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Abstract

In the realm of recommendation systems and001
search engine optimization, the comprehensive002
understanding of listwise item dependencies003
has emerged as a pivotal challenge. Traditional004
ranking methods, predominantly pointwise or005
pairwise, have been limited in capturing the006
intricate dynamics within item lists. In this007
study, we developed TransformerRank, a novel008
approach specifically tailored for the complex-009
ities of listwise ranking. This method inno-010
vatively employs a custom transformer model011
within a sliding window technique, extending012
beyond the capabilities of conventional ranking013
algorithms.014

Our extensive experiments conducted on di-015
verse datasets, including TripClick, Yahoo!,016
and ORCAS, demonstrated TransformerRank’s017
superiority. It consistently outperformed es-018
tablished methods across key metrics such as019
NDCG@10 and MAP. Additionally, an abla-020
tion study was executed to determine the bal-021
ance between accuracy and computational ef-022
ficiency, underscoring the practicality of our023
approach.024

TransformerRank provides a significant ad-025
vancement in the field of listwise ranking. It026
not only enhances the accuracy and efficiency027
of ranking systems but also offers a deeper in-028
sight into the dynamics of item interdependen-029
cies. This research expands the potential ap-030
plications in data science and natural language031
processing, setting a new benchmark for future032
explorations in leveraging listwise dependen-033
cies in sequence data.034

1 Introduction035

Item ranking, a vital component in domains such as036

e-commerce, web search, and personalized content037

delivery, represents a significant area of research038

within machine learning and information retrieval.039

Traditional item ranking methodologies primarily040

involve pointwise methods like RankNet (Burges041

et al., 2005), and listwise approaches including 042

ListNet (Cao et al., 2007a) and SoftRank (Taylor 043

et al., 2009). Despite their foundational impact, 044

these conventional approaches often struggle to 045

capture the dynamic interactions and complex de- 046

pendencies that are characteristic of modern, data- 047

intensive item ranking scenarios (Li et al., 2014; 048

Wang et al., 2020; Zhao et al., 2021). 049

In the current landscape, most commonly used 050

ranking systems are based on pointwise approaches 051

or simplistic interpretations of listwise ranking. 052

Methods such as TPrank or Uni-retrieval (Qiao 053

et al., 2019; Zhang, 2022) typically focus on single- 054

item relevance, falling short in learning from result- 055

oriented data such as click logs. This limitation 056

becomes evident in the ever-changing world of e- 057

commerce and web search, where user preferences 058

and item relevances continually evolve, present- 059

ing a demand for models that are both precise and 060

adaptable (Wang et al., 2020). 061

Consider the scenario where a user searches for 062

"Healthy Snack Options." The rank logs depicted 063

in Table 1 offer insightful observations into how 064

user interaction patterns shift with varying item 065

list compositions. Traditional pointwise models, 066

or those prioritizing item relevancy in isolation, 067

might mirror the "Alone" situation in the table. 068

They often predict certain items as relevant based 069

on individual assessments. However, when these 070

items are presented together, as seen in the "With 071

Others" column, their interactions and user clicks 072

change significantly. This discrepancy underscores 073

the need for a list-to-list learning approach that is 074

result-oriented, focusing on the actual outcomes of 075

item combinations rather than isolated relevancy 076

predictions. Such an approach acknowledges the 077

importance of contextual relevance and inter-item 078

dependencies, essential aspects often overlooked in 079

pointwise ranking models but critical in real-world 080

ranking scenarios. 081

The emergence of transformer architectures 082
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Snack Option Alone With Others

Almonds Yes No
Fruit Salad Yes Yes
Granola Bars No No
Greek Yogurt Yes No
Dark Chocolate No Yes

Table 1: Rank logs for the query "Healthy Snack Op-
tions" showing user clicks when items are presented
alone and when presented with others, illustrating the
dependency effect in listwise ranking.

(Vaswani et al., 2017a), particularly their success083

in natural language processing, offers a new per-084

spective for addressing item ranking challenges.085

Transformers, known for their self-attention mech-086

anism capable of capturing long-range dependen-087

cies within sequences (Bai et al., 2019), provide a088

groundbreaking framework for item ranking. How-089

ever, adapting these models, originally designed090

for language tasks, to the specifics of item ranking091

entails addressing unique challenges inherent to092

this field.093

In item ranking, models encounter more com-094

plex data structures, such as extended document095

embeddings or intricate item features, demand-096

ing a refined approach capable of handling high-097

dimensional data and understanding the nuanced098

dependencies at an item level (Burges et al., 2005).099

Moreover, the core of listwise ranking is the com-100

prehension of the broader context and interrelation-101

ships among items in a list, requiring an attention102

mechanism designed to effectively capture these103

extended dependencies (Taylor et al., 2009).104

This paper introduces TransformerRank, a trans-105

formative adaptation of the transformer model,106

meticulously tailored for the nuanced challenges of107

listwise item ranking. Deviating from traditional108

token-based transformer applications, Transformer-109

Rank is innovatively designed to process item-level110

data. It efficiently handles broad lists of candi-111

date items, initially ranked by a transformer-based112

model, and then refines these lists using a sophisti-113

cated sliding window mechanism.114

TransformerRank leverages a specialized atten-115

tion mechanism that is sensitive to the global con-116

text within item lists. This advanced feature con-117

siderably enhances the accuracy and contextual118

relevance of the ranking system, allowing for di-119

rect list-level learning and optimization. Further-120

more, the inclusion of a sliding window approach121

in TransformerRank is pivotal for fine-tuning the 122

order of candidate items, ensuring an efficient and 123

effective realization of listwise ranking results. 124

In summary, our contributions to the field of item 125

ranking are as follows: 126

– Proposing TransformerRank: A New 127

Item Ranking Approach: We introduce 128

TransformerRank, an innovative model 129

specifically designed for item ranking. 130

This model is result-oriented, capable of 131

directly learning from item lists and pre- 132

dicting outcomes, such as the number of 133

clicks for a given list. 134

– Efficient Sliding Window Optimiza- 135

tion: TransformerRank incorporates an 136

efficient sliding window approach to fine- 137

tune item rankings. While initial listwise 138

ranking provides relevant results, the in- 139

tegration of sliding window optimization 140

with TransformerRank specifically ad- 141

dresses efficiency in order adjustment. 142

– State-of-the-Art Performance on 143

Three Public Datasets: Our ap- 144

proach marks a fundamental shift 145

from traditional item ranking methods. 146

TransformerRank has demonstrated 147

state-of-the-art performance across three 148

public datasets, showcasing its potential 149

as a groundbreaking method in the 150

field. This model not only addresses 151

key limitations of existing ranking 152

systems but also paves the way for 153

further research and development in 154

item ranking methodologies. 155

2 Related Work 156

2.1 Pointwise and Listwise Ranking 157

Approaches 158

Early research in item ranking predominantly fo- 159

cused on pointwise and listwise methods. Point- 160

wise approaches, treating item ranking as a classifi- 161

cation or regression problem (Li et al., 2010), have 162

been foundational in this field. However, they often 163

fall short in capturing complex item dependencies 164

and dynamic relationships. Listwise approaches, 165

on the other hand, consider entire lists of items for 166

ranking (Cao et al., 2007a). While offering a more 167

holistic view, these methods sometimes struggle 168

with scalability and intricacy in large datasets. Our 169

work extends these traditional frameworks by in- 170

troducing a transformative approach to pointwise 171
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ranking that integrates the depth of listwise analy-172

sis, enabling the modeling of intricate dependen-173

cies more effectively.174

2.2 Transformer Models in Sequence175

Processing176

The advent of transformer models, introduced by177

Vaswani et al. (Vaswani et al., 2017a), has re-178

shaped the landscape of sequence processing. Their179

attention-based architecture excels at capturing180

complex sequential relationships, leading to sig-181

nificant advancements in tasks like natural lan-182

guage processing. Despite their success, the ap-183

plication of transformers in item ranking has not184

been fully explored. Our research fills this gap by185

adapting transformer models specifically for item186

ranking, leveraging their sophisticated attention187

mechanisms to provide an innovative solution for188

optimizing item sequences.189

2.3 Sliding Window Techniques190

Sliding window techniques have been instrumen-191

tal in various optimization contexts, exemplified192

by their use in large-scale graph optimization by193

Cho et al. (Cho, 2016). These techniques offer pre-194

cise, localized modeling, yielding context-aware195

solutions. We build upon this concept by integrat-196

ing the sliding window technique with transformer197

models. This novel amalgamation allows for local-198

ized optimization while simultaneously capturing199

nuanced dependencies between items within each200

window. Our approach represents a methodologi-201

cal innovation, combining the strengths of sliding202

window techniques with the advanced capabilities203

of transformers for item ranking.204

3 Methodology205

In this section, we introduce a novel methodology206

for listwise item ranking that seamlessly integrates207

multiple stages of analysis and optimization. Ini-208

tially, a transformer-based model conducts point-209

wise ranking, establishing an initial order of items210

based on individual relevance. Building upon this,211

our central innovation, TransformerRank, applies212

list-to-list learning to evaluate and enhance the col-213

lective arrangement of items. The pivotal aspect of214

our approach is the utilization of a sliding window215

technique, akin to beam search in sequence gener-216

ation, which iteratively refines the order of items217

derived from the point-wise ranking (Wiseman and218

Rush, 2016). This technique enables dynamic re-219

ordering within the list, optimizing the overall rank-220

ing sequence to more accurately reflect inter-item 221

dependencies and collective coherence. 222

3.1 Problem Formulation 223

Given a set of candidate items C and a query q, the 224

task is to select and sequence a subset π that opti- 225

mally satisfies the query. This task must account 226

for the complex dependencies among items. The 227

objective can be formulated as: 228

π∗ = argmax
π⊆C,|π|=k

Q(q, π) (1) 229

In this equation, π∗ is the optimal ordered subset 230

of size k from candidates C, and Q(q, π) quantifies 231

the utility or relevance of subset π considering the 232

query q and the dependencies among items in π. 233

Objective: Our goal is to create a ranking mech- 234

anism that not only identifies relevant items but 235

also orders them in a way that maximizes overall 236

utility, taking into account the interdependencies 237

and effects of item combinations in the list. 238

4 Pointwise Scoring with 239

Transformer-Based Models 240

In the first stage of our ranking process, we uti- 241

lize a deep transformer-based model for pointwise 242

scoring and item embedding generation (Vaswani 243

et al., 2017b; Radford et al., 2018). The strength 244

of such models lies in their ability to capture intri- 245

cate relationships and contextual nuances, making 246

them ideal for evaluating the relevance of items in 247

relation to specific queries. 248

To adapt this model for our scoring task, we fine- 249

tune it on a dataset comprising query-item pairs, 250

each annotated with a relevance score. The fine- 251

tuning process adjusts the model’s weights to min- 252

imize the difference between the predicted scores 253

and the actual annotated relevance scores. This ob- 254

jective is captured by the following loss function: 255

L =

N∑
i=1

(si − ŝi)
2 (2) 256

where L represents the loss function, N is the total 257

number of query-item pairs in the training set, and 258

si and ŝi denote the true and predicted relevance 259

scores for the ith pair, respectively. 260

After fine-tuning, for a given query q and item 261

d, the model generates embeddings, represented as 262

eq and ed. The pointwise relevance score is then 263

computed as: 264

s = σ(eTq Wed + b) (3) 265
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In this equation, σ is the sigmoid activation func-266

tion, which confines scores within the [0, 1] range.267

W is a weight matrix optimized during training,268

and b is a bias term.269

This approach of utilizing transformer-based270

models for pointwise scoring and embedding gen-271

eration is a crucial step in our ranking process,272

providing a robust foundation for the subsequent273

listwise ranking and optimization stages.274

5 TransformerRank275

TransformerRank leverages the state-of-the-art276

transformer architecture, renowned for its effective-277

ness in sequence modeling, to tackle the complexi-278

ties of listwise ranking in information retrieval.279

5.1 Model Formulation280

Given a query q and a sequence of items π =281

{d1, d2, ..., dN}, TransformerRank’s objective is to282

optimize a listwise ranking score Q(q, π). Unlike283

traditional methods that primarily focus on identi-284

fying the most relevant items independently, Trans-285

formerRank adopts a goal-oriented learning ap-286

proach. It directly learns from the outcomes of how287

items are presented and interacted with in a list. For288

instance, it can discern user engagement, such as289

clicks or impressions, when a list is presented, with-290

out the need for calculating click-through rates or291

estimating relevance. This approach distinguishes292

TransformerRank from methods that decompose293

search logs into pointwise learning, fundamentally294

altering how it harnesses the original dataset.295

Embeddings and Positional Encoding: Each296

item dj in the sequence is converted into a high-297

dimensional representation via embeddings. These298

embeddings are derived from the transformer-based299

model fine-tuned in the initial stage of ranking. To300

capture the sequential nature of the item list, each301

embedding is augmented with a positional encod-302

ing:303

edj = Embed(dj) + Pos(j)304

This fusion of content and positional information305

equips TransformerRank with the capability to dis-306

cern both the individual importance and the relative307

placement of items in the sequence. The positional308

encoding used here is based on sinusoidal functions309

(Vaswani et al., 2017b), defined as:310

Pos(j)(2i) = sin

(
j

100002i/d

)
311

312

Pos(j)(2i+1) = cos

(
j

100002i/d

)
313

where j is the position and i is the dimension. This 314

sinusoidal encoding facilitates the model’s under- 315

standing of the position and distance between items 316

in the list. 317

Longformer-Based Attention in Transformer- 318

Rank: TransformerRank incorporates Long- 319

former’s sliding window attention mechanism, de- 320

signed for efficient processing of longer sequences 321

(Beltagy et al., 2020). This approach scales linearly 322

with sequence length, making it well-suited for the 323

extended item embeddings in listwise ranking. The 324

attention computation for each position j in the 325

item sequence is represented as: 326

A(edj ) = Softmax

(
edjWQ(Sj,wWK)T

√
w

)
Sj,wWV 327

Here, Sj,w denotes the embeddings within 328

a window of size w centered around j, and 329

WQ,WK ,WV are the query, key, and value weight 330

matrices, respectively. This localized attention al- 331

lows TransformerRank to focus on a subset of items 332

at a time, enhancing computational efficiency. 333

Incorporating Global Attention: Alongside the 334

sliding window attention, TransformerRank inte- 335

grates Longformer’s global attention mechanism. 336

This feature enables the model to attend to criti- 337

cal positions or items that have a broad contextual 338

impact on the entire list. Global attention is particu- 339

larly beneficial for identifying key items in listwise 340

ranking that influence the perception of other items 341

in the list: 342

GlobalAttn(edj ) = Softmax
(
edjWGE

T
)
E 343

In this formula, WG is a weight matrix dedicated 344

to global attention, and E represents the complete 345

sequence of embeddings. Global attention provides 346

a means to factor in the significance of specific 347

items over the entire ranking. 348

Handling Extended Embeddings: By adapting 349

Longformer’s attention mechanisms, Transformer- 350

Rank efficiently manages longer item embeddings. 351

The combined use of local windowed attention 352

and global attention offers a scalable solution to 353

processing extensive sequences in listwise rank- 354

ing. This integration ensures that TransformerRank 355

maintains a balance between local item relation- 356

ships and global list context, crucial for effective 357

ranking in information retrieval tasks. 358
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Ranking Score Prediction: TransformerRank, uti-359

lizing the Longformer architecture, processes the360

sequence of item embeddings to generate a com-361

prehensive representation for ranking. This in-362

volves passing the Longformer-processed embed-363

dings through position-wise feed-forward networks364

(FFN):365

Q(q, π) = σ(FFN(LongformerOutput(π)))366

The FFN, composed of layers with non-linear acti-367

vation functions such as ReLU, is designed to distill368

complex interactions between items into a coherent369

ranking score. σ represents the activation function370

of the Score Predictor, which is a sigmoid function,371

transforming the output into a final ranking score.372

This adaptation ensures that TransformerRank is373

capable of handling the extended sequences typical374

of listwise ranking tasks.375

Efficiency of Longformer’s Attention Mecha-376

nism: TransformerRank effectively employs Long-377

former’s attention mechanisms, combining local378

windowed attention with global attention, to effi-379

ciently process long sequences in listwise ranking.380

This dual attention approach enables the model to381

simultaneously focus on local item interactions and382

the broader global context, providing a compre-383

hensive understanding of the entire item list. The384

integration of Longformer’s scalable mechanisms385

is particularly advantageous for handling extended386

item embeddings, as it prevents a significant in-387

crease in computational complexity. This synergy388

between Longformer’s nuanced attention focus and389

TransformerRank’s sophisticated position-wise net-390

works positions the model as a robust and advanced391

solution in the field of information retrieval, adept392

at managing the complexities of ranking extensive393

lists of items.394

6 Enhanced Sliding Window Approach395

for Ranking396

The Enhanced Sliding Window Approach presents397

an advanced technique for item ranking, which is398

illustrated in Figure 1. Commencing with an ini-399

tial ranking determined by pointwise methods, the400

method utilizes a sliding window that begins its401

scan from the end of the list, effectively perform-402

ing a backward scan. This backward movement403

targets the identification of items that have been po-404

tentially ranked lower but could have a significantly405

increased relevance when paired with specific sur-406

rounding items. This optimization is guided by the407

listwise function Q.408

Figure 1: An example of our sliding window ranking
workflow. Note that item 10 was mistakenly ranked
lower initially but is ranked higher through the process.

During this backward traversal, each item within 409

the window is assessed for its potential to enhance 410

the localized ranking. If certain items are deemed 411

more relevant in the context of their neighbors, an 412

exhaustive search within the window determines 413

the optimal order for those items. If an item doesn’t 414

fit this criterion, it’s retained at its current position 415

at the end of the window, which upholds the in- 416

tegrity of the previously determined high-relevance 417

sequence and speeds up the scanning process. This 418

iterative and detailed optimization across the en- 419

tire list assures an improved and globally refined 420

ranking. 421

Consider a scoring function Q(q, π) quantify- 422

ing the ranking quality within a window, where x 423

represents the item permutation. As the window 424

moves, permutations are appraised to identify the 425

optimal permutation π∗ maximizing Q(q, π). Thus, 426

for each permutation π in the window, the optimal 427

solution adheres to: 428

Q(q, π∗) ≥ Q(q, π), ∀π ∈ I (4) 429

Where I encapsulates all possible permutations in 430

the window. 431

This iterative method guarantees local optima 432

in each window, refining the global ranking by 433

identifying intricate item dependencies. 434

This algorithm iteratively applies the window 435

across the ranked items and finds the optimal per- 436

mutation within each window. It integrates the 437

scoring function Q to evaluate the permutations 438

and gradually improves the overall ranking. 439

Our proposed algorithm also demonstrates no- 440

table computational advantages, aptly fitting real- 441

world scenarios. When tasked with ranking G 442

items and selecting k for display, traditional ex- 443

haustive permutation methods would involve an 444

evaluation overhead of C(G, k), with C represent- 445

ing the combinatorial function. In stark contrast, 446

our strategy requires only (G−m+1)C(m,m) as- 447

sessments. Given the typical constraint where m is 448

much smaller than both G and k (i.e., m ≪ G and 449
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m ≪ k), our method’s computational footprint450

can be efficiently managed to meet deployment451

specifications, thus assuring prompt and accurate452

ranking.453

7 Experiments454

In this section, we evaluate the efficacy of Trans-455

formRank, complemented by our enhanced slid-456

ing window technique. We specifically assess the457

model’s prowess in click prediction and relevancy458

ranking.459

We delve into the foundational details support-460

ing our approach, shedding light on the challenges461

addressed. Our ablation study further illustrates462

the efficiency and effectiveness of the proposed463

method.464

For a thorough understanding, details such as465

feature selection for Learning to rank baselines466

(informed by LETOR 4.0 (Qin and Liu, 2013)),467

hyperparameter choices, model parameters, and468

reproducibility code are furnished in the supple-469

mentary materials.470

The experiments were conducted on a Large471

Google Cloud Service cluster, equipped with four472

Tesla V100 GPUs.473

7.1 Datasets474

1. TripClick: This dataset is derived from475

the Trip medical database, a comprehen-476

sive source for clinical research publications.477

TripClick aims to provide a clearer under-478

standing of real-world user behavior, espe-479

cially concerning click-through. Featuring480

over 500,000 queries, relevance scores be-481

tween queries and items are predefined, mak-482

ing it an ideal controlled environment for ex-483

perimental testing in the domain of click pre-484

diction. The controlled nature of this dataset485

ensures reliable evaluations, diminishing the486

noise often encountered in real-world datasets487

(Team, 2020).488

2. Yahoo! Front Page Today Module User489

Click Log Dataset (Yahoo): Encompassing490

millions of user interactions, this dataset is491

invaluable for the learning-to-rank commu-492

nity. The real-world nature of this dataset493

introduces challenges of noise and user bi-494

ases, making it a rigorous testbed for any495

ranking model. The dataset is enriched with496

real-world query-item relevance labels de-497

rived from user interactions, making it indis-498

pensable for assessing real-world performance 499

of learning-to-rank methodologies (Research, 500

2020b). 501

3. ORCAS: Produced by Microsoft Research, 502

ORCAS is a benchmark dataset tailored for 503

search and ranking challenges. It boasts over 504

500,000 queries and associated rankings, each 505

enriched with extensive features and relevance 506

judgments. The dataset’s richness in terms of 507

features and judgments positions it as a com- 508

prehensive platform for in-depth evaluations, 509

facilitating robust comparisons and ensuring 510

reproducibility in results (Research, 2020a). 511

7.2 Baselines 512

SVMrank (Joachims, 2006): A widely-used pair- 513

wise learning-to-rank method based on support vec- 514

tor machines. 515

RankNet (Burges, 2005): A pairwise neural 516

network-based ranking model. 517

ListNet (Cao et al., 2007b): A listwise ranking 518

approach using neural networks. 519

LambdaMART (Burges, 2010): An ensemble 520

method that combines RankNet and MART, utiliz- 521

ing gradient boosting with decision trees for rank- 522

ing. 523

BM25 (Robertson et al., 2009): A classical 524

probabilistic-based ranking function in information 525

retrieval. 526

TPRank (Qiao et al., 2019): A pointwise rank- 527

ing approach leveraging the BERT transformer for 528

direct document ranking. 529

coCondenser (Gao and Callan, 2021): Introduces 530

a novel method for dense passage retrieval using 531

co-attention and contrastive learning. 532

Uni-Retriever (Zhang et al., 2022): A model that 533

utilizes pre-training techniques for enhancing doc- 534

ument ranking performance. 535

TransformerRank with enhanced sliding win- 536

dow (TSrank): Our proposed method for listwise 537

item ranking with transformers and sliding window 538

optimization. 539

7.3 Evaluation Metrics 540

NDCG@10: A metric assessing ranking quality 541

using graded relevance (Järvelin and Kekäläinen, 542

2002). 543

MAP: Represents the mean of the average preci- 544

sion scores across queries (Manning et al., 2008). 545

Precision@10: Denotes the proportion of top-k 546

recommendations that are relevant (Manning et al., 547
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2008).548

Recall@10: Gauges the fraction of the total rele-549

vant items found within the top-k recommendations550

(Manning et al., 2008).551

MRR: Computes the average reciprocal rank of552

the initial correct result (Voorhees, 1999).553

7.4 Experimental Procedure554

To maintain consistency across our experiments,555

all datasets were standardized, ensuring uniform556

feature scaling. We divided each dataset into train-557

ing, validation, and test sets, following an 80-10-10558

split. This partitioning was strategically chosen559

to optimize the performance of our models while560

ensuring robust validation and testing.561

The training set played a crucial role in fine-562

tuning models that rely on pre-trained architectures,563

such as BERT. This process was vital for adapting564

these models to our specific ranking tasks. The565

validation set was instrumental in optimizing hy-566

perparameters, a step essential for achieving the567

best model performance.568

For model assessment, we utilized the test set,569

applying a range of predefined metrics to evaluate570

the models’ effectiveness. An initial retrieval phase571

was conducted using Solr’s TF-IDF algorithm. In572

this phase, we aimed to retrieve the top 400 re-573

sults, a number slightly above the average items574

retrievable across the three datasets. This approach575

was designed to ensure comprehensive coverage576

of potential items while maintaining a manageable577

dataset size for analysis.578

Following this initial retrieval, we conducted an579

in-depth comparative analysis, contrasting Trans-580

formerRank’s performance against established581

baseline methods. This comparison was crucial582

for demonstrating the efficacy and advantages of583

our approach.584

Further details, including an in-depth description585

of TransformerRank’s model settings, links to the586

datasets used, and additional relevant information,587

are comprehensively presented in the supplemen-588

tary material.589

7.5 Experimental Results590

In the evaluation of various ranking methods across591

three prominent datasets, we observed distinc-592

tive performance differences in Table 2. For the593

TripClick dataset, the proposed TSrank method594

showcased a marked improvement, scoring high-595

est in all metrics, notably with an NDCG@10 of596

0.69, a MAP score of 0.65, Precision@10 at 0.70,597

Recall@10 at 0.72, and an MRR of 0.76. All these 598

scores were found to be statistically significant, sur- 599

passing the performance of traditional methods like 600

SVMrank, RankNet, and even more contemporary 601

approaches like Uni-Retriever. 602

Similarly, in the Yahoo dataset, TSrank out- 603

performed the rest with significant leads in all 604

metrics: NDCG@10 (0.67), MAP (0.66), Pre- 605

cision@10 (0.69), Recall@10 (0.70), and MRR 606

(0.75). This trend continued in the ORCAS 607

dataset, with TSrank registering the top scores, 608

with NDCG@10 at 0.68, MAP at 0.66, Preci- 609

sion@10 and Recall@10 at 0.68 and 0.70, respec- 610

tively, and MRR at 0.73. While several methods 611

such as Uni-Retriever and coCondenser produced 612

commendable results, none achieved the consis- 613

tently superior performance of TSrank across all 614

datasets and metrics. On average, the proposed 615

TSrank approach exhibited a 5%-12% improve- 616

ment over the previous state-of-the-art methods. 617

These findings underscore the effectiveness of the 618

TSrank method, positioning it as a prime choice 619

for addressing listwise item ranking challenges. 620

7.6 Ablation Studies 621

Our ablation study focuses on exploring the con- 622

cept of locality in listwise ranking, specifically in- 623

vestigating the impact of sliding window size using 624

the Yahoo! click dataset. This analysis helps us 625

understand how varying window sizes influence 626

ranking performance. Additionally, we extend our 627

examination to a relevance-based dataset to deter- 628

mine how TransformerRank performs when docu- 629

ments are individually annotated by humans based 630

on relevance, providing further insights into the 631

model’s versatility in different ranking scenarios. 632

From Figure 2, we identified that an increase in 633

window size enhances performance but also incurs 634

higher computational costs. Notably, the perfor- 635

mance gain plateaus when the window size reaches 636

6, suggesting that this is an optimal balance be- 637

tween effectiveness and efficiency. 638

The study also underscores the significance of 639

item dependencies and their localized nature within 640

ranking datasets. This insight is particularly rele- 641

vant when considering human attention patterns 642

and their impact on item connections. 643

The efficacy of TransformerRank is further high- 644

lighted in its performance on the MS-MARCO doc- 645

ument ranking dataset, as detailed in Table 3. This 646

dataset shares similar characteristics with ORCAS, 647

offering a relevant context for evaluating relevance- 648

7



TripClick Yahoo ORCAS

Method NDCG@10 MAP Precision@10 Recall@10 MRR NDCG@10 MAP Precision@10 Recall@10 MRR NDCG@10 MAP Precision@10 Recall@10 MRR

SVMrank 0.52 0.47 0.50 0.53 0.58 0.48 0.45 0.47 0.49 0.55 0.45 0.42 0.44 0.46 0.53
RankNet 0.53 0.49 0.52 0.55 0.60 0.50 0.47 0.49 0.51 0.57 0.47 0.44 0.46 0.48 0.55
ListNet 0.54 0.50 0.53 0.56 0.61 0.51 0.48 0.50 0.53 0.58 0.49 0.46 0.48 0.50 0.56
LambdaMART 0.57 0.54 0.56 0.59 0.64 0.54 0.52 0.53 0.56 0.61 0.53 0.50 0.52 0.54 0.59
BM25 0.55 0.52 0.54 0.57 0.62 0.53 0.50 0.51 0.54 0.59 0.51 0.48 0.50 0.52 0.57
TPRank 0.58 0.55 0.57 0.60 0.65 0.56 0.54 0.55 0.58 0.63 0.55 0.52 0.54 0.56 0.61
coCondenser 0.60 0.58 0.61 0.63 0.67 0.59 0.58 0.60 0.62 0.66 0.59 0.56 0.58 0.60 0.65
Uni-Retriever 0.62 0.59 0.63 0.65 0.68 0.61 0.60 0.62 0.63 0.68 0.61 0.59 0.61 0.63 0.66
TSrank 0.69* 0.65* 0.70* 0.72* 0.76* 0.67* 0.66* 0.69* 0.70* 0.75* 0.68* 0.66* 0.68* 0.70* 0.73*

Table 2: Performance of baselines and proposed methods across different datasets. An asterisk (*) denotes
statistically significant improvement, and bold values highlight the superior performance of TSrank.

Figure 2: Variation in ranking performance (nDCG@10)
as the sliding window size increases. Optimal perfor-
mance is observed at m = 6.

based ranking scenarios (Nguyen et al., 2016). The649

results on MS-MARCO provide valuable insights650

into TransformerRank’s adaptability across differ-651

ent annotation methods and corpora. Although its652

performance advantage is slightly less pronounced653

on MS-MARCO compared to ORCAS, Trans-654

formerRank consistently surpasses other methods.655

This performance underlines its proficiency in iden-656

tifying document dependencies and relevance. Par-657

ticularly in scenarios where items bear contextual658

interconnections, TransformerRank’s performance659

is exemplary, showcasing its wide applicability and660

flexibility in various ranking environments.661

Method NDCG@10 MRR

SVMrank 0.558 0.388
RankNet 0.564 0.373
ListNet 0.562 0.367
LambdaMART 0.558 0.353
BM25 0.546 0.314
TPRank 0.601 0.446
coCondenser 0.609 0.448
Uni-Retriever 0.606 0.439
TSRank 0.629 (+3.3%) 0.471 (+5.1%)

Table 3: Performance of various baseline methods and
TransformerRank on the MS-MARCO dataset. Metrics
include NDCG@10 and MRR.

8 Conclusion 662

In this paper, we introduced TransformerRank, 663

an innovative model that redefines the approach 664

to listwise item ranking. Engineered to leverage 665

the strengths of transformer architectures, Trans- 666

formerRank is uniquely capable of direct list-level 667

learning, adeptly capturing complex dependencies 668

among items. Our empirical evaluations have 669

demonstrated its significant edge over traditional 670

ranking models. TransformerRank excels in in- 671

terpreting the nuanced interactions and contextual 672

information within item lists, a capability that sets 673

a new standard in the field. 674

The essence of TransformerRank lies in its inno- 675

vative approach to listwise ranking, facilitating a 676

deeper understanding of item relationships beyond 677

the conventional item-by-item analysis. This is 678

complemented by the integration of sliding window 679

optimization, which enhances the model’s ability 680

to process lengthy sequences of items efficiently 681

while maintaining the integrity of listwise analysis. 682

Additionally, the adaptability of TransformerRank 683

ensures its applicability across various dynamic 684

ranking scenarios, making it a versatile tool for 685

modern ranking challenges. 686

Looking forward, the potential applications of 687

TransformerRank extend beyond item ranking, of- 688

fering promising opportunities in other complex 689

data processing tasks. Future research could fo- 690

cus on enhancing the model’s scalability and com- 691

putational efficiency, further broadening its utility 692

in handling more extensive and complex datasets. 693

TransformerRank’s success in our studies under- 694

scores the transformative potential of advanced 695

transformer models in the realm of listwise item 696

ranking, paving the way for continued innovation 697

in this field. 698

9 Ethical Considerations 699

In adherence to the Responsible NLP Research 700

Checklist, this study upholds the highest ethical 701
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standards. We have ensured meticulous citation of702

all utilized artifacts, maintaining respect for intel-703

lectual property rights. Transparency and repro-704

ducibility are key pillars of our research, and we705

provide comprehensive details for result replica-706

tion. The rights to use this paper are granted for707

academic purposes, facilitating scholarly discourse708

and progression in the field.709

Furthermore, the development and application710

of the TransformerRank model comply with ethical711

norms, including the principles of honesty, fairness,712

and respect for the rights of others as outlined in713

the ACM Code of Ethics. Our commitment to714

ethical research extends to responsible data and AI715

technology use, ensuring positive contributions to716

machine learning and information retrieval fields.717

The code and related materials for this study718

will be available on GitHub and the Hugging Face719

platform, promoting collaborative and responsible720

scientific practice.721

9.1 Potential Risks722

This research, while advancing the field of item723

ranking with TransformerRank, presents potential724

risks that must be acknowledged. The primary725

risk involves the misuse of advanced ranking al-726

gorithms, potentially leading to biased or unfair727

outcomes if the underlying data or implementation728

is not handled with care. Additionally, there is a729

risk of over-reliance on automated ranking systems,730

which might overlook subtle nuances that require731

human judgment. We emphasize the importance732

of using TransformerRank responsibly, ensuring733

that its application in various domains is guided734

by ethical considerations and fairness. To mitigate735

these risks, we advocate for continuous monitoring736

and evaluation of the model’s impact on diverse737

datasets and real-world scenarios.738

10 Limitations739

This study’s primary limitation is the reliance on740

existing datasets, which may not fully represent741

the diverse and evolving nature of real-world item742

ranking scenarios. TransformerRank, while adept743

at handling large datasets, may encounter perfor-744

mance variability due to data quality and inher-745

ent biases. Additionally, the computational effi-746

ciency of the model, particularly when processing747

extremely large datasets, is an area for future opti-748

mization. The model’s generalizability across var-749

ious languages and cultural contexts also remains750

to be rigorously tested, as these factors can signifi- 751

cantly influence ranking dynamics. Finally, while 752

TransformerRank demonstrates promising results, 753

its application in real-world systems may require 754

further tuning to align with specific domain require- 755

ments and user behaviors. 756
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