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ABSTRACT

Self-driving laboratories have begun to replace human experimenters in perform-
ing single experimental skills or predetermined experimental protocols. However,
as the pace of idea iteration in scientific research has been intensified by Artifi-
cial Intelligence, the demand for rapid design of new protocols for new discov-
eries become evident. Efforts to automate protocol design have been initiated,
but the capabilities of knowledge-based machine designers, such as Large Lan-
guage Models, have not been fully elicited, probably for the absence of a sys-
tematic representation of experimental knowledge, as opposed to isolated, flatten
pieces of information. To tackle this issue, we propose a multi-faceted, multi-
scale representation, where instance actions, generalized operations, and product
flow models are hierarchically encapsulated using Domain-Specific Languages.
We further develop a data-driven algorithm based on non-parametric modeling
that autonomously customizes these representations for specific domains. The
proposed representation is equipped with various machine designers to manage
protocol design tasks, including planning, modification, and adjustment. The re-
sults demonstrate that the proposed method could effectively complement Large
Language Models in the protocol design process, serving as an auxiliary module
in the realm of machine-assisted scientific exploration.

1 INTRODUCTION

The rapid advancement of Artificial Intelligence (AI) models for the assistance of scientific discov-
ery (Wang et al., 2023b) has precipitated an increased demand for rapid iteration of ideas, from the
generation to the verification of hypotheses. Although AI models have expedited the process of
hypothesis generation, the validation phase still requires intensive empirical experimentation from
human. The concept of self-driving laboratory has been introduced to substantially accelerate the
validation process, in organic chemical synthesis (Mehr et al., 2020; Burger et al., 2020), cell biol-
ogy for medical research (Kanda et al., 2022), and novel material discovery (Szymanski et al., 2023).
With the expertise and effort of experimental scientists and automation engineers, mobile robots and
Internet of Things (IoT) pipelines are configured to perform a sequence of actions in accordance
with a detailed description of the specific experimental procedure, referred to as the protocol.

While existing protocols suffice for some experimental tasks, discovery processes often demand a
higher degree of specificity, including: (i) confirmation of unverified experimental objectives to seek
specific findings; (ii) testing parallel hypotheses or solutions; and (iii) replication of established ex-
periments within the constraints of available laboratory resources. These necessitate the design of
new protocols, going beyond the reuse of existing ones available in the protocol databases. Particu-
larly, this includes the planning of novel protocols, and the modification and adjustment of current
protocols as appropriate, respectively. Unfortunately, self-driving laboratories currently only execute
isolated and duplicated experimental skills (Bédard et al., 2018; Steiner et al., 2019), or pre-specified
protocols with sequential actions (Rohrbach et al., 2022; Manzano et al., 2022). Any innovation in
protocols imposes intensive manual design burden (McNutt, 2014; Baker, 2016), potentially becom-
ing a bottleneck in accelerating scientific discovery. Consequently, there is a quest for the automatic
design of protocols tailored to specific goals for self-driving laboratories.

Designing new protocols is a non-trivial task even for human scientists. Novice scientists tend to
adhere strictly to established protocols and may be at a loss when faced with the need for variations,
from minor adjustments like different available devices to more significant shifts in the overall ex-
perimental goal. In contrast, veteran scientists typically have the capability to create or modify
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protocols as needed, from variations in available resources (“what I have”) to desired outcomes
(“what I want”), even in situations where a similar protocol was not encountered before.

The distinction arises because veteran scientists possess a systematic understanding of every ingre-
dient and procedure, contextualizing them globally within the domain of experiment. They know
“what kind of ingredient is used for what purposes” and “what kind of operation is used under
what conditions’, while novice scientists mechanically memorize the sequential execution orders
and corresponding parameters in a local context. This systematic understanding, or conceptual
knowledge (Ryle & Tanney, 1949), includes the background knowledge of ingredients and atomic
operations, as well as the relationships between them. Experienced experimental scientists develop
such conceptual knowledge as a representation for protocol design (McCarthy, 1959), which serves
as the vehicle for reasoning processes. Reasoning over conceptual knowledge leverages the rich
context of generalized, abstracted concepts of ingredients and operations rather than specified, in-
stantialized ones, which spans a semantic space where originally isolated dots are connected with
each other, thereby enhancing the simplicity and flexibility of protocol design (Boden, 1980; Newell,
1982). In summary, veteran scientists’ capability to design new protocols stems from an appropriate
representation of background knowledge that supports reasoning processes (see Fig. 1A).

To implement automatic protocol design on machines, a reasonable choice may be leveraging a
Large Language Model (LLM). Trained on extensive corpora, including scientific documents,
LLMs possess the potential to facilitate protocol design with the corresponding background knowl-
edge (AI4Science & Quantum, 2023). Recently, researchers have made beneficial attempts to design
new protocols using LLMs based on descriptions of new experimental goals (Boiko et al., 2023;
M. Bran et al., 2024). Regrettably, benchmarking results indicate that the expected capability of
LLMs in protocol design is not fully elicited (O’Donoghue et al., 2023). One significant limitation
is that LLMs excel at generating new protocols similar to existing ones, i.e., protocols with similar
sequential execution orders, but fail to generate those with distinct dependency distributions. This
limitation hampers LLMs in scenarios where experimental goals change in high intensity. Another
limitation is that the generated protocols sometimes lose critical configuration details for operation
execution, necessitating manual correction. These empirical evidences suggest that LLMs exhibit
limitations akin to those of novice human experts, implying that LLMs may necessitate a more
suitable representation of background knowledge to fully unleash their potential in protocol design.

Protocol design is a multi-faceted, multi-scale effort requiring the integration of information from
different perspectives, from low-level to high-level. This information includes detailed configura-
tions of each atomic operation, temporal relationships between atomic operations, the scope of ap-
plication for atomic operations with the same reference name, and the reactive relationships between
reagents and operations. While LLMs undoubtedly capture such knowledge from their training cor-
pora, the pieces of knowledge remain isolated, unorganized, and not articulated. These flatten back-
ground knowledge, rather than conceptual knowledge, hinders LLMs from flying over a global view
of the novel objectives and diving into the details of operations. Therefore, we propose developing a
multi-faceted and multi-scale representation for protocol design that provides the designer, such
as LLMs, with a vehicle to reason over conceptual knowledge of ingredients and procedures.

We draw inspiration from both cognitive science literature on rationality (Monsell, 2003), which sug-
gests that we cannot consider information from different views and scales in a single thread (Grif-
fiths, 2020). We also learn from computer science literature on hierarchical abstraction (Liskov,
1987), which indicates that higher-level abstraction semantics possess more powerful expressivity
compared to their lower-level counterparts (Abelson & Sussman, 1996; Hopcroft et al., 1996). Com-
bining these insights, we suggest that our desired representation should encapsulate information of
different granularities in corresponding hierarchies of abstraction, gaining global design insights
with higher-level semantics while completing execution configurations with lower-level semantics.
Specifically, we investigate three levels of encapsulation (see Fig. 1B). Starting from the set of origi-
nal protocols, namely the basic level, we have (i) protocol element instantialization, which decom-
poses full protocols into instance operations with attributes, within the local context of the specific
protocol, resulting a structural representation of the elementary information; (ii) function abstrac-
tion, which offers an operation-centric view that generalizes the precondition, postcondition, and
execution configurations of each operation in the global context of the experiment domain, result-
ing a sequential representation of the operations; (iii) model abstraction, which offers an reagent
and intermediate product centric view that unifies the status transitions in the global context of the
experiment domain, resulting a continuous representation of the experimental environment. This hi-
erarchical structure provides the designer with a representation to consider all possible associations
among operations, among products, and between operations and products, with a high degree of
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Figure 1: The representations for protocol design. (A) The example of protocol design by novice
and veteran experimental scientists. (B) The hierarchies of our proposed representation, from origi-
nal full protocol representation, to dual representation of operation- and product-flow-centric views.

freedom, by disentangling originally intertwined information. We implement the representation us-
ing Domain-Specific Languages (DSLs) (Fowler, 2010). The hierarchical syntax of DSLs maintains
both the abstract semantics at the high-level and the precise information at the low-level. Further-
more, the compositionality of DSL syntax facilitates the flexible protocol designs, addressing the
“flying over global views” requirement; while DSL program verification over the generated proto-
cols upholds their soundness and completeness; addressing the “diving into details” requirements.

However, the proposed representation does not come without drawbacks — it can be highly depen-
dent on domain-specific knowledge (Mernik et al., 2005). The distributions of reagents, operations,
and execution dependencies vary significantly across different domains in experimental sciences,
such as Genetics, Medical, Bioengineering, and Ecology. Manually crafting DSLs specialized for
these domains requires deep integration between domain experts and programming language ex-
perts, which is labour-intensive, case-by-case, and costly (Shi et al., 2024). This obstacle hinders
the application of our representation to a broader set of domains. To make the representation specifi-
cation more affordable, we develop an algorithm that conducts multi-hierarchy encapsulation auto-
matically driven by the domain-specific corpus of existing protocols. Ultimately, we may be able to
take a critical step toward closing the loop of autonomous scientific discovery by establishing these
two building blocks: (i) the automatic generation of representation for protocol design; and (ii) the
automatic designer working on the representation.

Our contributions in this work are three-fold: (i) we identify the problem of representation for pro-
tocol design and develop a hierarchically encapsulated representation for protocol design (Sec. 2);
(ii) we propose a data-driven algorithm that automatically generates the representation for proto-
col design specialized for the domain of application (Sec. 3); and (iii) we demonstrate the utility
of the resulting representation by conducting protocol planning, modification and adjustment tasks
using a variety of machine designers across different domains (Sec. 4). This further indicates that
our proposed automatic representation generation approach possesses the potential to function as an
auxiliary module for LLMs, enhancing their capability on protocol design.

2 REPRESENTATION FOR PROTOCOL DESIGN

In this section, we describe our representation for protocol design (see Fig. 1B). We first formulate
the basic protocol design problem in Sec. 2.1. Afterwards, starting from the original full protocol, we
introduce the three hierarchies of representations: (i) structural representation, i.e., instance actions
with attributes (Sec. 2.2); (ii) sequential operation-centric representation, i.e., function abstraction
(Sec. 2.3); and (iii) continuous product-flow-centric representation, i.e., model abstraction (Sec. 2.4).
Furthermore, we describe how the dual representation of operation-centric and product-flow-centric
views reciprocatively facilitates the verification of the designed protocols in Sec. 2.5.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.1 THE PROTOCOL DESIGN PROBLEM

Protocol design problem PD = (Φ|ω∗,P,Ω) is generating a desired protocol Φ given the new
coming experimental objective ρ, domain of experiment P , and available reagents Ω. A protocol
Φ = ⟨φ1, φ2, . . . ⟩ is a sequence of experimental steps φt. An experimental objective ω∗ is the
expected final product of the experiment. Experimental objectives can range from preparing a de-
sired product, to testing the significance of a specific hypothesis and detecting a predicted behavior,
with the latter two potentially followed by additional standalone steps for property test, observation,
and interpretation. We denote domains of experiment as P , which influences the distributions of
protocols by means of the distributions of operations, reagents, and execution orders, etc. The set of
available reagents Ω includes originally accessible reagents and excludes those requiring production.

2.2 INSTANCE ACTIONS WITH ATTRIBUTES

Protocols are originally represented in Natural Language (NL), which is the representation suitable
for humans’ comprehension, but not for machines (Bartley et al., 2023). Without a syntax decom-
posing a NL-based protocol into information elements precisely, machines are likely to capture only
overall, coarse-grained information of protocols and may only retrieve within existing protocols for
the one that is most similar to the new experimental objective. Consequently, according to the stan-
dards and conventions of experimental sciences (Baker, 2021), the prerequisite of representation
for a machine protocol designer should be a structural representation which decompose NL-based
protocols into instance actions with attributes {φt|(φprec

t , φpost
t , φexec

t )}. The instance actions are de-
composed by execution order and their attributes are the exact context for their execution, namely
the precondition φprec

t , i.e., the availability of resources required for this action, postcondition φpost
t ,

i.e., resulting product of the operation, and execution configurations φexec
t . Execution configurations

includes the configuration parameters and their corresponding values, e.g., the device for conduct-
ing the operation and required experimental conditions such as duration, acidity, and lightening. An
instance action can be reusable in another protocol once the execution context is matched.

With such reusability, we are on the first time to have building blocks for constructing a new protocol
rather than retrieving existing ones. These building blocks capture fine-grained execution configu-
ration parameters through maintaining the nested data structures of key-value pairs. This structural
representation serves as a syntactic constraint on the preciseness of designed protocols. Practical
attempts have been made echoing this idea (O’Donoghue et al., 2023; Leonov et al., 2024).

2.3 OPERATION-CENTRIC VIEW WITH FUNCTION ABSTRACTION

The reusability of instance actions with attributes is highly limited, as their semantics are highly
specified in the low-level. The total amount of the instance actions can be extremely high, i.e., about
150K per domain, thus the probability of the exact matching between execution contexts can be ex-
tremely low. Consider the three different instance actions with attributes “Homogenization of mouse
liver tissue using a bead mill”, “Homogenization of bacterial cell suspension using an ultrasonic
homogenizer”, and “Homogenization of bacterial air samples using a nebulizer”. Although they
come with totally different preconditions, postconditions, and execution configurations, particularly
the required device varying according to the phase of the experimental subject, they share the se-
mantic identifier “Homogenization” for reference. Sharing semantic identifier indicates that these
instance actions share the same purpose on the semantics level. In experimental sciences, “Homog-
enization” always refers to the breakdown of a sample into a uniform mixture. Whether it’s tissue,
cell suspension, or gas doesn’t change the purpose of the operation. This is critical for protocol de-
sign, since it essentially requires satisfying the ultimate goal through a series of subgoals. Therefore,
the desired representation should generalize the semantics of operations to any possible contexts in
the corresponding domain of experiment, rather than only specific contexts.

We implement such generalization by encapsulating varied instances of preconditions, postcondi-
tions, and execution configurations into an interface for the operation. Namely, we refer to an op-
eration with semantic identifier φ through an interface ϕ to a set of execution contexts, in the form
of ⟨φ 7→ ϕ 7→ {(φprec, φpost, φexec)}⟩. The operation φ can be grounded to a corresponding instance
action in any matched execution contexts, echoing modular design (Abelson & Sussman, 1996).
The reusability of encapsulated operations comes with greater significance than that of instance
actions, as there are only about 1K operations per domain in total, which is only 1/150 of that of in-
stance actions. As flexible building blocks, operations can be easily fitted into any breakpoints with
suitable preconditions and postconditions in the constructing experiment sequence. This sequential
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representation of the operations serves as a semantics constraint on the compact permissible set of
primitives for protocol design, maintaining both degree of freedom and correctness.

2.4 PRODUCT-FLOW-CENTRIC VIEW WITH MODEL ABSTRACTION

Sequence of operations make up of protocols. However, operations are the methods to realize
rather than the objectives to achieve. For experimental objectives of testing, preparing, or detect-
ing (Schwab & Held, 2020), the common focus is always the specific status of final product, not the
operations. Starting from initial reagents, the status of product flow is manipulated step-by-step by
the operations, till the final product. Unfortunately, the information of product status transition is
latent in protocols and is twisted with descriptions of experimental steps. For the operation-centric
view, the transitions of product flow statuses remains a black box environment. For example, the
operation description “Centrifuge the tubes at 15,000 x g for 20 minutes” does not directly reveal
the transition from product in mixture status to products in distinct phases. The lack of coherent
tracking of the product flow is problematic of protocol design, as the product flow holds spatial-
temporal invariance, just the same as the general physical environment. Status transitions of the
product flow are primarily caused by the effects of operations, thereby it serves as the invariant in
executing the protocol from the perspective of programming. Therefore, the desired representation
should also serve as the model interacting with the sequence of operations.

To disentangle product status from their latent representation in the operation-centric view, we pro-
pose an explicit product flow centric view that tracks the status of the product flows with detail,
such as component, volume, container, and other physical and chemical properties of the product,
and also the predecessor operation that yields the product and the successor operation that takes the
product as input. Each product flow unit, i.e., one individual component in the product flow between
two adjacent steps, is an instance with attributes {ωt|(ωpred

t , ωsucc
t , ωprop

t )}. Analogous to the gen-
eralization of operations’ semantics, product flow units share commonalities between components
with the same semantic identifier for reference — they may share a specific range of predecessor
operations ωpred and successor operations ωsucc, and a selected set of key properties to consider ωprop.
For example, the “supernatant” is usually generated by a “centrifugation” operation, passing into
“filtration” or “spectrophotometric analysis”, and focusing on the properties acidity and viscosity
rather than other possible properties. Thus, we encapsulate the information of contexts and prop-
erties into the semantics of product flow units, in the form of ⟨ω 7→ (ωpred, ωsucc, ωprop)⟩. As solid
pipelines bridging the building blocks, product flow units can verify the coherency of the entire
designed protocol. This continuous representation of the environments serves as a program veri-
fier, checking the prerequisite and simulating the effect of each operation, alleviating unpredictable
behaviors among the interaction between operations and product flows.

2.5 RECIPROCATIVE VERIFICATION OVER THE DUAL REPRESENTATION

Algorithm 1 Reciprocative Verification
procedure OFVERIFICATION(M , φ)

▷ Check that the pre/ post conditions are met
CHECKOPCONDITIONS(φ,φprec, φpost)
if φprec ⊆M(Ω) then

M(Ω)← (M(Ω) \ φprec) ∪ φpost

▷ Proceed to verify each output product
for product ω in φpost do

PFVERIFICATION(M , ω)
procedure PFVERIFICATION(M , ω)

▷ Check necessary properties of the product
CHECKPROPERTIES(ω, ωprop, φ′req)
▷ if required by subsequent operations.
if ∃ φ′ s.t. ω ∈ φ′prec then

▷ Verify operations using the product
OFVERIFICATION(M , φ′)

The dual representation of operation-centric
and product-flow-centric views intrinsically
equips with a verification mechanism through
a reciprocative process akin to two interacting
threads. The first thread focuses on verifying
the operation flow, taking as input an operation
φt along with its precondition φprec

t and post-
condition φpost

t . The second thread handles the
verification of the product flow, taking as input
a product ωt along with its predecessor opera-
tion ωpred

t and successor operation ωsucc
t .

Specifically, for the operation verification
(corresponding to OFVERIFICATION in
Alg. 1), we ensure that each operation can be
correctly executed given its input reagents and
that it yields the expected output products.
This involves checking that the preconditions
are satisfied by the available products from
preceding operations and that the postconditions are well-defined for subsequent use. Concurrently,
the product flow verification (corresponding to PFVERIFICATION in Alg. 1) involves tracking each
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Figure 2: Diagram of automatic representation generation. (A) Illustration of the workflow. (B)
Convergence curve of automatic function abstraction. (C) Convergence curve of automatic model
abstraction. (D-F) Confusion matrices on operation distribution (D), product distribution (E), and
device distribution (F), between DSLs across domains. Correlation scores are low except the ones
along the diagonals, indicating the significant inter-domain distinctions between the resulting DSLs.

unit of product flow through the protocol. We verify that the product is generated by the specified
operation and that it possesses the necessary properties ωprop

t for consumption by the next operation.

The interaction between these two threads forms a feedback loop where the verification of opera-
tions and products mutually inform and constrain each other. This reciprocative method allows us to
iteratively refine the protocol, ensuring that each step is both operationally feasible and chemically
coherent. LLMs are employed to implement the functions CHECKOPCONDITIONS and CHECK-
PROPERTIES, extracting and verifying operation conditions and product properties from natural
language protocol descriptions through instruction-following in-context learning (Wei et al., 2021;
Brown et al., 2020). For the prompts employed, readers are referred to Appx. D.6.

3 AUTOMATIC REPRESENTATION GENERATION

In this section, we describe the proposed data-driven algorithm to automatically generate the hierar-
chically encapsulated representation for protocol design (see Fig. 2A). We first define the problem
of generating the desired representation by means of DSL design (Sec. 3.1). We then introduce
methods for generating operation-centric (Sec. 3.2) and product-flow-centric (Sec. 3.3) DSL views.

3.1 THE REPRESENTATION GENERATION PROBLEM

We denote the problem of generating the representation for protocol design within a given domain
as RG = ({⟨φ⟩, ⟨ω⟩}|P, C). The representation is a DSL with language features accommodating
both the operation-centric program view ⟨φ⟩ and the product-flow-centric program view ⟨ω⟩. The
domain-specific corpus C = {Φ1,Φ2, . . . ,Φ|C|} consists of existing protocols published in top-
quality journals within the corresponding experimental domain. The source and profiles of C of
each domain is detailed in Appx. E.1. We can obtain instance action with attributes based on C in a
straightforward way through NL information extraction (see Appx. D.3 for implementation details).
The prior knowledge of operations and products, p(φ) and p(ω), including the basic syntax of the
key-value structures and the elementary taxonomies, is derived according to the general common-
sense of experimental sciences, as aforementioned in Sec. 2. Specifically, the problem essentially
aims to fit the joint distribution models p(φ, ϕ, φprec, φpost, φexec) and p(ω, ωpred, ωsucc, ωprop) with
domain-specific corpus C given prior knowledge p(φ) and p(ω).

3.2 AUTOMATIC FUNCTION ABSTRACTION

The key challenge of encapsulating the operation-centric view is to aggregate all possible execution
contexts for an operation, and then generalize the contexts to the interface. If we keep each of the
use case as one single instance of the interface, which can be in thousands regarding one operation,
the generalization is meaningless. Since there is no prior knowledge about the interface in advance,
we develop the algorithm following the idea of non-parametric modeling, i.e., Dirichlet Process
Mixture Model (DPMM), resulting in flexible identification of interface instances.
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Hierarchical non-parametric modeling As we must handle information coming in different
granularities, from interface structures to values of parameters, we choose to model the operations in
a hierarchical fashion. Compared with the flatten spectral clustering approach developed by Shi et al.
(2024), which compresses all information of an operation into a embedding vector, our modeling is
competent for considering information at different levels comprehensively. We carefully adopt the
prerequisite that the interface is generated subject to the operation, preconditions, postconditions,
and execution configurations are generated subject to the interface, and the value of configuration
parameters are generated subject to their corresponding keys. Thus, we have the model:

p(φ, ϕ, φprec, φpost, φexec, φexec-v)

= p(φexec-v|φ, ϕ, φexec)p(φexec|φ, ϕ)p(φprec|φ, ϕ)p(φpost|φ, ϕ)p(ϕ|φ)p(φ),
(1)

where φexec-v denotes the values of configuration parameters. Within each iteration of the DPMM
process, we sample the variables level-by-level. Since the structures of preconditions, postcondi-
tions, and the selection of devices and configuration parameters are discrete, we sample them directly
from the Dirichlet Process. As permissible values of parameters can be discrete, e.g., an array of
specific values, common in acidity preparation; continuous, e.g., an interval with minimum and max-
imum values, common in temperature setting; or mixed, e.g., an array of specific values with random
perturbations around the mean, common in timing control, we conduct the sampling by integrating
Gaussian Process with Dirichlet Process φexec-v|φ, ϕ, φexec ∼ DP (α,H(φexec), ϕ, φ)×GP (m,K),
where α, H , m, and K are corresponding hyperparameters.

Unification of the interface While clustering similar interface instances encapsulates operations,
there may remain redundant interfaces due to minor discrepancies. These discrepancies often arise
from differences in parameter values or naming conventions that do not fundamentally alter the op-
eration’s functionality. To alleviate such redundancies, we implement a unification process for the
interfaces. Specifically, interface instances associated with the same operation are considered equiv-
alent if they have the same number of slots and emits and share the same keys in their execution
configuration parameters. By abstracting away differences in parameter values and names, we unify
these interfaces into a single, generalized interface, akin to the algorithm proposed by Martelli &
Montanari (1982). Unification enhances the generality of the operation-centric view by consolidat-
ing functionally-identical interfaces, maintaining a concise and representative set of operations.

Results Function abstraction converges on the domains respectively, as shown by the likelihood
curve yielded by non-parametric model in Fig. 2B. In the DSL of Genetics, there are 304 operations
in total, with an average of 7.9 interface instances per operation; for Medical, these two quanti-
ties are 269 and 6.9; for Bioengineering, they are 196 and 7.8; and for Ecology, they are 100 and
3.5. We find that a majority of operations with high occurrence frequency are unique to one do-
main, such as Pipette to Medical and Lyse to Genetics (see Fig. 2D). There are also common
operations across domains, such as Concentrate and Culture. Take Concentrate for an exam-
ple, its interface captures the instances with different devices according to input phases, e.g., use
Bench-top_centrifuge for Liquid while Isotope_separation_centrifuge for Gas, and also
instances with different emits, e.g., selecting Supernatant or Suspension as the product to keep.

3.3 AUTOMATIC MODEL ABSTRACTION

The key challenge of encapsulating the product-flow-centric view is to select proper descriptive
properties of a flow unit component. There exists false positive cases, where properties are attributed
to components with the same semantic identifier but in different phases, e.g., we consider ethanol
with the property volume when it comes in liquid and with the property pressure when it comes in
gas. There also exists false negative cases, where exact same components are regarded as different
ones due to different reference names, e.g., Acetylsalicylic Acid, ASA, and Aspirin refer to the
same thing. To alleviate false positive and false negative results, we discard the design choice of
the interface in the operation-centric view, which tends to cover the possibly richest context, and
thereby have the non-parametric model:

p(ω, ωpred, ωsucc, ωprop, ωprop-v) = p(ωprop-v|ωprop, ω)p(ωprop|ω)p(ωpred|ω)p(ωsucc|ω)p(ω), (2)

where ωprop-v denotes the values of property parameters.
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Figure 3: Results of protocol design. (A) Profile of text-level similarity between testing sets of
the three tasks. (B) Pairwise comparison between the capabilities of different machine designers
across the six dimensions. (C-E) Performances of the seven machine designers on the planning (C),
modification (D), and adjustment (E) tasks across the six dimensions (index by column).

Results Model abstraction converges on the domains respectively, as shown by the likelihood
curve in Fig. 2C. In the DSL of Genetics, there are 17, 190 model states, i.e., product flow unit as
product status, in total; the quantity is 12, 472 for Medical; 11, 418 for Bioengineering; and 2, 205
for Ecology. We find that most components of product flow units with high occurrence frequency
are unique to one domain, such as RNA to Genetics and HCC to Medical (see Fig. 2E/F). Take Ethanol
for example, the model captures its possible concentrations in liquid rather than in gas.

4 EXPERIMENTS AND DISCUSSION

In this section, we report and discuss the results of our experiments. We start from describing our
realistic novel protocol design tasks (Sec. 4.1), along with the metrics to measure the consistency
between the designed protocol and the groundtruth protocol (Sec. 4.2). Afterwards, we introduce
the alternative representations and machine designers used for comparison (Sec. 4.3). Finally, we
report and analyze the experimental results both quantitatively and qualitatively (Sec. 4.4).

4.1 PROTOCOL DESIGN TASKS

Table 1: Statistics of the testing set. Each cell presents
the total number of protocols m and experimental steps
n in the form m (n).

Genetics Medical Bioengineering Ecology

Planning 10 (130) 7 (96) 12 (157) 2 (25)
Modification 37 (442) 15 (225) 16 (210) 6 (59)
Adjustment 23 (219) 5 (87) 2 (26) 5 (81)

Generating unverified experimental objec-
tives and their corresponding protocols
specially for our protocol design tasks
is impractical because those experiments
which have not been peer-reviewed and
published can be problematic regarding
the contents themselves. To maintain both
reality and scale of the testing set, for each
domain we filter out a small subset of pro-
tocols which significantly differ from the
remaining major part of the protocol set
and exclude this subset from the corpora for automatic representation generation (Appx. E.1). This
selected subset form the groundtruth of the testing set.
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We exploit quantitative indicators to assist testing set selection, which follows the convention of
measuring a protocol’s novelty in experimental sciences (Schwab & Held, 2020). We comprehen-
sively consider three indicators: (i) similarity between the text embedding of the NL-based descrip-
tion of purpose of protocols, employing the evaluation model in O’Donoghue et al. (2023); (ii) Inter-
section over Union (IoU) between the instance actions of protocols; (iii) similarity between the exe-
cution sequence of protocols, implemented through the Sequence Alignment (SA) algorithm (Smith
et al., 1981). To note, indicators (ii) and (iii) are calculated upon the protocols pre-processed by
the workflow described in Appx. D.3. Indicator (i) captures the high-level idea of protocol design,
indicator (ii) is correlated to the implementation of the protocol design, while indicator (iii) captures
the low-level information of protocol execution.

In response to the three purposes of protocol design introduced in Sec. 1, we specify the planning,
modification, and adjustment tasks of protocol design. Candidate planning tasks, which are the
confirmation of unverified experimental goals, come with relatively low scores (within the 20%
lowest) on indicators (i) and (ii). Candidate modification tasks come with fair scores (around the
40% lowest) on indicators (i) and (ii) and relative low score on indicator (iii). Candidate adjustment
tasks come with relatively high scores (within the 40% highest) on all of the three indicators.

We obtain the final testing set through a human-machine collaborative workflow. We first detect the
outliers of the original protocol corpus of each domain under the metrics above, thereby forming a
candidate set. Afterwards, experts of the corresponding domain (holding at least a Master’s degree
majoring in that domain) manually check the applicability of protocols in the candidate set with
cross-validation, discarding the misclassified ones, requesting for more candidate protocols, and
refining the groundtruth file when necessary. The testing set includes 140 new protocols and 1757
steps in total, across the domains of Genetics, Medical, Bioengineering, and Ecology, with 23% for
planning, 52% for modification, and 25% for adjustment (see Tab. 1 and Fig. 3A for details).

4.2 INTER-PROTOCOL CONSISTENCY METRICS

Evaluating the consistency between a designed protocol and the groundtruth is not like compar-
ing between two plain strings (O’Donoghue et al., 2023). Based on the corresponding com-
monground in experimental sciences (Bartley et al., 2023), we design six-dimensional metrics
to comprehensively cover all of the major factors without biased weighting and composition.
The six dimensions include: (i) IoU on operations, IoU(Op) = IoU({φ1...|Φ|}, {φ′

1...|Φ′|}),
IoU between instance actions of the designed protocol Φ and the groundtruth Φ′; (ii) IoU on
reagents and intermediate products, IoU(Prod) = IoU({ω0...|Φ|}, {ω′

0...|Φ′|}); (iii) IoU on de-
vices, IoU(Dev) = IoU({φ(Dev)1...|Φ|}, {φ(Dev)′1...|Φ′|}), where φ(Dev)t denotes the exact de-
vice for conducting the instance action φt; (iv) Similarity between the execution sequences,
Sim(Exec) = SeqAlign(⟨φ0...|Φ|⟩, ⟨φ′

0...|Φ′|⟩), where SeqAlign(·, ·) denotes the ordered sequence
similarity score calculation by the SA algorithm; (v) Similarity between experimental objectives,
Sim(Goal) = Cos(S(ρ), S(ρ′)), where S(·) represents the serialization operation on structural rep-
resentations of protocols; (vi) Similarity between complete protocols at parameter-wise level,
Sim(Param) = Cos(S(Φ), S(Φ′)). These six dimensions capture protocol information from low to
high granularities, and also measure the consistency of both ingredient knowledge and procedural
knowledge, offering a relatively objective evaluation standard.

4.3 MACHINE DESIGNERS

We implement an array of designers by combining different representations with different LLM-
based automatic designers under tractable computing load (see Appx. D.7). We investigate four
types of representations, including the original NL-based protocol representation (Flatten) and the
three levels of encapsulation described in Sec. 2, i.e., instance actions with attributes (Instance),
operation-centric view only (Encapsulated), and the dual representation with operation- and
product-flow-centric views (Encapsulated+). We consider three types of LLM-based protocol de-
signers: (i) Baseline, a pure LLM-based approach with Retrieval-Augmented Generation (RAG)
on the corresponding corpora (Appx. D.4); (ii) Internal, which takes the specific representation as
part of the prompt of an LLM, requesting it to output the protocol under the constraint of the given
representation (Appx. D.5); (iii) External, where the representation serves as an external constraint
layer for the output of an LLM, verifying and refining the designed protocols (Appx. D.6). Notably,
the external verifier is part of the resulting DSL as our proposed representation for protocol design.
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The combination of representation and designer does not span a Cartesian space due to the in-
trinsic limitations of Flatten and Baseline. Therefore, we implement seven machine design-
ers, including: (i) Flatten-Baseline(FB), LLM with RAG on original protocol corpora; (ii)
Instance-Baseline(IB), LLM retrieval on the protocol corpora translated into instance actions;
(iii) Instance-Internal(II), prompting LLM with the Instruction Set Assembly (ISA) of instance
actions, following the implementation of the currently state-of-the-art method O’Donoghue et al.
(2023); (iv) Encapsulated-Internal(EI), prompting LLM with the DSL with operation-centric
view; (v) Encapsulated-External(EE), LLM equipping with the external verifier provided by the
DSL with operation-centric view; (vi) Encapsulated-Internal+(EI+), prompting LLM with the
DSL with the dual representation; and (vii) Encapsulated-External+(EE+), LLM equipping with
the external verifier provided by the DSL with the dual representation.

4.4 PROTOCOL DESIGN RESULTS

The complete quantitative results across the four domains, the three tasks, and the six dimensions of
evaluation metrics are presented at Appx. B. Through paired samples t-test, we find that EE+ and EI+
significantly outperform other alternative approaches (EE+ outperforms EE: t(278) = 8.007, µd <
0, p < .0001; EI+ outperforms EI: t(278) = 8.397, µd < 0, p < .0001; EE+ outperforms II:
t(278) = 24.493, µd < 0, p < .0001; EI+ outperforms II: t(278) = 23.855, µd < 0, p < .0001;
see Fig. 3C-E). These comparisons demonstrate the suitability of our desired representation for pro-
tocol design. Similarly, we find that approaches equipping with a relatively higher-level representa-
tion significantly outperforms their counterparts with a relatively lower-level representation (EE out-
performs II: t(278) = 16.315, µd < 0, p < .0001; EI outperforms II: t(278) = 15.259, µd < 0,
p < .0001; II outperforms FB: t(278) = 8.340, µd < 0, p < .0001; see Fig. 3B).

4.5 DISCUSSION

This work proposes a hierarchically encapsulated representation for the conceptual knowledge in
experimental sciences, including instance actions with attributes, sequential representation of op-
erations with function abstraction, and continuous representation of product-flows with model ab-
straction, to fully elicit LLMs’ capability on protocol design as an auxiliary module. The following
discussions on results reveal the design rationality, scalability, and generality of the representation.

Contributions of the building blocks The encapsulated representation approaches with dual
views outperform their counterparts without dual views by enhancing both intra-step and inter-step
details. At the intra-step level, EI and EE offer richer semantic information than IB and II, lever-
aging protocol-centric view to capture detailed configuration each operation. This feature accounts
for their satisfactory performance on IoU(Op). At the inter-step level, EI+ and EE+ treat each step
as a FlowUnit, incorporating both preceding and succeeding step contexts, leading to notable im-
provements in Sim(Exec) and IoU(Prod). This creates a double assurance mechanism: the first
assurance comes from internal input/output checks within each instruction, and the second from the
input/output characteristics inferred from neighboring instructions. Namely, we estimate the output
of the preceding operation and check its alignment with the current step’s input. This design en-
hances step linkage, verification, and overall protocol coherence, ensuring higher consistency and
robustness in complex protocol workflows. Please refer to Appx. H.1 for the case study.

Handling different task complexities The overall performance aligns with the trend in complex-
ity across the three tasks (Fig. 3A); however, the dual-view encapsulated representations, EI+ and
EE+, demonstrate superior performance compared to their counterparts. In planning, these meth-
ods consider all necessary components, enabling creative yet structured protocol generation. For
modification tasks, they provide feedback on parameter changes, detecting inconsistencies that their
counterparts might fail to capture. In adjustment tasks, EE+’s external verifier maintains protocol
integrity by identifying component relationships. Please refer to Appx. H.2 for the case study.

Generality across domains Our DSL-based approaches offer a unified, modular representation
with generalizability across scientific domains (see domain-indexed results at Appx. B.2). The dual-
view approach abstracts experimental processes into operations and flow units, capturing essential
details while remaining applicable across fields. By representing dependencies between steps and
tracking product flow, the replication of experiments could be enhanced. The framework captures
cross-domain commonalities while allowing domain-specific content like specialized operations and
reagents. This unified representation standardizes protocols and enables researchers to adopt ex-
perimental protocols from multiple fields, fostering interdisciplinary collaboration and innovation.
Please refer to Appx. H.3 for the case study. Limitations on generality are discussed at Appx. F.
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A ADDITIONAL REMARKS

A.1 RATIONALE OF THE OVERALL DESIGN CHOICE

It seems that we can formulate the protocol design problem in the fashion of Markov Decision Pro-
cess (MDP) and solve it by heuristic-based planning methods or Hierarchical Reinforcement Learn-
ing (HRL) approaches. However, although the formulation itself is feasible, solving the problem
may not be practical. Consider solving the problem through an HRL approach designed for hetero-
geneous action space with parameters (as the protocol is required to decide both the key properties
of an operation and the corresponding values). This hierarchical agent may be trained to converge
on a fine-grained environment with a clearly designed reward function, or on a large dataset with
trajectories for offline learning. Unfortunately, we have access to neither an interactive environment
simulating the experiments nor sufficient data to support offline training (Pateria et al., 2021).

Treating the experimental procedures as a white box and creating digital twins for experiments
can be an elegant solution and thereby facilitate various applications other than protocol design.
This effort requires elaborated design of simulation granularity, exhaustive collection of primitive
principles of the system, efficient implementation of rule production, and define precise metrics for
evaluating the distance between current and objective states (serving as a reward function), which
can be labor-intensive and is far out of the scope of this work. On the other hand, viewing those
published protocols as trajectories for offline training, the scale of the offline dataset and the density
of the reward function are much too insufficient to support training to convergence. Augmenting
the data, synthesizing realistic trajectories, or enhancing the accessibility of protocols, are out of the
scope of this work. Given the current obstacles, we choose not to formulate the problem in an MDP
fashion. Though an MDP-style formulation can be more precise and elegant, it may misguide the
readers to some extent. Instead, we decide to leverage the rich domain-specific knowledge provided
by knowledge-based agents such as LLMs, where knowledge may complement the lack of data and
dense reward function. This design choice is also in line with the initial attempts on automatic
experiment design (Boiko et al., 2023; M. Bran et al., 2024).

In summary, our design choice of formulation is a compromise based on currently limited resources
and restricted scope. Nonetheless, the exploration of more precise and elegant formulations repre-
sents a promising avenue for future research.

A.2 INTUITION BEHIND THE INTERFACE

Interface is a concept of functional abstraction (Abelson & Sussman, 1996). Interface disentangles
the abstract functionality on the semantics level and its corresponding implementation details on the
execution level. This approach encapsulates the implementation of an operation into a black-box,
so the users of the operation would only need to consider its input and output. Therefore, with
such encapsulated representation for protocol design, we only need to care about the consistency
between the output of the predecessor operation and the input of the successor operation, without
caring about their implementation details.

This is the idea behind operationalization. Operationalization makes the interface an abstract func-
tion over all relative instance actions. The interface is abstracted from the execution contexts of all
instance actions with the same reference name, i.e., the same purpose, and can be instantiated to an
instance action given a specific execution context. A specific context can be the predecessor opera-
tion, the successor operation, the precondition, or the postcondition of the considered operation. An
instance action configures a specific implementation for a specific execution context. For the op-
eration “Homogenization”, the implementation of one instance action can be “using an ultrasonic
homogenizer” if the precondition, namely, the execution context, has intermediate product “cell
suspension” available; the implementation of another instance action can be “using a bead mill” if
the precondition contains tissue. This example demonstrates the relationship between interface and
instance actions of an operation: the interface is abstracted from the set of instance actions and can
be instantiated to instance actions.

Here we also give a more intuitive example to enhance the reader’s comprehension. Consider the
culinary scenario with the actions “frying the egg”, “frying the fish”, and “frying the steak”.These
are different instance actions coming with the same purpose “to fry something”. Therefore, we can
abstract the interface from these instance actions to operationalize the operation “fry”. The input of
“fry” should be something raw and its output should be something fried. Given different precondi-
tions with available eggs or pieces of steak, the abstract semantic operation “fry” can be grounded
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to instance actions “frying the egg” or “frying the steak” respectively, through the instantiation of
the interface. In summary, an interface serves as the bridge between the semantics level and the
execution level.

A.3 VALUES OF MANUAL PROTOCOL CERTIFICATION

Certification is always one of the central focuses in the engineering practices of automation. In
our practice, we only automate the process of protocol design, which is the primary objective of
this work, and keep the manual certification part. On one hand, relieving experimental scientists
from the labour-intensive protocol design tasks, thereby allowing them more time for high-level
thinking, is a sufficiently significant improvement so far. On the other hand, engineering practices
such as lab automation and manufacturing are in high demand for preciseness. This leads to the
requirement of manual certification. Domain experts handle subtle cases through their tacit domain-
specific knowledge and are responsible for their decisions (Wang et al., 2023b). According to these
considerations and the standard operating processes of experimental sciences, we choose to certify
the designed protocols by domain experts.

Our current choice is a compromise on the limitation of techniques and the demand for preciseness.
In future work, we can conduct investigations on how to build digital twins of self-driving labo-
ratories. Such digital twins support prediction, explanation, and counterfactual analysis of unseen
behaviors of the experiments, which may facilitate machine-based protocol certification. Grounding
these blue-sky thoughts necessitates addressing the challenging problems regarding the decision of
simulation granularity, the implementation of data-efficient simulation model construction, and the
injection of tacit domain-specific knowledge. In summary, the exploration of generated-protocol-
certification by machines represents a promising avenue for future research.

A.4 LIMITATIONS OF AUTOMATIC PROTOCOL CERTIFICATION

LLMs can be much too uncontrollable for engineering practices such as lab automation, which may
lead to unpredictable dangerous situations (Wang et al., 2023b). There comes a dilemma — we try to
exploit the capability of reasoning over knowledge of LLMs, while we try to alleviate the drawbacks
brought up by the uncontrollable nature of LLMs. Our proposed representation is dedicated to
resolving the dilemma. The representations not only elicit LLMs’ potential on protocol design
through structural knowledge representation, but also serve as a guardrail for LLMs. Since the
generated protocols are represented as corresponding DSL programs, the permissible output space
is much more confined compared with that of pure LLMs, serving as constraints upon the LLM-
generated protocols. Thanks to the verification mechanisms provided by DSLs, the correctness of the
generated protocols can be checked to some extent. Therefore, by equipping LLMs with an auxiliary
constraint layer, we may approach a balance between knowledge utilization and preciseness.

However, the current verification on the level of DSL programs is far from sufficient for serving as
a certification. Certification is a serious process, where any possibilities of reporting false positive
cases are required to be eliminated. Some cases can be highly long-tailed distributed, which may not
be detected by data-driven and knowledge-driven machine certifiers. In this context, human domain
experts are responsible for coming up with these potential risks through their experiences and tacit
knowledge. Therefore, we are not likely to move human experts out of the loop, except that we can
efficiently build up appropriate digital twins for self-driving laboratories. In current practices, the
automation of protocol design puts human experts into a larger loop without focusing on the low-
level details of experiments. As a result, they are allowed more time for high-level thoughts on things
like values, which are not likely to be alternated by machines. In summary, it is neither practical
nor necessary to totally move human experts out of the loop of automatic scientific discovery. The
investigation of human-machine coordination in protocol certification represents a promising avenue
for future research.

A.5 RATIONALE FOR THE REAGENT CONSUMPTION MODEL

We treat the instantiation and the consumption of reagents a one-time deal without considering
the exact volume of consumption and the corresponding remainder. The rationale for such design
choice comes from both the current Standard Operating Process (SOP) of experimental sciences and
the properties of self-driving laboratories (Bartley et al., 2023).

In the current SOP for manually conducted experiments, experimenters are required to use prefab-
ricated sets of reagents. Similarly, experimenters use specific containers with predefined capacities
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to transfer intermediate products. Therefore, one pack of reagents or one container of intermediate
products is only used once for an operation, without considering the remainder. This results in a
more succinct representation where reagents are regarded as discrete elements rather than continu-
ous volumes.

For self-driving laboratories, this is deliberately designed for efficient variable management follow-
ing the corresponding principles in computer system design (Abelson & Sussman, 1996). In com-
puter systems, not removing used variables would cause out-of-memory errors, let alone in physical
automation systems, where the physical memory slots are much harder than the virtual memory
slots in computer systems to manage. Hence, we exploit this variable management mechanism to
enhance the execution efficiency of self-driving laboratories.

A.6 RELATION TO LLM REASONING

We would like to clarify that our objective is not to alternate Chain-of-Thought (CoT) reasoning.
According to recent studies on the properties of CoT, LLMs with CoT may generate coherent but
unprofessional text in expertise-intensive application scenarios (Xiao et al., 2023). Therefore, our
proposed representation serves as an auxiliary guardrail module for LLMs with reasoning techniques
such as CoT, enhancing LLMs’ reasoning capability from two aspects: (i) the representation con-
strain the scope of reasoning into a close set of entities, such as available operations, reagents, and
devices commonly used in the domain; and (ii) the representation provides fine-grained injection of
domain-specific knowledge for LLMs, resulting in not only coherent but also expertise-compatible
generated content.

A.7 APPLICABILITY TO DOMAINS BEYOND SCIENTIFIC EXPERIMENT

In theory, our framework can be applied to any field that requires adherence to specific protocols and
has a need for automated execution. Let us consider an automated kitchen controlled by a computer
as an example.

Assuming the automated kitchen’s computer is already programmed to prepare “braised pork ribs”
and “steamed sea bass”:

1 Braised Pork Ribs:

2
3 1. Select pork ribs as the main ingredient.

4 2.Heat a pan over high heat.

5 3.Add the ribs to the pan and fry for about 5 minutes until they are

browned.

6 4.Add seasonings: soy sauce and sugar.

7 5. Reduce the heat to medium.

8 6. Simmer the ribs for 30 minutes until tender.

9 7.Serve hot.

10
11 START

12 SELECT ingredient: ribs

13 ACTION: fry , temperature: high , time: 5 min

14 ADD seasoning: soy sauce , sugar

15 ACTION: simmer , temperature: medium , time: 30 min

16 END

17
18 Steamed Sea Bass:

19
20 1. Select a whole sea bass as the main ingredient.

21 2. Prepare a steamer and heat it to high temperature.

22 3.Place the sea bass in the steamer.

23 4.Steam the fish for about 15 minutes until fully cooked.
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24 5.Add seasonings: ginger slices and chopped scallions.

25 6.Serve immediately with the garnish.

26
27 START

28 SELECT ingredient: sea bass

29 ACTION: steam , temperature: high , time: 15 min

30 ADD seasoning: ginger , scallion

31 END

Next, we can derive the corresponding DSL. For instance:

1 {

2 "cooking_methods ": {

3 "braise ": {

4 "steps": [

5 {"type": "fry", "temperature ": "high", "time": "5 min"},

6 {"type": "simmer", "temperature ": "medium", "time": "30 min"}

7 ],

8 "seasoning ": ["soy sauce", "sugar"]

9 },

10 "steam": {

11 "steps": [

12 {"type": "steam", "temperature ": "high", "time": "15 min"}

13 ],

14 "seasoning ": [" ginger", "scallion "]

15 }

16 },

17 "ingredients ": {

18 "ribs": {

19 "category ": "meat",

20 "default_braise_time ": "30 min"

21 },

22 "sea_bass ": {

23 "category ": "fish",

24 "default_braise_time ": "20 min",

25 "default_steam_time ": "15 min"

26 }

27 }

28 }

Now, let us create a new recipe for Braised Sea Bass by combining the braising technique with sea
bass as the main ingredient.

1 START

2 SELECT ingredient: sea bass

3 ACTION: fry , temperature: high , time: 5 min

4 ADD seasoning: soy sauce , sugar

5 ACTION: simmer , temperature: medium , time: 20 min

6 END
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B COMPLETE RESULTS

B.1 TASK-INDEXED COMPLETE RESULTS

Table A1: Complete quantitative results on protocol design, specifically the planning task. Each
cell represents the machine designer’s average score (at the top of the cell) on all testing samples
across the four domains and the corresponding standard error of mean (at the bottom of the cell).
For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.143
(0.087)

0.040
(0.055)

0.020
(0.060)

0.282
(0.090)

0.766
(0.096)

0.826
(0.059)

IB 0.109
(0.067)

0.036
(0.053)

0.019
(0.074)

0.242
(0.065)

0.735
(0.090)

0.781
(0.069)

II 0.382
(0.154)

0.050
(0.062)

0.084
(0.191)

0.452
(0.134)

0.788
(0.074)

0.851
(0.062)

EI 0.542
(0.160)

0.305
(0.181)

0.259
(0.211)

0.572
(0.152)

0.849
(0.066)

0.926
(0.026)

EI+ 0.603
(0.208)

0.555
(0.260)

0.357
(0.237)

0.737
(0.172)

0.875
(0.057)

0.949
(0.023)

EE 0.524
(0.151)

0.370
(0.198)

0.252
(0.206)

0.558
(0.148)

0.846
(0.078)

0.928
(0.025)

EE+ 0.607
(0.211)

0.605
(0.235)

0.355
(0.242)

0.744
(0.179)

0.893
(0.056)

0.951
(0.021)

Table A2: Complete quantitative results on protocol design, specifically the modification task.
Each cell represents the machine designer’s average score (at the top of the cell) on all testing
samples across the four domains and the corresponding standard error of mean (at the bottom of the
cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.181
(0.102)

0.050
(0.071)

0.038
(0.071)

0.304
(0.102)

0.796
(0.090)

0.809
(0.060)

IB 0.150
(0.100)

0.038
(0.065)

0.039
(0.076)

0.281
(0.100)

0.772
(0.089)

0.788
(0.060)

II 0.331
(0.143)

0.101
(0.131)

0.061
(0.135)

0.416
(0.127)

0.802
(0.087)

0.851
(0.059)

EI 0.593
(0.186)

0.318
(0.158)

0.336
(0.235)

0.602
(0.164)

0.866
(0.066)

0.937
(0.030)

EI+ 0.648
(0.210)

0.626
(0.188)

0.413
(0.256)

0.765
(0.170)

0.883
(0.055)

0.952
(0.031)

EE 0.588
(0.185)

0.403
(0.192)

0.332
(0.228)

0.601
(0.164)

0.873
(0.053)

0.940
(0.028)

EE+ 0.640
(0.213)

0.661
(0.179)

0.410
(0.253)

0.757
(0.170)

0.893
(0.043)

0.953
(0.032)
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Table A3: Complete quantitative results on protocol design, specifically the adjustment task.
Each cell represents the machine designer’s average score (at the top of the cell) on all testing
samples across the four domains and the corresponding standard error of mean (at the bottom of the
cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.192
(0.100)

0.077
(0.104)

0.051
(0.094)

0.319
(0.103)

0.811
(0.078)

0.823
(0.051)

IB 0.197
(0.131)

0.039
(0.063)

0.006
(0.021)

0.337
(0.141)

0.802
(0.082)

0.810
(0.049)

II 0.453
(0.208)

0.115
(0.161)

0.091
(0.211)

0.508
(0.184)

0.805
(0.081)

0.873
(0.056)

EI 0.587
(0.190)

0.328
(0.186)

0.400
(0.265)

0.623
(0.165)

0.863
(0.055)

0.944
(0.027)

EI+ 0.668
(0.208)

0.545
(0.259)

0.449
(0.247)

0.775
(0.152)

0.883
(0.056)

0.950
(0.040)

EE 0.581
(0.184)

0.404
(0.205)

0.395
(0.261)

0.616
(0.162)

0.875
(0.039)

0.946
(0.026)

EE+ 0.650
(0.220)

0.589
(0.229)

0.441
(0.248)

0.758
(0.160)

0.893
(0.033)

0.950
(0.042)

B.2 DOMAIN-INDEXED COMPLETE RESULTS

Table A4: Complete quantitative results on protocol design, specifically the Genetics domain.
Each cell represents the machine designer’s average score (at the top of the cell) on all testing
samples across the three tasks and the corresponding standard error of mean (at the bottom of the
cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.179
(0.113)

0.065
(0.082)

0.037
(0.080)

0.301
(0.116)

0.795
(0.091)

0.805
(0.066)

IB 0.157
(0.129)

0.042
(0.060)

0.022
(0.059)

0.297
(0.137)

0.793
(0.070)

0.789
(0.062)

II 0.379
(0.200)

0.120
(0.158)

0.079
(0.160)

0.457
(0.180)

0.807
(0.083)

0.850
(0.072)

EI 0.599
(0.189)

0.332
(0.177)

0.353
(0.243)

0.619
(0.164)

0.862
(0.055)

0.941
(0.026)

EI+ 0.691
(0.198)

0.606
(0.252)

0.429
(0.283)

0.803
(0.151)

0.882
(0.054)

0.954
(0.033)

EE 0.592
(0.189)

0.415
(0.206)

0.351
(0.241)

0.615
(0.163)

0.870
(0.052)

0.943
(0.025)

EE+ 0.677
(0.210)

0.653
(0.228)

0.425
(0.280)

0.791
(0.161)

0.888
(0.045)

0.955
(0.034)
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Table A5: Complete quantitative results on protocol design, specifically the Medical domain.
Each cell represents the machine designer’s average score (at the top of the cell) on all testing
samples across the three tasks and the corresponding standard error of mean (at the bottom of the
cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.174
(0.085)

0.048
(0.070)

0.030
(0.067)

0.312
(0.075)

0.796
(0.087)

0.839
(0.043)

IB 0.139
(0.054)

0.029
(0.038)

0.023
(0.063)

0.264
(0.045)

0.721
(0.123)

0.795
(0.070)

II 0.373
(0.093)

0.081
(0.087)

0.091
(0.205)

0.424
(0.072)

0.776
(0.097)

0.871
(0.041)

EI 0.604
(0.167)

0.322
(0.146)

0.309
(0.253)

0.594
(0.148)

0.861
(0.079)

0.932
(0.031)

EI+ 0.615
(0.196)

0.574
(0.242)

0.400
(0.198)

0.758
(0.149)

0.871
(0.060)

0.952
(0.021)

EE 0.591
(0.158)

0.373
(0.166)

0.298
(0.234)

0.583
(0.149)

0.873
(0.054)

0.936
(0.030)

EE+ 0.615
(0.197)

0.613
(0.210)

0.390
(0.202)

0.756
(0.151)

0.891
(0.040)

0.955
(0.019)

Table A6: Complete quantitative results on protocol design, specifically the Ecology domain.
Each cell represents the machine designer’s average score (at the top of the cell) on all testing
samples across the three tasks and the corresponding standard error of mean (at the bottom of the
cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.155
(0.085)

0.030
(0.035)

0.021
(0.048)

0.297
(0.088)

0.781
(0.096)

0.807
(0.056)

IB 0.162
(0.118)

0.006
(0.015)

0.030
(0.058)

0.275
(0.105)

0.763
(0.090)

0.788
(0.063)

II 0.386
(0.176)

0.043
(0.062)

0.027
(0.062)

0.448
(0.131)

0.788
(0.065)

0.856
(0.044)

EI 0.458
(0.171)

0.259
(0.134)

0.351
(0.195)

0.514
(0.142)

0.879
(0.048)

0.933
(0.028)

EI+ 0.411
(0.134)

0.569
(0.133)

0.359
(0.175)

0.586
(0.127)

0.888
(0.052)

0.945
(0.023)

EE 0.458
(0.171)

0.347
(0.151)

0.351
(0.195)

0.507
(0.138)

0.874
(0.048)

0.934
(0.029)

EE+ 0.414
(0.142)

0.581
(0.141)

0.346
(0.177)

0.586
(0.131)

0.910
(0.035)

0.944
(0.024)
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Table A7: Complete quantitative results on protocol design, specifically the Bioengineering
domain. Each cell represents the machine designer’s average score (at the top of the cell) on all
testing samples across the three tasks and the corresponding standard error of mean (at the bottom
of the cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.176
(0.085)

0.048
(0.089)

0.050
(0.081)

0.300
(0.084)

0.790
(0.090)

0.826
(0.042)

IB 0.149
(0.077)

0.050
(0.087)

0.038
(0.091)

0.286
(0.078)

0.767
(0.083)

0.797
(0.046)

II 0.352
(0.151)

0.062
(0.090)

0.066
(0.187)

0.443
(0.125)

0.810
(0.073)

0.860
(0.045)

EI 0.565
(0.164)

0.307
(0.186)

0.310
(0.249)

0.603
(0.169)

0.851
(0.072)

0.930
(0.033)

EI+ 0.657
(0.209)

0.577
(0.177)

0.394
(0.241)

0.743
(0.179)

0.888
(0.056)

0.944
(0.041)

EE 0.558
(0.162)

0.392
(0.214)

0.303
(0.246)

0.598
(0.165)

0.855
(0.076)

0.933
(0.030)

EE+ 0.653
(0.206)

0.614
(0.172)

0.401
(0.246)

0.742
(0.176)

0.900
(0.046)

0.945
(0.041)

C ETHICS STATEMENT

C.1 HUMAN EXPERT PARTICIPANTS

The testing set selection and groundtruth checking tasks conducted by human experts in this work
has been approved by an Institutional Review Board (IRB). We have been committed to upholding
the highest ethical standards in conducting this study and ensuring the protection of the rights and
welfare of all participants. We paid the domain experts a wage of $22.5/h for their work in this study.

We have obtained informed consent from all human experts, including clear and comprehensive
information about the purpose of the study, the procedures involved, the risks and benefits, and the
right to withdraw at any time without penalty. Participants were also assured of the confidentiality
of their information. Any personal data collected (including name, age, and gender) was handled in
accordance with applicable laws and regulations.

C.2 CORPORA COLLECTION

We carefully ensure that all protocols included in our corpora strictly comply with open access
policies under the Creative Commons license. This strategy guarantees adherence to copyright and
intellectual property laws, thereby preventing any potential infringement or unauthorized use of
protected materials. By exclusively employing resources that are freely accessible and legally dis-
tributable, we maintain the highest standards of ethical research conduct, promoting transparency
and respect for the intellectual property rights of others. This commitment ensures that our work
advances the frontiers of knowledge in a manner that is both legally sound and ethically responsible.

D IMPLEMENTATION DETAILS

D.1 PRIOR MODEL OF PRODUCT FLOW-CENTRIC VIEW

1 <ProductFlow > ::= <Pred > <FlowUnit > <Succ >

2
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3 <Pred > ::= <Operation.UniqueName >

4
5 <Succ > ::= <Operation.UniqueName >

6
7 <FlowUnit > ::= <Component > <ComponentType > <RefName > <Vol > <Container > *<

Cond >

8 <Component > ::= <STR >

9 <ComponentType > ::= Gas | Liquid | Solid | Semi -Solid | Mixture |

ChemicalCompound | BiologicalMaterial | Reagent | PhysicalObject |

File/Data | ... [Known component types]

10 <RefName > ::= <Component > <Index >

11 <UnitArgType > ::= MAT | PROD

12 <Vol > ::= <REAL > <MEAS >

13 <Container > ::= Tube | Flask | Pipette | ... [Known container types]

14 <Cond > ::= <ArgKey > <ArgValue >

15 <ArgKey > ::= Temperature | Pressure | Acidity | Lighting | ... [Known

conditional keys]

16 <ArgValue > ::= <REAL > <MEAS >

D.2 PRIOR MODEL OF OPERATION-CENTRIC VIEW

1 <Operation > ::= <UniqueName > *<Pattern >

2
3 <UniqueName > ::= <STR >

4
5 <Pattern > ::= <Precond > <Execution > <Postcond > *<Example >

6
7 <Precond > ::= <SlotArgNum > *<SlotArg >

8 <SlotArgNum > ::= <INT >

9 <SlotArg > ::= <ProductFlow.FlowUnit.ComponentType >

10
11 <Postcond > ::= <EmitArgNum > *<EmitArg >

12 <EmitArgNum > ::= <INT >

13 <EmitArg > ::= <ProductFlow.FlowUnit.ComponentType >

14
15 <Example > ::= <STR >

16
17 <Execution > ::= <DeviceType > <Capacity > *<Config >

18 <DeviceType > ::= Incubator | Autoclave | Centrifuge | ... [Known device

types]

19 <Capacity > ::= <REAL > <MEAS >

20 <Config > ::= <ArgKey > <ArgValue >

21 <ArgKey > ::= Duration | Pace | Power | Quantity | ... [Known device

configuration items]

22 <ArgValue > ::= <REAL > <MEAS >

A9
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D.3 PRE-PROCESSING OF THE PROTOCOLS

The protocol pre-processing steps begin by reading all JSON files of the protocols. Each protocol
is then splitted sentence-by-sentence using Spacy1, with the constraint that every sentence is longer
than ten characters. Due to the large volume of data, sentence splitting is handled in parallel. Af-
terwards, deeper sentence splitting is performed based on specific conditions for further refinement,
such as the presence of "and/then/and then" followed by a verb2. We then parse sentences into
root verbs and purpose clauses, which are identified using token.dep_ == "ROOT" for root verbs
and prepositional/adverbial/modals for purpose clauses. Lastly, we merge phrases based on
punctuation, and their classification into valid sentences or decorative phrases depends on whether
they contain a root verb or lack a purpose clause.

The first verb in each sentence is extracted as an opcode, again utilizing parallel processing for
efficiency. Opcode frequency is filtered to exclude stopwords, which are recorded in a separate text
file. Then we categorize these opcodes into high-level operation classes using a GPT model (gpt-4o
mini), where each opcode is classified into categories like Transfer Operations, Transformation
Operations, or Data Operations.

Once operation classification is complete, entity recognition is performed (also using gpt-4o mini)
to identify entities like devices, input_flow_units, output_flow_units, and total_time. Each
flow unit is further categorized (also using gpt-4o mini) with a high-level classification composed
of a phase, i.e., Gas, Liquid, Solid, etc.; and a type, i.e., Chemical Compound, Biological
Material, etc. When both phase and type are successfully labeled, phase is preferred as the feature
of the flow unit. If phase labeling fails, we use type the feature of the flow unit. If neither phase
nor type is successfully labeled, the corresponding feature is set to None. Part of the rationale is that
there are non-reagent components in the general sense, i.e., data, files, obscure or undefined
substances, etc. Therefore, we apply this strategy to maximize the possibility that there is a mean-
ingful upper class labeling of the components without any redundancy.

Finally, we conduct a synonym merge process on the devices, which starts by using transformers
AutoTokenizer3 to get an embedding for each device name. Afterwards, we use sklearn4 to
identify potentially similar entity pairs by calculating the cosine similarity of the candidate entities,
and then passing these entity pairs to the GPT model for synonym detection, thereby merging devices
belonging to the same type. The reference names of these combined devices will be one of the
features.

D.4 PURE LLM-BASED DESIGNER

The pure LLM-based designer employs RAG to retrieve similar protocols from the corresponding
corpora for representation, following the design choice of the baseline in O’Donoghue et al. (2023).
Specifically, in the FB approach, three similar protocols are first retrieved from the original proto-
col corpora using RAG, and then, along with the title and description of the target protocol, they
are provided to the LLM to generate a NL plan. The LLM subsequently translates the NL plan
into Python pseudocode. In the IB approach, three similar protocols’ instance actions (like Python
pseudofunctions definitions) are first retrieved from the corpora, and after randomizing their order,
they are provided to the LLM along with the title and description of the target protocol to generate a
plan in the form of Python pseudocode.

1 [Prompt for retrieving similar protocols from corpora]

2 You are an expert in biology and you are very familiar with the

experiment protocols.

3 I would like to make a protocol for {title}.

4 I will give you some related protocols in the database.

5 Could you find me the most three similar and relevant protocols for

reference in the given range?

1https://spacy.io/api/sentencizer
2https://spacy.io/api/matcher#_title
3https://huggingface.co/docs/transformers/v4.45.1/en/model_doc/auto#transformers.

AutoTokenizer
4https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_

similarity.html#cosine-similarity
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6
7 Please output id of your selected protocols , separating with a comma. Don

't output any other information.

8 [Output format]

9 id_1 ,id_2 ,id_3

10
11 [Related protocols]

12 {context}

13
14 Answer:

1 [Prompt for generating NL plan]

2 Your goal is to generate steps for a biology protocol.

3 These protocol steps must accurately describe a complete scientific

protocol to obtain a result.

4 Steps of some similar protocols will be provided as a reference for you

to generate the new one.

5 Output should only contain the steps without any other information.

6
7 Here is an example of how to generate steps for a biology protocol.

8
9 EXAMPLE:

10
11 {example protocol title}

12
13 Here are some extra details about the protocol:

14
15 {example protocol description}

16
17 example steps:

18
19 {example protocol steps}

20
21 YOUR TASK:

22 Generate steps for a protocol for {title}.

23
24 Here are some extra details about the protocol:

25
26 {details}

27
28 Here are some similar protocols ' steps for reference:

29
30 {steps}

31
32 your steps:

1 [Prompt for translating NL plan to pseudocode]

2 Your goal is to convert biology protocols into python pseudocode.

3
4 EXAMPLE
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5 Here is an example of how to convert a protocol for {example protocol

title} into python pseudocode

6
7 {example protocol}

8
9 {example python pseudocode}

10
11 YOUR TASK:

12 Here is a biology protocol entitled '{title}' The protocol steps are as

follows:

13
14 {protocol}

15
16 Please convert this protocol into python pseudocode.

17
18 python pseudocode:

1 [Prompt for generating plan in pseudocode]

2 Your goal is to generate python pseudocode for biology protocols.

3
4 Here is an example of how to generate pseudocode for a biology protocol.

5
6 EXAMPLE:

7
8 {example protocol title}

9
10 Here are some extra details about the protocol:

11
12 {example protocol description}

13
14 example pseudocode:

15
16 {example pseudocode}

17
18 YOUR TASK:

19 Generate pseudocode for a protocol for {title}.

20
21 Here are some extra details about the protocol:

22
23 {details}

24
25 You may only make use of the following python pseudocode functions:

26
27 {psuedofunctions}

28
29 your pseudocode:

D.5 INTERNAL DESIGNER

The internal designer incorporates the specific representation as part of the prompt for an LLM,
asking it to output the protocol while adhering to the given representation constraints, echoing the
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idea of Wang et al. (2023a). Specifically, in II, the instance actions retrieved from the corpora
via RAG and the pseudofunctions definitions of the target protocol are shuffled and then provided
together to the LLM, constraining it to generate a plan in the form of Python pseudocode using
the given pseudofunctions definitions. In EI and EI+, relevant DSL instructions are selected from
a domain-specific operation-centric view DSL and product-flow-centric view DSL, respectively.
These instructions and the target protocol’s title and description are provided to the LLM, prompting
it to output the corresponding plan as instantiated DSL instructions.

1 [Protocol for generating plan in DSL program using operation -centric view

DSL]

2 Your goal is to generate plan in domain specific language (DSL) for

biology protocols.

3 The DSL specifications related to the operations involved in the

experiment are provided. The DSL specification of each operation

consists of multiple patterns , each pattern is an operation execution

paradigm.

4
5 Here is an example of how to generate plan in DSL for a biology protocol.

6
7 EXAMPLE:

8
9 {example protocol title}

10
11 Here are some extra details about the protocol:

12
13 {example protocol description}

14
15 example plan in DSL:

16
17 {example plan}

18
19 [Requirements]

20 1. Design the experiment with finer granularity , incorporating more steps

to complete the experiment in a more rigorous , complex , and

comprehensive manner.

21 2. There are some missing parameters in the DSL specification. You should

generate each step of the DSL program as detailed as possible based

on your understanding of the protocol plan.

22 3. In Precond and Postcond , use formal name of the component to represent

the SlotArg and EmitArg of each step. The component name should

clearly describe the content of the component.

23
24 YOUR TASK:

25 Generate plan in DSL for a protocol for {title}.

26
27 Here are some extra details about the protocol:

28
29 {details}

30
31 You can choose to instantiate the following DSL specification to

construct the DSL program:

32
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33 {DSL}

34
35 Your plan in DSL program:

1 [Protocol for generating plan in DSL program using dual representation]

2 Your goal is to generate plan in domain specific language (DSL) for

biology protocols.

3 Two perspectives of the DSL specification are provided: the specification

for experimental operations and the specification for experimental

products.

4 The DSL specification of each operation or product consists of multiple

patterns , each pattern is an operation execution paradigm or a

product flow paradigm.

5 Output every operation of the plan in the form of an operation DSL

program and every product of the plan in the form of a product DSL

program.

6
7 Here is an example of how to generate plan in DSL for a biology protocol.

8
9 EXAMPLE:

10
11 {example protocol title}

12
13 Here are some extra details about the protocol:

14
15 {example protocol description}

16
17 example plan in DSL:

18
19 {example plan}

20
21 YOUR TASK:

22 Generate plan in DSL for a protocol for {title}.

23
24 Here are some extra details about the protocol:

25
26 {details}

27
28 You can choose to instantiate the following DSL specifications to

construct the DSL program:

29
30 Operation -view DSL specification:

31 {Operation -DSL}

32
33 Product -view DSL specification:

34 {Product -DSL}

35
36 Your plan in DSL program:
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D.6 EXTERNAL DESIGNER

The external designer combines (i) deductive verification through DSL; and (ii) self-improvement
by the LLM (Madaan et al., 2023). In EE, the external verifier is provided by the operation-centric
view DSL and performs checks on two main aspects: (i) whether the precondition of each operation
is an intermediate product of a previous step rather than appearing from nowhere; and (ii) whether
the postcondition of each operation is used in subsequent steps rather than being omitted. Similarly,
in EE+, the external verifier is provided by the DSL with a dual representation, focusing on cross-
verifying the parallel dual tracks (the two perspectives of the DSL program). It checks whether
the corresponding operation causes each status transition of the product: (i) whether the product
in each product-view program is the output of its preceding operation; and (ii) whether the product
in each product-view program is the input for its succeeding operation. If a mismatch occurs, the
verifier generates corresponding error messages, such as “Error: The product {product} required
by operation {operation} at step {i} is not available from previous steps.” These error messages
are then fed into the feedback-refine loop as feedback for the LLM to revise the plan. The loop
terminates when the program passes the verification or reaches the maximum number of iterations,
and the best result is retained based on the verification information.

1 [Prompt for refining the plan according to the feedback vertified by

operation -centric view

2 DSL]

3 Your task is to improve a biology experimental protocol plan represented

in domain -specific language (DSL) based on provided feedback.

4 The input plan in DSL consists of multiple DSL programs , each

representing one step in the experimental protocol planning process ,

arranged in top -down order to indicate the execution sequence of

operations.

5 Each DSL program has the following format:

6 {

7 "Operation ": , // Operation verb

8 "Precond ": { // Precondition for this step

9 "SlotArgNum ": , // Number of arguments for the precondition

10 "SlotArg ": // Input product for this step

11 },

12 "Execution ": {

13 "DeviceType ": , // Execution device for the operation

14 "Config ": { // dict of execution arguments - values

15 Argkey: Argvalues

16 }

17 },

18 "Postcond ": { // Postcondition for this step

19 "EmitArgNum ":, // Number of arguments for the postcondition

20 "EmitArg ": // Output product for this step

21 }

22 }

23
24 The provided feedback indicates errors that occurred when compiling the

DSL programs. You need to correct the program to ensure that the

product is properly transferred between each step , i.e., the input

product of each step must be the output from a previous step (except

for the first step), and verify whether the output of each step is

used as the input for subsequent steps (except for the final step).
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25 If you believe the error in a particular step is due to the step

preparing reagents rather than using a previous intermediate product ,

you can ignore this error.

26
27 Output your refined plan in DSL , returning a JSON block without any

additional information or comments.

28
29 YOUR TASK:

30 Refine the plan in DSL for a protocol for {title}.

31
32 Here are some extra details about the protocol:

33
34 {details}

35
36 Refine the following plan:

37
38 {plan}

39
40 Here is the feedback of the plan:

41
42 {feedback}

43
44 Your refined plan in DSL:

1 [Prompt for refining the plan according to the feedback vertified by DSL

with dual representation]

2 Your task is to improve a Biology experimental protocol plan represented

in domain -specific language (DSL) based on provided feedback.

3 The input plan in DSL consists of multiple DSL programs from two

perspectives: operation -view and product -view. The DSL programs from

these two perspectives alternate and constrain each other.

4
5 This is the format of a product -view DSL program:

6 // Each product view DSL program represents the state of the product at

that moment.

7 {

8 Pred: <Operation >, // Pred represents the operation that

precedes the creation of this product , need to align to the operation

name in the operation view DSL program. If the product is in its

initial state , return "".

9 FlowUnit: { // FlowUnit defines the properties of the product

being processed.

10 Component: , // Component represents the actual product or

material being processed , need to be the formal name of the component

.

11 ComponentType: Gas|Liquid|Solid|Semi -Solid|Mixture|

ChemicalCompound|BiologicalMaterial|Reagent|PhysicalObject|File/Data ,

// ComponentType describes the type of the component , which

can be one of the following: Gas , Liquid , Solid , Semi -Solid , Mixture ,
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ChemicalCompound , BiologicalMaterial , Reagent , PhysicalObject , or

File/Data.

12 RefName: , // RefName is the reference name used to uniquely

identify this component , need to align to the operation -view program

13 UnitArgType: MAT | PROD , // UnitArgType specifies whether this

is a material (MAT) or a product (PROD).

14 Vol: , // Vol represents the volume or quantity of the

component.

15 Container: , // Container indicates the type of container or

storage used for this component. If the product has no container

constraints in its current state , return "".

16 Cond: { // Cond defines the specific conditions under

which the operation is carried out , which is expressed as key -value

pairs.

17 ArgKey: ArgValues

18 }

19 },

20 Succ: <Operation > // Succ represents the operation that follows

the creation of this product. If the product is in its final state ,

return "".

21 }

22
23 This is the format of an operation -view DSL program:

24 // Each operation view DSL program represents a sequence of operations

that alters the state of the product.

25 {

26 Operation: , // Operation verb

27 Precond: { // Precondition

28 SlotArgNum: , // Number of arguments for the precondition

29 SlotArg: // SlotArg represents the input product or

material required for this operation , using formal component names

from the product perspective DSL program , with serial numbers to

distinguish repeated components in different states.

30 },

31 Execution: {

32 DeviceType: , // Execution device for the operation

33 Config: { // dict of execution arguments - values

34 ArgKey: ArgValues

35 }

36 },

37 Postcond: { // Postcondition

38 EmitArgNum: , // Number of arguments for the postcondition

39 EmitArg: // EmitArg represents the output product or

material resulting from the operation , using formal component names

from the product perspective DSL program , with serial numbers to

distinguish repeated components in different states.

40 }

41 }

42
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43 The provided feedback indicates errors that occurred when compiling the

DSL programs. You need to correct the program to ensure that the

state changes of each product 's RefName in the Product -view are

caused by the corresponding operations in the Operation -view.

44 If you believe the error in a particular step is due to a mismatch in

product names between the two perspectives rather than an actual

error , you can ignore this error.

45
46 Output your refined plan in DSL , returning a JSON block without any

additional information or comments.

47
48 YOUR TASK:

49 Refine the plan in DSL for a protocol for {title}.

50
51 Here are some extra details about the protocol:

52
53 {details}

54
55 Refine the following plan:

56
57 {plan}

58
59 Here is the feedback of the plan:

60
61 {feedback}

62
63 Your refined plan in DSL:

D.7 COMPUTING LOAD OF THE MACHINE DESIGNERS

For automated representation generation, we primarily used GPT-4o mini with OpenAI’s Batch
API5 for preprocessing, incurring a cost of approximately $60 across four domains. The design
of the DSLs was executed on a MacBook with an M2 chip, running 1,000 iterations to ensure
convergence. This process required an average of 55 seconds per iteration for the operation-centric
view DSL and an average of 2 seconds per iteration for the product-centric view DSL. For the
machine designer, we primarily utilized GPT-4o mini combined with RAG for design, with a total
cost of approximately $10 (7 methods, 140 protocols). In summary, the overall computational load
is relatively low, highlighting the accessibility of our machine designers when utilizing the proposed
representations and the corresponding automatic representation generation modules.

E DATA COLLECTION

E.1 CORPORA SOURCES

The corpora C for the automatic generation of representations (Sec. 3.1) and the corpora for selecting
the testing set (Sec. 4.1) are both retrieved from open-sourced websites run by top-tier publishers,
including Nature’s Protocolexchange6, Cell’s Star-protocols7, Bio-protocol8, Wiley’s Current Pro-

5https://platform.openai.com/docs/guides/batch/batch-api
6https://protocolexchange.researchsquare.com/
7https://star-protocols.cell.com/
8https://bio-protocol.org/en
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tocols9, and Jove10. These sources compile a dataset of 15,837 experimental protocols across four
domains: Genetics (8794 protocols), Medical (7351), Ecology (812), and Bioengineering (3597),
with minimal overlap between them. We aggregated the corpora and analyzed the themes of the
protocols according to the first- and second-level labels attached to them. We adopt measures to
ensure that C is mutually exclusive with the testing set.

Other domains, such as Physics and Chemistry, are also representative domains of experimental
sciences, besides Biology, Medical, and Ecology. The preliminary factor that restricts our current
scope is data accessibility. Due to the higher cost of accessing the corpora of protocols for conduct-
ing physics and chemistry experiments, for example, mining the protocol from the “method” section
of relevant published papers, we leave the application to Physics and Chemistry for future work.

E.2 ELIMINATING THE RISK OF DATA LEAKING

**

1.0

1.2

1.4

1.6

test reference

pe
rp
le
xi
ty

Figure A1: Comparison between the
perplexity of the test set and the ref-
erence set

We employ the broadly accepted standard operating pro-
cess to empirically verify that LLMs have not memorized
the data we use. We adopt the methodology outlined in
Section 5.2 of Skywork (Wei et al., 2023) and draw upon
recent studies on detecting memorization in LLMs (Car-
lini et al., 2021; 2022). Specifically, we use gpt-4o mini to
synthesize data resembling the style of steps from novel
protocols, and then calculate the perplexity on the test set
and reference set. Since the reference set is newly gener-
ated, we consider it clean, not belonging to any training
set of any model.

We randomly sample 100 sequences each from the test
set and the reference set of the novel protocols. Each se-
quence corresponds to a single procedural step described
in natural language. We truncate the final 50 tokens of
each sequence, retaining the prefixes. These prefixes are
then used as prompts for the LLM to predict the next 50
tokens, for which we calculate the perplexity. If the per-
plexity of the test set is significantly lower than that of
the reference set, the test set might have appeared in the
model’s training phase.

The results indicate that the LLM’s average perplexity on the test set is significantly higher than
that on the reference set (t(198) = 3.040, µd < 0, p < .05; see Fig. A1), suggesting that the LLM
encounters greater uncertainty with the novel protocols in the test set. This finding implies that for a
published, widely accepted, and standardized operating process, there is no evidence to suggest that
the LLM has memorized the data.

E.3 ON THE DIVERSITY OF NOVEL PROTOCOLS

Assessing diversity among novel protocols is both informative and meaningful. To further support
our analysis, we incorporate a t-SNE visualization of the experimental objectives (described in nat-
ural language) for the novel protocols we select, as shown at Fig. A2. The results demonstrate a
well-dispersed distribution, indicating a sufficient level of diversity among the protocols.

E.4 SHOWCASES

1 [Protocol 1 - Bioengineering]

2 Preparation of lysates

3 1. Harvest approximately 1 x 10^7 cells by centrifugation at 2000 RPM for

5 min. Aspirate media and resuspend cell pellet with 1 mL of ice -

cold PBS and transfer to a 1 mL centrifuge tube. Microcentrifuge at

2000 RPM for 5 min at 4 ◦ C.

9https://currentprotocols.onlinelibrary.wiley.com/
10https://www.jove.com/
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Figure A2: Visualization of diversity between novel protocols

4 2. Aspirate PBS , and then add Hypotonic Buffer (supplemented with 1%

Triton X-100, to disrupt membrane and cytoskeleton -bound MEKK1

fractions).

5 3. Cell lysates are homogenized by passing through 22-gauge needles , and

tubes are put on ice for 15 min to complete the lysis. Crude extracts

are then centrifuged at 2500 RPM for 5 min. Supernatants are

transferred to fresh centrifuge tubes , and cold 5 M NaCl is added to

each sample to make a salt concentration of between 0.7 -1.0 M to

disrupt protein -protein interactions.

6 4. Spin the crude extracts by ultracentrifugation at 55000 RPM to

properly pellet residual insoluble proteins from the extract.

Transfer supernatants into fresh centrifuge tubes.

7 Immunoprecipitation

8 5. Rinse Protein A beads in Hypotonic Buffer and place on ice until ready

for use.

9 6. Take a volume of cell lysates (prepared as described above), and

dilute with Hypotonic Buffer to 250 -500 mM salt to enable protein -

protein interactions.

10 7. Add 2 µg of preclearing antibody to the diluted lysate (e.g., anti -Myc

or anti -p65), vortex , add 50 µL of Protein A beads , and rock for 45

min.

11 8. Touchspin samples , and transfer supernatant to a fresh tube.

12 9. Add 2 µg of polyclonal anti -MEKK1 to the lysates , and rock for 1 h.

After this period , add 50 µL of Protein A beads and rock tubes at 4 ◦

C for 1 h.

13 10. Touchspin beads , wash beads with hypotonic buffer (supplemented with

NaCl to a concentration of 300 mM), vortex , and rock for 10 min. In

total , 3-5 washes of the beads are performed.

14 11. Finally , wash once with Hypotonic Buffer , and resuspend in Kinase

Assay Buffer. Purified MEKK1 may be stored by snap -freezing in liquid

nitrogen and long -term storage at -80 ◦ C. Kinase assay Following

preparation of MEKK1 immunoprecipitates (as above), incubate with 7 µ

g of JNKK1(K131M) along with 5 µCi of ATP in Kinase Assay Buffer for

30 min at 30 ◦ C."

15
16 [Protocol 2 - Genetics]

17 1. Note that everything is in DEPC water. Inoculate W303a cells

expressing different TOR1 -RR variants in 2 mL SC medium overnight.

18 2. Subculture the cells starting from OD600 =0.1 in 10 mL SC media , shake

vigorously at 30 ◦C, 300 RPM for around 4-6 h until OD600 =0.4 -0.5.
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19 3. Collect the cells by spinning down without freezing on ice. Discard

supernatant.

20 4. Re-suspend cells with 1 mL water and transfer to a 1.5 eppendorf tube ,

quickly spin down at 3,000 x g for 15 sec.

21 5. Re-suspend cell pellet in 400 µL of AE buffer at room temperature.

22 6. Add 40 µL 10% SDS (final around 1%) and vortex briefly at room

temperature (RT).

23 7. Immediately add 500 µL hot phenol/AE (put in 65 ◦ C for 10 min before

use), vortex vigorously for 1 min. Incubate at 65 ◦ C for 5 min.

Briefly vortex every 30 sec.

24 8. Immediately freeze by dumping into liquid nitrogen. Wait to thaw at RT

(put in 30 ◦ C to thaw may crack the tube).

25 9. Centrifuge for 10 min on a standard laboratory microfuge at 20,000 x g

at RT.

26 10. Transfer around 400 µL supernatant to a new eppendorf tube. Recycle

the lower phenol fraction carefully following the chemical safety

protocol in your laboratory.

27 11. Add equal volume (400 µL) phenol: CHCl3/AE-Na. Vortex vigorously for

1 min at RT.

28 12. Spin down at 20,000 x g for 5 min in a standard laboratory microfuge.

29 13. Transfer supernatant (around 350 µL) to a fresh 1.5 mL eppendorf tube

. Add CHCl3: isoamyl alcohol (24:1). Vortex vigorously for 1 min at

RT.

30 14. Transfer aqueous supernatant to a fresh 1.5 mL microfuge tube. If

white cloudy precipitate is observed between the aqueous phase and

organic phase , repeat steps 17-18.

31 15. Add 1/10 volume of 3 M NaOAc (pH 5) and vortex vigorously. Add 2.5

volumes of ethanol. Vortex again.

32 16. Place at -20 ◦ C for at least 30 min.

33 17. Spin down in the microfuge at 20,000 x g, 15 min at 4 ◦ C. RNA pellet

is usually visible.

34 18. Add ice -cold 75% EtOH , place at 4 ◦ C for around 10 min. Vortex and

spin down on microfuge 20,000 x g, 15 min at 4 ◦ C. Discard

supernatant. Suck out the liquid droplets in the tube. The white RNA

pellet will turn clear when it dries out. Add 30-50 µL ddH2O (DEPC)

immediately after it becomes clear. Do not let the RNA over -dry ,

which will make it difficult to dissolve. If RNA pellet is over -dry ,

dissolve RNA at 37 ◦ C for 30 min. Store RNAs at -80 ◦ C for more than

2 months ."

35
36 [Protocol 3 - Medical]

37 1. Passage through a 45 µm filter. Add 100 µL/well of 100 µg/mL salmon

sperm DNA to a 96-well Microtest assay plate.

38 2. Wrap the plate with plastic wrap and incubate at 4 ◦ C overnight.

39 3. Discard the coating antibody solution and wash the plate with 1x PBS -

Tween 6 times.

40 4. Dry the plate and add 100 µL of blocking solution per well to the

plate.

41 5. Incubate the plate at room temperature (RT) for 1.5 h.
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42 6. Discard the blocking solution and wash the plate with 1x PBS -Tween 5

times.

43 7. Dry the plate and keep it at 4 ◦ C for later use.

44 8. Harvest the spleen and create a single -cell suspension by gently

smashing spleen pieces with the frosted surface of a pair of

microscope slides in 5 mL of DMEM.

45 9. Transfer the cells into 50 mL conical tubes and spin down the cells at

300 RCF for 5 min at 4 ◦ C.

46 10. Discard the supernatant with aspiration without disturbing the pellet

.

47 11. Re-suspend the cells with 5 mL of 0.17 M ammonium chloride and keep

the cells on ice for 5 min.

48 12. Add 15 mL DMEM to the cells and spin at 300 RCF for 5 min at 4 ◦ C.

49 13. Discard the supernatant and re-suspend the cells with 20 mL of DMEM

and count the cells.

50 14. Re-suspend 2 x 10^7 cells in 2 mL of 10% DMEM and make a three -fold

serial dilution (a total of 8 dilutions) with 10% DMEM.

51 15. Add 50 µL/well of the serial dilutions on the DNA -coated plate and

centrifuge at 300 RCF for 5 min at 4 ◦ C.

52 16. Incubate the cells at 30 ◦ C for 2 h in a cell -culture incubator with

6% CO2.

53 17. Add 50 µL/well of biotin -conjugated anti -IgM or anti -IgG (1:350 in

10% DMEM) to the cells.

54 18. Centrifuge the cells at 300 RCF for 5 min at 4 ◦ C and incubate the

cells overnight in a cell -culture incubator with 6% CO2.

55 19. Discard the cells and wash the plates 10 times with 10x PBS -Tween 20.

56 20. Dry the plates and add 50 µL of streptavidin alkaline phosphatase

(1:1 ,000 in 1% BSA/PBS) to the plate.

57 21. Incubate the plate at RT for 1 h and wash the plate 10 times with 10x

PBS -Tween 20.

58 22. Dry the plate and add 50 µL/well of 1 mg/mL BCIP in AMP buffer to

develop the plate.

59 23. When the spots are clearly visible under a dissecting microscope ,

stop the development by discarding the BCIP solution and rinsing the

plate with tap water thoroughly.

60 24. Spots can be counted using a dissecting microscope or using an

ELISpot reader ."

F LIMITATIONS

As a representation designed for a relatively new problem, the design and evaluation of the proposed
framework come with limitations, leading to further investigations:

• Overall, our method achieves promising results across the four domains. Specifically, it performs
best in experimental design for Genetics, shows comparable effectiveness in Medical and Bio-
engineering, but is less effective in Ecology. Notably, the Genetics corpus is the largest among
the four domains, while the Ecology corpus is significantly smaller than the others. These ob-
servations suggest a potential positive correlation between the size of the domain-specific corpus
and the “quality” of the resulting DSL. In other words, a larger corpus may lead to a “better”
representation, thereby influencing the outcomes of protocol design. This hypothesis necessitates
further investigation through rigorously designed experiments and carefully defined metrics for
evaluating what constitutes a “better” representation.
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• We majorly consider the imperative programming DSLs as the implementation of representation
in this work. This raises the question of whether incorporating objective-oriented programming
paradigms could enhance the representation of complex entities within protocols, particularly the
properties of reagents and intermediate products. If we are able to make the DSLs model the fine-
grained reactions between different components and automate the design of those DSLs based on
a broader source of data, such as the Wikipedia pages, we can ultimately manage to build up a
symbolic digital twin for a domain-specific system, such as the cell cultivation environment. Such
simulation systems may greatly benefit protocol design with their power of prediction, explana-
tion, and counterfactual analysis.

• Can we explicitly extend our proposed representation to a hierarchical graph, thereby establishing
the foundation for employing the advanced algorithms on graph routing and graph optimization?
Results on the hierarchical graph can also serve as a external heuristic and constraint for LLM-
based protocol designers. This hybrid approach may combine both the advantages of LLMs,
i.e., exploitation of background knowledge, and those of classical algorithms, i.e., white-boxed
properties with high explainability.

• Can we apply the representation and the automatic representation generator to other critical do-
mains with a high demand for automating procedure design, such as designing product route sheets
for advanced manufacturing?

With many questions unanswered, we hope to explore more on automated protocol design for self-
driving laboratories and beyond.

G THE AUTOMATICALLY GENERATED REPRESENTATIONS

G.1 OPERATION-CENTRIC VIEW DSL

1 {

2 "Operation ": "Precipitate",

3 "pattern_0 ": {

4 "Precond ": {

5 "SlotArgNum ": 2,

6 "SlotArg ": [" Liquid", "Solid"]

7 },

8 "Execution ": {

9 "DeviceType ": "falcon tube",

10 "Capacity ": "15 mL",

11 "Config ": {}

12 },

13 "Postcond ": {

14 "EmitArgNum ": 1,

15 "EmitArg ": [" Liquid "]

16 },

17 "Example ": [

18 "Precipitate RNA by adding 600 µL of 100 % EtOH , 20 µL of 3 M

NaOAc ( pH 5.5 ), and 3 µL of glycogen .",

19 "Precipitate the DNA in each tube by adding 20 µl of 3 M

sodium acetate ( pH 5.2 ) and 550 µl of 100 % ethanol .",

20 "Ethanol precipitate the RNA by adding 5 µl 3 M sodium

acetate ( pH 5.2 ) ,2 µl of glycogen ( 20 mg / ml ) ,and 171 µl of

100 % ethanol .",

21 ]

22 },

23 "pattern_1 ": {

24 "Precond ": {

25 "SlotArgNum ": 4,
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26 "SlotArg ": [" Liquid", "Liquid", "Liquid", "Liquid "]

27 },

28 "Execution ": {

29 "DeviceType ": "centrifuge",

30 "capacity ": "1.5 ml",

31 "Config ": {

32 "time": "10-15 min",

33 "speed": ["12 ,000 × g", "20 ,000 × g"],

34 "temperature ": "4 ◦ C",

35 }

36 },

37 "Postcond ": {

38 "EmitArgNum ": 1,

39 "EmitArg ": ["Solid"]

40 },

41 "examples ": [

42 "Precipitate the cell debris in the lysate by centrifugation

at 20,000 × g for 10-15 min at 4 ◦ C.",

43 "precipitate DNA with 13.5 µL of following mixture (1 µL of

20 mg / ml Glycogen , 12.5 µL of 3 M NaOAc [pH 5.3]) and 340 µL

ethanol.",

44 "precipitate the total RNA by centrifuging at 12,000 × g for

15 min at 4 ◦ C."

45 ]

46 }

47 },

48 {

49 "Operation ": "Spin",

50 "pattern_0 ": {

51 "Precond ": {

52 "SlotArgNum ": 2,

53 "SlotArg ": [" Liquid", "Liquid "]

54 },

55 "Execution ": {

56 "DeviceType ": "spin plate",

57 "Config ": {

58 "time": ["1 min"]

59 }

60 },

61 "Postcond ": {

62 "EmitArgNum ": 1,

63 "EmitArg ": [" Physical Object "]

64 },

65 "Example ": [

66 "Nuclei washing and tagmentation: Spin down nuclei at 600 g

for 10 mins at 4 ◦ C , resuspended with 50 µL Complete Buffer.",

67 "Spin the sample at 4,000 × g at 4 ◦ C until the volume

reduces to about 1 mL. Quantify protein concentration as described in

step 60.",
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68 "Spin down the 15 mL tubes at 2,500 ×g and 4 ◦ C for 20 min

.",

69 "Spin for 2 min at 1,000 x g. Save a few µL of concentrated

sample to run on an agarose gel later.",

70 "Spin the tube for 30 sec at 12,000 x g to consolidate the

gel at the bottom of the tube.",

71 "Spin plate at 300×g for 1 min to collect liquid at the

bottom of the wells.",

72 "Once NXT PCR program is complete , quick spin the sample tube

then place it on the magnet for 1 min. Transfer the supernatant

containing the amplified mRNA -seq library into a new PCR tube.",

73 "Spin down 2 mill nuclei at 600×g for 5 min (whole liver

nuclei) or use a magnet (bead -bound nuclei)."

74 ]

75 },

76 "pattern_1 ": {

77 "Precond ": {

78 "SlotArgNum ": 1,

79 "SlotArg ": [" Mixture "]

80 },

81 "Execution ": {

82 "DeviceType ": "microcentrifuge",

83 "Config ": {}

84 },

85 "Postcond ": {},

86 "Example ": [

87 "Small volumes , 1-3 mL should be spun in a small tube where

these fewer EVPs can more readily be collected.",

88 "Briefly spin down the bead -lysate mixture.",

89 "Spin down the mix tube to eliminate bubbles/air in a bench

microcentrifuge. Add 19 µL of the mix to each well."

90 ]

91 },

92 "pattern_2 ": {

93 "Precond ": {

94 "SlotArgNum ": 1,

95 "SlotArg ": [" Liquid "]

96 },

97 "Execution ": {

98 "DeviceType ": "centrifuge",

99 "Config ": {

100 "speed": ["800 g"],

101 "time": ["7 min"]

102 }

103 },

104 "Postcond ": {

105 "EmitArgNum ": 1,

106 "EmitArg ": [" Liquid "]

107 },

108 "Example ": [
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109 "Spin lysate at 14 krcf for 10 min at 4 ◦ C; transfer cleared

lysate to new tube.",

110 "Spin down the beads for 60 s at 2,000 x g. Discard the

supernatant by carefully pipetting out the buffer.",

111 "Spin at 12,000 × g until the total volume in both filters is

reduced to 120 µL (<=30 min). Keep aside 5 µL of purified labeled

histone for SDS -PAGE analysis.",

112 "Quickly spin the FACS tube to allow the cell suspension to

pass through the filter to remove undigested large tissue debris.",

113 "Spin once for 7 min at 800 g. Use the BD cytofix/cytoperm

kit according to the manufacturer 's instructions and thereafter add

antibodies for intracellular detection of IFN and TNF."

114 ]

115 }

116 },

117 {

118 "Operation ": "Sonicate",

119 "pattern_0 ": {

120 "Precond ": {

121 "SlotArgNum ": 1,

122 "SlotArg ": [" Liquid "]

123 },

124 "Execution ": {

125 "DeviceType ": "sonicator",

126 "Config ": {

127 "time": ["20 - 30 s"]

128 }

129 },

130 "Postcond ": {

131 "EmitArgNum ": 1,

132 "EmitArg ": ["Semi -Solid"]

133 },

134 "Example ": [

135 "Sonicate the pellet suspension on ice under a 50 % duty

cycle for 5 min.",

136 "Agarose gel of sonicated Arabidopsis chromatin.",

137 "Sonicate proteoliposomes for 20 - 30 s or 3 times for 10 s,

placing on ice in between sonication , if necessary.",

138 "The lipid suspension is sonicated to form small unilamellar

vesicles (SUVs)."

139 ]

140 },

141 "pattern_1 ": {

142 "Precond ": {

143 "SlotArgNum ": 2,

144 "SlotArg ": [" Liquid", "Solid"]

145 },

146 "Execution ": [

147 {

148 "DeviceType ": "bransonic",
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149 "Config ": {

150 "temperature ": ["60 ◦ C"],

151 "time": ["90 min"]

152 }

153 },

154 {

155 "DeviceType ": "sonicator",

156 "Config ": {}

157 }

158 ],

159 "Postcond ": {},

160 "Example ": [

161 "Sonicate 10 µg BAC DNA or 50 µg genomic DNA in total (you

will recover 10 % DNA after sonication and size selection).",

162 "Sonicated chromatin is immunoprecipitated with the chosen

antibodies and non -enriched chromatin washed with a series of washing

buffers.",

163 "If the herring sperm DNA has not been sufficiently sonicated

or too much has been used , the DNA pellet might not adhere to the

microfuge tube and can be lost with the ethanol.",

164 "Sonicate the lipid tube to dissolve lipids with the mineral

oil for 90 min at 60 ◦ C by using Bransonic ."

165 ]

166 }

167 }

G.2 PRODUCT-FLOW-CENTRIC VIEW DSL

1 {

2 "Pred": "Modification Operations",

3 "FlowUnit ": {

4 "Component ": "FBS",

5 "ComponentType ": "Liquid",

6 "UnitArgType ": "MAT"

7 "Vol": ["0.1 mL", "0.5 mL", "1 mL", "1.5 mL", "2 mL", "3 mL", "5

mL", "10 mL", "25 mL", "50 mL", "400 µL", "500 µL", "500 mL"],

8 "Container ": "Tube",

9 "Cond": {

10 "Concentration ": ["0.5%" , "1%", "2%", "2.5%" , "5%", "10%",

"15%", "20%", "30%", "50%", "90%", "100%"] ,

11 "Temperature ": ["-150 ◦ C", "4◦ C", "18 ◦C-26 ◦ C", "37 ◦ C", "56 ◦ C

"],

12 "State": "heat -inactivated"

13 }

14 "Succ": "Transfer Operations"

15 },

16 {

17 "Pred": "Detection and Measurement Operations",

18 "FlowUnit ": {

19 "Component ": "ethidium bromide",
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20 "ComponentType ": "Solid",

21 "UnitArgType ": "MAT",

22 "Vol": ["0.25 µL/mL", "0.5 µL/mL", "2 - 3 µL", "10 µL", "15 µL",

"10 µg/mL", "0.5 µg/µL"],

23 "Container ": "Flask",

24 "Cond": {

25 "Concentration ": ["0.0024%" , "0.3 - 10 µg/mL", "1.5% (w/v)",

"5 µM", "1:1000"] ,

26 "Temperature ": ["25 ◦ C", "room temperature "],

27 "State": ["toxic", "carcinogenic "],

28 "Charge ": [" positively charged "]

29 }

30 },

31 "Succ": "Modification Operations"

32 },

33 {

34 "Pred": "Transfer Operations",

35 "FlowUnit ": {

36 "Component ": "gel",

37 "ComponentType ": "Semi -Solid",

38 "UnitArgType ": "MAT",

39 "Vol": ["0.5 mL"],

40 "Container ": ["Gel Cassette", "Tank", "Tube"],

41 "Cond": {

42 "Impedance ": ["under 20 kOhm"],

43 "Size": ["50 -250 nt"]

44 }

45 },

46 "Succ": "Transfer Operations"

47 }

H CASE STUDIES

H.1 CASE STUDY: CONTRIBUTIONS OF THE BUILDING BLOCKS

Part of protocol designed by EE+:

1 {

2 "Pred": "",

3 "FlowUnit ": {

4 "Component ": "Lysis solution",

5 "ComponentType ": "Liquid",

6 "RefName ": "Lysis_solution -1",

7 "UnitArgType ": "MAT",

8 "Vol": "50 µL",

9 "Container ": "",

10 "Cond": {

11 "State": "Liquid"

12 }

13 },

14 "Succ": "Pipette"
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15 },

16
17 {

18 "Operation ": "Pipette",

19 "Precond ": {

20 "SlotArgNum ": 1,

21 "SlotArg ": [

22 "Lysis_solution -1"

23 ]

24 },

25 "Execution ": {

26 "DeviceType ": "Pipette",

27 "Config ": {

28 "time": "10 times",

29 "volume ": "50 µL"

30 }

31 },

32 "Postcond ": {

33 "EmitArgNum ": 1,

34 "EmitArg ": [

35 "Lysis_solution -2"

36 ]

37 }

38 }

Part of protocol designed by EE:

1 {

2 "Operation ": "Add",

3 "Precond ": {

4 "SlotArgNum ": 1,

5 "SlotArg ": [

6 "Triton -X"

7 ]

8 },

9 "Execution ": {

10 "DeviceType ": "8-channel pipette",

11 "Config ": {

12 "Volume ": "1% solution"

13 }

14 },

15 "Postcond ": {

16 "EmitArgNum ": 1,

17 "EmitArg ": [

18 "Triton_X_Solution"

19 ]

20 }

21 }

22
23 {

24 "Operation ": "Run",
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25 "Precond ": {

26 "SlotArgNum ": 1,

27 "SlotArg ": [

28 "Cell_Lysis_Mixture"

29 ]

30 },

31 "Execution ": {

32 "DeviceType ": "Thermal Cycler",

33 "Config ": {

34 "Temperature ": "70 ◦ C",

35 "Time": "15 min"

36 }

37 },

38 "Postcond ": {

39 "EmitArgNum ": 1,

40 "EmitArg ": [

41 "cDNA_Reverse_Transcription"

42 ]

43 }

44 }

Part of protocol designed by EI:

1 {

2 "Operation ": "Run",

3 "Precond ": {

4 "SlotArgNum ": 1,

5 "SlotArg ": [

6 "Cell_Lysis_Mixture"

7 ]

8 },

9 "Execution ": {

10 "DeviceType ": "Thermal Cycler",

11 "Config ": {

12 "Temperature ": "70 ◦ C",

13 "Time": "15 min"

14 }

15 },

16 "Postcond ": {

17 "EmitArgNum ": 1,

18 "EmitArg ": [

19 "cDNA_Reverse_Transcription"

20 ]

21 }

22 }

Part of protocol designed by II:

1 "reverse_transcribe ": {

2 "muscs": "cells",

3 "buffer ": "RT buffer",

4 "enzyme ": "reverse transcriptase",
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5 "incubation_time ": "60 minutes",

6 "temperature ": "42"

7 }

8
9 "prepare_single_cell_suspension ": {

10 "input_cells ": "lysed cells"

11 }

Part of protocol designed by IB:

1 "reverse_transcribe ": {

2 "muscs": "RNA",

3 "buffer ": "reverse transcription buffer",

4 "enzyme ": "reverse transcriptase",

5 "incubation_time ": "60 minutes",

6 "temperature ": "42"

7 }

8
9 "prepare_single_cell_suspension ": {

10 "input_cells ": "single -cell samples"

11 }

Part of protocol designed by FB:

1 "sort_single_cell ": {

2 "plate": "PCR plate",

3 "nozzle_size ": "100 µm",

4 "mode": "single -cell purity"

5 }

H.2 CASE STUDY: HANDLING DIFFERENT TASK COMPLEXITIES

Part of protocol designed in Planning:

1 {

2 "Operation ": "Obtain",

3 "Precond ": {

4 "SlotArgNum ": 1,

5 "SlotArg ": [

6 "File/Data"

7 ]

8 },

9 "Execution ": {

10 "DeviceType ": "QIAGEN Blood & Cell Culture DNA Maxi Kit",

11 "Config ": {}

12 },

13 "Postcond ": {

14 "EmitArgNum ": 1,

15 "EmitArg ": [

16 "HMW genomic DNA"

17 ]

18 }

19 }
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Part of protocol designed in Modification:

1 {

2 "Operation ": "Centrifuge",

3 "Precond ": {

4 "SlotArgNum ": 1,

5 "SlotArg ": [

6 "Serum_Plasma_in_PBS -1"

7 ]

8 },

9 "Execution ": {

10 "DeviceType ": "Ultracentrifuge",

11 "Config ": {

12 "speed": [

13 "12 ,000 × g"

14 ],

15 "time": [

16 "20 min"

17 ],

18 "temperature ": [

19 "4 ◦ C"

20 ]

21 }

22 },

23 "Postcond ": {

24 "EmitArgNum ": 1,

25 "EmitArg ": [

26 "Pellet -1"

27 ]

28 }

29 }

Part of protocol designed in Adjustment:

1 {

2 "Operation ": "Incubate",

3 "Precond ": {

4 "SlotArgNum ": 2,

5 "SlotArg ": [

6 "Washed sections with 1st antibody -1",

7 "2nd antibody mixture -1"

8 ]

9 },

10 "Execution ": {

11 "DeviceType ": "Moistening box",

12 "Config ": {

13 "temperature ": "37 C",

14 "time": "1 h"

15 }

16 },

17 "Postcond ": {

A32



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

18 "EmitArgNum ": 1,

19 "EmitArg ": [

20 "Sections with 2nd antibody -1"

21 ]

22 }

23 }

H.3 CASE STUDY: GENERALITY ACROSS DOMAINS

Part of protocol designed for Bioengineering:

1 {

2 {

3 "Operation ": "Incubate",

4 "Precond ": {

5 "SlotArgNum ": 2,

6 "SlotArg ": [

7 "Lysis Mixture -2",

8 "Stop Buffer -1"

9 ]

10 },

11 "Execution ": {

12 "DeviceType ": "Thermocycler",

13 "Config ": {

14 "temperature ": "65 ◦ C",

15 "time": "30 min"

16 }

17 },

18 "Postcond ": {

19 "EmitArgNum ": 1,

20 "EmitArg ": [

21 "Neutralized Mixture -1"

22 ]

23 }

24 },

25 {

26 "Pred": "Incubate",

27 "FlowUnit ": {

28 "Component ": "Neutralized Mixture",

29 "ComponentType ": "Mixture",

30 "RefName ": "Neutralized Mixture -1",

31 "UnitArgType ": "PROD",

32 "Vol": "60 µL",

33 "Container ": "0.2-ml PCR tube",

34 "Cond": {

35 "State": "Neutralized"

36 }

37 },

38 "Succ": "Mix"

39 },

40 {
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41 "Operation ": "Elute",

42 "Precond ": {

43 "SlotArgNum ": 1,

44 "SlotArg ": [

45 "Washed Beads -1"

46 ]

47 },

48 "Execution ": {

49 "DeviceType ": "Centrifuge",

50 "Config ": {

51 "time": "1 min"

52 }

53 },

54 "Postcond ": {

55 "EmitArgNum ": 1,

56 "EmitArg ": [

57 "Eluted Product -1"

58 ]

59 }

60 },

61 {

62 "Pred": "Elute",

63 "FlowUnit ": {

64 "Component ": "Eluted Product",

65 "ComponentType ": "BiologicalMaterial",

66 "RefName ": "Eluted Product -1",

67 "UnitArgType ": "PROD",

68 "Vol": "50 µL",

69 "Container ": "0.2-ml PCR tube",

70 "Cond": {

71 "State": "Eluted"

72 }

73 },

74 "Succ": "Incubate Clear"

75 },

76 {

77 "Operation ": "Quantify",

78 "Precond ": {

79 "SlotArgNum ": 1,

80 "SlotArg ": [

81 "Clear Eluted Solution -1"

82 ]

83 },

84 "Execution ": {

85 "DeviceType ": "Nanodrop",

86 "Config ": {}

87 },

88 "Postcond ": {

89 "EmitArgNum ": 1,

90 "EmitArg ": [
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91 "Quantified Sample -1"

92 ]

93 }

94 },

95 {

96 "Pred": "Quantify",

97 "FlowUnit ": {

98 "Component ": "Quantified Sample",

99 "ComponentType ": "Liquid",

100 "RefName ": "Quantified Sample -1",

101 "UnitArgType ": "PROD",

102 "Vol": "50 µL",

103 "Container ": "0.2-ml PCR tube",

104 "Cond": {

105 "State": "Quantified",

106 "Concentration ": "150 ng/µL",

107 "A260/A280": 1.85,

108 "A260/A230": 2.1

109 }

110 },

111 "Succ": "Dilute"

112 }

113 }

Part of protocol designed for Ecology:

1 {

2 {

3 "Operation ": "Grow",

4 "Precond ": {

5 "SlotArgNum ": 1,

6 "SlotArg ": [

7 "Watered_Rice_Plants -1"

8 ]

9 },

10 "Execution ": {

11 "DeviceType ": "Environmental growth chamber",

12 "Config ": {

13 "Temperature ": "24 ◦ C",

14 "LightCycle ": "12h light /12h dark"

15 }

16 },

17 "Postcond ": {

18 "EmitArgNum ": 1,

19 "EmitArg ": [

20 "Mature rice plants"

21 ]

22 }

23 },

24 {

25 "Pred": "Grow",
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26 "FlowUnit ": {

27 "Component ": "Mature rice plants",

28 "ComponentType ": "BiologicalMaterial",

29 "RefName ": "Mature_Rice_Plants -1",

30 "UnitArgType ": "PROD",

31 "Vol": "N/A",

32 "Container ": "Plastic pot",

33 "Cond": {

34 "State": "Mature",

35 "Height ": "50-60 cm"

36 }

37 },

38 "Succ": "Anesthetize"

39 },

40 {

41 "Operation ": "Collect",

42 "Precond ": {

43 "SlotArgNum ": 2,

44 "SlotArg ": [

45 "Monitored_Aphid -1",

46 "Mature_Rice_Plants -1"

47 ]

48 },

49 "Execution ": {

50 "DeviceType ": "Microcapillary tube",

51 "Config ": {}

52 },

53 "Postcond ": {

54 "EmitArgNum ": 1,

55 "EmitArg ": [

56 "Phloem sap"

57 ]

58 }

59 },

60 {

61 "Pred": "Collect",

62 "FlowUnit ": {

63 "Component ": "Phloem sap",

64 "ComponentType ": "Liquid",

65 "RefName ": "Phloem_Sap -1",

66 "UnitArgType ": "PROD",

67 "Vol": "1-2 µL",

68 "Container ": "Microcapillary tube",

69 "Cond": {

70 "State": "Collected",

71 "Appearance ": "Clear , slightly viscous"

72 }

73 },

74 "Succ": "Dilute"

75 },
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76 {

77 "Operation ": "Centrifuge",

78 "Precond ": {

79 "SlotArgNum ": 1,

80 "SlotArg ": [

81 "Diluted_Phl_Sap -1"

82 ]

83 },

84 "Execution ": {

85 "DeviceType ": "Centrifuge",

86 "Config ": {

87 "speed": "6000 rpm",

88 "temperature ": "4 ◦ C",

89 "time": "10 min"

90 }

91 },

92 "Postcond ": {

93 "EmitArgNum ": 1,

94 "EmitArg ": [

95 "Extracellular vesicles"

96 ]

97 }

98 },

99 {

100 "Pred": "Centrifuge",

101 "FlowUnit ": {

102 "Component ": "Extracellular vesicles",

103 "ComponentType ": "Mixture",

104 "RefName ": "EVs -1",

105 "UnitArgType ": "PROD",

106 "Vol": "N/A",

107 "Container ": "200-µl microtube",

108 "Cond": {

109 "State": "Purified",

110 "Appearance ": "Small , almost invisible pellet"

111 }

112 },

113 "Succ": ""

114 }

115 }
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