, we introduce a novel methodology
for listwise item ranking that seamlessly integrates
multiple stages of analysis and optimization. Ini-
tially, a transformer-based model conducts point-
wise ranking, establishing an initial order of items
based on individual relevance. Building upon this,
our central innovation, TransformerRank, applies
list-to-list learning to evaluate and enhance the col-
lective arrangement of items. The pivotal aspect of
our approach is the utilization of a sliding window
technique, akin to beam search in sequence gener-
ation, which iteratively refines the order of items
derived from the point-wise ranking (Wiseman and
Rush, 2016). This technique enables dynamic re-
ordering within the list, optimizing the overall rank-

ing sequence to more accurately reflect inter-item
dependencies and collective coherence.

3.1 Problem Formulation

Given a set of candidate items C' and a query ¢, the
task is to select and sequence a subset 7 that opti-
mally satisfies the query. This task must account
for the complex dependencies among items. The
objective can be formulated as:

" = argmax Q(q, ) €))
nCC,|r|=k
In this equation, 7* is the optimal ordered subset
of size k from candidates C, and (g, 7) quantifies
the utility or relevance of subset 7 considering the
query ¢ and the dependencies among items in 7.
Objective: Our goal is to create a ranking mech-
anism that not only identifies relevant items but
also orders them in a way that maximizes overall
utility, taking into account the interdependencies
and effects of item combinations in the list.

4 Pointwise Scoring with
Transformer-Based Models

In the first stage of our ranking process, we uti-
lize a deep transformer-based model for pointwise
scoring and item embedding generation (Vaswani
et al., 2017b; Radford et al., 2018). The strength
of such models lies in their ability to capture intri-
cate relationships and contextual nuances, making
them ideal for evaluating the relevance of items in
relation to specific queries.

To adapt this model for our scoring task, we fine-
tune it on a dataset comprising query-item pairs,
each annotated with a relevance score. The fine-
tuning process adjusts the model’s weights to min-
imize the difference between the predicted scores
and the actual annotated relevance scores. This ob-
jective is captured by the following loss function:

N
L= (si— %) )
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where L represents the loss function, [V is the total
number of query-item pairs in the training set, and
s; and §; denote the true and predicted relevance
scores for the it pair, respectively.

After fine-tuning, for a given query ¢ and item
d, the model generates embeddings, represented as
eq and e4. The pointwise relevance score is then
computed as:

5= J(eqTWed +b) 3)



In this equation, o is the sigmoid activation func-
tion, which confines scores within the [0, 1] range.
W is a weight matrix optimized during training,
and b is a bias term.

This approach of utilizing transformer-based
models for pointwise scoring and embedding gen-
eration is a crucial step in our ranking process,
providing a robust foundation for the subsequent
listwise ranking and optimization stages.

5 TransformerRank

TransformerRank leverages the state-of-the-art
transformer architecture, renowned for its effective-
ness in sequence modeling, to tackle the complexi-
ties of listwise ranking in information retrieval.

5.1 Model Formulation

Given a query ¢ and a sequence of items m =
{d1,da, ..., dn}, TransformerRank’s objective is to
optimize a listwise ranking score (g, 7). Unlike
traditional methods that primarily focus on identi-
fying the most relevant items independently, Trans-
formerRank adopts a goal-oriented learning ap-
proach. It directly learns from the outcomes of how
items are presented and interacted with in a list. For
instance, it can discern user engagement, such as
clicks or impressions, when a list is presented, with-
out the need for calculating click-through rates or
estimating relevance. This approach distinguishes
TransformerRank from methods that decompose
search logs into pointwise learning, fundamentally
altering how it harnesses the original dataset.
Embeddings and Positional Encoding: Each
item d; in the sequence is converted into a high-
dimensional representation via embeddings. These
embeddings are derived from the transformer-based
model fine-tuned in the initial stage of ranking. To
capture the sequential nature of the item list, each
embedding is augmented with a positional encod-
ing:

ed; = Embed(d;) + Pos(j)
This fusion of content and positional information
equips TransformerRank with the capability to dis-
cern both the individual importance and the relative
placement of items in the sequence. The positional
encoding used here is based on sinusoidal functions
(Vaswani et al., 2017b), defined as:

. . J
Pos(j)(2i) = sin (1000022.”)

. J
P ) — - J
08(j) (2i+1) = cos (100002Z/d>

where j is the position and ¢ is the dimension. This
sinusoidal encoding facilitates the model’s under-
standing of the position and distance between items
in the list.

Longformer-Based Attention in Transformer-
Rank: TransformerRank incorporates Long-
former’s sliding window attention mechanism, de-
signed for efficient processing of longer sequences
(Beltagy et al., 2020). This approach scales linearly
with sequence length, making it well-suited for the
extended item embeddings in listwise ranking. The
attention computation for each position j in the
item sequence is represented as:

ed; WQ(SijWK)T
Vw

A(eq,) = Softmax ( ) S wWy

Here, S;, denotes the embeddings within
a window of size w centered around j, and
Wq, Wi, Wy are the query, key, and value weight
matrices, respectively. This localized attention al-
lows TransformerRank to focus on a subset of items
at a time, enhancing computational efficiency.
Incorporating Global Attention: Alongside the
sliding window attention, TransformerRank inte-
grates Longformer’s global attention mechanism.
This feature enables the model to attend to criti-
cal positions or items that have a broad contextual
impact on the entire list. Global attention is particu-
larly beneficial for identifying key items in listwise
ranking that influence the perception of other items
in the list:

GlobalAttn(eg,) = Softmax (eq,WgE") E

In this formula, W is a weight matrix dedicated

to global attention, and F represents the complete
sequence of embeddings. Global attention provides
a means to factor in the significance of specific
items over the entire ranking.
Handling Extended Embeddings: By adapting
Longformer’s attention mechanisms, Transformer-
Rank efficiently manages longer item embeddings.
The combined use of local windowed attention
and global attention offers a scalable solution to
processing extensive sequences in listwise rank-
ing. This integration ensures that TransformerRank
maintains a balance between local item relation-
ships and global list context, crucial for effective
ranking in information retrieval tasks.



Ranking Score Prediction: TransformerRank, uti-
lizing the Longformer architecture, processes the
sequence of item embeddings to generate a com-
prehensive representation for ranking. This in-
volves passing the Longformer-processed embed-
dings through position-wise feed-forward networks
(FFN):

Q(q, ) = o(FFN(LongformerOutput(7)))

The FEN, composed of layers with non-linear acti-
vation functions such as ReLLU, is designed to distill
complex interactions between items into a coherent
ranking score. o represents the activation function
of the Score Predictor, which is a sigmoid function,
transforming the output into a final ranking score.
This adaptation ensures that TransformerRank is
capable of handling the extended sequences typical
of listwise ranking tasks.

Efficiency of Longformer’s Attention Mecha-
nism: TransformerRank effectively employs Long-
former’s attention mechanisms, combining local
windowed attention with global attention, to effi-
ciently process long sequences in listwise ranking.
This dual attention approach enables the model to
simultaneously focus on local item interactions and
the broader global context, providing a compre-
hensive understanding of the entire item list. The
integration of Longformer’s scalable mechanisms
is particularly advantageous for handling extended
item embeddings, as it prevents a significant in-
crease in computational complexity. This synergy
between Longformer’s nuanced attention focus and
TransformerRank’s sophisticated position-wise net-
works positions the model as a robust and advanced
solution in the field of information retrieval, adept
at managing the complexities of ranking extensive
lists of items.

6 Enhanced Sliding Window Approach
for Ranking

The Enhanced Sliding Window Approach presents
an advanced technique for item ranking, which is
illustrated in Figure 1. Commencing with an ini-
tial ranking determined by pointwise methods, the
method utilizes a sliding window that begins its
scan from the end of the list, effectively perform-
ing a backward scan. This backward movement
targets the identification of items that have been po-
tentially ranked lower but could have a significantly
increased relevance when paired with specific sur-
rounding items. This optimization is guided by the
listwise function Q).

The Sliding Window

ltem1 Item2 Item3 Item4 Item5 | ltem6 Item7 Item8 Item9 Item 10
Shuffle to maximize Q value

ltem1 Item2 Item3 Item4 Item5 |ltem10 Item7 Item9 Item8 Item6
D Update the ranking

ltem1 Item2 Item3 Item4 | ltem5 |Item10 Item7 Item9 Item8 | ltem6

Shuffle to maximize Q value

Item1 Item2 Item3 Item4 |ltem10 Item7 Item9 Item5 Item8 | Item6
— Update the ranking

Figure 1: An example of our sliding window ranking
workflow. Note that item 10 was mistakenly ranked
lower initially but is ranked higher through the process.

During this backward traversal, each item within
the window is assessed for its potential to enhance
the localized ranking. If certain items are deemed
more relevant in the context of their neighbors, an
exhaustive search within the window determines
the optimal order for those items. If an item doesn’t
fit this criterion, it’s retained at its current position
at the end of the window, which upholds the in-
tegrity of the previously determined high-relevance
sequence and speeds up the scanning process. This
iterative and detailed optimization across the en-
tire list assures an improved and globally refined
ranking.

Consider a scoring function (g, ) quantify-
ing the ranking quality within a window, where x
represents the item permutation. As the window
moves, permutations are appraised to identify the
optimal permutation 77* maximizing (g, 7). Thus,
for each permutation 7 in the window, the optimal
solution adheres to:

Qlg, ) = Q(g, ),

Where I encapsulates all possible permutations in
the window.

This iterative method guarantees local optima
in each window, refining the global ranking by
identifying intricate item dependencies.

This algorithm iteratively applies the window
across the ranked items and finds the optimal per-
mutation within each window. It integrates the
scoring function () to evaluate the permutations
and gradually improves the overall ranking.

Our proposed algorithm also demonstrates no-
table computational advantages, aptly fitting real-
world scenarios. When tasked with ranking GG
items and selecting k for display, traditional ex-
haustive permutation methods would involve an
evaluation overhead of C'(G, k), with C' represent-
ing the combinatorial function. In stark contrast,
our strategy requires only (G —m+1)C(m,m) as-
sessments. Given the typical constraint where m is
much smaller than both G and & (i.e., m < G and

Vmel “)



m < k), our method’s computational footprint
can be efficiently managed to meet deployment
specifications, thus assuring prompt and accurate
ranking.

7 Experiments

In this section, we evaluate the efficacy of Trans-
formRank, complemented by our enhanced slid-
ing window technique. We specifically assess the
model’s prowess in click prediction and relevancy
ranking.

We delve into the foundational details support-
ing our approach, shedding light on the challenges
addressed. Our ablation study further illustrates
the efficiency and effectiveness of the proposed
method.

For a thorough understanding, details such as
feature selection for Learning to rank baselines
(informed by LETOR 4.0 (Qin and Liu, 2013)),
hyperparameter choices, model parameters, and
reproducibility code are furnished in the supple-
mentary materials.

The experiments were conducted on a Large
Google Cloud Service cluster, equipped with four
Tesla V100 GPUs.

7.1 Datasets

1. TripClick: This dataset is derived from
the Trip medical database, a comprehen-
sive source for clinical research publications.
TripClick aims to provide a clearer under-
standing of real-world user behavior, espe-
cially concerning click-through. Featuring
over 500,000 queries, relevance scores be-
tween queries and items are predefined, mak-
ing it an ideal controlled environment for ex-
perimental testing in the domain of click pre-
diction. The controlled nature of this dataset
ensures reliable evaluations, diminishing the
noise often encountered in real-world datasets
(Team, 2020).

2. Yahoo! Front Page Today Module User
Click Log Dataset (Yahoo): Encompassing
millions of user interactions, this dataset is
invaluable for the learning-to-rank commu-
nity. The real-world nature of this dataset
introduces challenges of noise and user bi-
ases, making it a rigorous testbed for any
ranking model. The dataset is enriched with
real-world query-item relevance labels de-
rived from user interactions, making it indis-

pensable for assessing real-world performance
of learning-to-rank methodologies (Research,
2020b).

3. ORCAS: Produced by Microsoft Research,
ORCAS is a benchmark dataset tailored for
search and ranking challenges. It boasts over
500,000 queries and associated rankings, each
enriched with extensive features and relevance
judgments. The dataset’s richness in terms of
features and judgments positions it as a com-
prehensive platform for in-depth evaluations,
facilitating robust comparisons and ensuring
reproducibility in results (Research, 2020a).

7.2 Baselines

SVMrank (Joachims, 2006): A widely-used pair-
wise learning-to-rank method based on support vec-
tor machines.

RankNet (Burges, 2005):
network-based ranking model.
ListNet (Cao et al., 2007b): A listwise ranking
approach using neural networks.

LambdaMART (Burges, 2010): An ensemble
method that combines RankNet and MART, utiliz-
ing gradient boosting with decision trees for rank-
ing.

BM25 (Robertson et al., 2009): A classical
probabilistic-based ranking function in information
retrieval.

TPRank (Qiao et al., 2019): A pointwise rank-
ing approach leveraging the BERT transformer for
direct document ranking.

coCondenser (Gao and Callan, 2021): Introduces
a novel method for dense passage retrieval using
co-attention and contrastive learning.
Uni-Retriever (Zhang et al., 2022): A model that
utilizes pre-training techniques for enhancing doc-
ument ranking performance.

TransformerRank with enhanced sliding win-
dow (TSrank): Our proposed method for listwise
item ranking with transformers and sliding window
optimization.

A pairwise neural

7.3 Evaluation Metrics

NDCG@10: A metric assessing ranking quality
using graded relevance (Jarvelin and Kekildinen,
2002).

MAP: Represents the mean of the average preci-
sion scores across queries (Manning et al., 2008).
Precision@10: Denotes the proportion of top-k
recommendations that are relevant (Manning et al.,



2008).

Recall@10: Gauges the fraction of the total rele-
vant items found within the top-k recommendations
(Manning et al., 2008).

MRR: Computes the average reciprocal rank of
the initial correct result (Voorhees, 1999).

7.4 Experimental Procedure

To maintain consistency across our experiments,
all datasets were standardized, ensuring uniform
feature scaling. We divided each dataset into train-
ing, validation, and test sets, following an 80-10-10
split. This partitioning was strategically chosen
to optimize the performance of our models while
ensuring robust validation and testing.

The training set played a crucial role in fine-
tuning models that rely on pre-trained architectures,
such as BERT. This process was vital for adapting
these models to our specific ranking tasks. The
validation set was instrumental in optimizing hy-
perparameters, a step essential for achieving the
best model performance.

For model assessment, we utilized the test set,
applying a range of predefined metrics to evaluate
the models’ effectiveness. An initial retrieval phase
was conducted using Solr’s TF-IDF algorithm. In
this phase, we aimed to retrieve the top 400 re-
sults, a number slightly above the average items
retrievable across the three datasets. This approach
was designed to ensure comprehensive coverage
of potential items while maintaining a manageable
dataset size for analysis.

Following this initial retrieval, we conducted an
in-depth comparative analysis, contrasting Trans-
formerRank’s performance against established
baseline methods. This comparison was crucial
for demonstrating the efficacy and advantages of
our approach.

Further details, including an in-depth description
of TransformerRank’s model settings, links to the
datasets used, and additional relevant information,
are comprehensively presented in the supplemen-
tary material.

7.5 Experimental Results

In the evaluation of various ranking methods across
three prominent datasets, we observed distinc-
tive performance differences in Table 2. For the
TripClick dataset, the proposed TSrank method
showcased a marked improvement, scoring high-
est in all metrics, notably with an NDCG@10 of
0.69, a MAP score of 0.65, Precision@10 at 0.70,

Recall@10 at 0.72, and an MRR of 0.76. All these
scores were found to be statistically significant, sur-
passing the performance of traditional methods like
SVMrank, RankNet, and even more contemporary
approaches like Uni-Retriever.

Similarly, in the Yahoo dataset, TSrank out-
performed the rest with significant leads in all
metrics: NDCG@10 (0.67), MAP (0.66), Pre-
cision@10 (0.69), Recall@10 (0.70), and MRR
(0.75). This trend continued in the ORCAS
dataset, with TSrank registering the top scores,
with NDCG@10 at 0.68, MAP at 0.66, Preci-
sion@10 and Recall@10 at 0.68 and 0.70, respec-
tively, and MRR at 0.73. While several methods
such as Uni-Retriever and coCondenser produced
commendable results, none achieved the consis-
tently superior performance of TSrank across all
datasets and metrics. On average, the proposed
TSrank approach exhibited a 5%-12% improve-
ment over the previous state-of-the-art methods.
These findings underscore the effectiveness of the
TSrank method, positioning it as a prime choice
for addressing listwise item ranking challenges.

7.6 Ablation Studies

Our ablation study focuses on exploring the con-
cept of locality in listwise ranking, specifically in-
vestigating the impact of sliding window size using
the Yahoo! click dataset. This analysis helps us
understand how varying window sizes influence
ranking performance. Additionally, we extend our
examination to a relevance-based dataset to deter-
mine how TransformerRank performs when docu-
ments are individually annotated by humans based
on relevance, providing further insights into the
model’s versatility in different ranking scenarios.

From Figure 2, we identified that an increase in
window size enhances performance but also incurs
higher computational costs. Notably, the perfor-
mance gain plateaus when the window size reaches
6, suggesting that this is an optimal balance be-
tween effectiveness and efficiency.

The study also underscores the significance of
item dependencies and their localized nature within
ranking datasets. This insight is particularly rele-
vant when considering human attention patterns
and their impact on item connections.

The efficacy of TransformerRank is further high-
lighted in its performance on the MS-MARCO doc-
ument ranking dataset, as detailed in Table 3. This
dataset shares similar characteristics with ORCAS,
offering a relevant context for evaluating relevance-



| TripClick |

Yahoo | ORCAS

Method ‘ NDCG@10 MAP Precision@10 Recall@l0 MRR ‘ NDCG@10 MAP Precision@10 Recall@10 MRR ‘ NDCG@10 MAP Precision@10 Recall@10 MRR
SVMrank 0.52 0.47 0.50 0.53 0.58 0.48 0.45 0.47 0.49 0.55 0.45 0.42 0.44 0.46 0.53
RankNet 0.53 0.49 0.52 0.55 0.60 0.50 0.47 0.49 0.51 0.57 0.47 0.44 0.46 0.48 0.55
ListNet 0.54 0.50 0.53 0.56 0.61 0.51 0.48 0.50 0.53 0.58 0.49 0.46 0.48 0.50 0.56
LambdaMART 0.57 0.54 0.56 0.59 0.64 0.54 0.52 0.53 0.56 0.61 0.53 0.50 0.52 0.54 0.59
BM25 0.55 0.52 0.54 0.57 0.62 0.53 0.50 0.51 0.54 0.59 0.51 0.48 0.50 0.52 0.57
TPRank 0.58 0.55 0.57 0.60 0.65 0.56 0.54 0.55 0.58 0.63 0.55 0.52 0.54 0.56 0.61
coCondenser 0.60 0.58 0.61 0.63 0.67 0.59 0.58 0.60 0.62 0.66 0.59 0.56 0.58 0.60 0.65
Uni-Retriever 0.62 0.59 0.63 0.65 0.68 0.61 0.60 0.62 0.63 0.68 0.61 0.59 0.61 0.63 0.66

TSrank 0.69* 0.65% 0.70* 0.72% 0.76* 0.67*

0.66*

0.69* 0.70* 0.75% 0.68* 0.66* 0.68* 0.70* 0.73*

Table 2: Performance of baselines and proposed methods across different datasets. An asterisk (*) denotes
statistically significant improvement, and bold values highlight the superior performance of TSrank.
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Figure 2: Variation in ranking performance (nDCG@10)
as the sliding window size increases. Optimal perfor-
mance is observed at m = 6.

based ranking scenarios (Nguyen et al., 2016). The
results on MS-MARCO provide valuable insights
into TransformerRank’s adaptability across differ-
ent annotation methods and corpora. Although its
performance advantage is slightly less pronounced
on MS-MARCO compared to ORCAS, Trans-
formerRank consistently surpasses other methods.
This performance underlines its proficiency in iden-
tifying document dependencies and relevance. Par-
ticularly in scenarios where items bear contextual
interconnections, TransformerRank’s performance
is exemplary, showcasing its wide applicability and
flexibility in various ranking environments.

Method NDCG@10 MRR
SVMrank 0.558 0.388
RankNet 0.564 0.373
ListNet 0.562 0.367
LambdaMART 0.558 0.353
BM25 0.546 0.314
TPRank 0.601 0.446
coCondenser 0.609 0.448
Uni-Retriever 0.606 0.439
TSRank 0.629 (+3.3%) 0.471 (+5.1%)

Table 3: Performance of various baseline methods and
TransformerRank on the MS-MARCO dataset. Metrics
include NDCG @10 and MRR.

8 Conclusion

In this paper, we introduced TransformerRank,
an innovative model that redefines the approach
to listwise item ranking. Engineered to leverage
the strengths of transformer architectures, Trans-
formerRank is uniquely capable of direct list-level
learning, adeptly capturing complex dependencies
among items. Our empirical evaluations have
demonstrated its significant edge over traditional
ranking models. TransformerRank excels in in-
terpreting the nuanced interactions and contextual
information within item lists, a capability that sets
a new standard in the field.

The essence of TransformerRank lies in its inno-
vative approach to listwise ranking, facilitating a
deeper understanding of item relationships beyond
the conventional item-by-item analysis. This is
complemented by the integration of sliding window
optimization, which enhances the model’s ability
to process lengthy sequences of items efficiently
while maintaining the integrity of listwise analysis.
Additionally, the adaptability of TransformerRank
ensures its applicability across various dynamic
ranking scenarios, making it a versatile tool for
modern ranking challenges.

Looking forward, the potential applications of
TransformerRank extend beyond item ranking, of-
fering promising opportunities in other complex
data processing tasks. Future research could fo-
cus on enhancing the model’s scalability and com-
putational efficiency, further broadening its utility
in handling more extensive and complex datasets.
TransformerRank’s success in our studies under-
scores the transformative potential of advanced
transformer models in the realm of listwise item
ranking, paving the way for continued innovation
in this field.

9 [Ethical Considerations

In adherence to the Responsible NLP Research
Checklist, this study upholds the highest ethical



standards. We have ensured meticulous citation of
all utilized artifacts, maintaining respect for intel-
lectual property rights. Transparency and repro-
ducibility are key pillars of our research, and we
provide comprehensive details for result replica-
tion. The rights to use this paper are granted for
academic purposes, facilitating scholarly discourse
and progression in the field.

Furthermore, the development and application
of the TransformerRank model comply with ethical
norms, including the principles of honesty, fairness,
and respect for the rights of others as outlined in
the ACM Code of Ethics. Our commitment to
ethical research extends to responsible data and Al
technology use, ensuring positive contributions to
machine learning and information retrieval fields.

The code and related materials for this study
will be available on GitHub and the Hugging Face
platform, promoting collaborative and responsible
scientific practice.

9.1 Potential Risks

This research, while advancing the field of item
ranking with TransformerRank, presents potential
risks that must be acknowledged. The primary
risk involves the misuse of advanced ranking al-
gorithms, potentially leading to biased or unfair
outcomes if the underlying data or implementation
is not handled with care. Additionally, there is a
risk of over-reliance on automated ranking systems,
which might overlook subtle nuances that require
human judgment. We emphasize the importance
of using TransformerRank responsibly, ensuring
that its application in various domains is guided
by ethical considerations and fairness. To mitigate
these risks, we advocate for continuous monitoring
and evaluation of the model’s impact on diverse
datasets and real-world scenarios.

10 Limitations

This study’s primary limitation is the reliance on
existing datasets, which may not fully represent
the diverse and evolving nature of real-world item
ranking scenarios. TransformerRank, while adept
at handling large datasets, may encounter perfor-
mance variability due to data quality and inher-
ent biases. Additionally, the computational effi-
ciency of the model, particularly when processing
extremely large datasets, is an area for future opti-
mization. The model’s generalizability across var-
ious languages and cultural contexts also remains

to be rigorously tested, as these factors can signifi-
cantly influence ranking dynamics. Finally, while
TransformerRank demonstrates promising results,
its application in real-world systems may require
further tuning to align with specific domain require-
ments and user behaviors.
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