
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIERARCHICALLY ENCAPSULATED REPRESENTATION
FOR PROTOCOL DESIGN IN SELF-DRIVING LABS

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-driving laboratories have begun to replace human experimenters in perform-
ing single experimental skills or predetermined experimental protocols. However,
as the pace of idea iteration in scientific research has been intensified by Artifi-
cial Intelligence, the demand for rapid design of new protocols for new discov-
eries become evident. Efforts to automate protocol design have been initiated,
but the capabilities of knowledge-based machine designers, such as Large Lan-
guage Models, have not been fully elicited, probably for the absence of a sys-
tematic representation of experimental knowledge, as opposed to isolated, flatten
pieces of information. To tackle this issue, we propose a multi-faceted, multi-
scale representation, where instance actions, generalized operations, and product
flow models are hierarchically encapsulated using Domain-Specific Languages.
We further develop a data-driven algorithm based on non-parametric modeling
that autonomously customizes these representations for specific domains. The
proposed representation is equipped with various machine designers to manage
protocol design tasks, including planning, modification, and adjustment. The re-
sults demonstrate that the proposed method could effectively complement Large
Language Models in the protocol design process, serving as an auxiliary module
in the realm of machine-assisted scientific exploration.

1 INTRODUCTION

The rapid advancement of Artificial Intelligence (AI) models for the assistance of scientific discov-
ery (Wang et al., 2023b) has precipitated an increased demand for rapid iteration of ideas, from the
generation to the verification of hypotheses. Although AI models have expedited the process of
hypothesis generation, the validation phase still requires intensive empirical experimentation from
human. The concept of self-driving laboratory has been introduced to substantially accelerate the
validation process, in organic chemical synthesis (Mehr et al., 2020; Burger et al., 2020), cell biol-
ogy for medical research (Kanda et al., 2022), and novel material discovery (Szymanski et al., 2023).
With the expertise and effort of experimental scientists and automation engineers, mobile robots and
Internet of Things (IoT) pipelines are configured to perform a sequence of actions in accordance
with a detailed description of the specific experimental procedure, referred to as the protocol.

While existing protocols suffice for some experimental tasks, discovery processes often demand a
higher degree of specificity, including: (i) confirmation of unverified experimental objectives to seek
specific findings; (ii) testing parallel hypotheses or solutions; and (iii) replication of established ex-
periments within the constraints of available laboratory resources. These necessitate the design of
new protocols, going beyond the reuse of existing ones available in the protocol databases. Particu-
larly, this includes the planning of novel protocols, and the modification and adjustment of current
protocols as appropriate, respectively. Unfortunately, self-driving laboratories currently only execute
isolated and duplicated experimental skills (Bédard et al., 2018; Steiner et al., 2019), or pre-specified
protocols with sequential actions (Rohrbach et al., 2022; Manzano et al., 2022). Any innovation in
protocols imposes intensive manual design burden (McNutt, 2014; Baker, 2016), potentially becom-
ing a bottleneck in accelerating scientific discovery. Consequently, there is a quest for the automatic
design of protocols tailored to specific goals for self-driving laboratories.

Designing new protocols is a non-trivial task even for human scientists. Novice scientists tend to
adhere strictly to established protocols and may be at a loss when faced with the need for variations,
from minor adjustments like different available devices to more significant shifts in the overall ex-
perimental goal. In contrast, veteran scientists typically have the capability to create or modify

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

protocols as needed, from variations in available resources (“what I have”) to desired outcomes
(“what I want”), even in situations where a similar protocol was not encountered before.

The distinction arises because veteran scientists possess a systematic understanding of every ingre-
dient and procedure, contextualizing them globally within the domain of experiment. They know
“what kind of ingredient is used for what purposes” and “what kind of operation is used under
what conditions’, while novice scientists mechanically memorize the sequential execution orders
and corresponding parameters in a local context. This systematic understanding, or conceptual
knowledge (Ryle & Tanney, 1949), includes the background knowledge of ingredients and atomic
operations, as well as the relationships between them. Experienced experimental scientists develop
such conceptual knowledge as a representation for protocol design (McCarthy, 1959), which serves
as the vehicle for reasoning processes. Reasoning over conceptual knowledge leverages the rich
context of generalized, abstracted concepts of ingredients and operations rather than specified, in-
stantialized ones, which spans a semantic space where originally isolated dots are connected with
each other, thereby enhancing the simplicity and flexibility of protocol design (Boden, 1980; Newell,
1982). In summary, veteran scientists’ capability to design new protocols stems from an appropriate
representation of background knowledge that supports reasoning processes (see Fig. 1A).

To implement automatic protocol design on machines, a reasonable choice may be leveraging a
Large Language Model (LLM). Trained on extensive corpora, including scientific documents,
LLMs possess the potential to facilitate protocol design with the corresponding background knowl-
edge (AI4Science & Quantum, 2023). Recently, researchers have made beneficial attempts to design
new protocols using LLMs based on descriptions of new experimental goals (Boiko et al., 2023;
M. Bran et al., 2024). Regrettably, benchmarking results indicate that the expected capability of
LLMs in protocol design is not fully elicited (O’Donoghue et al., 2023). One significant limitation
is that LLMs excel at generating new protocols similar to existing ones, i.e., protocols with similar
sequential execution orders, but fail to generate those with distinct dependency distributions. This
limitation hampers LLMs in scenarios where experimental goals change in high intensity. Another
limitation is that the generated protocols sometimes lose critical configuration details for operation
execution, necessitating manual correction. These empirical evidences suggest that LLMs exhibit
limitations akin to those of novice human experts, implying that LLMs may necessitate a more
suitable representation of background knowledge to fully unleash their potential in protocol design.

Protocol design is a multi-faceted, multi-scale effort requiring the integration of information from
different perspectives, from low-level to high-level. This information includes detailed configura-
tions of each atomic operation, temporal relationships between atomic operations, the scope of ap-
plication for atomic operations with the same reference name, and the reactive relationships between
reagents and operations. While LLMs undoubtedly capture such knowledge from their training cor-
pora, the pieces of knowledge remain isolated, unorganized, and not articulated. These flatten back-
ground knowledge, rather than conceptual knowledge, hinders LLMs from flying over a global view
of the novel objectives and diving into the details of operations. Therefore, we propose developing a
multi-faceted and multi-scale representation for protocol design that provides the designer, such
as LLMs, with a vehicle to reason over conceptual knowledge of ingredients and procedures.

We draw inspiration from both cognitive science literature on rationality (Monsell, 2003), which sug-
gests that we cannot consider information from different views and scales in a single thread (Grif-
fiths, 2020). We also learn from computer science literature on hierarchical abstraction (Liskov,
1987), which indicates that higher-level abstraction semantics possess more powerful expressivity
compared to their lower-level counterparts (Abelson & Sussman, 1996; Hopcroft et al., 1996). Com-
bining these insights, we suggest that our desired representation should encapsulate information of
different granularities in corresponding hierarchies of abstraction, gaining global design insights
with higher-level semantics while completing execution configurations with lower-level semantics.
Specifically, we investigate three levels of encapsulation (see Fig. 1B). Starting from the set of origi-
nal protocols, namely the basic level, we have (i) protocol element instantialization, which decom-
poses full protocols into instance operations with attributes, within the local context of the specific
protocol, resulting a structural representation of the elementary information; (ii) function abstrac-
tion, which offers an operation-centric view that generalizes the precondition, postcondition, and
execution configurations of each operation in the global context of the experiment domain, result-
ing a sequential representation of the operations; (iii) model abstraction, which offers an reagent
and intermediate product centric view that unifies the status transitions in the global context of the
experiment domain, resulting a continuous representation of the experimental environment. This hi-
erarchical structure provides the designer with a representation to consider all possible associations
among operations, among products, and between operations and products, with a high degree of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

A B

Sample

Leaves 5g

Lysis

Leaves 2h

Precipitate

Lysate 1h

 DNA Extraction from Plant Leaves
Sample

Leaves 5g

Lysis

Leaves 2h

Precipitate

Lysate 1h

Homogenize

Cells Buffer

Precipitate

H.Cell 12h

Protein Extraction from Plant Stem Cells

Cultivate

Cells 25°C

Measure

RNA

Check

A.G.E.

Transcript

RNA

cDNA Synthesis

Request for new experimental objective:

Check the integrity of the DNA from the given Plant Stem Cells

Which existing
protocol is most

similar to the new
experimental

objective?

DNA Extraction from Plant
Leaves: sample from the

plant leaves, lysis the leaves
for 2h, and precipitate the

lysate for 1h.

Protein Extraction from
Plant Stem Cells: cultivate

cells in 25°C, homogenize the
cells in buffer, and precipitate

the protein for 12h.

cDNA Synthesis: measure the
quantity of the RNA, check
its integrity by A.G.E., and

conduct reverse transcription
on the RNA.

Cultivate

Cells 25°C

Lysis

Cells 2h

Precipitate

Lysate 1h

Measure

DNA

Check

A.G.E.

Novice Scientist Veteran Scientist Original protocol

Instance actions

Operation-centric view

Dual representation of operation- and product-flow-centric views

Leaves’
Samples

Leaves

Sample

Leaves 5g Leaves’
Samples

Leaves’
LysateLysis

Leaves 2h Leaves’
Lysate

DNAPrecipitate

Lysate 1h

Sample

Sample’s
LysateLysis

 Device: ?

Duration: ?

Lysate |
Homogenized

Sample

DNA | RNA |
Protein

Precipitate

Device: ?

Duration: ?

Lysate

DNAPrecipitate

Lysate 1h Lysate

RNAPrecipitate

Lysate 2hH.Cell

ProteinPrecipitate

H.Cell 12h

Sample

LysisL.Sample

Semi-solid Lysis

PrecipitateLysate

Mixture Precipitate

DNA

Mixture

SampleLeaves

Solid 5g

...
Sample

Device: ?

Vol: ?

Solid |
Liquid | Gas

Solid |
Liquid | Gas

L.Sample

Contain: ?

Vol: ?

Lysate

Contain: ?

Prop: ?

DNA

Contain: ?

Prop: ?

Leaves

Phase: ?

Mass: ?

Lysis

 Device: ?

Duration: ?

Precipitate

Device: ?

Duration: ?

Sample

Device: ?

Vol: ?

Function abstraction

Model abstraction

Figure 1: The representations for protocol design. (A) The example of protocol design by novice
and veteran experimental scientists. (B) The hierarchies of our proposed representation, from origi-
nal full protocol representation, to dual representation of operation- and product-flow-centric views.

freedom, by disentangling originally intertwined information. We implement the representation us-
ing Domain-Specific Languages (DSLs) (Fowler, 2010). The hierarchical syntax of DSLs maintains
both the abstract semantics at the high-level and the precise information at the low-level. Further-
more, the compositionality of DSL syntax facilitates the flexible protocol designs, addressing the
“flying over global views” requirement; while DSL program verification over the generated proto-
cols upholds their soundness and completeness; addressing the “diving into details” requirements.

However, the proposed representation does not come without drawbacks — it can be highly depen-
dent on domain-specific knowledge (Mernik et al., 2005). The distributions of reagents, operations,
and execution dependencies vary significantly across different domains in experimental sciences,
such as Genetics, Medical, Bioengineering, and Ecology. Manually crafting DSLs specialized for
these domains requires deep integration between domain experts and programming language ex-
perts, which is labour-intensive, case-by-case, and costly (Shi et al., 2024). This obstacle hinders
the application of our representation to a broader set of domains. To make the representation specifi-
cation more affordable, we develop an algorithm that conducts multi-hierarchy encapsulation auto-
matically driven by the domain-specific corpus of existing protocols. Ultimately, we may be able to
take a critical step toward closing the loop of autonomous scientific discovery by establishing these
two building blocks: (i) the automatic generation of representation for protocol design; and (ii) the
automatic designer working on the representation.

Our contributions in this work are three-fold: (i) we identify the problem of representation for pro-
tocol design and develop a hierarchically encapsulated representation for protocol design (Sec. 2);
(ii) we propose a data-driven algorithm that automatically generates the representation for proto-
col design specialized for the domain of application (Sec. 3); and (iii) we demonstrate the utility
of the resulting representation by conducting protocol planning, modification and adjustment tasks
using a variety of machine designers across different domains (Sec. 4). This further indicates that
our proposed automatic representation generation approach possesses the potential to function as an
auxiliary module for LLMs, enhancing their capability on protocol design.

2 REPRESENTATION FOR PROTOCOL DESIGN

In this section, we describe our representation for protocol design (see Fig. 1B). We first formulate
the basic protocol design problem in Sec. 2.1. Afterwards, starting from the original full protocol, we
introduce the three hierarchies of representations: (i) structural representation, i.e., instance actions
with attributes (Sec. 2.2); (ii) sequential operation-centric representation, i.e., function abstraction
(Sec. 2.3); and (iii) continuous product-flow-centric representation, i.e., model abstraction (Sec. 2.4).
Furthermore, we describe how the dual representation of operation-centric and product-flow-centric
views reciprocatively facilitates the verification of the designed protocols in Sec. 2.5.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.1 THE PROTOCOL DESIGN PROBLEM

Protocol design problem PD = (Φ|ω∗,P,Ω) is generating a desired protocol Φ given the new
coming experimental objective ρ, domain of experiment P , and available reagents Ω. A protocol
Φ = ⟨φ1, φ2, . . . ⟩ is a sequence of experimental steps φt. An experimental objective ω∗ is the
expected final product of the experiment. Experimental objectives can range from preparing a de-
sired product, to testing the significance of a specific hypothesis and detecting a predicted behavior,
with the latter two potentially followed by additional standalone steps for property test, observation,
and interpretation. We denote domains of experiment as P , which influences the distributions of
protocols by means of the distributions of operations, reagents, and execution orders, etc. The set of
available reagents Ω includes originally accessible reagents and excludes those requiring production.

2.2 INSTANCE ACTIONS WITH ATTRIBUTES

Protocols are originally represented in Natural Language (NL), which is the representation suitable
for humans’ comprehension, but not for machines (Bartley et al., 2023). Without a syntax decom-
posing a NL-based protocol into information elements precisely, machines are likely to capture only
overall, coarse-grained information of protocols and may only retrieve within existing protocols for
the one that is most similar to the new experimental objective. Consequently, according to the stan-
dards and conventions of experimental sciences (Baker, 2021), the prerequisite of representation
for a machine protocol designer should be a structural representation which decompose NL-based
protocols into instance actions with attributes {φt|(φprec

t , φpost
t , φexec

t)}. The instance actions are de-
composed by execution order and their attributes are the exact context for their execution, namely
the precondition φprec

t , i.e., the availability of resources required for this action, postcondition φpost
t ,

i.e., resulting product of the operation, and execution configurations φexec
t . Execution configurations

includes the configuration parameters and their corresponding values, e.g., the device for conduct-
ing the operation and required experimental conditions such as duration, acidity, and lightening. An
instance action can be reusable in another protocol once the execution context is matched.

With such reusability, we are on the first time to have building blocks for constructing a new protocol
rather than retrieving existing ones. These building blocks capture fine-grained execution configu-
ration parameters through maintaining the nested data structures of key-value pairs. This structural
representation serves as a syntactic constraint on the preciseness of designed protocols. Practical
attempts have been made echoing this idea (O’Donoghue et al., 2023; Leonov et al., 2024).

2.3 OPERATION-CENTRIC VIEW WITH FUNCTION ABSTRACTION

The reusability of instance actions with attributes is highly limited, as their semantics are highly
specified in the low-level. The total amount of the instance actions can be extremely high, i.e., about
150K per domain, thus the probability of the exact matching between execution contexts can be ex-
tremely low. Consider the three different instance actions with attributes “Homogenization of mouse
liver tissue using a bead mill”, “Homogenization of bacterial cell suspension using an ultrasonic
homogenizer”, and “Homogenization of bacterial air samples using a nebulizer”. Although they
come with totally different preconditions, postconditions, and execution configurations, particularly
the required device varying according to the phase of the experimental subject, they share the se-
mantic identifier “Homogenization” for reference. Sharing semantic identifier indicates that these
instance actions share the same purpose on the semantics level. In experimental sciences, “Homog-
enization” always refers to the breakdown of a sample into a uniform mixture. Whether it’s tissue,
cell suspension, or gas doesn’t change the purpose of the operation. This is critical for protocol de-
sign, since it essentially requires satisfying the ultimate goal through a series of subgoals. Therefore,
the desired representation should generalize the semantics of operations to any possible contexts in
the corresponding domain of experiment, rather than only specific contexts.

We implement such generalization by encapsulating varied instances of preconditions, postcondi-
tions, and execution configurations into an interface for the operation. Namely, we refer to an op-
eration with semantic identifier φ through an interface ϕ to a set of execution contexts, in the form
of ⟨φ 7→ ϕ 7→ {(φprec, φpost, φexec)}⟩. The operation φ can be grounded to a corresponding instance
action in any matched execution contexts, echoing modular design (Abelson & Sussman, 1996).
The reusability of encapsulated operations comes with greater significance than that of instance
actions, as there are only about 1K operations per domain in total, which is only 1/150 of that of in-
stance actions. As flexible building blocks, operations can be easily fitted into any breakpoints with
suitable preconditions and postconditions in the constructing experiment sequence. This sequential

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

representation of the operations serves as a semantics constraint on the compact permissible set of
primitives for protocol design, maintaining both degree of freedom and correctness.

2.4 PRODUCT-FLOW-CENTRIC VIEW WITH MODEL ABSTRACTION

Sequence of operations make up of protocols. However, operations are the methods to realize
rather than the objectives to achieve. For experimental objectives of testing, preparing, or detect-
ing (Schwab & Held, 2020), the common focus is always the specific status of final product, not the
operations. Starting from initial reagents, the status of product flow is manipulated step-by-step by
the operations, till the final product. Unfortunately, the information of product status transition is
latent in protocols and is twisted with descriptions of experimental steps. For the operation-centric
view, the transitions of product flow statuses remains a black box environment. For example, the
operation description “Centrifuge the tubes at 15,000 x g for 20 minutes” does not directly reveal
the transition from product in mixture status to products in distinct phases. The lack of coherent
tracking of the product flow is problematic of protocol design, as the product flow holds spatial-
temporal invariance, just the same as the general physical environment. Status transitions of the
product flow are primarily caused by the effects of operations, thereby it serves as the invariant in
executing the protocol from the perspective of programming. Therefore, the desired representation
should also serve as the model interacting with the sequence of operations.

To disentangle product status from their latent representation in the operation-centric view, we pro-
pose an explicit product flow centric view that tracks the status of the product flows with detail,
such as component, volume, container, and other physical and chemical properties of the product,
and also the predecessor operation that yields the product and the successor operation that takes the
product as input. Each product flow unit, i.e., one individual component in the product flow between
two adjacent steps, is an instance with attributes {ωt|(ωpred

t , ωsucc
t , ωprop

t)}. Analogous to the gen-
eralization of operations’ semantics, product flow units share commonalities between components
with the same semantic identifier for reference — they may share a specific range of predecessor
operations ωpred and successor operations ωsucc, and a selected set of key properties to consider ωprop.
For example, the “supernatant” is usually generated by a “centrifugation” operation, passing into
“filtration” or “spectrophotometric analysis”, and focusing on the properties acidity and viscosity
rather than other possible properties. Thus, we encapsulate the information of contexts and prop-
erties into the semantics of product flow units, in the form of ⟨ω 7→ (ωpred, ωsucc, ωprop)⟩. As solid
pipelines bridging the building blocks, product flow units can verify the coherency of the entire
designed protocol. This continuous representation of the environments serves as a program veri-
fier, checking the prerequisite and simulating the effect of each operation, alleviating unpredictable
behaviors among the interaction between operations and product flows.

2.5 RECIPROCATIVE VERIFICATION OVER THE DUAL REPRESENTATION

Algorithm 1 Reciprocative Verification
procedure OFVERIFICATION(M , φ)

▷ Check that the pre/ post conditions are met
CHECKOPCONDITIONS(φ,φprec, φpost)
if φprec ⊆M(Ω) then

M(Ω)← (M(Ω) \ φprec) ∪ φpost

▷ Proceed to verify each output product
for product ω in φpost do

PFVERIFICATION(M , ω)
procedure PFVERIFICATION(M , ω)

▷ Check necessary properties of the product
CHECKPROPERTIES(ω, ωprop, φ′req)
▷ if required by subsequent operations.
if ∃ φ′ s.t. ω ∈ φ′prec then

▷ Verify operations using the product
OFVERIFICATION(M , φ′)

The dual representation of operation-centric
and product-flow-centric views intrinsically
equips with a verification mechanism through
a reciprocative process akin to two interacting
threads. The first thread focuses on verifying
the operation flow, taking as input an operation
φt along with its precondition φprec

t and post-
condition φpost

t . The second thread handles the
verification of the product flow, taking as input
a product ωt along with its predecessor opera-
tion ωpred

t and successor operation ωsucc
t .

Specifically, for the operation verification
(corresponding to OFVERIFICATION in
Alg. 1), we ensure that each operation can be
correctly executed given its input reagents and
that it yields the expected output products.
This involves checking that the preconditions
are satisfied by the available products from
preceding operations and that the postconditions are well-defined for subsequent use. Concurrently,
the product flow verification (corresponding to PFVERIFICATION in Alg. 1) involves tracking each

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

A

B C D E F

Domain corpus of NL protocols

Remove

Precipitate

Resuspend

 the culture media by pipetting...

Resuspend with a serological...

the cell debris in the lysate...

Precipitate the cell debris in ...

Remove by pipetting...

the pellet with a serological...

the pellet

the lysate
the culture media

Hierarchical non-parametric modeling

Information on different granularities

Clusters with hierarchiesLevels of the hierarchical model

Precondition: ?

Duration: ?

FBS
FlowUnit

ComponentType
UnitArgType Vol

Container Cond
Concentration

Temperature
Status

 ::=
< >

FlowUnit(: ,

: , : [,
, , , , ,],

: , < >)

Cond(: [,],

: range(),
:)...

Modification_Operations
Transfer_Operations

tube

heat_inactivated

Liquid
MAT 0.1mL

0.5mL 1mL 5mL 10mL 25mL 50mL

5% 10%
18°C, 26°C

 ::= Interface_0 |
Interface_1

 Interface_0 ::= Precond(:
, : [,])

Postcond(: , :
)

Execution(: ,
:)

Interface_1 ::= Precond(:
, : [,])...

Precipitate

SlotArgNum
SlotArg

EmitArgNum EmitArg

DeviceType
Capacity

SlotArgNum
SlotArg

2
1

15mL

4

Liquid Solid

Liquid

Liquid ...

falcon_tube

Resulting DSLs as the representation

Figure 2: Diagram of automatic representation generation. (A) Illustration of the workflow. (B)
Convergence curve of automatic function abstraction. (C) Convergence curve of automatic model
abstraction. (D-F) Confusion matrices on operation distribution (D), product distribution (E), and
device distribution (F), between DSLs across domains. Correlation scores are low except the ones
along the diagonals, indicating the significant inter-domain distinctions between the resulting DSLs.

unit of product flow through the protocol. We verify that the product is generated by the specified
operation and that it possesses the necessary properties ωprop

t for consumption by the next operation.

The interaction between these two threads forms a feedback loop where the verification of opera-
tions and products mutually inform and constrain each other. This reciprocative method allows us to
iteratively refine the protocol, ensuring that each step is both operationally feasible and chemically
coherent. LLMs are employed to implement the functions CHECKOPCONDITIONS and CHECK-
PROPERTIES, extracting and verifying operation conditions and product properties from natural
language protocol descriptions through instruction-following in-context learning (Wei et al., 2021;
Brown et al., 2020). For the prompts employed, readers are referred to Appx. D.6.

3 AUTOMATIC REPRESENTATION GENERATION

In this section, we describe the proposed data-driven algorithm to automatically generate the hierar-
chically encapsulated representation for protocol design (see Fig. 2A). We first define the problem
of generating the desired representation by means of DSL design (Sec. 3.1). We then introduce
methods for generating operation-centric (Sec. 3.2) and product-flow-centric (Sec. 3.3) DSL views.

3.1 THE REPRESENTATION GENERATION PROBLEM

We denote the problem of generating the representation for protocol design within a given domain
as RG = ({⟨φ⟩, ⟨ω⟩}|P, C). The representation is a DSL with language features accommodating
both the operation-centric program view ⟨φ⟩ and the product-flow-centric program view ⟨ω⟩. The
domain-specific corpus C = {Φ1,Φ2, . . . ,Φ|C|} consists of existing protocols published in top-
quality journals within the corresponding experimental domain. The source and profiles of C of
each domain is detailed in Appx. E.1. We can obtain instance action with attributes based on C in a
straightforward way through NL information extraction (see Appx. D.3 for implementation details).
The prior knowledge of operations and products, p(φ) and p(ω), including the basic syntax of the
key-value structures and the elementary taxonomies, is derived according to the general common-
sense of experimental sciences, as aforementioned in Sec. 2. Specifically, the problem essentially
aims to fit the joint distribution models p(φ, ϕ, φprec, φpost, φexec) and p(ω, ωpred, ωsucc, ωprop) with
domain-specific corpus C given prior knowledge p(φ) and p(ω).

3.2 AUTOMATIC FUNCTION ABSTRACTION

The key challenge of encapsulating the operation-centric view is to aggregate all possible execution
contexts for an operation, and then generalize the contexts to the interface. If we keep each of the
use case as one single instance of the interface, which can be in thousands regarding one operation,
the generalization is meaningless. Since there is no prior knowledge about the interface in advance,
we develop the algorithm following the idea of non-parametric modeling, i.e., Dirichlet Process
Mixture Model (DPMM), resulting in flexible identification of interface instances.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Hierarchical non-parametric modeling As we must handle information coming in different
granularities, from interface structures to values of parameters, we choose to model the operations in
a hierarchical fashion. Compared with the flatten spectral clustering approach developed by Shi et al.
(2024), which compresses all information of an operation into a embedding vector, our modeling is
competent for considering information at different levels comprehensively. We carefully adopt the
prerequisite that the interface is generated subject to the operation, preconditions, postconditions,
and execution configurations are generated subject to the interface, and the value of configuration
parameters are generated subject to their corresponding keys. Thus, we have the model:

p(φ, ϕ, φprec, φpost, φexec, φexec-v)

= p(φexec-v|φ, ϕ, φexec)p(φexec|φ, ϕ)p(φprec|φ, ϕ)p(φpost|φ, ϕ)p(ϕ|φ)p(φ),
(1)

where φexec-v denotes the values of configuration parameters. Within each iteration of the DPMM
process, we sample the variables level-by-level. Since the structures of preconditions, postcondi-
tions, and the selection of devices and configuration parameters are discrete, we sample them directly
from the Dirichlet Process. As permissible values of parameters can be discrete, e.g., an array of
specific values, common in acidity preparation; continuous, e.g., an interval with minimum and max-
imum values, common in temperature setting; or mixed, e.g., an array of specific values with random
perturbations around the mean, common in timing control, we conduct the sampling by integrating
Gaussian Process with Dirichlet Process φexec-v|φ, ϕ, φexec ∼ DP (α,H(φexec), ϕ, φ)×GP (m,K),
where α, H , m, and K are corresponding hyperparameters.

Unification of the interface While clustering similar interface instances encapsulates operations,
there may remain redundant interfaces due to minor discrepancies. These discrepancies often arise
from differences in parameter values or naming conventions that do not fundamentally alter the op-
eration’s functionality. To alleviate such redundancies, we implement a unification process for the
interfaces. Specifically, interface instances associated with the same operation are considered equiv-
alent if they have the same number of slots and emits and share the same keys in their execution
configuration parameters. By abstracting away differences in parameter values and names, we unify
these interfaces into a single, generalized interface, akin to the algorithm proposed by Martelli &
Montanari (1982). Unification enhances the generality of the operation-centric view by consolidat-
ing functionally-identical interfaces, maintaining a concise and representative set of operations.

Results Function abstraction converges on the domains respectively, as shown by the likelihood
curve yielded by non-parametric model in Fig. 2B. In the DSL of Genetics, there are 304 operations
in total, with an average of 7.9 interface instances per operation; for Medical, these two quanti-
ties are 269 and 6.9; for Bioengineering, they are 196 and 7.8; and for Ecology, they are 100 and
3.5. We find that a majority of operations with high occurrence frequency are unique to one do-
main, such as Pipette to Medical and Lyse to Genetics (see Fig. 2D). There are also common
operations across domains, such as Concentrate and Culture. Take Concentrate for an exam-
ple, its interface captures the instances with different devices according to input phases, e.g., use
Bench-top_centrifuge for Liquid while Isotope_separation_centrifuge for Gas, and also
instances with different emits, e.g., selecting Supernatant or Suspension as the product to keep.

3.3 AUTOMATIC MODEL ABSTRACTION

The key challenge of encapsulating the product-flow-centric view is to select proper descriptive
properties of a flow unit component. There exists false positive cases, where properties are attributed
to components with the same semantic identifier but in different phases, e.g., we consider ethanol
with the property volume when it comes in liquid and with the property pressure when it comes in
gas. There also exists false negative cases, where exact same components are regarded as different
ones due to different reference names, e.g., Acetylsalicylic Acid, ASA, and Aspirin refer to the
same thing. To alleviate false positive and false negative results, we discard the design choice of
the interface in the operation-centric view, which tends to cover the possibly richest context, and
thereby have the non-parametric model:

p(ω, ωpred, ωsucc, ωprop, ωprop-v) = p(ωprop-v|ωprop, ω)p(ωprop|ω)p(ωpred|ω)p(ωsucc|ω)p(ω), (2)

where ωprop-v denotes the values of property parameters.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

C

D

E

A

FB
IB
II

EI
EI+
EE

EE+

0.0 0.5 1.0

IoU(Op)

**** ****

FB
IB
II

EI
EI+
EE

EE+

0.0 0.5 1.0

IoU(Prod)

FB
IB
II

EI
EI+
EE

EE+

0.0 0.5 1.0

IoU(Dev)

**** ***

FB
IB
II

EI
EI+
EE

EE+

0.0 0.5 1.0

Sim(Exe)

**
**

FB
IB
II

EI
EI+
EE

EE+

0.6 0.8 1.0

Sim(Goal)

*** ****

FB
IB
II

EI
EI+
EE

EE+

0.8 1.0

Sim(Param)

FB
IB
II

EI
EI+
EE

EE+

0.0 0.5 1.0

IoU(Op)

**** ****

FB
IB
II

EI
EI+
EE

EE+

0.0 0.5 1.0

IoU(Prod)

FB
IB
II

EI
EI+
EE

EE+

0.0 0.5 1.0

IoU(Dev)

**** ****

FB
IB
II

EI
EI+
EE

EE+

0.5 1.0

Sim(Exe)

*
**

FB
IB
II

EI
EI+
EE

EE+

0.6 0.8 1.0

Sim(Goal)

*
**

FB
IB
II

EI
EI+
EE

EE+

0.6 0.8 1.0

Sim(Param)

FB
IB
II

EI
EI+
EE

EE+

0.0 0.5 1.0

IoU(Op)

*** ****

FB
IB
II

EI
EI+
EE

EE+

0.0 0.5 1.0

IoU(Prod)

FB
IB
II

EI
EI+
EE

EE+

0.0 0.5 1.0

IoU(Dev)

FB
IB
II

EI
EI+
EE

EE+

0.5 1.0

Sim(Exe)

*
**

FB
IB
II

EI
EI+
EE

EE+

0.6 0.8 1.0

Sim(Goal)

FB
IB
II

EI
EI+
EE

EE+

0.7 0.8 0.9 1.0

Sim(Param)

0.2

0.4

0.6

PLA MOD ADJ

B

Figure 3: Results of protocol design. (A) Profile of text-level similarity between testing sets of
the three tasks. (B) Pairwise comparison between the capabilities of different machine designers
across the six dimensions. (C-E) Performances of the seven machine designers on the planning (C),
modification (D), and adjustment (E) tasks across the six dimensions (index by column).

Results Model abstraction converges on the domains respectively, as shown by the likelihood
curve in Fig. 2C. In the DSL of Genetics, there are 17, 190 model states, i.e., product flow unit as
product status, in total; the quantity is 12, 472 for Medical; 11, 418 for Bioengineering; and 2, 205
for Ecology. We find that most components of product flow units with high occurrence frequency
are unique to one domain, such as RNA to Genetics and HCC to Medical (see Fig. 2E/F). Take Ethanol
for example, the model captures its possible concentrations in liquid rather than in gas.

4 EXPERIMENTS AND DISCUSSION

In this section, we report and discuss the results of our experiments. We start from describing our
realistic novel protocol design tasks (Sec. 4.1), along with the metrics to measure the consistency
between the designed protocol and the groundtruth protocol (Sec. 4.2). Afterwards, we introduce
the alternative representations and machine designers used for comparison (Sec. 4.3). Finally, we
report and analyze the experimental results both quantitatively and qualitatively (Sec. 4.4).

4.1 PROTOCOL DESIGN TASKS

Table 1: Statistics of the testing set. Each cell presents
the total number of protocols m and experimental steps
n in the form m (n).

Genetics Medical Bioengineering Ecology

Planning 10 (130) 7 (96) 12 (157) 2 (25)
Modification 37 (442) 15 (225) 16 (210) 6 (59)
Adjustment 23 (219) 5 (87) 2 (26) 5 (81)

Generating unverified experimental objec-
tives and their corresponding protocols
specially for our protocol design tasks
is impractical because those experiments
which have not been peer-reviewed and
published can be problematic regarding
the contents themselves. To maintain both
reality and scale of the testing set, for each
domain we filter out a small subset of pro-
tocols which significantly differ from the
remaining major part of the protocol set
and exclude this subset from the corpora for automatic representation generation (Appx. E.1). This
selected subset form the groundtruth of the testing set.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We exploit quantitative indicators to assist testing set selection, which follows the convention of
measuring a protocol’s novelty in experimental sciences (Schwab & Held, 2020). We comprehen-
sively consider three indicators: (i) similarity between the text embedding of the NL-based descrip-
tion of purpose of protocols, employing the evaluation model in O’Donoghue et al. (2023); (ii) Inter-
section over Union (IoU) between the instance actions of protocols; (iii) similarity between the exe-
cution sequence of protocols, implemented through the Sequence Alignment (SA) algorithm (Smith
et al., 1981). To note, indicators (ii) and (iii) are calculated upon the protocols pre-processed by
the workflow described in Appx. D.3. Indicator (i) captures the high-level idea of protocol design,
indicator (ii) is correlated to the implementation of the protocol design, while indicator (iii) captures
the low-level information of protocol execution.

In response to the three purposes of protocol design introduced in Sec. 1, we specify the planning,
modification, and adjustment tasks of protocol design. Candidate planning tasks, which are the
confirmation of unverified experimental goals, come with relatively low scores (within the 20%
lowest) on indicators (i) and (ii). Candidate modification tasks come with fair scores (around the
40% lowest) on indicators (i) and (ii) and relative low score on indicator (iii). Candidate adjustment
tasks come with relatively high scores (within the 40% highest) on all of the three indicators.

We obtain the final testing set through a human-machine collaborative workflow. We first detect the
outliers of the original protocol corpus of each domain under the metrics above, thereby forming a
candidate set. Afterwards, experts of the corresponding domain (holding at least a Master’s degree
majoring in that domain) manually check the applicability of protocols in the candidate set with
cross-validation, discarding the misclassified ones, requesting for more candidate protocols, and
refining the groundtruth file when necessary. The testing set includes 140 new protocols and 1757
steps in total, across the domains of Genetics, Medical, Bioengineering, and Ecology, with 23% for
planning, 52% for modification, and 25% for adjustment (see Tab. 1 and Fig. 3A for details).

4.2 INTER-PROTOCOL CONSISTENCY METRICS

Evaluating the consistency between a designed protocol and the groundtruth is not like compar-
ing between two plain strings (O’Donoghue et al., 2023). Based on the corresponding com-
monground in experimental sciences (Bartley et al., 2023), we design six-dimensional metrics
to comprehensively cover all of the major factors without biased weighting and composition.
The six dimensions include: (i) IoU on operations, IoU(Op) = IoU({φ1...|Φ|}, {φ′

1...|Φ′|}),
IoU between instance actions of the designed protocol Φ and the groundtruth Φ′; (ii) IoU on
reagents and intermediate products, IoU(Prod) = IoU({ω0...|Φ|}, {ω′

0...|Φ′|}); (iii) IoU on de-
vices, IoU(Dev) = IoU({φ(Dev)1...|Φ|}, {φ(Dev)′1...|Φ′|}), where φ(Dev)t denotes the exact de-
vice for conducting the instance action φt; (iv) Similarity between the execution sequences,
Sim(Exec) = SeqAlign(⟨φ0...|Φ|⟩, ⟨φ′

0...|Φ′|⟩), where SeqAlign(·, ·) denotes the ordered sequence
similarity score calculation by the SA algorithm; (v) Similarity between experimental objectives,
Sim(Goal) = Cos(S(ρ), S(ρ′)), where S(·) represents the serialization operation on structural rep-
resentations of protocols; (vi) Similarity between complete protocols at parameter-wise level,
Sim(Param) = Cos(S(Φ), S(Φ′)). These six dimensions capture protocol information from low to
high granularities, and also measure the consistency of both ingredient knowledge and procedural
knowledge, offering a relatively objective evaluation standard.

4.3 MACHINE DESIGNERS

We implement an array of designers by combining different representations with different LLM-
based automatic designers under tractable computing load (see Appx. D.7). We investigate four
types of representations, including the original NL-based protocol representation (Flatten) and the
three levels of encapsulation described in Sec. 2, i.e., instance actions with attributes (Instance),
operation-centric view only (Encapsulated), and the dual representation with operation- and
product-flow-centric views (Encapsulated+). We consider three types of LLM-based protocol de-
signers: (i) Baseline, a pure LLM-based approach with Retrieval-Augmented Generation (RAG)
on the corresponding corpora (Appx. D.4); (ii) Internal, which takes the specific representation as
part of the prompt of an LLM, requesting it to output the protocol under the constraint of the given
representation (Appx. D.5); (iii) External, where the representation serves as an external constraint
layer for the output of an LLM, verifying and refining the designed protocols (Appx. D.6). Notably,
the external verifier is part of the resulting DSL as our proposed representation for protocol design.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The combination of representation and designer does not span a Cartesian space due to the in-
trinsic limitations of Flatten and Baseline. Therefore, we implement seven machine design-
ers, including: (i) Flatten-Baseline(FB), LLM with RAG on original protocol corpora; (ii)
Instance-Baseline(IB), LLM retrieval on the protocol corpora translated into instance actions;
(iii) Instance-Internal(II), prompting LLM with the Instruction Set Assembly (ISA) of instance
actions, following the implementation of the currently state-of-the-art method O’Donoghue et al.
(2023); (iv) Encapsulated-Internal(EI), prompting LLM with the DSL with operation-centric
view; (v) Encapsulated-External(EE), LLM equipping with the external verifier provided by the
DSL with operation-centric view; (vi) Encapsulated-Internal+(EI+), prompting LLM with the
DSL with the dual representation; and (vii) Encapsulated-External+(EE+), LLM equipping with
the external verifier provided by the DSL with the dual representation.

4.4 PROTOCOL DESIGN RESULTS

The complete quantitative results across the four domains, the three tasks, and the six dimensions of
evaluation metrics are presented at Appx. B. Through paired samples t-test, we find that EE+ and EI+
significantly outperform other alternative approaches (EE+ outperforms EE: t(278) = 8.007, µd <
0, p < .0001; EI+ outperforms EI: t(278) = 8.397, µd < 0, p < .0001; EE+ outperforms II:
t(278) = 24.493, µd < 0, p < .0001; EI+ outperforms II: t(278) = 23.855, µd < 0, p < .0001;
see Fig. 3C-E). These comparisons demonstrate the suitability of our desired representation for pro-
tocol design. Similarly, we find that approaches equipping with a relatively higher-level representa-
tion significantly outperforms their counterparts with a relatively lower-level representation (EE out-
performs II: t(278) = 16.315, µd < 0, p < .0001; EI outperforms II: t(278) = 15.259, µd < 0,
p < .0001; II outperforms FB: t(278) = 8.340, µd < 0, p < .0001; see Fig. 3B).

4.5 DISCUSSION

This work proposes a hierarchically encapsulated representation for the conceptual knowledge in
experimental sciences, including instance actions with attributes, sequential representation of op-
erations with function abstraction, and continuous representation of product-flows with model ab-
straction, to fully elicit LLMs’ capability on protocol design as an auxiliary module. The following
discussions on results reveal the design rationality, scalability, and generality of the representation.

Contributions of the building blocks The encapsulated representation approaches with dual
views outperform their counterparts without dual views by enhancing both intra-step and inter-step
details. At the intra-step level, EI and EE offer richer semantic information than IB and II, lever-
aging protocol-centric view to capture detailed configuration each operation. This feature accounts
for their satisfactory performance on IoU(Op). At the inter-step level, EI+ and EE+ treat each step
as a FlowUnit, incorporating both preceding and succeeding step contexts, leading to notable im-
provements in Sim(Exec) and IoU(Prod). This creates a double assurance mechanism: the first
assurance comes from internal input/output checks within each instruction, and the second from the
input/output characteristics inferred from neighboring instructions. Namely, we estimate the output
of the preceding operation and check its alignment with the current step’s input. This design en-
hances step linkage, verification, and overall protocol coherence, ensuring higher consistency and
robustness in complex protocol workflows. Please refer to Appx. H.1 for the case study.

Handling different task complexities The overall performance aligns with the trend in complex-
ity across the three tasks (Fig. 3A); however, the dual-view encapsulated representations, EI+ and
EE+, demonstrate superior performance compared to their counterparts. In planning, these meth-
ods consider all necessary components, enabling creative yet structured protocol generation. For
modification tasks, they provide feedback on parameter changes, detecting inconsistencies that their
counterparts might fail to capture. In adjustment tasks, EE+’s external verifier maintains protocol
integrity by identifying component relationships. Please refer to Appx. H.2 for the case study.

Generality across domains Our DSL-based approaches offer a unified, modular representation
with generalizability across scientific domains (see domain-indexed results at Appx. B.2). The dual-
view approach abstracts experimental processes into operations and flow units, capturing essential
details while remaining applicable across fields. By representing dependencies between steps and
tracking product flow, the replication of experiments could be enhanced. The framework captures
cross-domain commonalities while allowing domain-specific content like specialized operations and
reagents. This unified representation standardizes protocols and enables researchers to adopt ex-
perimental protocols from multiple fields, fostering interdisciplinary collaboration and innovation.
Please refer to Appx. H.3 for the case study. Limitations on generality are discussed at Appx. F.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Harold Abelson and Gerald Jay Sussman. Structure and interpretation of computer programs. The
MIT Press, 1996.

Microsoft Research AI4Science and Microsoft Azure Quantum. The impact of large language mod-
els on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361,
2023.

Monya Baker. 1,500 scientists lift the lid on reproducibility. Nature, 533(7604), 2016.

Monya Baker. Five keys to writing a reproducible lab protocol. Nature, 597(7875):293–294, 2021.

Bryan Bartley, Jacob Beal, Miles Rogers, Daniel Bryce, Robert P Goldman, Benjamin Keller, Peter
Lee, Vanessa Biggers, Joshua Nowak, and Mark Weston. Building an open representation for
biological protocols. ACM Journal on Emerging Technologies in Computing Systems, 19(3):1–
21, 2023.

Anne-Catherine Bédard, Andrea Adamo, Kosi C Aroh, M Grace Russell, Aaron A Bedermann,
Jeremy Torosian, Brian Yue, Klavs F Jensen, and Timothy F Jamison. Reconfigurable system for
automated optimization of diverse chemical reactions. Science, 361(6408):1220–1225, 2018.

Margaret Boden. Artificial intelligence and natural man. Synthese, 43(3), 1980.

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570–578, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, 2020.

Benjamin Burger, Phillip M Maffettone, Vladimir V Gusev, Catherine M Aitchison, Yang Bai, Xi-
aoyan Wang, Xiaobo Li, Ben M Alston, Buyi Li, Rob Clowes, et al. A mobile robotic chemist.
Nature, 583(7815):237–241, 2020.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), 2021.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and
Chiyuan Zhang. Quantifying memorization across neural language models. arXiv preprint
arXiv:2202.07646, 2022.

Martin Fowler. Domain-specific languages. Pearson Education, 2010.

Thomas L Griffiths. Understanding human intelligence through human limitations. Trends in Cog-
nitive Sciences, 24(11):873–883, 2020.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley Longman Publishing Co., Inc., 1996.

Genki N Kanda, Taku Tsuzuki, Motoki Terada, Noriko Sakai, Naohiro Motozawa, Tomohiro Ma-
suda, Mitsuhiro Nishida, Chihaya T Watanabe, Tatsuki Higashi, Shuhei A Horiguchi, et al.
Robotic search for optimal cell culture in regenerative medicine. Elife, 11:e77007, 2022.

Artem I Leonov, Alexander JS Hammer, Slawomir Lach, S Hessam M Mehr, Dario Caramelli,
Davide Angelone, Aamir Khan, Steven O’Sullivan, Matthew Craven, Liam Wilbraham, et al.
An integrated self-optimizing programmable chemical synthesis and reaction engine. Nature
Communications, 15(1):1240, 2024.

Barbara Liskov. Keynote address-data abstraction and hierarchy. In Addendum to the proceedings
on Object-oriented programming systems, languages and applications (Addendum), 1987.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Augmenting large language models with chemistry tools. Nature Machine Intelli-
gence, pp. 1–11, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. In Advances in Neural Information Processing Systems, 2023.

J Sebastián Manzano, Wenduan Hou, Sergey S Zalesskiy, Przemyslaw Frei, Hsin Wang, Philip J
Kitson, and Leroy Cronin. An autonomous portable platform for universal chemical synthesis.
Nature Chemistry, 14(11):1311–1318, 2022.

Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems (TOPLAS), 4(2):258–282, 1982.

John McCarthy. Programs with common sense. London, 1959.

Marcia McNutt. Reproducibility. Science, 343(6168):229–229, 2014.

S Hessam M Mehr, Matthew Craven, Artem I Leonov, Graham Keenan, and Leroy Cronin. A
universal system for digitization and automatic execution of the chemical synthesis literature.
Science, 370(6512):101–108, 2020.

Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop domain-specific
languages. ACM Computing Surveys (CSUR), 37(4):316–344, 2005.

Stephen Monsell. Task switching. Trends in Cognitive Sciences, 7(3):134–140, 2003.

Allen Newell. The knowledge level. Artificial Intelligence, 18(1):87–127, 1982.

Odhran O’Donoghue, Aleksandar Shtedritski, John Ginger, Ralph Abboud, Ali Ghareeb, and
Samuel Rodriques. Bioplanner: Automatic evaluation of llms on protocol planning in biology.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
2023.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

Simon Rohrbach, Mindaugas Šiaučiulis, Greig Chisholm, Petrisor-Alin Pirvan, Michael Saleeb,
S Hessam M Mehr, Ekaterina Trushina, Artem I Leonov, Graham Keenan, Aamir Khan, et al.
Digitization and validation of a chemical synthesis literature database in the chempu. Science,
377(6602):172–180, 2022.

Gilbert Ryle and Julia Tanney. The concept of mind. Routledge, 1949.

Simon Schwab and Leonhard Held. Different worlds confirmatory versus exploratory research.
Significance, 17(2):8–9, 2020.

Yu-Zhe Shi, Haofei Hou, Zhangqian Bi, Fanxu Meng, Xiang Wei, Lecheng Ruan, and Qining Wang.
AutoDSL: Automated domain-specific language design for structural representation of proce-
dures with constraints. In Annual Meeting of the Association for Computational Linguistics,
2024.

Temple F Smith, Michael S Waterman, et al. Identification of common molecular subsequences.
Journal of Molecular Biology, 147(1):195–197, 1981.

Sebastian Steiner, Jakob Wolf, Stefan Glatzel, Anna Andreou, Jarosław M Granda, Graham Keenan,
Trevor Hinkley, Gerardo Aragon-Camarasa, Philip J Kitson, Davide Angelone, et al. Organic
synthesis in a modular robotic system driven by a chemical programming language. Science, 363
(6423):eaav2211, 2019.

Nathan J Szymanski, Bernardus Rendy, Yuxing Fei, Rishi E Kumar, Tanjin He, David Milsted,
Matthew J McDermott, Max Gallant, Ekin Dogus Cubuk, Amil Merchant, et al. An autonomous
laboratory for the accelerated synthesis of novel materials. Nature, 624(7990):86–91, 2023.

Bailin Wang, Zi Wang, Xuezhi Wang, Yuan Cao, Rif A Saurous, and Yoon Kim. Grammar prompt-
ing for domain-specific language generation with large language models. In Advances in Neural
Information Processing Systems, 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. Nature, 620(7972):47–60, 2023b.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu, Lijie Wang, Haihua Yang, Biye Li, Cheng
Cheng, Weiwei Lü, Rui Hu, et al. Skywork: A more open bilingual foundation model. arXiv
preprint arXiv:2310.19341, 2023.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xi-
aojin Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex
operations research problems. In International Conference on Learning Representations, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL REMARKS

A.1 RATIONALE OF THE OVERALL DESIGN CHOICE

It seems that we can formulate the protocol design problem in the fashion of Markov Decision Pro-
cess (MDP) and solve it by heuristic-based planning methods or Hierarchical Reinforcement Learn-
ing (HRL) approaches. However, although the formulation itself is feasible, solving the problem
may not be practical. Consider solving the problem through an HRL approach designed for hetero-
geneous action space with parameters (as the protocol is required to decide both the key properties
of an operation and the corresponding values). This hierarchical agent may be trained to converge
on a fine-grained environment with a clearly designed reward function, or on a large dataset with
trajectories for offline learning. Unfortunately, we have access to neither an interactive environment
simulating the experiments nor sufficient data to support offline training (Pateria et al., 2021).

Treating the experimental procedures as a white box and creating digital twins for experiments
can be an elegant solution and thereby facilitate various applications other than protocol design.
This effort requires elaborated design of simulation granularity, exhaustive collection of primitive
principles of the system, efficient implementation of rule production, and define precise metrics for
evaluating the distance between current and objective states (serving as a reward function), which
can be labor-intensive and is far out of the scope of this work. On the other hand, viewing those
published protocols as trajectories for offline training, the scale of the offline dataset and the density
of the reward function are much too insufficient to support training to convergence. Augmenting
the data, synthesizing realistic trajectories, or enhancing the accessibility of protocols, are out of the
scope of this work. Given the current obstacles, we choose not to formulate the problem in an MDP
fashion. Though an MDP-style formulation can be more precise and elegant, it may misguide the
readers to some extent. Instead, we decide to leverage the rich domain-specific knowledge provided
by knowledge-based agents such as LLMs, where knowledge may complement the lack of data and
dense reward function. This design choice is also in line with the initial attempts on automatic
experiment design (Boiko et al., 2023; M. Bran et al., 2024).

In summary, our design choice of formulation is a compromise based on currently limited resources
and restricted scope. Nonetheless, the exploration of more precise and elegant formulations repre-
sents a promising avenue for future research.

A.2 INTUITION BEHIND THE INTERFACE

Interface is a concept of functional abstraction (Abelson & Sussman, 1996). Interface disentangles
the abstract functionality on the semantics level and its corresponding implementation details on the
execution level. This approach encapsulates the implementation of an operation into a black-box,
so the users of the operation would only need to consider its input and output. Therefore, with
such encapsulated representation for protocol design, we only need to care about the consistency
between the output of the predecessor operation and the input of the successor operation, without
caring about their implementation details.

This is the idea behind operationalization. Operationalization makes the interface an abstract func-
tion over all relative instance actions. The interface is abstracted from the execution contexts of all
instance actions with the same reference name, i.e., the same purpose, and can be instantiated to an
instance action given a specific execution context. A specific context can be the predecessor opera-
tion, the successor operation, the precondition, or the postcondition of the considered operation. An
instance action configures a specific implementation for a specific execution context. For the op-
eration “Homogenization”, the implementation of one instance action can be “using an ultrasonic
homogenizer” if the precondition, namely, the execution context, has intermediate product “cell
suspension” available; the implementation of another instance action can be “using a bead mill” if
the precondition contains tissue. This example demonstrates the relationship between interface and
instance actions of an operation: the interface is abstracted from the set of instance actions and can
be instantiated to instance actions.

Here we also give a more intuitive example to enhance the reader’s comprehension. Consider the
culinary scenario with the actions “frying the egg”, “frying the fish”, and “frying the steak”.These
are different instance actions coming with the same purpose “to fry something”. Therefore, we can
abstract the interface from these instance actions to operationalize the operation “fry”. The input of
“fry” should be something raw and its output should be something fried. Given different precondi-
tions with available eggs or pieces of steak, the abstract semantic operation “fry” can be grounded

A1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

to instance actions “frying the egg” or “frying the steak” respectively, through the instantiation of
the interface. In summary, an interface serves as the bridge between the semantics level and the
execution level.

A.3 VALUES OF MANUAL PROTOCOL CERTIFICATION

Certification is always one of the central focuses in the engineering practices of automation. In
our practice, we only automate the process of protocol design, which is the primary objective of
this work, and keep the manual certification part. On one hand, relieving experimental scientists
from the labour-intensive protocol design tasks, thereby allowing them more time for high-level
thinking, is a sufficiently significant improvement so far. On the other hand, engineering practices
such as lab automation and manufacturing are in high demand for preciseness. This leads to the
requirement of manual certification. Domain experts handle subtle cases through their tacit domain-
specific knowledge and are responsible for their decisions (Wang et al., 2023b). According to these
considerations and the standard operating processes of experimental sciences, we choose to certify
the designed protocols by domain experts.

Our current choice is a compromise on the limitation of techniques and the demand for preciseness.
In future work, we can conduct investigations on how to build digital twins of self-driving labo-
ratories. Such digital twins support prediction, explanation, and counterfactual analysis of unseen
behaviors of the experiments, which may facilitate machine-based protocol certification. Grounding
these blue-sky thoughts necessitates addressing the challenging problems regarding the decision of
simulation granularity, the implementation of data-efficient simulation model construction, and the
injection of tacit domain-specific knowledge. In summary, the exploration of generated-protocol-
certification by machines represents a promising avenue for future research.

A.4 LIMITATIONS OF AUTOMATIC PROTOCOL CERTIFICATION

LLMs can be much too uncontrollable for engineering practices such as lab automation, which may
lead to unpredictable dangerous situations (Wang et al., 2023b). There comes a dilemma — we try to
exploit the capability of reasoning over knowledge of LLMs, while we try to alleviate the drawbacks
brought up by the uncontrollable nature of LLMs. Our proposed representation is dedicated to
resolving the dilemma. The representations not only elicit LLMs’ potential on protocol design
through structural knowledge representation, but also serve as a guardrail for LLMs. Since the
generated protocols are represented as corresponding DSL programs, the permissible output space
is much more confined compared with that of pure LLMs, serving as constraints upon the LLM-
generated protocols. Thanks to the verification mechanisms provided by DSLs, the correctness of the
generated protocols can be checked to some extent. Therefore, by equipping LLMs with an auxiliary
constraint layer, we may approach a balance between knowledge utilization and preciseness.

However, the current verification on the level of DSL programs is far from sufficient for serving as
a certification. Certification is a serious process, where any possibilities of reporting false positive
cases are required to be eliminated. Some cases can be highly long-tailed distributed, which may not
be detected by data-driven and knowledge-driven machine certifiers. In this context, human domain
experts are responsible for coming up with these potential risks through their experiences and tacit
knowledge. Therefore, we are not likely to move human experts out of the loop, except that we can
efficiently build up appropriate digital twins for self-driving laboratories. In current practices, the
automation of protocol design puts human experts into a larger loop without focusing on the low-
level details of experiments. As a result, they are allowed more time for high-level thoughts on things
like values, which are not likely to be alternated by machines. In summary, it is neither practical
nor necessary to totally move human experts out of the loop of automatic scientific discovery. The
investigation of human-machine coordination in protocol certification represents a promising avenue
for future research.

A.5 RATIONALE FOR THE REAGENT CONSUMPTION MODEL

We treat the instantiation and the consumption of reagents a one-time deal without considering
the exact volume of consumption and the corresponding remainder. The rationale for such design
choice comes from both the current Standard Operating Process (SOP) of experimental sciences and
the properties of self-driving laboratories (Bartley et al., 2023).

In the current SOP for manually conducted experiments, experimenters are required to use prefab-
ricated sets of reagents. Similarly, experimenters use specific containers with predefined capacities

A2

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

to transfer intermediate products. Therefore, one pack of reagents or one container of intermediate
products is only used once for an operation, without considering the remainder. This results in a
more succinct representation where reagents are regarded as discrete elements rather than continu-
ous volumes.

For self-driving laboratories, this is deliberately designed for efficient variable management follow-
ing the corresponding principles in computer system design (Abelson & Sussman, 1996). In com-
puter systems, not removing used variables would cause out-of-memory errors, let alone in physical
automation systems, where the physical memory slots are much harder than the virtual memory
slots in computer systems to manage. Hence, we exploit this variable management mechanism to
enhance the execution efficiency of self-driving laboratories.

A.6 RELATION TO LLM REASONING

We would like to clarify that our objective is not to alternate Chain-of-Thought (CoT) reasoning.
According to recent studies on the properties of CoT, LLMs with CoT may generate coherent but
unprofessional text in expertise-intensive application scenarios (Xiao et al., 2023). Therefore, our
proposed representation serves as an auxiliary guardrail module for LLMs with reasoning techniques
such as CoT, enhancing LLMs’ reasoning capability from two aspects: (i) the representation con-
strain the scope of reasoning into a close set of entities, such as available operations, reagents, and
devices commonly used in the domain; and (ii) the representation provides fine-grained injection of
domain-specific knowledge for LLMs, resulting in not only coherent but also expertise-compatible
generated content.

A.7 APPLICABILITY TO DOMAINS BEYOND SCIENTIFIC EXPERIMENT

In theory, our framework can be applied to any field that requires adherence to specific protocols and
has a need for automated execution. Let us consider an automated kitchen controlled by a computer
as an example.

Assuming the automated kitchen’s computer is already programmed to prepare “braised pork ribs”
and “steamed sea bass”:

1 Braised Pork Ribs:

2
3 1. Select pork ribs as the main ingredient.

4 2.Heat a pan over high heat.

5 3.Add the ribs to the pan and fry for about 5 minutes until they are

browned.

6 4.Add seasonings: soy sauce and sugar.

7 5. Reduce the heat to medium.

8 6. Simmer the ribs for 30 minutes until tender.

9 7.Serve hot.

10
11 START

12 SELECT ingredient: ribs

13 ACTION: fry , temperature: high , time: 5 min

14 ADD seasoning: soy sauce , sugar

15 ACTION: simmer , temperature: medium , time: 30 min

16 END

17
18 Steamed Sea Bass:

19
20 1. Select a whole sea bass as the main ingredient.

21 2. Prepare a steamer and heat it to high temperature.

22 3.Place the sea bass in the steamer.

23 4.Steam the fish for about 15 minutes until fully cooked.

A3

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

24 5.Add seasonings: ginger slices and chopped scallions.

25 6.Serve immediately with the garnish.

26
27 START

28 SELECT ingredient: sea bass

29 ACTION: steam , temperature: high , time: 15 min

30 ADD seasoning: ginger , scallion

31 END

Next, we can derive the corresponding DSL. For instance:

1 {

2 "cooking_methods ": {

3 "braise ": {

4 "steps": [

5 {"type": "fry", "temperature ": "high", "time": "5 min"},

6 {"type": "simmer", "temperature ": "medium", "time": "30 min"}

7],

8 "seasoning ": ["soy sauce", "sugar"]

9 },

10 "steam": {

11 "steps": [

12 {"type": "steam", "temperature ": "high", "time": "15 min"}

13],

14 "seasoning ": [" ginger", "scallion "]

15 }

16 },

17 "ingredients ": {

18 "ribs": {

19 "category ": "meat",

20 "default_braise_time ": "30 min"

21 },

22 "sea_bass ": {

23 "category ": "fish",

24 "default_braise_time ": "20 min",

25 "default_steam_time ": "15 min"

26 }

27 }

28 }

Now, let us create a new recipe for Braised Sea Bass by combining the braising technique with sea
bass as the main ingredient.

1 START

2 SELECT ingredient: sea bass

3 ACTION: fry , temperature: high , time: 5 min

4 ADD seasoning: soy sauce , sugar

5 ACTION: simmer , temperature: medium , time: 20 min

6 END

A4

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B COMPLETE RESULTS

B.1 TASK-INDEXED COMPLETE RESULTS

Table A1: Complete quantitative results on protocol design, specifically the planning task. Each
cell represents the machine designer’s average score (at the top of the cell) on all testing samples
across the four domains and the corresponding standard error of mean (at the bottom of the cell).
For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.143
(0.087)

0.040
(0.055)

0.020
(0.060)

0.282
(0.090)

0.766
(0.096)

0.826
(0.059)

IB 0.109
(0.067)

0.036
(0.053)

0.019
(0.074)

0.242
(0.065)

0.735
(0.090)

0.781
(0.069)

II 0.382
(0.154)

0.050
(0.062)

0.084
(0.191)

0.452
(0.134)

0.788
(0.074)

0.851
(0.062)

EI 0.542
(0.160)

0.305
(0.181)

0.259
(0.211)

0.572
(0.152)

0.849
(0.066)

0.926
(0.026)

EI+ 0.603
(0.208)

0.555
(0.260)

0.357
(0.237)

0.737
(0.172)

0.875
(0.057)

0.949
(0.023)

EE 0.524
(0.151)

0.370
(0.198)

0.252
(0.206)

0.558
(0.148)

0.846
(0.078)

0.928
(0.025)

EE+ 0.607
(0.211)

0.605
(0.235)

0.355
(0.242)

0.744
(0.179)

0.893
(0.056)

0.951
(0.021)

Table A2: Complete quantitative results on protocol design, specifically the modification task.
Each cell represents the machine designer’s average score (at the top of the cell) on all testing
samples across the four domains and the corresponding standard error of mean (at the bottom of the
cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.181
(0.102)

0.050
(0.071)

0.038
(0.071)

0.304
(0.102)

0.796
(0.090)

0.809
(0.060)

IB 0.150
(0.100)

0.038
(0.065)

0.039
(0.076)

0.281
(0.100)

0.772
(0.089)

0.788
(0.060)

II 0.331
(0.143)

0.101
(0.131)

0.061
(0.135)

0.416
(0.127)

0.802
(0.087)

0.851
(0.059)

EI 0.593
(0.186)

0.318
(0.158)

0.336
(0.235)

0.602
(0.164)

0.866
(0.066)

0.937
(0.030)

EI+ 0.648
(0.210)

0.626
(0.188)

0.413
(0.256)

0.765
(0.170)

0.883
(0.055)

0.952
(0.031)

EE 0.588
(0.185)

0.403
(0.192)

0.332
(0.228)

0.601
(0.164)

0.873
(0.053)

0.940
(0.028)

EE+ 0.640
(0.213)

0.661
(0.179)

0.410
(0.253)

0.757
(0.170)

0.893
(0.043)

0.953
(0.032)

A5

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table A3: Complete quantitative results on protocol design, specifically the adjustment task.
Each cell represents the machine designer’s average score (at the top of the cell) on all testing
samples across the four domains and the corresponding standard error of mean (at the bottom of the
cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.192
(0.100)

0.077
(0.104)

0.051
(0.094)

0.319
(0.103)

0.811
(0.078)

0.823
(0.051)

IB 0.197
(0.131)

0.039
(0.063)

0.006
(0.021)

0.337
(0.141)

0.802
(0.082)

0.810
(0.049)

II 0.453
(0.208)

0.115
(0.161)

0.091
(0.211)

0.508
(0.184)

0.805
(0.081)

0.873
(0.056)

EI 0.587
(0.190)

0.328
(0.186)

0.400
(0.265)

0.623
(0.165)

0.863
(0.055)

0.944
(0.027)

EI+ 0.668
(0.208)

0.545
(0.259)

0.449
(0.247)

0.775
(0.152)

0.883
(0.056)

0.950
(0.040)

EE 0.581
(0.184)

0.404
(0.205)

0.395
(0.261)

0.616
(0.162)

0.875
(0.039)

0.946
(0.026)

EE+ 0.650
(0.220)

0.589
(0.229)

0.441
(0.248)

0.758
(0.160)

0.893
(0.033)

0.950
(0.042)

B.2 DOMAIN-INDEXED COMPLETE RESULTS

Table A4: Complete quantitative results on protocol design, specifically the Genetics domain.
Each cell represents the machine designer’s average score (at the top of the cell) on all testing
samples across the three tasks and the corresponding standard error of mean (at the bottom of the
cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.179
(0.113)

0.065
(0.082)

0.037
(0.080)

0.301
(0.116)

0.795
(0.091)

0.805
(0.066)

IB 0.157
(0.129)

0.042
(0.060)

0.022
(0.059)

0.297
(0.137)

0.793
(0.070)

0.789
(0.062)

II 0.379
(0.200)

0.120
(0.158)

0.079
(0.160)

0.457
(0.180)

0.807
(0.083)

0.850
(0.072)

EI 0.599
(0.189)

0.332
(0.177)

0.353
(0.243)

0.619
(0.164)

0.862
(0.055)

0.941
(0.026)

EI+ 0.691
(0.198)

0.606
(0.252)

0.429
(0.283)

0.803
(0.151)

0.882
(0.054)

0.954
(0.033)

EE 0.592
(0.189)

0.415
(0.206)

0.351
(0.241)

0.615
(0.163)

0.870
(0.052)

0.943
(0.025)

EE+ 0.677
(0.210)

0.653
(0.228)

0.425
(0.280)

0.791
(0.161)

0.888
(0.045)

0.955
(0.034)

A6

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table A5: Complete quantitative results on protocol design, specifically the Medical domain.
Each cell represents the machine designer’s average score (at the top of the cell) on all testing
samples across the three tasks and the corresponding standard error of mean (at the bottom of the
cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.174
(0.085)

0.048
(0.070)

0.030
(0.067)

0.312
(0.075)

0.796
(0.087)

0.839
(0.043)

IB 0.139
(0.054)

0.029
(0.038)

0.023
(0.063)

0.264
(0.045)

0.721
(0.123)

0.795
(0.070)

II 0.373
(0.093)

0.081
(0.087)

0.091
(0.205)

0.424
(0.072)

0.776
(0.097)

0.871
(0.041)

EI 0.604
(0.167)

0.322
(0.146)

0.309
(0.253)

0.594
(0.148)

0.861
(0.079)

0.932
(0.031)

EI+ 0.615
(0.196)

0.574
(0.242)

0.400
(0.198)

0.758
(0.149)

0.871
(0.060)

0.952
(0.021)

EE 0.591
(0.158)

0.373
(0.166)

0.298
(0.234)

0.583
(0.149)

0.873
(0.054)

0.936
(0.030)

EE+ 0.615
(0.197)

0.613
(0.210)

0.390
(0.202)

0.756
(0.151)

0.891
(0.040)

0.955
(0.019)

Table A6: Complete quantitative results on protocol design, specifically the Ecology domain.
Each cell represents the machine designer’s average score (at the top of the cell) on all testing
samples across the three tasks and the corresponding standard error of mean (at the bottom of the
cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.155
(0.085)

0.030
(0.035)

0.021
(0.048)

0.297
(0.088)

0.781
(0.096)

0.807
(0.056)

IB 0.162
(0.118)

0.006
(0.015)

0.030
(0.058)

0.275
(0.105)

0.763
(0.090)

0.788
(0.063)

II 0.386
(0.176)

0.043
(0.062)

0.027
(0.062)

0.448
(0.131)

0.788
(0.065)

0.856
(0.044)

EI 0.458
(0.171)

0.259
(0.134)

0.351
(0.195)

0.514
(0.142)

0.879
(0.048)

0.933
(0.028)

EI+ 0.411
(0.134)

0.569
(0.133)

0.359
(0.175)

0.586
(0.127)

0.888
(0.052)

0.945
(0.023)

EE 0.458
(0.171)

0.347
(0.151)

0.351
(0.195)

0.507
(0.138)

0.874
(0.048)

0.934
(0.029)

EE+ 0.414
(0.142)

0.581
(0.141)

0.346
(0.177)

0.586
(0.131)

0.910
(0.035)

0.944
(0.024)

A7

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table A7: Complete quantitative results on protocol design, specifically the Bioengineering
domain. Each cell represents the machine designer’s average score (at the top of the cell) on all
testing samples across the three tasks and the corresponding standard error of mean (at the bottom
of the cell). For each dimension, we highlight the results of both the best and the second best ones.

IoU(Op) IoU(Prod) IoU(Dev) Sim(Exec) Sim(Goal) Sim(Param)

FB 0.176
(0.085)

0.048
(0.089)

0.050
(0.081)

0.300
(0.084)

0.790
(0.090)

0.826
(0.042)

IB 0.149
(0.077)

0.050
(0.087)

0.038
(0.091)

0.286
(0.078)

0.767
(0.083)

0.797
(0.046)

II 0.352
(0.151)

0.062
(0.090)

0.066
(0.187)

0.443
(0.125)

0.810
(0.073)

0.860
(0.045)

EI 0.565
(0.164)

0.307
(0.186)

0.310
(0.249)

0.603
(0.169)

0.851
(0.072)

0.930
(0.033)

EI+ 0.657
(0.209)

0.577
(0.177)

0.394
(0.241)

0.743
(0.179)

0.888
(0.056)

0.944
(0.041)

EE 0.558
(0.162)

0.392
(0.214)

0.303
(0.246)

0.598
(0.165)

0.855
(0.076)

0.933
(0.030)

EE+ 0.653
(0.206)

0.614
(0.172)

0.401
(0.246)

0.742
(0.176)

0.900
(0.046)

0.945
(0.041)

C ETHICS STATEMENT

C.1 HUMAN EXPERT PARTICIPANTS

The testing set selection and groundtruth checking tasks conducted by human experts in this work
has been approved by an Institutional Review Board (IRB). We have been committed to upholding
the highest ethical standards in conducting this study and ensuring the protection of the rights and
welfare of all participants. We paid the domain experts a wage of $22.5/h for their work in this study.

We have obtained informed consent from all human experts, including clear and comprehensive
information about the purpose of the study, the procedures involved, the risks and benefits, and the
right to withdraw at any time without penalty. Participants were also assured of the confidentiality
of their information. Any personal data collected (including name, age, and gender) was handled in
accordance with applicable laws and regulations.

C.2 CORPORA COLLECTION

We carefully ensure that all protocols included in our corpora strictly comply with open access
policies under the Creative Commons license. This strategy guarantees adherence to copyright and
intellectual property laws, thereby preventing any potential infringement or unauthorized use of
protected materials. By exclusively employing resources that are freely accessible and legally dis-
tributable, we maintain the highest standards of ethical research conduct, promoting transparency
and respect for the intellectual property rights of others. This commitment ensures that our work
advances the frontiers of knowledge in a manner that is both legally sound and ethically responsible.

D IMPLEMENTATION DETAILS

D.1 PRIOR MODEL OF PRODUCT FLOW-CENTRIC VIEW

1 <ProductFlow > ::= <Pred > <FlowUnit > <Succ >

2

A8

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

3 <Pred > ::= <Operation.UniqueName >

4
5 <Succ > ::= <Operation.UniqueName >

6
7 <FlowUnit > ::= <Component > <ComponentType > <RefName > <Vol > <Container > *<

Cond >

8 <Component > ::= <STR >

9 <ComponentType > ::= Gas | Liquid | Solid | Semi -Solid | Mixture |

ChemicalCompound | BiologicalMaterial | Reagent | PhysicalObject |

File/Data | ... [Known component types]

10 <RefName > ::= <Component > <Index >

11 <UnitArgType > ::= MAT | PROD

12 <Vol > ::= <REAL > <MEAS >

13 <Container > ::= Tube | Flask | Pipette | ... [Known container types]

14 <Cond > ::= <ArgKey > <ArgValue >

15 <ArgKey > ::= Temperature | Pressure | Acidity | Lighting | ... [Known

conditional keys]

16 <ArgValue > ::= <REAL > <MEAS >

D.2 PRIOR MODEL OF OPERATION-CENTRIC VIEW

1 <Operation > ::= <UniqueName > *<Pattern >

2
3 <UniqueName > ::= <STR >

4
5 <Pattern > ::= <Precond > <Execution > <Postcond > *<Example >

6
7 <Precond > ::= <SlotArgNum > *<SlotArg >

8 <SlotArgNum > ::= <INT >

9 <SlotArg > ::= <ProductFlow.FlowUnit.ComponentType >

10
11 <Postcond > ::= <EmitArgNum > *<EmitArg >

12 <EmitArgNum > ::= <INT >

13 <EmitArg > ::= <ProductFlow.FlowUnit.ComponentType >

14
15 <Example > ::= <STR >

16
17 <Execution > ::= <DeviceType > <Capacity > *<Config >

18 <DeviceType > ::= Incubator | Autoclave | Centrifuge | ... [Known device

types]

19 <Capacity > ::= <REAL > <MEAS >

20 <Config > ::= <ArgKey > <ArgValue >

21 <ArgKey > ::= Duration | Pace | Power | Quantity | ... [Known device

configuration items]

22 <ArgValue > ::= <REAL > <MEAS >

A9

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.3 PRE-PROCESSING OF THE PROTOCOLS

The protocol pre-processing steps begin by reading all JSON files of the protocols. Each protocol
is then splitted sentence-by-sentence using Spacy1, with the constraint that every sentence is longer
than ten characters. Due to the large volume of data, sentence splitting is handled in parallel. Af-
terwards, deeper sentence splitting is performed based on specific conditions for further refinement,
such as the presence of "and/then/and then" followed by a verb2. We then parse sentences into
root verbs and purpose clauses, which are identified using token.dep_ == "ROOT" for root verbs
and prepositional/adverbial/modals for purpose clauses. Lastly, we merge phrases based on
punctuation, and their classification into valid sentences or decorative phrases depends on whether
they contain a root verb or lack a purpose clause.

The first verb in each sentence is extracted as an opcode, again utilizing parallel processing for
efficiency. Opcode frequency is filtered to exclude stopwords, which are recorded in a separate text
file. Then we categorize these opcodes into high-level operation classes using a GPT model (gpt-4o
mini), where each opcode is classified into categories like Transfer Operations, Transformation
Operations, or Data Operations.

Once operation classification is complete, entity recognition is performed (also using gpt-4o mini)
to identify entities like devices, input_flow_units, output_flow_units, and total_time. Each
flow unit is further categorized (also using gpt-4o mini) with a high-level classification composed
of a phase, i.e., Gas, Liquid, Solid, etc.; and a type, i.e., Chemical Compound, Biological
Material, etc. When both phase and type are successfully labeled, phase is preferred as the feature
of the flow unit. If phase labeling fails, we use type the feature of the flow unit. If neither phase
nor type is successfully labeled, the corresponding feature is set to None. Part of the rationale is that
there are non-reagent components in the general sense, i.e., data, files, obscure or undefined
substances, etc. Therefore, we apply this strategy to maximize the possibility that there is a mean-
ingful upper class labeling of the components without any redundancy.

Finally, we conduct a synonym merge process on the devices, which starts by using transformers
AutoTokenizer3 to get an embedding for each device name. Afterwards, we use sklearn4 to
identify potentially similar entity pairs by calculating the cosine similarity of the candidate entities,
and then passing these entity pairs to the GPT model for synonym detection, thereby merging devices
belonging to the same type. The reference names of these combined devices will be one of the
features.

D.4 PURE LLM-BASED DESIGNER

The pure LLM-based designer employs RAG to retrieve similar protocols from the corresponding
corpora for representation, following the design choice of the baseline in O’Donoghue et al. (2023).
Specifically, in the FB approach, three similar protocols are first retrieved from the original proto-
col corpora using RAG, and then, along with the title and description of the target protocol, they
are provided to the LLM to generate a NL plan. The LLM subsequently translates the NL plan
into Python pseudocode. In the IB approach, three similar protocols’ instance actions (like Python
pseudofunctions definitions) are first retrieved from the corpora, and after randomizing their order,
they are provided to the LLM along with the title and description of the target protocol to generate a
plan in the form of Python pseudocode.

1 [Prompt for retrieving similar protocols from corpora]

2 You are an expert in biology and you are very familiar with the

experiment protocols.

3 I would like to make a protocol for {title}.

4 I will give you some related protocols in the database.

5 Could you find me the most three similar and relevant protocols for

reference in the given range?

1https://spacy.io/api/sentencizer
2https://spacy.io/api/matcher#_title
3https://huggingface.co/docs/transformers/v4.45.1/en/model_doc/auto#transformers.

AutoTokenizer
4https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_

similarity.html#cosine-similarity

A10

https://spacy.io/api/sentencizer
https://spacy.io/api/matcher#_title
https://huggingface.co/docs/transformers/v4.45.1/en/model_doc/auto#transformers.AutoTokenizer
https://huggingface.co/docs/transformers/v4.45.1/en/model_doc/auto#transformers.AutoTokenizer
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html#cosine-similarity
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.cosine_similarity.html#cosine-similarity

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

6
7 Please output id of your selected protocols , separating with a comma. Don

't output any other information.

8 [Output format]

9 id_1 ,id_2 ,id_3

10
11 [Related protocols]

12 {context}

13
14 Answer:

1 [Prompt for generating NL plan]

2 Your goal is to generate steps for a biology protocol.

3 These protocol steps must accurately describe a complete scientific

protocol to obtain a result.

4 Steps of some similar protocols will be provided as a reference for you

to generate the new one.

5 Output should only contain the steps without any other information.

6
7 Here is an example of how to generate steps for a biology protocol.

8
9 EXAMPLE:

10
11 {example protocol title}

12
13 Here are some extra details about the protocol:

14
15 {example protocol description}

16
17 example steps:

18
19 {example protocol steps}

20
21 YOUR TASK:

22 Generate steps for a protocol for {title}.

23
24 Here are some extra details about the protocol:

25
26 {details}

27
28 Here are some similar protocols ' steps for reference:

29
30 {steps}

31
32 your steps:

1 [Prompt for translating NL plan to pseudocode]

2 Your goal is to convert biology protocols into python pseudocode.

3
4 EXAMPLE

A11

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

5 Here is an example of how to convert a protocol for {example protocol

title} into python pseudocode

6
7 {example protocol}

8
9 {example python pseudocode}

10
11 YOUR TASK:

12 Here is a biology protocol entitled '{title}' The protocol steps are as

follows:

13
14 {protocol}

15
16 Please convert this protocol into python pseudocode.

17
18 python pseudocode:

1 [Prompt for generating plan in pseudocode]

2 Your goal is to generate python pseudocode for biology protocols.

3
4 Here is an example of how to generate pseudocode for a biology protocol.

5
6 EXAMPLE:

7
8 {example protocol title}

9
10 Here are some extra details about the protocol:

11
12 {example protocol description}

13
14 example pseudocode:

15
16 {example pseudocode}

17
18 YOUR TASK:

19 Generate pseudocode for a protocol for {title}.

20
21 Here are some extra details about the protocol:

22
23 {details}

24
25 You may only make use of the following python pseudocode functions:

26
27 {psuedofunctions}

28
29 your pseudocode:

D.5 INTERNAL DESIGNER

The internal designer incorporates the specific representation as part of the prompt for an LLM,
asking it to output the protocol while adhering to the given representation constraints, echoing the

A12

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

idea of Wang et al. (2023a). Specifically, in II, the instance actions retrieved from the corpora
via RAG and the pseudofunctions definitions of the target protocol are shuffled and then provided
together to the LLM, constraining it to generate a plan in the form of Python pseudocode using
the given pseudofunctions definitions. In EI and EI+, relevant DSL instructions are selected from
a domain-specific operation-centric view DSL and product-flow-centric view DSL, respectively.
These instructions and the target protocol’s title and description are provided to the LLM, prompting
it to output the corresponding plan as instantiated DSL instructions.

1 [Protocol for generating plan in DSL program using operation -centric view

DSL]

2 Your goal is to generate plan in domain specific language (DSL) for

biology protocols.

3 The DSL specifications related to the operations involved in the

experiment are provided. The DSL specification of each operation

consists of multiple patterns , each pattern is an operation execution

paradigm.

4
5 Here is an example of how to generate plan in DSL for a biology protocol.

6
7 EXAMPLE:

8
9 {example protocol title}

10
11 Here are some extra details about the protocol:

12
13 {example protocol description}

14
15 example plan in DSL:

16
17 {example plan}

18
19 [Requirements]

20 1. Design the experiment with finer granularity , incorporating more steps

to complete the experiment in a more rigorous , complex , and

comprehensive manner.

21 2. There are some missing parameters in the DSL specification. You should

generate each step of the DSL program as detailed as possible based

on your understanding of the protocol plan.

22 3. In Precond and Postcond , use formal name of the component to represent

the SlotArg and EmitArg of each step. The component name should

clearly describe the content of the component.

23
24 YOUR TASK:

25 Generate plan in DSL for a protocol for {title}.

26
27 Here are some extra details about the protocol:

28
29 {details}

30
31 You can choose to instantiate the following DSL specification to

construct the DSL program:

32

A13

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

33 {DSL}

34
35 Your plan in DSL program:

1 [Protocol for generating plan in DSL program using dual representation]

2 Your goal is to generate plan in domain specific language (DSL) for

biology protocols.

3 Two perspectives of the DSL specification are provided: the specification

for experimental operations and the specification for experimental

products.

4 The DSL specification of each operation or product consists of multiple

patterns , each pattern is an operation execution paradigm or a

product flow paradigm.

5 Output every operation of the plan in the form of an operation DSL

program and every product of the plan in the form of a product DSL

program.

6
7 Here is an example of how to generate plan in DSL for a biology protocol.

8
9 EXAMPLE:

10
11 {example protocol title}

12
13 Here are some extra details about the protocol:

14
15 {example protocol description}

16
17 example plan in DSL:

18
19 {example plan}

20
21 YOUR TASK:

22 Generate plan in DSL for a protocol for {title}.

23
24 Here are some extra details about the protocol:

25
26 {details}

27
28 You can choose to instantiate the following DSL specifications to

construct the DSL program:

29
30 Operation -view DSL specification:

31 {Operation -DSL}

32
33 Product -view DSL specification:

34 {Product -DSL}

35
36 Your plan in DSL program:

A14

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D.6 EXTERNAL DESIGNER

The external designer combines (i) deductive verification through DSL; and (ii) self-improvement
by the LLM (Madaan et al., 2023). In EE, the external verifier is provided by the operation-centric
view DSL and performs checks on two main aspects: (i) whether the precondition of each operation
is an intermediate product of a previous step rather than appearing from nowhere; and (ii) whether
the postcondition of each operation is used in subsequent steps rather than being omitted. Similarly,
in EE+, the external verifier is provided by the DSL with a dual representation, focusing on cross-
verifying the parallel dual tracks (the two perspectives of the DSL program). It checks whether
the corresponding operation causes each status transition of the product: (i) whether the product
in each product-view program is the output of its preceding operation; and (ii) whether the product
in each product-view program is the input for its succeeding operation. If a mismatch occurs, the
verifier generates corresponding error messages, such as “Error: The product {product} required
by operation {operation} at step {i} is not available from previous steps.” These error messages
are then fed into the feedback-refine loop as feedback for the LLM to revise the plan. The loop
terminates when the program passes the verification or reaches the maximum number of iterations,
and the best result is retained based on the verification information.

1 [Prompt for refining the plan according to the feedback vertified by

operation -centric view

2 DSL]

3 Your task is to improve a biology experimental protocol plan represented

in domain -specific language (DSL) based on provided feedback.

4 The input plan in DSL consists of multiple DSL programs , each

representing one step in the experimental protocol planning process ,

arranged in top -down order to indicate the execution sequence of

operations.

5 Each DSL program has the following format:

6 {

7 "Operation ": , // Operation verb

8 "Precond ": { // Precondition for this step

9 "SlotArgNum ": , // Number of arguments for the precondition

10 "SlotArg ": // Input product for this step

11 },

12 "Execution ": {

13 "DeviceType ": , // Execution device for the operation

14 "Config ": { // dict of execution arguments - values

15 Argkey: Argvalues

16 }

17 },

18 "Postcond ": { // Postcondition for this step

19 "EmitArgNum ":, // Number of arguments for the postcondition

20 "EmitArg ": // Output product for this step

21 }

22 }

23
24 The provided feedback indicates errors that occurred when compiling the

DSL programs. You need to correct the program to ensure that the

product is properly transferred between each step , i.e., the input

product of each step must be the output from a previous step (except

for the first step), and verify whether the output of each step is

used as the input for subsequent steps (except for the final step).

A15

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

25 If you believe the error in a particular step is due to the step

preparing reagents rather than using a previous intermediate product ,

you can ignore this error.

26
27 Output your refined plan in DSL , returning a JSON block without any

additional information or comments.

28
29 YOUR TASK:

30 Refine the plan in DSL for a protocol for {title}.

31
32 Here are some extra details about the protocol:

33
34 {details}

35
36 Refine the following plan:

37
38 {plan}

39
40 Here is the feedback of the plan:

41
42 {feedback}

43
44 Your refined plan in DSL:

1 [Prompt for refining the plan according to the feedback vertified by DSL

with dual representation]

2 Your task is to improve a Biology experimental protocol plan represented

in domain -specific language (DSL) based on provided feedback.

3 The input plan in DSL consists of multiple DSL programs from two

perspectives: operation -view and product -view. The DSL programs from

these two perspectives alternate and constrain each other.

4
5 This is the format of a product -view DSL program:

6 // Each product view DSL program represents the state of the product at

that moment.

7 {

8 Pred: <Operation >, // Pred represents the operation that

precedes the creation of this product , need to align to the operation

name in the operation view DSL program. If the product is in its

initial state , return "".

9 FlowUnit: { // FlowUnit defines the properties of the product

being processed.

10 Component: , // Component represents the actual product or

material being processed , need to be the formal name of the component

.

11 ComponentType: Gas|Liquid|Solid|Semi -Solid|Mixture|

ChemicalCompound|BiologicalMaterial|Reagent|PhysicalObject|File/Data ,

// ComponentType describes the type of the component , which

can be one of the following: Gas , Liquid , Solid , Semi -Solid , Mixture ,

A16

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

ChemicalCompound , BiologicalMaterial , Reagent , PhysicalObject , or

File/Data.

12 RefName: , // RefName is the reference name used to uniquely

identify this component , need to align to the operation -view program

13 UnitArgType: MAT | PROD , // UnitArgType specifies whether this

is a material (MAT) or a product (PROD).

14 Vol: , // Vol represents the volume or quantity of the

component.

15 Container: , // Container indicates the type of container or

storage used for this component. If the product has no container

constraints in its current state , return "".

16 Cond: { // Cond defines the specific conditions under

which the operation is carried out , which is expressed as key -value

pairs.

17 ArgKey: ArgValues

18 }

19 },

20 Succ: <Operation > // Succ represents the operation that follows

the creation of this product. If the product is in its final state ,

return "".

21 }

22
23 This is the format of an operation -view DSL program:

24 // Each operation view DSL program represents a sequence of operations

that alters the state of the product.

25 {

26 Operation: , // Operation verb

27 Precond: { // Precondition

28 SlotArgNum: , // Number of arguments for the precondition

29 SlotArg: // SlotArg represents the input product or

material required for this operation , using formal component names

from the product perspective DSL program , with serial numbers to

distinguish repeated components in different states.

30 },

31 Execution: {

32 DeviceType: , // Execution device for the operation

33 Config: { // dict of execution arguments - values

34 ArgKey: ArgValues

35 }

36 },

37 Postcond: { // Postcondition

38 EmitArgNum: , // Number of arguments for the postcondition

39 EmitArg: // EmitArg represents the output product or

material resulting from the operation , using formal component names

from the product perspective DSL program , with serial numbers to

distinguish repeated components in different states.

40 }

41 }

42

A17

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

43 The provided feedback indicates errors that occurred when compiling the

DSL programs. You need to correct the program to ensure that the

state changes of each product 's RefName in the Product -view are

caused by the corresponding operations in the Operation -view.

44 If you believe the error in a particular step is due to a mismatch in

product names between the two perspectives rather than an actual

error , you can ignore this error.

45
46 Output your refined plan in DSL , returning a JSON block without any

additional information or comments.

47
48 YOUR TASK:

49 Refine the plan in DSL for a protocol for {title}.

50
51 Here are some extra details about the protocol:

52
53 {details}

54
55 Refine the following plan:

56
57 {plan}

58
59 Here is the feedback of the plan:

60
61 {feedback}

62
63 Your refined plan in DSL:

D.7 COMPUTING LOAD OF THE MACHINE DESIGNERS

For automated representation generation, we primarily used GPT-4o mini with OpenAI’s Batch
API5 for preprocessing, incurring a cost of approximately $60 across four domains. The design
of the DSLs was executed on a MacBook with an M2 chip, running 1,000 iterations to ensure
convergence. This process required an average of 55 seconds per iteration for the operation-centric
view DSL and an average of 2 seconds per iteration for the product-centric view DSL. For the
machine designer, we primarily utilized GPT-4o mini combined with RAG for design, with a total
cost of approximately $10 (7 methods, 140 protocols). In summary, the overall computational load
is relatively low, highlighting the accessibility of our machine designers when utilizing the proposed
representations and the corresponding automatic representation generation modules.

E DATA COLLECTION

E.1 CORPORA SOURCES

The corpora C for the automatic generation of representations (Sec. 3.1) and the corpora for selecting
the testing set (Sec. 4.1) are both retrieved from open-sourced websites run by top-tier publishers,
including Nature’s Protocolexchange6, Cell’s Star-protocols7, Bio-protocol8, Wiley’s Current Pro-

5https://platform.openai.com/docs/guides/batch/batch-api
6https://protocolexchange.researchsquare.com/
7https://star-protocols.cell.com/
8https://bio-protocol.org/en

A18

https://platform.openai.com/docs/guides/batch/batch-api
https://protocolexchange.researchsquare.com/
https://star-protocols.cell.com/
https://bio-protocol.org/en

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

tocols9, and Jove10. These sources compile a dataset of 15,837 experimental protocols across four
domains: Genetics (8794 protocols), Medical (7351), Ecology (812), and Bioengineering (3597),
with minimal overlap between them. We aggregated the corpora and analyzed the themes of the
protocols according to the first- and second-level labels attached to them. We adopt measures to
ensure that C is mutually exclusive with the testing set.

Other domains, such as Physics and Chemistry, are also representative domains of experimental
sciences, besides Biology, Medical, and Ecology. The preliminary factor that restricts our current
scope is data accessibility. Due to the higher cost of accessing the corpora of protocols for conduct-
ing physics and chemistry experiments, for example, mining the protocol from the “method” section
of relevant published papers, we leave the application to Physics and Chemistry for future work.

E.2 ELIMINATING THE RISK OF DATA LEAKING

**

1.0

1.2

1.4

1.6

test reference

pe
rp
le
xi
ty

Figure A1: Comparison between the
perplexity of the test set and the ref-
erence set

We employ the broadly accepted standard operating pro-
cess to empirically verify that LLMs have not memorized
the data we use. We adopt the methodology outlined in
Section 5.2 of Skywork (Wei et al., 2023) and draw upon
recent studies on detecting memorization in LLMs (Car-
lini et al., 2021; 2022). Specifically, we use gpt-4o mini to
synthesize data resembling the style of steps from novel
protocols, and then calculate the perplexity on the test set
and reference set. Since the reference set is newly gener-
ated, we consider it clean, not belonging to any training
set of any model.

We randomly sample 100 sequences each from the test
set and the reference set of the novel protocols. Each se-
quence corresponds to a single procedural step described
in natural language. We truncate the final 50 tokens of
each sequence, retaining the prefixes. These prefixes are
then used as prompts for the LLM to predict the next 50
tokens, for which we calculate the perplexity. If the per-
plexity of the test set is significantly lower than that of
the reference set, the test set might have appeared in the
model’s training phase.

The results indicate that the LLM’s average perplexity on the test set is significantly higher than
that on the reference set (t(198) = 3.040, µd < 0, p < .05; see Fig. A1), suggesting that the LLM
encounters greater uncertainty with the novel protocols in the test set. This finding implies that for a
published, widely accepted, and standardized operating process, there is no evidence to suggest that
the LLM has memorized the data.

E.3 ON THE DIVERSITY OF NOVEL PROTOCOLS

Assessing diversity among novel protocols is both informative and meaningful. To further support
our analysis, we incorporate a t-SNE visualization of the experimental objectives (described in nat-
ural language) for the novel protocols we select, as shown at Fig. A2. The results demonstrate a
well-dispersed distribution, indicating a sufficient level of diversity among the protocols.

E.4 SHOWCASES

1 [Protocol 1 - Bioengineering]

2 Preparation of lysates

3 1. Harvest approximately 1 x 10^7 cells by centrifugation at 2000 RPM for

5 min. Aspirate media and resuspend cell pellet with 1 mL of ice -

cold PBS and transfer to a 1 mL centrifuge tube. Microcentrifuge at

2000 RPM for 5 min at 4 ◦ C.

9https://currentprotocols.onlinelibrary.wiley.com/
10https://www.jove.com/

A19

https://currentprotocols.onlinelibrary.wiley.com/
https://www.jove.com/

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Figure A2: Visualization of diversity between novel protocols

4 2. Aspirate PBS , and then add Hypotonic Buffer (supplemented with 1%

Triton X-100, to disrupt membrane and cytoskeleton -bound MEKK1

fractions).

5 3. Cell lysates are homogenized by passing through 22-gauge needles , and

tubes are put on ice for 15 min to complete the lysis. Crude extracts

are then centrifuged at 2500 RPM for 5 min. Supernatants are

transferred to fresh centrifuge tubes , and cold 5 M NaCl is added to

each sample to make a salt concentration of between 0.7 -1.0 M to

disrupt protein -protein interactions.

6 4. Spin the crude extracts by ultracentrifugation at 55000 RPM to

properly pellet residual insoluble proteins from the extract.

Transfer supernatants into fresh centrifuge tubes.

7 Immunoprecipitation

8 5. Rinse Protein A beads in Hypotonic Buffer and place on ice until ready

for use.

9 6. Take a volume of cell lysates (prepared as described above), and

dilute with Hypotonic Buffer to 250 -500 mM salt to enable protein -

protein interactions.

10 7. Add 2 µg of preclearing antibody to the diluted lysate (e.g., anti -Myc

or anti -p65), vortex , add 50 µL of Protein A beads , and rock for 45

min.

11 8. Touchspin samples , and transfer supernatant to a fresh tube.

12 9. Add 2 µg of polyclonal anti -MEKK1 to the lysates , and rock for 1 h.

After this period , add 50 µL of Protein A beads and rock tubes at 4 ◦

C for 1 h.

13 10. Touchspin beads , wash beads with hypotonic buffer (supplemented with

NaCl to a concentration of 300 mM), vortex , and rock for 10 min. In

total , 3-5 washes of the beads are performed.

14 11. Finally , wash once with Hypotonic Buffer , and resuspend in Kinase

Assay Buffer. Purified MEKK1 may be stored by snap -freezing in liquid

nitrogen and long -term storage at -80 ◦ C. Kinase assay Following

preparation of MEKK1 immunoprecipitates (as above), incubate with 7 µ

g of JNKK1(K131M) along with 5 µCi of ATP in Kinase Assay Buffer for

30 min at 30 ◦ C."

15
16 [Protocol 2 - Genetics]

17 1. Note that everything is in DEPC water. Inoculate W303a cells

expressing different TOR1 -RR variants in 2 mL SC medium overnight.

18 2. Subculture the cells starting from OD600 =0.1 in 10 mL SC media , shake

vigorously at 30 ◦C, 300 RPM for around 4-6 h until OD600 =0.4 -0.5.

A20

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

19 3. Collect the cells by spinning down without freezing on ice. Discard

supernatant.

20 4. Re-suspend cells with 1 mL water and transfer to a 1.5 eppendorf tube ,

quickly spin down at 3,000 x g for 15 sec.

21 5. Re-suspend cell pellet in 400 µL of AE buffer at room temperature.

22 6. Add 40 µL 10% SDS (final around 1%) and vortex briefly at room

temperature (RT).

23 7. Immediately add 500 µL hot phenol/AE (put in 65 ◦ C for 10 min before

use), vortex vigorously for 1 min. Incubate at 65 ◦ C for 5 min.

Briefly vortex every 30 sec.

24 8. Immediately freeze by dumping into liquid nitrogen. Wait to thaw at RT

(put in 30 ◦ C to thaw may crack the tube).

25 9. Centrifuge for 10 min on a standard laboratory microfuge at 20,000 x g

at RT.

26 10. Transfer around 400 µL supernatant to a new eppendorf tube. Recycle

the lower phenol fraction carefully following the chemical safety

protocol in your laboratory.

27 11. Add equal volume (400 µL) phenol: CHCl3/AE-Na. Vortex vigorously for

1 min at RT.

28 12. Spin down at 20,000 x g for 5 min in a standard laboratory microfuge.

29 13. Transfer supernatant (around 350 µL) to a fresh 1.5 mL eppendorf tube

. Add CHCl3: isoamyl alcohol (24:1). Vortex vigorously for 1 min at

RT.

30 14. Transfer aqueous supernatant to a fresh 1.5 mL microfuge tube. If

white cloudy precipitate is observed between the aqueous phase and

organic phase , repeat steps 17-18.

31 15. Add 1/10 volume of 3 M NaOAc (pH 5) and vortex vigorously. Add 2.5

volumes of ethanol. Vortex again.

32 16. Place at -20 ◦ C for at least 30 min.

33 17. Spin down in the microfuge at 20,000 x g, 15 min at 4 ◦ C. RNA pellet

is usually visible.

34 18. Add ice -cold 75% EtOH , place at 4 ◦ C for around 10 min. Vortex and

spin down on microfuge 20,000 x g, 15 min at 4 ◦ C. Discard

supernatant. Suck out the liquid droplets in the tube. The white RNA

pellet will turn clear when it dries out. Add 30-50 µL ddH2O (DEPC)

immediately after it becomes clear. Do not let the RNA over -dry ,

which will make it difficult to dissolve. If RNA pellet is over -dry ,

dissolve RNA at 37 ◦ C for 30 min. Store RNAs at -80 ◦ C for more than

2 months ."

35
36 [Protocol 3 - Medical]

37 1. Passage through a 45 µm filter. Add 100 µL/well of 100 µg/mL salmon

sperm DNA to a 96-well Microtest assay plate.

38 2. Wrap the plate with plastic wrap and incubate at 4 ◦ C overnight.

39 3. Discard the coating antibody solution and wash the plate with 1x PBS -

Tween 6 times.

40 4. Dry the plate and add 100 µL of blocking solution per well to the

plate.

41 5. Incubate the plate at room temperature (RT) for 1.5 h.

A21

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

42 6. Discard the blocking solution and wash the plate with 1x PBS -Tween 5

times.

43 7. Dry the plate and keep it at 4 ◦ C for later use.

44 8. Harvest the spleen and create a single -cell suspension by gently

smashing spleen pieces with the frosted surface of a pair of

microscope slides in 5 mL of DMEM.

45 9. Transfer the cells into 50 mL conical tubes and spin down the cells at

300 RCF for 5 min at 4 ◦ C.

46 10. Discard the supernatant with aspiration without disturbing the pellet

.

47 11. Re-suspend the cells with 5 mL of 0.17 M ammonium chloride and keep

the cells on ice for 5 min.

48 12. Add 15 mL DMEM to the cells and spin at 300 RCF for 5 min at 4 ◦ C.

49 13. Discard the supernatant and re-suspend the cells with 20 mL of DMEM

and count the cells.

50 14. Re-suspend 2 x 10^7 cells in 2 mL of 10% DMEM and make a three -fold

serial dilution (a total of 8 dilutions) with 10% DMEM.

51 15. Add 50 µL/well of the serial dilutions on the DNA -coated plate and

centrifuge at 300 RCF for 5 min at 4 ◦ C.

52 16. Incubate the cells at 30 ◦ C for 2 h in a cell -culture incubator with

6% CO2.

53 17. Add 50 µL/well of biotin -conjugated anti -IgM or anti -IgG (1:350 in

10% DMEM) to the cells.

54 18. Centrifuge the cells at 300 RCF for 5 min at 4 ◦ C and incubate the

cells overnight in a cell -culture incubator with 6% CO2.

55 19. Discard the cells and wash the plates 10 times with 10x PBS -Tween 20.

56 20. Dry the plates and add 50 µL of streptavidin alkaline phosphatase

(1:1 ,000 in 1% BSA/PBS) to the plate.

57 21. Incubate the plate at RT for 1 h and wash the plate 10 times with 10x

PBS -Tween 20.

58 22. Dry the plate and add 50 µL/well of 1 mg/mL BCIP in AMP buffer to

develop the plate.

59 23. When the spots are clearly visible under a dissecting microscope ,

stop the development by discarding the BCIP solution and rinsing the

plate with tap water thoroughly.

60 24. Spots can be counted using a dissecting microscope or using an

ELISpot reader ."

F LIMITATIONS

As a representation designed for a relatively new problem, the design and evaluation of the proposed
framework come with limitations, leading to further investigations:

• Overall, our method achieves promising results across the four domains. Specifically, it performs
best in experimental design for Genetics, shows comparable effectiveness in Medical and Bio-
engineering, but is less effective in Ecology. Notably, the Genetics corpus is the largest among
the four domains, while the Ecology corpus is significantly smaller than the others. These ob-
servations suggest a potential positive correlation between the size of the domain-specific corpus
and the “quality” of the resulting DSL. In other words, a larger corpus may lead to a “better”
representation, thereby influencing the outcomes of protocol design. This hypothesis necessitates
further investigation through rigorously designed experiments and carefully defined metrics for
evaluating what constitutes a “better” representation.

A22

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

• We majorly consider the imperative programming DSLs as the implementation of representation
in this work. This raises the question of whether incorporating objective-oriented programming
paradigms could enhance the representation of complex entities within protocols, particularly the
properties of reagents and intermediate products. If we are able to make the DSLs model the fine-
grained reactions between different components and automate the design of those DSLs based on
a broader source of data, such as the Wikipedia pages, we can ultimately manage to build up a
symbolic digital twin for a domain-specific system, such as the cell cultivation environment. Such
simulation systems may greatly benefit protocol design with their power of prediction, explana-
tion, and counterfactual analysis.

• Can we explicitly extend our proposed representation to a hierarchical graph, thereby establishing
the foundation for employing the advanced algorithms on graph routing and graph optimization?
Results on the hierarchical graph can also serve as a external heuristic and constraint for LLM-
based protocol designers. This hybrid approach may combine both the advantages of LLMs,
i.e., exploitation of background knowledge, and those of classical algorithms, i.e., white-boxed
properties with high explainability.

• Can we apply the representation and the automatic representation generator to other critical do-
mains with a high demand for automating procedure design, such as designing product route sheets
for advanced manufacturing?

With many questions unanswered, we hope to explore more on automated protocol design for self-
driving laboratories and beyond.

G THE AUTOMATICALLY GENERATED REPRESENTATIONS

G.1 OPERATION-CENTRIC VIEW DSL

1 {

2 "Operation ": "Precipitate",

3 "pattern_0 ": {

4 "Precond ": {

5 "SlotArgNum ": 2,

6 "SlotArg ": [" Liquid", "Solid"]

7 },

8 "Execution ": {

9 "DeviceType ": "falcon tube",

10 "Capacity ": "15 mL",

11 "Config ": {}

12 },

13 "Postcond ": {

14 "EmitArgNum ": 1,

15 "EmitArg ": [" Liquid "]

16 },

17 "Example ": [

18 "Precipitate RNA by adding 600 µL of 100 % EtOH , 20 µL of 3 M

NaOAc (pH 5.5), and 3 µL of glycogen .",

19 "Precipitate the DNA in each tube by adding 20 µl of 3 M

sodium acetate (pH 5.2) and 550 µl of 100 % ethanol .",

20 "Ethanol precipitate the RNA by adding 5 µl 3 M sodium

acetate (pH 5.2) ,2 µl of glycogen (20 mg / ml) ,and 171 µl of

100 % ethanol .",

21]

22 },

23 "pattern_1 ": {

24 "Precond ": {

25 "SlotArgNum ": 4,

A23

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

26 "SlotArg ": [" Liquid", "Liquid", "Liquid", "Liquid "]

27 },

28 "Execution ": {

29 "DeviceType ": "centrifuge",

30 "capacity ": "1.5 ml",

31 "Config ": {

32 "time": "10-15 min",

33 "speed": ["12 ,000 × g", "20 ,000 × g"],

34 "temperature ": "4 ◦ C",

35 }

36 },

37 "Postcond ": {

38 "EmitArgNum ": 1,

39 "EmitArg ": ["Solid"]

40 },

41 "examples ": [

42 "Precipitate the cell debris in the lysate by centrifugation

at 20,000 × g for 10-15 min at 4 ◦ C.",

43 "precipitate DNA with 13.5 µL of following mixture (1 µL of

20 mg / ml Glycogen , 12.5 µL of 3 M NaOAc [pH 5.3]) and 340 µL

ethanol.",

44 "precipitate the total RNA by centrifuging at 12,000 × g for

15 min at 4 ◦ C."

45]

46 }

47 },

48 {

49 "Operation ": "Spin",

50 "pattern_0 ": {

51 "Precond ": {

52 "SlotArgNum ": 2,

53 "SlotArg ": [" Liquid", "Liquid "]

54 },

55 "Execution ": {

56 "DeviceType ": "spin plate",

57 "Config ": {

58 "time": ["1 min"]

59 }

60 },

61 "Postcond ": {

62 "EmitArgNum ": 1,

63 "EmitArg ": [" Physical Object "]

64 },

65 "Example ": [

66 "Nuclei washing and tagmentation: Spin down nuclei at 600 g

for 10 mins at 4 ◦ C , resuspended with 50 µL Complete Buffer.",

67 "Spin the sample at 4,000 × g at 4 ◦ C until the volume

reduces to about 1 mL. Quantify protein concentration as described in

step 60.",

A24

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

68 "Spin down the 15 mL tubes at 2,500 ×g and 4 ◦ C for 20 min

.",

69 "Spin for 2 min at 1,000 x g. Save a few µL of concentrated

sample to run on an agarose gel later.",

70 "Spin the tube for 30 sec at 12,000 x g to consolidate the

gel at the bottom of the tube.",

71 "Spin plate at 300×g for 1 min to collect liquid at the

bottom of the wells.",

72 "Once NXT PCR program is complete , quick spin the sample tube

then place it on the magnet for 1 min. Transfer the supernatant

containing the amplified mRNA -seq library into a new PCR tube.",

73 "Spin down 2 mill nuclei at 600×g for 5 min (whole liver

nuclei) or use a magnet (bead -bound nuclei)."

74]

75 },

76 "pattern_1 ": {

77 "Precond ": {

78 "SlotArgNum ": 1,

79 "SlotArg ": [" Mixture "]

80 },

81 "Execution ": {

82 "DeviceType ": "microcentrifuge",

83 "Config ": {}

84 },

85 "Postcond ": {},

86 "Example ": [

87 "Small volumes , 1-3 mL should be spun in a small tube where

these fewer EVPs can more readily be collected.",

88 "Briefly spin down the bead -lysate mixture.",

89 "Spin down the mix tube to eliminate bubbles/air in a bench

microcentrifuge. Add 19 µL of the mix to each well."

90]

91 },

92 "pattern_2 ": {

93 "Precond ": {

94 "SlotArgNum ": 1,

95 "SlotArg ": [" Liquid "]

96 },

97 "Execution ": {

98 "DeviceType ": "centrifuge",

99 "Config ": {

100 "speed": ["800 g"],

101 "time": ["7 min"]

102 }

103 },

104 "Postcond ": {

105 "EmitArgNum ": 1,

106 "EmitArg ": [" Liquid "]

107 },

108 "Example ": [

A25

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

109 "Spin lysate at 14 krcf for 10 min at 4 ◦ C; transfer cleared

lysate to new tube.",

110 "Spin down the beads for 60 s at 2,000 x g. Discard the

supernatant by carefully pipetting out the buffer.",

111 "Spin at 12,000 × g until the total volume in both filters is

reduced to 120 µL (<=30 min). Keep aside 5 µL of purified labeled

histone for SDS -PAGE analysis.",

112 "Quickly spin the FACS tube to allow the cell suspension to

pass through the filter to remove undigested large tissue debris.",

113 "Spin once for 7 min at 800 g. Use the BD cytofix/cytoperm

kit according to the manufacturer 's instructions and thereafter add

antibodies for intracellular detection of IFN and TNF."

114]

115 }

116 },

117 {

118 "Operation ": "Sonicate",

119 "pattern_0 ": {

120 "Precond ": {

121 "SlotArgNum ": 1,

122 "SlotArg ": [" Liquid "]

123 },

124 "Execution ": {

125 "DeviceType ": "sonicator",

126 "Config ": {

127 "time": ["20 - 30 s"]

128 }

129 },

130 "Postcond ": {

131 "EmitArgNum ": 1,

132 "EmitArg ": ["Semi -Solid"]

133 },

134 "Example ": [

135 "Sonicate the pellet suspension on ice under a 50 % duty

cycle for 5 min.",

136 "Agarose gel of sonicated Arabidopsis chromatin.",

137 "Sonicate proteoliposomes for 20 - 30 s or 3 times for 10 s,

placing on ice in between sonication , if necessary.",

138 "The lipid suspension is sonicated to form small unilamellar

vesicles (SUVs)."

139]

140 },

141 "pattern_1 ": {

142 "Precond ": {

143 "SlotArgNum ": 2,

144 "SlotArg ": [" Liquid", "Solid"]

145 },

146 "Execution ": [

147 {

148 "DeviceType ": "bransonic",

A26

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

149 "Config ": {

150 "temperature ": ["60 ◦ C"],

151 "time": ["90 min"]

152 }

153 },

154 {

155 "DeviceType ": "sonicator",

156 "Config ": {}

157 }

158],

159 "Postcond ": {},

160 "Example ": [

161 "Sonicate 10 µg BAC DNA or 50 µg genomic DNA in total (you

will recover 10 % DNA after sonication and size selection).",

162 "Sonicated chromatin is immunoprecipitated with the chosen

antibodies and non -enriched chromatin washed with a series of washing

buffers.",

163 "If the herring sperm DNA has not been sufficiently sonicated

or too much has been used , the DNA pellet might not adhere to the

microfuge tube and can be lost with the ethanol.",

164 "Sonicate the lipid tube to dissolve lipids with the mineral

oil for 90 min at 60 ◦ C by using Bransonic ."

165]

166 }

167 }

G.2 PRODUCT-FLOW-CENTRIC VIEW DSL

1 {

2 "Pred": "Modification Operations",

3 "FlowUnit ": {

4 "Component ": "FBS",

5 "ComponentType ": "Liquid",

6 "UnitArgType ": "MAT"

7 "Vol": ["0.1 mL", "0.5 mL", "1 mL", "1.5 mL", "2 mL", "3 mL", "5

mL", "10 mL", "25 mL", "50 mL", "400 µL", "500 µL", "500 mL"],

8 "Container ": "Tube",

9 "Cond": {

10 "Concentration ": ["0.5%" , "1%", "2%", "2.5%" , "5%", "10%",

"15%", "20%", "30%", "50%", "90%", "100%"] ,

11 "Temperature ": ["-150 ◦ C", "4◦ C", "18 ◦C-26 ◦ C", "37 ◦ C", "56 ◦ C

"],

12 "State": "heat -inactivated"

13 }

14 "Succ": "Transfer Operations"

15 },

16 {

17 "Pred": "Detection and Measurement Operations",

18 "FlowUnit ": {

19 "Component ": "ethidium bromide",

A27

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

20 "ComponentType ": "Solid",

21 "UnitArgType ": "MAT",

22 "Vol": ["0.25 µL/mL", "0.5 µL/mL", "2 - 3 µL", "10 µL", "15 µL",

"10 µg/mL", "0.5 µg/µL"],

23 "Container ": "Flask",

24 "Cond": {

25 "Concentration ": ["0.0024%" , "0.3 - 10 µg/mL", "1.5% (w/v)",

"5 µM", "1:1000"] ,

26 "Temperature ": ["25 ◦ C", "room temperature "],

27 "State": ["toxic", "carcinogenic "],

28 "Charge ": [" positively charged "]

29 }

30 },

31 "Succ": "Modification Operations"

32 },

33 {

34 "Pred": "Transfer Operations",

35 "FlowUnit ": {

36 "Component ": "gel",

37 "ComponentType ": "Semi -Solid",

38 "UnitArgType ": "MAT",

39 "Vol": ["0.5 mL"],

40 "Container ": ["Gel Cassette", "Tank", "Tube"],

41 "Cond": {

42 "Impedance ": ["under 20 kOhm"],

43 "Size": ["50 -250 nt"]

44 }

45 },

46 "Succ": "Transfer Operations"

47 }

H CASE STUDIES

H.1 CASE STUDY: CONTRIBUTIONS OF THE BUILDING BLOCKS

Part of protocol designed by EE+:

1 {

2 "Pred": "",

3 "FlowUnit ": {

4 "Component ": "Lysis solution",

5 "ComponentType ": "Liquid",

6 "RefName ": "Lysis_solution -1",

7 "UnitArgType ": "MAT",

8 "Vol": "50 µL",

9 "Container ": "",

10 "Cond": {

11 "State": "Liquid"

12 }

13 },

14 "Succ": "Pipette"

A28

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

15 },

16
17 {

18 "Operation ": "Pipette",

19 "Precond ": {

20 "SlotArgNum ": 1,

21 "SlotArg ": [

22 "Lysis_solution -1"

23]

24 },

25 "Execution ": {

26 "DeviceType ": "Pipette",

27 "Config ": {

28 "time": "10 times",

29 "volume ": "50 µL"

30 }

31 },

32 "Postcond ": {

33 "EmitArgNum ": 1,

34 "EmitArg ": [

35 "Lysis_solution -2"

36]

37 }

38 }

Part of protocol designed by EE:

1 {

2 "Operation ": "Add",

3 "Precond ": {

4 "SlotArgNum ": 1,

5 "SlotArg ": [

6 "Triton -X"

7]

8 },

9 "Execution ": {

10 "DeviceType ": "8-channel pipette",

11 "Config ": {

12 "Volume ": "1% solution"

13 }

14 },

15 "Postcond ": {

16 "EmitArgNum ": 1,

17 "EmitArg ": [

18 "Triton_X_Solution"

19]

20 }

21 }

22
23 {

24 "Operation ": "Run",

A29

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

25 "Precond ": {

26 "SlotArgNum ": 1,

27 "SlotArg ": [

28 "Cell_Lysis_Mixture"

29]

30 },

31 "Execution ": {

32 "DeviceType ": "Thermal Cycler",

33 "Config ": {

34 "Temperature ": "70 ◦ C",

35 "Time": "15 min"

36 }

37 },

38 "Postcond ": {

39 "EmitArgNum ": 1,

40 "EmitArg ": [

41 "cDNA_Reverse_Transcription"

42]

43 }

44 }

Part of protocol designed by EI:

1 {

2 "Operation ": "Run",

3 "Precond ": {

4 "SlotArgNum ": 1,

5 "SlotArg ": [

6 "Cell_Lysis_Mixture"

7]

8 },

9 "Execution ": {

10 "DeviceType ": "Thermal Cycler",

11 "Config ": {

12 "Temperature ": "70 ◦ C",

13 "Time": "15 min"

14 }

15 },

16 "Postcond ": {

17 "EmitArgNum ": 1,

18 "EmitArg ": [

19 "cDNA_Reverse_Transcription"

20]

21 }

22 }

Part of protocol designed by II:

1 "reverse_transcribe ": {

2 "muscs": "cells",

3 "buffer ": "RT buffer",

4 "enzyme ": "reverse transcriptase",

A30

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

5 "incubation_time ": "60 minutes",

6 "temperature ": "42"

7 }

8
9 "prepare_single_cell_suspension ": {

10 "input_cells ": "lysed cells"

11 }

Part of protocol designed by IB:

1 "reverse_transcribe ": {

2 "muscs": "RNA",

3 "buffer ": "reverse transcription buffer",

4 "enzyme ": "reverse transcriptase",

5 "incubation_time ": "60 minutes",

6 "temperature ": "42"

7 }

8
9 "prepare_single_cell_suspension ": {

10 "input_cells ": "single -cell samples"

11 }

Part of protocol designed by FB:

1 "sort_single_cell ": {

2 "plate": "PCR plate",

3 "nozzle_size ": "100 µm",

4 "mode": "single -cell purity"

5 }

H.2 CASE STUDY: HANDLING DIFFERENT TASK COMPLEXITIES

Part of protocol designed in Planning:

1 {

2 "Operation ": "Obtain",

3 "Precond ": {

4 "SlotArgNum ": 1,

5 "SlotArg ": [

6 "File/Data"

7]

8 },

9 "Execution ": {

10 "DeviceType ": "QIAGEN Blood & Cell Culture DNA Maxi Kit",

11 "Config ": {}

12 },

13 "Postcond ": {

14 "EmitArgNum ": 1,

15 "EmitArg ": [

16 "HMW genomic DNA"

17]

18 }

19 }

A31

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Part of protocol designed in Modification:

1 {

2 "Operation ": "Centrifuge",

3 "Precond ": {

4 "SlotArgNum ": 1,

5 "SlotArg ": [

6 "Serum_Plasma_in_PBS -1"

7]

8 },

9 "Execution ": {

10 "DeviceType ": "Ultracentrifuge",

11 "Config ": {

12 "speed": [

13 "12 ,000 × g"

14],

15 "time": [

16 "20 min"

17],

18 "temperature ": [

19 "4 ◦ C"

20]

21 }

22 },

23 "Postcond ": {

24 "EmitArgNum ": 1,

25 "EmitArg ": [

26 "Pellet -1"

27]

28 }

29 }

Part of protocol designed in Adjustment:

1 {

2 "Operation ": "Incubate",

3 "Precond ": {

4 "SlotArgNum ": 2,

5 "SlotArg ": [

6 "Washed sections with 1st antibody -1",

7 "2nd antibody mixture -1"

8]

9 },

10 "Execution ": {

11 "DeviceType ": "Moistening box",

12 "Config ": {

13 "temperature ": "37 C",

14 "time": "1 h"

15 }

16 },

17 "Postcond ": {

A32

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

18 "EmitArgNum ": 1,

19 "EmitArg ": [

20 "Sections with 2nd antibody -1"

21]

22 }

23 }

H.3 CASE STUDY: GENERALITY ACROSS DOMAINS

Part of protocol designed for Bioengineering:

1 {

2 {

3 "Operation ": "Incubate",

4 "Precond ": {

5 "SlotArgNum ": 2,

6 "SlotArg ": [

7 "Lysis Mixture -2",

8 "Stop Buffer -1"

9]

10 },

11 "Execution ": {

12 "DeviceType ": "Thermocycler",

13 "Config ": {

14 "temperature ": "65 ◦ C",

15 "time": "30 min"

16 }

17 },

18 "Postcond ": {

19 "EmitArgNum ": 1,

20 "EmitArg ": [

21 "Neutralized Mixture -1"

22]

23 }

24 },

25 {

26 "Pred": "Incubate",

27 "FlowUnit ": {

28 "Component ": "Neutralized Mixture",

29 "ComponentType ": "Mixture",

30 "RefName ": "Neutralized Mixture -1",

31 "UnitArgType ": "PROD",

32 "Vol": "60 µL",

33 "Container ": "0.2-ml PCR tube",

34 "Cond": {

35 "State": "Neutralized"

36 }

37 },

38 "Succ": "Mix"

39 },

40 {

A33

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

41 "Operation ": "Elute",

42 "Precond ": {

43 "SlotArgNum ": 1,

44 "SlotArg ": [

45 "Washed Beads -1"

46]

47 },

48 "Execution ": {

49 "DeviceType ": "Centrifuge",

50 "Config ": {

51 "time": "1 min"

52 }

53 },

54 "Postcond ": {

55 "EmitArgNum ": 1,

56 "EmitArg ": [

57 "Eluted Product -1"

58]

59 }

60 },

61 {

62 "Pred": "Elute",

63 "FlowUnit ": {

64 "Component ": "Eluted Product",

65 "ComponentType ": "BiologicalMaterial",

66 "RefName ": "Eluted Product -1",

67 "UnitArgType ": "PROD",

68 "Vol": "50 µL",

69 "Container ": "0.2-ml PCR tube",

70 "Cond": {

71 "State": "Eluted"

72 }

73 },

74 "Succ": "Incubate Clear"

75 },

76 {

77 "Operation ": "Quantify",

78 "Precond ": {

79 "SlotArgNum ": 1,

80 "SlotArg ": [

81 "Clear Eluted Solution -1"

82]

83 },

84 "Execution ": {

85 "DeviceType ": "Nanodrop",

86 "Config ": {}

87 },

88 "Postcond ": {

89 "EmitArgNum ": 1,

90 "EmitArg ": [

A34

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

91 "Quantified Sample -1"

92]

93 }

94 },

95 {

96 "Pred": "Quantify",

97 "FlowUnit ": {

98 "Component ": "Quantified Sample",

99 "ComponentType ": "Liquid",

100 "RefName ": "Quantified Sample -1",

101 "UnitArgType ": "PROD",

102 "Vol": "50 µL",

103 "Container ": "0.2-ml PCR tube",

104 "Cond": {

105 "State": "Quantified",

106 "Concentration ": "150 ng/µL",

107 "A260/A280": 1.85,

108 "A260/A230": 2.1

109 }

110 },

111 "Succ": "Dilute"

112 }

113 }

Part of protocol designed for Ecology:

1 {

2 {

3 "Operation ": "Grow",

4 "Precond ": {

5 "SlotArgNum ": 1,

6 "SlotArg ": [

7 "Watered_Rice_Plants -1"

8]

9 },

10 "Execution ": {

11 "DeviceType ": "Environmental growth chamber",

12 "Config ": {

13 "Temperature ": "24 ◦ C",

14 "LightCycle ": "12h light /12h dark"

15 }

16 },

17 "Postcond ": {

18 "EmitArgNum ": 1,

19 "EmitArg ": [

20 "Mature rice plants"

21]

22 }

23 },

24 {

25 "Pred": "Grow",

A35

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

26 "FlowUnit ": {

27 "Component ": "Mature rice plants",

28 "ComponentType ": "BiologicalMaterial",

29 "RefName ": "Mature_Rice_Plants -1",

30 "UnitArgType ": "PROD",

31 "Vol": "N/A",

32 "Container ": "Plastic pot",

33 "Cond": {

34 "State": "Mature",

35 "Height ": "50-60 cm"

36 }

37 },

38 "Succ": "Anesthetize"

39 },

40 {

41 "Operation ": "Collect",

42 "Precond ": {

43 "SlotArgNum ": 2,

44 "SlotArg ": [

45 "Monitored_Aphid -1",

46 "Mature_Rice_Plants -1"

47]

48 },

49 "Execution ": {

50 "DeviceType ": "Microcapillary tube",

51 "Config ": {}

52 },

53 "Postcond ": {

54 "EmitArgNum ": 1,

55 "EmitArg ": [

56 "Phloem sap"

57]

58 }

59 },

60 {

61 "Pred": "Collect",

62 "FlowUnit ": {

63 "Component ": "Phloem sap",

64 "ComponentType ": "Liquid",

65 "RefName ": "Phloem_Sap -1",

66 "UnitArgType ": "PROD",

67 "Vol": "1-2 µL",

68 "Container ": "Microcapillary tube",

69 "Cond": {

70 "State": "Collected",

71 "Appearance ": "Clear , slightly viscous"

72 }

73 },

74 "Succ": "Dilute"

75 },

A36

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

76 {

77 "Operation ": "Centrifuge",

78 "Precond ": {

79 "SlotArgNum ": 1,

80 "SlotArg ": [

81 "Diluted_Phl_Sap -1"

82]

83 },

84 "Execution ": {

85 "DeviceType ": "Centrifuge",

86 "Config ": {

87 "speed": "6000 rpm",

88 "temperature ": "4 ◦ C",

89 "time": "10 min"

90 }

91 },

92 "Postcond ": {

93 "EmitArgNum ": 1,

94 "EmitArg ": [

95 "Extracellular vesicles"

96]

97 }

98 },

99 {

100 "Pred": "Centrifuge",

101 "FlowUnit ": {

102 "Component ": "Extracellular vesicles",

103 "ComponentType ": "Mixture",

104 "RefName ": "EVs -1",

105 "UnitArgType ": "PROD",

106 "Vol": "N/A",

107 "Container ": "200-µl microtube",

108 "Cond": {

109 "State": "Purified",

110 "Appearance ": "Small , almost invisible pellet"

111 }

112 },

113 "Succ": ""

114 }

115 }

A37

	Introduction
	Representation for protocol design
	The protocol design problem
	Instance actions with attributes
	Operation-centric view with function abstraction
	Product-flow-centric view with model abstraction
	Reciprocative verification over the dual representation

	Automatic representation generation
	The representation generation problem
	Automatic function abstraction
	Automatic model abstraction

	Experiments and discussion
	Protocol design tasks
	Inter-protocol consistency metrics
	Machine designers
	Protocol design results
	Discussion

	Additional remarks
	Rationale of the overall design choice
	Intuition behind the interface
	Values of manual protocol certification
	Limitations of automatic protocol certification
	Rationale for the reagent consumption model
	Relation to LLM reasoning
	Applicability to domains beyond scientific experiment

	Complete results
	Task-indexed complete results
	Domain-indexed complete results

	Ethics statement
	Human expert participants
	Corpora collection

	Implementation details
	Prior model of product flow-centric view
	Prior model of operation-centric view
	Pre-processing of the protocols
	Pure LLM-based designer
	Internal designer
	External designer
	Computing load of the machine designers

	Data collection
	Corpora sources
	Eliminating the risk of data leaking
	On the diversity of novel protocols
	Showcases

	Limitations
	The automatically generated representations
	Operation-centric view DSL
	Product-flow-centric view DSL

	Case studies
	Case study: contributions of the building blocks
	Case study: handling different task complexities
	Case study: generality across domains

