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ABSTRACT

Crystals are the foundation of numerous scientific and industrial applications.
While various learning-based approaches have been proposed for crystal gener-
ation, existing methods seldom consider the space group constraint which is cru-
cial in describing the geometry of crystals and closely relevant to many desirable
properties. However, considering space group constraint is challenging owing to
its diverse and nontrivial forms. In this paper, we reduce the space group con-
straint into an equivalent formulation that is more tractable to be handcrafted into
the generation process. In particular, we translate the space group constraint into
two parts: the basis constraint of the invariant logarithmic space of the lattice
matrix and the Wyckoff position constraint of the fractional coordinates. Upon
the derived constraints, we then propose DiffCSP++, a novel diffusion model that
has enhanced a previous work DiffCSP (Jiao et al., 2023) by further taking space
group constraint into account. Experiments on several popular datasets verify the
benefit of the involvement of the space group constraint, and show that our Dif-
fCSP++ achieves promising performance on crystal structure prediction, ab initio
crystal generation and controllable generation with customized space groups.

1 INTRODUCTION

Crystal generation represents a critical task in the realm of scientific computation and industrial
applications. The ability to accurately and efficiently generate crystal structures opens up avenues
for new material discovery and design, thereby having profound implications for various fields,
including physics, chemistry, and material science (Liu et al., 2017; Oganov et al., 2019).

Recent advancements in machine learning have paved the way for the application of generative mod-
els to this task (Nouira et al., 2018; Hoffmann et al., 2019; Hu et al., 2020; Ren et al., 2021). Among
various strategies, diffusion models have been exhibited to be particularly effective in generating
realistic and diverse crystal structures (Xie et al., 2021; Jiao et al., 2023). These methods leverage a
stochastic process to gradually transform a random initial state into a stable distribution, effectively
capturing the complex landscapes of crystal structures.

Despite the success of existing methods, one significant aspect that has been largely overlooked
is the consideration of space group symmetry (Hiller, 1986). Space groups play a pivotal role in
crystallography, defining the geometry of crystal structures and being intrinsically tied to many
properties such as the topological phases (Tang et al., 2019; Chen et al., 2022). However, integrating
space group symmetry into diffusion models is a non-trivial task due to the diverse and complex
forms of space groups.

In this paper, we supplement this piece by introducing a novel approach that effectively takes space
group constraints into account. Our method, termed DiffCSP++, enhances the previous DiffCSP
method (Jiao et al., 2023) by translating the space group constraint into a more manageable form,
which can be seamlessly integrated into the diffusion process. Our contributions can be summarized
as follows:
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• We propose to equivalently interpret the space group constraint into two tractable parts: the
basis constraint of the O(3)-invariant logarithmic space of the lattice matrix in § 4.1 and the
Wyckoff position constraint of the fractional coordinates in § 4.2, which largely facilitates
the incorporation of the space group constraint into the crystal generation process.

• Our method DiffCSP++ separately and simultaneously generates the lattices, fractional
coordinates and the atom composition under the reduced form of the space group constraint,
through a novel denoising model that is E(3)-invariant.

• Extensive experiments demonstrate that our method not only respects the crucial space
group constraints but also achieves promising performance in crystal structure prediction
and ab initio crystal generation.

2 RELATED WORKS

Learning-based Crystal Generation. Data-driven approaches have emerged as a promising direc-
tion in the field of crystal generation. These techniques, rather than employing graph-based models,
depicted crystals through alternative representations such as voxels voxels (Court et al., 2020; Hoff-
mann et al., 2019; Noh et al., 2019), distance matrices (Yang et al., 2021; Hu et al., 2020; 2021) or 3D
coordinates (Nouira et al., 2018; Kim et al., 2020; Ren et al., 2021). Recently, CDVAE (Xie et al.,
2021) combines the VAE backbone with a diffusion-based decoder, and generates the atom types
and coordinates on a multi-graph (Xie & Grossman, 2018) built upon predicted lattice parameters.
DiffCSP (Jiao et al., 2023) jointly optimizes the lattice matrices and atom coordinates via a diffu-
sion framework. Based on the joint diffusion paradigm, MatterGen (Zeni et al., 2023) applies polar
decomposition to represent lattices as O(3)-invariant symmetry matrices, and GemsDiff (Klipfel
et al., 2024) projects the lattice matrices onto a decomposed linear vector space. Although these
approaches share similar lattice representations with our method, they often overlook the constraints
imposed by space groups. Addressing this gap, PGCGM (Zhao et al., 2023) incorporates the affine
matrices of the space group as additional input into a Generative Adversarial Network (GAN) model.
However, the application of PGCGM is constrained by ternary systems, thus limiting its universality
and rendering it inapplicable to all datasets applied in this paper. Besides, PCVAE (Liu et al., 2023)
integrates space group constraints to predict lattice parameters using a conditional VAE. In contrast,
we impose constraints on the lattice within the logarithmic space, ensuring compatibility with the
diffusion-based framework. Moreover, we further specify the Wyckoff position constraints of all
atoms, achieving the final goal of structure prediction.

Diffusion Generative Models. Diffusion models have been recognized as a powerful generative
framework across various domains. Initially gaining traction in the field of computer vision (Ho
et al., 2020; Rombach et al., 2021; Ramesh et al., 2022), the versatility of diffusion models has been
demonstrated in their application to the generation of small molecules (Xu et al., 2021; Hoogeboom
et al., 2021), protein structures (Luo et al., 2022) and crystalline materials (Xie et al., 2021; Jiao
et al., 2023). Notably, Chroma (Ingraham et al., 2022) incorporates symmetry conditions into the
generation process for protein structures. Different from symmetric proteins, space group constraints
require reliable designs for the generation of lattices and special Wyckoff positions, which is mainly
discussed in this paper.

3 PRELIMINARIES

Crystal Structures A crystal structure M describes the periodic arrangement of atoms in 3D space.
The repeating unit is called a unit cell, which can be characterized by a triplet, denoted as (A,X,L),
where A = [a1,a2, ...,aN ] ∈ Rh×N represents the one-hot representations of atom type, X =
[x1,x2, ...,xN ] ∈ R3×N comprises the atoms’ Cartesian coordinates, and L = [l1, l2, l3] ∈ R3×3

is the lattice matrix containing three basic vectors to periodically translate the unit cell to the entire
3D space, which can be extended as M := {(ai,x

′
i)|x′

i
L
= xi}, where x′

i
L
= xi denotes that x′

i is
equivalent to xi if x′

i can be obtained via an integral translation of xi along the lattices L i.e.,

x′
i

L
= xi ⇔ ∃ki ∈ Z3×1, s.t. x′

i = x+Lki. (1)

Apart from the prevalent Cartesian coordinate system, fractional coordinates are also widely ap-
plied in crystallography. Given a lattice matrix L = [l1, l2, l3], the fractional coordinate f =

2



Published as a conference paper at ICLR 2024

1𝑎

2𝑑3𝑔

3𝑔 2𝑑

3𝑔

3𝑓

3𝑓

3𝑓

1𝑎

2𝑑
3𝑔

3𝑔
2𝑑

3𝑔

3𝑓

3𝑓

3𝑓

Spacegroup
Aware

Denoising 
Model 𝜙

k6

k5

k1

O

k2 = k3 = k4 = 0

k6

k5

k1

O

k2 = k3 = k4 = 0

Crystal Family Constraints

Wyckoff Position Constraints

Figure 1: Overview of our proposed DiffCSP++ for the denoising from Mt to Mt−1. We decom-
pose the space group constraints as the crystal family constraints on the lattice matrix (the red dashed
line) and the Wyckoff position constraints on each atom (the blue dashed line).

(f1, f2, f3)
⊤ ∈ [0, 1)3 locates the atom at x =

∑3
j=1 fjlj . More generally, given a Cartesian coor-

dinate matrix X = [x1,x2, ...,xN ], the corresponding fractional matrix is derived as F = L−1X .

Space Group The concept of space group is used to describe the inherent symmetry of a crystal
structure. Given a transformation g ∈ E(3), we define the transformation of the coordinate matrix
X as g · X which is implemented as g · X := OX + t1⊤ for a orthogonal matrix O ∈ O(3),
a translation vector t ∈ R3 and a 3-dimensional all-ones vector 1. If g lets M invariant, that is
g ·M := {(ai, g ·xi)} = M (note that the symbol “=” here refers to the equivalence between sets),
M is recognized to be symmetric with respect to g. The space group symmetry g ·M = M can also
be depicted by checking how the atoms are transformed. Specifically, for each transformation g ∈
G(M), there exists a permutation matrix Pg ∈ {0, 1}N×N that maps each atom to its corresponding
symmetric point:

A = APg, g ·X L
= XPg, (2)

The set of all possible symmetric transformations of M constitutes a space group G(M) = {g ∈
E(3)|g ·M = M}. Owing to the periodic nature of crystals, the size ofG(M) is finite, and the total
count of different space groups is finite as well. It has been conclusively demonstrated that there are
230 kinds of space groups for all crystals.

Task Definition We focus on generating space group-constrained crystals by learning a condi-
tional distribution p(M|G), where G is the given space group with size |G| = m. Most previous
works (Xie et al., 2021; Jiao et al., 2023) derive p(M) without G and they usually apply E(3)-
equivariant generative models to implement p(M) to eliminate the influence by the choice of the
coordinate systems. In this paper, the O(3) equivariance is no longer required as both L and X will
be embedded to invariant quantities, which will be introduced in § 4.1. The translation invariance
and periodicity will be maintained under the Fourier representation of the fractional coordinates,
which will be shown in § 4.4.

4 THE PROPOSED METHOD: DIFFCSP++

It is nontrivial to exactly involve the constraint of Eq. 2 into existing generative models, due to
the various types of the space group constraints. In this section, we will reduce the space group
constraint from two aspects: the invariant representation of constrained lattice matrices in § 4.1
and the Wyckoff positions of fractional coordinates in § 4.2, which will be tractably and inherently
maintained during our proposed diffusion process in § 4.3.

4.1 INVARIANT REPRESENTATION OF LATTICE MATRICES

The lattice matrix L ∈ R3×3 determines the shape of the unit cell. If the determinant (namely
the volume) of L is meaningful: det(L) > 0, then the lattice matrix is invertible and we have the
following decomposition.

Proposition 1 (Polar Decomposition (Hall, 2013)). An invertible matrix L ∈ R3×3 can be uniquely
decomposed into L = Q exp(S), where Q ∈ R3×3 is an orthogonal matrix, S ∈ R3×3 is a
symmetric matrix and exp(S) =

∑∞
n=0

Sn

n! defines the exponential mapping of S.

The above proposition indicates that L can be uniquely represented by a symmetric matrix S. More-
over, any O(3) transformation of L leaves S unchanged, as the transformation will be reflected by
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Q. We are able to find 6 bases of the space of symmetric matrices, e.g.,

B1 =

(
0 1 0
1 0 0
0 0 0

)
,B2 =

(
0 0 1
0 0 0
1 0 0

)
,B3 =

(
0 0 0
0 0 1
0 1 0

)
,

B4 =

(
1 0 0
0 −1 0
0 0 0

)
,B5 =

(
1 0 0
0 1 0
0 0 −2

)
,B6 =

(
1 0 0
0 1 0
0 0 1

)
.

Each symmetric matrix can be expanded via the above symmetric bases as stated below.

Proposition 2. ∀S ∈ R3×3,S = S⊤,∃k = (k1, · · · , k6), s.t.S =
∑6

i=1 kiBi.

By joining the conclusions of Propositions 1 and 2, it is clear to find that L is determined by the
values of ki. Therefore, we are able to choose different combinations of the symmetric bases to
reflect the space group constraint acting on L. Actually, the total 230 space groups are classified into
6 crystal families, determining the shape of L. After careful derivations (provided in Appendix A.3),
the correspondence between the crystal families and the values of ki is given in the following table.
With such a table, when we want to generate the lattice restricted by a given space group, we can first
retrieve the crystal family and then enforce the corresponding constraint on ki during generation.

Table 1: Relationship between the lattice shape and the constraint of the symmetric bases, where
a, b, c and α, β, γ denote the lengths and angles of the lattice bases, respectively.

Crystal Family Space Group No. Lattice Shape Constraint of Symmetric Bases

Triclinic 1 ∼ 2 No Constraint No Constraint

Monoclinic 3 ∼ 15 α = γ = 90◦ k1 = k3 = 0

Orthorhombic 16 ∼ 74 α = β = γ = 90◦ k1 = k2 = k3 = 0

Tetragonal 75 ∼ 142
α = β = γ = 90◦ k1 = k2 = k3 = 0

a = b k4 = 0

Hexagonal 143 ∼ 194
α = β = 90◦, γ = 120◦ k2 = k3 = 0, k1 = −log(3)/4

a = b k4 = 0

Cubic 195 ∼ 230
α = β = γ = 90◦ k1 = k2 = k3 = 0

a = b = c k4 = k5 = 0

4.2 WYCKOFF POSITIONS OF FRACTIONAL COORDINATES

As shown in Eq. 2, each transformation g ∈ G is associated with a permutation matrix Pg .
Considering atom i for example, it will be transformed to a symmetric and equivalent point j,
if Pg[i, j] = 1, i ̸= j, where Pg[i, j] returns the element of the i-th row and j-th column.
Under some particular transformation g, the atom s will be transformed to itself, implying that
Pg[i, i] = 1. Such transformations that leave i invariant comprise the site symmetry group, defined

as Gi = {g ∈ G|g · xi
L
= xi} ⊆ G. Now, we introduce the notion of Wyckoff position that is useful

in crystallography. For atom i, it shares the same Wyckoff position with atoms owning the conjugate
site symmetry groups of Gi. There could be multiple types of Wyckoff positions in a unit cell.

Wyckoff positions can also be represented by the fractional coordinate system. Given a crystal
structure with N atoms belonging to N ′ Wyckoff positions, we denote that each Wyckoff position
contains ns atoms satisfying 1 ≤ s ≤ N ′. The symbol ns is named as the multiplicity of the
s-th Wyckoff position and maintains

∑N ′

s=1 ns = N . In the following sections, we denote a′
s,f

′
s

as the atom type and basic coordinate of the s-th Wyckoff position, and asi ,fsi as the atom type
and fractional coordinate of atom si in the s-th Wyckoff position. A type of Wyckoff positions is
formulated as a list of transformation pairs {(Rsi , tsi)}

ns
i=1 that project the basic coordinate f ′

s to
all equivalent positions {Rsif

′
s + tsi}

ns
i=1. Figure 2 illustrates an example with N ′ = 7.

Since Wyckoff positions are inherently determined by the space group, we can realize the space
group constraint by restricting the coordinates of the atoms that are located in the same set of the
Wyckoff positions during crystal generation, which will be presented in detail in the next subsection.
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Wyckoff Positions of P4mm (No.11) 

1a: (0,0) 1b: (1/2,1/2)

2c: (1/2,0), (0,1/2)

4d: (x,0), (-x,0), (0,x), (0,-x)

4e: (x,1/2), (-x,1/2), (1/2,x), (1/2,-x)

4f: (x,x), (x,-x), (-x,x), (-x,-x)

8g: (x,y), (x,-y), (-x,y), (-x,-y)

(y,x), (y,-x), (-y,x), (-y,-x)

[dashed, orange]

Special position

[dashed, orange]

General position

Figure 2: Inspired by PyXtal (Fredericks et al., 2021), we utilize the 2D plain group P4mm as a toy
example to demonstrate the concept of Wyckoff position. An asymmetric triangle is copied eight
times to construct the square unit cell, and the general Wyckoff position (8g1) has a multiplicity of
eight. The other Wyckoff positions are restricted to certain subspaces. For instance, position 4e is
constrained by the red dashed lines.

4.3 DIFFUSION UNDER SPACE GROUP CONSTRAINTS

To tackle the crystal generation problem, we utilize diffusion models to jointly generate the lattice
matrix L, the fractional coordinates F and the atom types A under the specific space group con-
straint. We detail the forward diffusion process and the backward generation process of the three
key components as follows.

Diffusion on L. As mentioned in 4.1, the lattice matrix L can be uniquely represented by an O(3)-
invariant coefficient vector k. Hence, we directly design the diffusion process on k, and the forward
probability of time step t is given by

q(kt|k0) = N
(
kt|

√
ᾱtk0, (1− ᾱt)I

)
, (3)

where ᾱt =
∏t

s=1(1−βt), and βt ∈ (0, 1) determines the variance of each diffusion step, controlled
by the cosine scheduler proposed in Nichol & Dhariwal (2021).

Starting from the normal prior kT ∼ N (0, I), the corresponding generation process is designed as

p(kt−1|Mt) = N (kt−1|µk(Mt), βt
1− ᾱt−1

1− ᾱt
I), (4)

where µk(Mt) =
1√
αt

(
kt− βt√

1−ᾱt
ϵ̂k(Mt, t)

)
, and the term ϵ̂k(Mt, t) is predicted by the denois-

ing model ϕ(Mt, t).

To confine the structure under a desired space group constraint, we only diffuse and generate the
unconstrained dimensions of k while preserving the constrained value k0 as outlined in Table 1.
To optimize the denoising term ϵ̂k(Mt, t), we first sample ϵk ∼ N (0, I) and reparameterize kt as
kt = m⊙(

√
ᾱtk0+

√
1− ᾱtϵk)+(1−m)⊙k0, where the mask is given by m ∈ {0, 1}6,mi = 1

indicates the i-th basis is unconstrained, and ⊙ is the element-wise multiplication. The objective on
k is finally computed by

Lk = Eϵk∼N (0,I),t∼U(1,T )[∥m⊙ ϵk − ϵ̂L(Mt, t)∥22]. (5)

Diffusion on F . In a unit cell, the fractional coordinates F ∈ R3×N of N atoms can be arranged
as the Wyckoff positions of N ′ basic fractional coordinates F ′ ∈ R3×N ′

. Hence we only focus
on the generation of F ′, and its forward process is conducted via the Wrapped Normal distribution
following Jiao et al. (2023) to maintain periodic translation invariance:

q(F ′
t |F ′

0) = Nw

(
F ′
t |F ′

0, σ
2
t I
)
, (6)

1In practical implementation, Wyckoff positions are identified by a combination of a number and a letter,
where the number is the multiplicity, and the letter is to distinguish the Wyckoff position type in a dictionary
order corresponding to the ascending order of the multiplicity.
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The forward sampling can be implemented as F ′
t = w(F ′

0 + σtϵF ′(Mt, t)), where w(·) retains
the fractional part of the input. For the backward process, we first acquire F ′

T from the uniform
initialization, and sample F ′

0 via the predictor-corrector sampler with the denoising term ϵ̂F ′(Mt, t)
output by the model ϕ(Mt, t).

Note that the basic coordinates do not always have 3 degrees of freedom. The transformation ma-
trice Rsi could be singular, resulting in Wyckoff positions located in specific planes, axes, or even
reduced to fixed points. Hence we project the noise term ϵF ′ onto the constrained subspaces via
the least square method as ϵ′F ′ [:, s] = R†

s0ϵF ′ [:, s], where R†
i is the pseudo-inverse of Rs0 . The

training objective on F ′ is
LF ′ = EF ′

t∼q′(F ′
t |F ′

0),t∼U(1,T )

[
λt∥∇F ′

t
log q′(F ′

t |F ′
0)− ϵ̂F ′(Mt, t)∥22

]
, (7)

where λt = E−1
[
∥∇ logNw(0, σ

2
t )∥22

]
is the pre-computed weight, and q′ is the projected distribu-

tion of q induced by ϵ′F ′ . Further details are provided in Appendix.

Diffusion on A. Since the atom types A remain consistent with the Wyckoff positions, we can
also only focus on the basic atoms A′ ⊆ A. Considering A′ ∈ Rh×N ′

as the one-hot continues
representation, we apply the standard DDPM-based method by specifying the forward process as

q(A′
t|A′

0) = N
(
A′

t|
√
ᾱtA

′
0, (1− ᾱt)I

)
. (8)

And the backward process is defined as

p(A′
t−1|Mt) = N (A′

t−1|µA′(Mt), βt
1− ᾱt−1

1− ᾱt
(Mt)I), (9)

where µA′(Mt) is similar to µk(Mt) in Eq. 4. The denoising term ϵ̂A′(Mt, t) ∈ Rh×N ′
is pre-

dicted by the model ϕ(Mt, t).

The training objective is
LA′ = EϵAs∼N (0,I),t∼U(1,T )[∥ϵAs − ϵ̂As(Mt, t)∥22]. (10)

The entire objective for training the joint diffusion model of M is combined as
LM = λkLk + λF ′LF ′ + λA′LA′ . (11)

4.4 DENOISING MODEL

In this subsection, we introduce the specific design of the denoising model ϕ(Mt, t) to obtain the
three denoising terms ϵ̂k, ϵ̂F ′ , ϵ̂A′ under the space group constraint, with the detailed architecture
illustrated in Figure 4 at Appendix B.1. We omit the subscript t in this subsection for brevity.

We first fuse the atom embeddings fatom(A) and the sinusoidal time embedding ftime(t)
to acquire the input node features H = φin(fatom(A), ftime(t)), where φin is an MLP.
The message passing from node j to i in the l-th layer is designed as Eq. (12-13),

m
(l)
ij = φm(h

(l−1)
i ,h

(l−1)
j ,k, ψFT(fj − fi)), (12)

h
(l)
i = h

(l−1)
i + φh(h

(l−1)
i ,

N∑
j=1

m
(l)
ij ), (13)

ϵ̂k,unconstrained = φk

( 1

N

N∑
i=1

h
(L)
i

)
, (14)

ϵ̂F [:, i], ϵ̂A[:, i] = φF (h
(L)
i ), φA(h

(L)
i ), (15)

ϵ̂k = m⊙ ϵ̂k,unconstrained, (16)

ϵ̂F ′ = WyckoffMean(ϵ̂′F ), (17)
ϵ̂A′ = WyckoffMean(ϵ̂A), (18)

where φm and φh are MLPs, and ψFT :
(−1, 1)3 → [−1, 1]3×K is the Fourier trans-
formation with K bases to periodically em-
bed the relative fractional coordinate fj−fi.
Note that here we apply k in Eq. (12) as
the unique O(3)-invariant representation of
L instead of the inner product L⊤L in Dif-
fCSP (Jiao et al., 2023), and its reliability is
validated in § 5.4. After L layers of mes-
sage passing, we get the invariant graph-
and node-level denoising terms as Eq. (14-
15), where φk, φF , φA are MLPs. To align
with the constrained diffusion framework
proposed in § 4.3, the denosing terms are re-
quired to maintain the space group constraints, which is not considered in the original DiffCSP.
The constrained denoising terms are finally projected as Eq. (16-18), where ϵ̂′F [:, i] = R†

i ϵ̂F [:, i]
is the projected denoising term towards the subspace of the Wyckoff positions, and WyckoffMean
computes the average of atoms belonging to the same Wyckoff position.
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Table 2: Results on crystal structure prediction task. MR stands for Match Rate.
Perov-5 MP-20 MPTS-52

MR (%) RMSE MR (%) RMSE MR (%) RMSE

RS 36.56 0.0886 11.49 0.2822 2.68 0.3444
BO 55.09 0.2037 12.68 0.2816 6.69 0.3444
PSO 21.88 0.0844 4.35 0.1670 1.09 0.2390

P-cG-SchNet (Gebauer et al., 2022) 48.22 0.4179 15.39 0.3762 3.67 0.4115
CDVAE (Xie et al., 2021) 45.31 0.1138 33.90 0.1045 5.34 0.2106
DiffCSP (Jiao et al., 2023) 52.02 0.0760 51.49 0.0631 12.19 0.1786

DiffCSP++ (w/ CSPML) 52.17 0.0841 70.58 0.0272 37.17 0.0676

DiffCSP++ (w/ GT) 98.44 0.0430 80.27 0.0295 46.29 0.0896

5 EXPERIMENTS

5.1 SETUP

In this section, we evaluate our method over various tasks. We demonstrate the capability and
explore the potential upper limits on the crystal structure prediction task in § 5.2. Additionally, we
present the remarkable performance achieved in the ab initio generation task in § 5.3. We further
provide adequate analysis in § 5.4.

Datasets. We evaluate our method on four datasets with different data distributions. Perov-
5 (Castelli et al., 2012) encompasses 18,928 perovskite crystals with similar structures but distinct
compositions. Each structure has precisely 5 atoms in a unit cell. Carbon-24 (Pickard, 2020) com-
prises 10,153 carbon crystals. All the crystals share only one element, Carbon, while exhibiting
diverse structures containing 6 ∼ 24 atoms within a unit cell. MP-20 (Jain et al., 2013) contains
45,231 materials sourced from Material Projects with diverse compositions and structures. These
materials represent the majority of experimentally generated crystals, each consisting of no more
than 20 atoms in a unit cell. MPTS-52 serves as a more challenging extension of MP-20, consisting
of 40,476 structures with unit cells containing up to 52 atoms. For Perov-5, Carbon-24 and MP-20,
we follow the 60-20-20 split with previous works (Xie et al., 2021). For MPTS-52, we perform a
chronological split, allocating 27,380/5,000/8,096 crystals for training/validation/testing.

Tasks. We focus on two major tasks attainable through our method. Crystal Structure Prediction
(CSP) aims at predicting the structure of a crystal based on its composition. Ab Initio Generation
requires generating crystals with valid compositions and stable structures. We conduct the CSP
experiments on Perov-5, MP-20, and MPTS-52, as the structures of carbon crystals vary diversely,
and it is not reasonable to match the generated samples with one specific reference on Carbon-
24. The comparison for the generation task is carried out using Perov-5, Carbon-24, and MP-20,
aligning with previous works.

5.2 CRYSTAL STRUCTURE PREDICTION

To adapt our method to the CSP task, we keep the atom types unchanged during the training and
generation stages. Moreover, the proposed DiffCSP++ requires the provision of the space group and
the Wyckoff positions of all atoms during the generation process. To address this requirement, we
employ two distinct approaches to obtain these essential conditions.

For the first version of our method, we select the space group of the Ground-Truth (GT) data as
input. However, it’s worth noting that these conditions are typically unavailable in real-world sce-
narios. Instead, we also implement our method with CSPML (Kusaba et al., 2022), a metric learning
technique designed to select templates for the prediction of new structures. Given a composition, we
first identify the composition in the training set that exhibits the highest similarity. Subsequently, we
employ the corresponding structure as a template and refine it using DiffCSP++ after proper element
substitution. We provide more details in Appendix B.2.

For evaluation, we match the predicted sample with the ground truth structure. For each composition
within the testing set, we generate one structure and the match is determined by the StructureMatcher
class in pymatgen (Ong et al., 2013) with thresholds stol=0.5, angle tol=10, ltol=0.3, in accordance
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Table 3: Results on ab initio generation task. The results of baseline methods are from Xie et al.
(2021); Jiao et al. (2023).

Data Method Validity (%) ↑ Coverage (%) ↑ Property ↓
Struc. Comp. COV-R COV-P dρ dE delem

Perov-5 FTCP (Ren et al., 2021) 0.24 54.24 0.00 0.00 10.27 156.0 0.6297
Cond-DFC-VAE (Court et al., 2020) 73.60 82.95 73.92 10.13 2.268 4.111 0.8373
G-SchNet (Gebauer et al., 2019) 99.92 98.79 0.18 0.23 1.625 4.746 0.0368
P-G-SchNet (Gebauer et al., 2019) 79.63 99.13 0.37 0.25 0.2755 1.388 0.4552
CDVAE (Xie et al., 2021) 100.0 98.59 99.45 98.46 0.1258 0.0264 0.0628
DiffCSP (Jiao et al., 2023) 100.0 98.85 99.74 98.27 0.1110 0.0263 0.0128
DiffCSP++ 100.0 98.77 99.60 98.80 0.0661 0.0405 0.0040

Carbon-24 FTCP (Ren et al., 2021) 0.08 – 0.00 0.00 5.206 19.05 –
G-SchNet (Gebauer et al., 2019) 99.94 – 0.00 0.00 0.9427 1.320 –
P-G-SchNet (Gebauer et al., 2019) 48.39 – 0.00 0.00 1.533 134.7 –
CDVAE (Xie et al., 2021) 100.0 – 99.80 83.08 0.1407 0.2850 –
DiffCSP (Jiao et al., 2023) 100.0 – 99.90 97.27 0.0805 0.0820 –
DiffCSP++ 99.99 – 100.0 88.28 0.0307 0.0935 –

MP-20 FTCP (Ren et al., 2021) 1.55 48.37 4.72 0.09 23.71 160.9 0.7363
G-SchNet (Gebauer et al., 2019) 99.65 75.96 38.33 99.57 3.034 42.09 0.6411
P-G-SchNet (Gebauer et al., 2019) 77.51 76.40 41.93 99.74 4.04 2.448 0.6234
CDVAE (Xie et al., 2021) 100.0 86.70 99.15 99.49 0.6875 0.2778 1.432
DiffCSP (Jiao et al., 2023) 100.0 83.25 99.71 99.76 0.3502 0.1247 0.3398
DiffCSP++ 99.94 85.12 99.73 99.59 0.2351 0.0574 0.3749

with previous setups. The match rate represents the ratio of matched structures relative to the total
number within the testing set, and the RMSD is averaged over the matched pairs, and normalized by
3
√
V/N where V is the volume of the lattice.

We compare our methods with two lines of baselines. The first line is the optimization-based meth-
ods (Cheng et al., 2022) including Random Search (RS), Bayesian Optimization (BO), and Particle
Swarm Optimization (PSO). The second line considers three types of generative methods. P-cG-
SchNet (Gebauer et al., 2022) is an autoregressive model taking the composition as the condition.
CDVAE (Xie et al., 2021) proposes a VAE framework that first predicts the invariant lattice param-
eters and then generates the atom types and coordinates via a score-based decoder. DiffCSP (Jiao
et al., 2023) jointly generates the lattices and atom coordinates. All the generative methods do not
consider the space group constraints.

The results are shown in Table 2, where we provide the performance of the templates mined by
CSPML and directly from GT. We have the following observations. 1. DiffCSP++, when equipped
with GT conditions, demonstrates a remarkable superiority over other methods. This indicates that
incorporating space group symmetries into the generation framework significantly enhances its abil-
ity to predict more precise structures. 2. When combined with CSPML templates, our method
continues to surpass baseline methods. Given that the ground truth (GT) space groups are not ac-
cessible in real-world CSP scenes, our method offers a practical solution for predicting structures
with high space group symmetry. 3. Notably, there remains a gap between match rates under space
group conditions derived from mined templates and those from GT conditions (70.58% vs. 80.27%
on MP-20). This suggests that an improved template-finding algorithm could potentially enhance
performance, which we leave for further studies.

5.3 AB INITIO GENERATION

For each dataset, we first sample 10,000 structures from the training set with replacement as tem-
plates, and conduct the ab initio generation on the extracted templates. We focus on three lines
of metrics for evaluation. Validity. We requires both the structures and the compositions of the
generated samples are valid. The structural valid rate is the ratio of the samples with the minimal
pairwise distance larger than 0.5Å, while the compositional valid rate is the percentage of samples
under valence equilibrium solved by SMACT (Davies et al., 2019). Coverage. The coverage recall
(COV-R) and precision (COV-P) calculate the percentage of the crystals in the testing set and that
in generated samples matched with each other within a fingerprint distance threshold. Property
statistics. We calculate three Wasserstein distances between the generated and testing structures,
specifically focusing on density, formation energy, and the number of elements (Xie et al., 2021),
denoted as dρ, dE , and delem respectively. To execute this evaluation, we apply these validity and
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coverage metrics to all 10,000 generated samples, and the property metrics are computed on a subset
of 1,000 valid samples.

We compare our method with previous generative methods FTCP (Ren et al., 2021), Cond-DFC-
VAE (Court et al., 2020), G-SchNet (Gebauer et al., 2019), P-G-SchNet, CDVAE (Xie et al., 2021)
and DiffCSP (Jiao et al., 2023). Table 3 depicts the results. We find that our method yields compa-
rable performance on validity and coverage metrics, while showcasing a substantial superiority over
the baselines when it comes to property statistics, indicating that the inclusion of space group con-
straints contributes to the model’s ability to generate more realistic crystals, especially for complex
structures like in MP-20.

5.4 ANALYSIS

In this subsection, we discuss the influence of the key components in our proposed framework.

Table 4: Ablation studies.

MP-20 MR (%) RMSE
Invariant Lattice Representation

DiffCSP 51.49 0.0631
DiffCSP-k 50.76 0.0608

Pre-Average vs. Post-Average
DiffCSP++ (Pre) 78.75 0.0355
DiffCSP++ (Post) 80.27 0.0295

Invariant Lattice Representation. In this work, we sub-
stitute the coefficient vector k for the inner product term
L⊤L in DiffCSP (Jiao et al., 2023) to serve as the O(3)-
invariant representation of the lattice matrix. To assess
the impact of this modification, we adapt the diffusion
process and representation from L to k in DiffCSP, with-
out imposing extra space group constraints. This variant
is denoted as DiffCSP-k. The performance of DiffCSP-k
is substantiated by the results in Table 4 as being on par
with the original DiffCSP, validating k as a dependable
invariant representation of the lattice matrix.

Pre-Average vs. Post-Average. In Eq. (17), we average the denoising outputs on F to the base
nodes for each Wyckoff position, and calculate the losses on the base node in Eq. (7). Practically, the
loss function can be implemented in two forms, named pre-average and post-average, as extended
in Eq. (19 - 20) respectively.

LF ′,pre = λt∥∇F ′
t
log q′(F ′

t |F ′
0)− Mean(ϵ̂′F )∥22, (19)

LF ′,post = λtMean
(
∥∇F ′

t
log q′(F ′

t |F ′
0)− ϵ̂′F ∥22

)
. (20)

���������������� �����������������

�������������� �����������������

Figure 3: Generation under
different space groups.

Intuitively, the pre-average loss enforces the average output of each
Wyckoff position to match with the label on the base node, while the
post-average loss minimizes the L2-distances of each atom. Table 4
reveals the superior performance of the post-average model, which
we adopt for all subsequent experiments.

Towards structures with customized symmetries Our method
enables structure generation under given space group constraints,
hence allowing the creation of diverse structures from the same
composition but based on different space groups. To illustrate the
versatility of our approach, we visualize some resulting structures in
Figure 3 which demonstrates the distinct structures generated under
various space group constraints.

6 CONCLUSION

In this work, we propose DiffCSP++, a diffusion-based approach for crystal generation that effec-
tively incorporates space group constraints. We decompose the complex space group constraints
into invariant lattice representations of different crystal families and the symmetric atom types and
coordinates according to Wyckoff positions, ensuring compatibility with the backbone model and
the diffusion process. Adequate experiments verify the reliability of DiffCSP++ on crystal structure
prediction and ab initio generation tasks. Notably, our method facilitates the generation of struc-
tures from specific space groups, opening up new opportunities for material design, particularly in
applications where certain space groups or templates are known to exhibit desirable properties.
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Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, et al. Mattergen: a generative model for
inorganic materials design. arXiv preprint arXiv:2312.03687, 2023.

Yong Zhao, Edirisuriya M Dilanga Siriwardane, Zhenyao Wu, Nihang Fu, Mohammed Al-Fahdi,
Ming Hu, and Jianjun Hu. Physics guided deep learning for generative design of crystal materials
with symmetry constraints. npj Computational Materials, 9(1):38, 2023.

Nils ER Zimmermann and Anubhav Jain. Local structure order parameters and site fingerprints for
quantification of coordination environment and crystal structure similarity. RSC advances, 10
(10):6063–6081, 2020.

12



Published as a conference paper at ICLR 2024

A THEORETICAL ANALYSIS

A.1 PROOF OF PROPOSITION 1

The proposition 1 is rewritten and proved as follows.

Proposition 1 (Polar Decomposition). An invertible matrix L ∈ R3×3 can be uniquely decomposed
into L = Q exp(S), where Q ∈ R3×3 is an orthogonal matrix, S ∈ R3×3 is a symmetric matrix
and exp(S) =

∑∞
n=0

Sn

n! defines the exponential mapping of S.

Proof. Given an invertible matrix L ∈ R3×3, we first calculate the inner product term J = L⊤L.
As J is symmetric, we can formulate its eigendecomposition as J = UΛU⊤, where U ∈ R3×3

is the square matrix composed by eigenvectors of J and Λ ∈ R3×3 is a diagonal matrix with
eigenvalues of J as diagonal elements. The required symmetric matrix can be achieved by S =
1
2U log(Λ)U⊤.

As S is obviously symmetric, we need to prove that Q = L exp(S)−1 is orthogonal, i.e. Q⊤Q = I .
To see this, we have

Q⊤Q = Q⊤L exp(S)−1

= Q⊤L exp
(1
2
U log(Λ)U⊤)−1

= Q⊤LU exp
(
− 1

2
log(Λ)

)
U⊤

= Q⊤LU
√
Λ−1U⊤

=
(
LU

√
Λ−1U⊤)⊤LU

√
Λ−1U⊤

= U
√
Λ−1U⊤L⊤LU

√
Λ−1U⊤

= U
√
Λ−1U⊤UΛU⊤U

√
Λ−1U⊤

= U
√
Λ−1Λ

√
Λ−1U⊤

= UU⊤

= I.

From the above construction, we further have that the decomposition is unique, as exp(S) is positive
definite.

A.2 PROOF OF PROPOSITION 2

We begin with the following definition.

Definition 1 (Frobenius Inner Product in Real Space). Given A,B ∈ R3×3, the Frobenius inner
product is defined as ⟨A,B⟩F = tr(A⊤B), where tr(·) denotes the trace of the matrix.

The proposition 2 is rewritten as follows.

Proposition 2. ∀S ∈ R3×3,S = S⊤,∃k = (k1, · · · , k6), s.t.S =
∑6

i=1 kiBi.

Proof. Based on the above definition, we can easily find that ⟨Bi,Bj⟩F = 0,∀i, j =
1, · · · , 6 and i ̸= j, meaning that the bases defined in § 4.1 are orthogonal bases, and the coeffi-
cients of the linear combination S =

∑6
i=1 kiBi can be formed as

ki =
⟨S,Bi⟩F√
⟨Bi,Bi⟩F

. (21)

As the 3D symmetric matrix S ∈ R3×3 has 6 degrees of freedom (Larson, 2016), it can be uniquely
represented by the coefficient vector k = (k1, · · · , k6).
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A.3 CONSTRAINTS FROM DIFFERENT CRYSTAL FAMILIES

In Crystallography, the lattice matrix L = [l1, l2, l3] can also be represented by the lengths a, b, c
and angles α, β, γ of the parallelepiped. Specifically, we have

a = ∥l1∥2,
b = ∥l2∥2,
c = ∥l3∥2,
α = arccos ⟨l2,l3⟩

b·c ,

β = arccos ⟨l1,l3⟩
a·c ,

γ = arccos ⟨l1,l2⟩
a·b .

(22)

Based on such notation, the inner product matrix J can be further formulated as

J = L⊤L =

 a2 ab cos γ ac cosβ
ab cos γ b2 bc cosα
ac cosβ bc cosα c2

 = UΛU⊤. (23)

Moreover, according to Appendix A.2, we can formulate the corresponding matrix in the logarithmic
space as

S =

6∑
i=1

kiBi = k6I +

[
k4 + k5 k1 k2
k1 k5 − k4 k3
k2 k3 −2k5

]
=

1

2
U log(Λ)U⊤. (24)

We will specify the cases of the 6 crystal families separately as follows. Note that different with
previous works which directly applies constraints on lattice parameters (Liu et al., 2023), we focus
on the constraints in the logrithmic space, which plays a significant role in designing the diffusion
process.

Triclinic. As discussed in Appendix A.2, a triclinic lattice formed by an arbitrary invertible lattice
matrix can be represented as the linear combination of 6 bases under no constraints.

Monoclinic. Monoclinic lattices require α = γ = 90◦, where J can be simplified as

JM =

 a2 0 ac cosβ
0 b2 0

ac cosβ 0 c2

 (25)

Obviously, JM has an eigenvector e2 = (0, 1, 0)⊤ as JMe2 = b2e2. As J and S have the same
eigenvectors, we have SMe2 = (k1, k5 + k6 − k4, k3)

⊤ = λMe2 for some λM . Hence we directly
have λM = k5 + k6 − k4 and k1 = k3 = 0.

Orthorhombic. Orthorhombic lattices require α = β = γ = 90◦, where we have

JO =

a2 0 0
0 b2 0
0 0 c2

 . (26)

As SO = 1
2 log(JO) = diag(log(a), log(b), log(c)), we can directly achieve the solution of k as


k1 = k2 = k3 = 0,

k4 = log(a/b)/2,

k5 = log(ab/c2)/6,

k6 = log(abc)/3.

(27)

Tetragonal. Tetragonal lattices have higher symmetry than orthorhombic lattices with a = b. We
have k4 = 0 by substituting a = b into Eq. (27).
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Hexagonal. Hexagonal lattices are constrained by α = β = 90◦, γ = 120◦, a = b, which formulate
J as

JH =

 a2 − 1
2a

2 0
− 1

2a
2 a2 0

0 0 c2

 =

−
√
2
2

√
2
2 0√

2
2

√
2
2 0

0 0 1

 3
2a

2 0 0
0 1

2a
2 0

0 0 c2

−
√
2
2

√
2
2 0√

2
2

√
2
2 0

0 0 1

 . (28)

And for S, we have

SH =

−
√
2
2

√
2
2 0√

2
2

√
2
2 0

0 0 1

log(a) + 1
2 log(

3
2 ) 0 0

0 log(a) + 1
2 log(

1
2 ) 0

0 0 log(c)

−
√
2
2

√
2
2 0√

2
2

√
2
2 0

0 0 1


(29)

=

log(a) + 1
4 log(

3
4 ) − 1

4 log(3) 0
− 1

4 log(3) log(a) + 1
4 log(

3
4 ) 0

0 0 log(c)

 . (30)

Combine Eq. (24) and Eq. (30), we have the solution as
k2 = k3 = k4 = 0,

k1 = − log(3)/4,

k5 = log(
√
3a2

2c2 )/6,

k6 = log(
√
3
2 a

2c)/3.

(31)

Cubic. Cubic lattices extend tetragonal lattices to a = b = c, changing the solution in Eq. (27) into
k1 = k2 = k3 = k4 = k5 = 0, k6 = log(a).

B IMPLEMENTATION DETAILS

B.1 ARCHITECTURE OF THE DENOISING BACKBONE

We illustrate the architecture of the model described in § 4.4 in Figure 4. The Fourier coordinate
embedding ψFT is defined as

ψFT(f)[c, k] =

{
sin(2πmfc), k = 2m,

cos(2πmfc), k = 2m+ 1.
(32)

B.2 COMBINATION WITH SUBSTITUTION-BASED ALGORITHMS

Crystal structure prediction (CSP) requires predicting the crystal structure from the given composi-
tion. To conduct our method on the CSP task, we must initially select an appropriate space group
and assign each atom a Wyckoff position. We achieve this goal via a substitution-based method,
CSPML (Kusaba et al., 2022), which first retrieves a template structure from the training set accord-
ing to the query composition, and then substitutes elements in the template with those of the query.
We depict the prediction pipeline in Figure 5, including the following steps.

Template Retrieval. Given a composition as a query, CSPML initially identifies all structures
within the training set that share the same compositional ratio (for instance, 1:1:3 for CaTiO3). The
retrieved candidates are then ranked using a model based on metric learning. This model is trained on
pairwise data derived from the training set. For structures Mi,Mj , we obtain compositional finger-
prints Fp(c, i), Fp(c, j) via XenonPy (Liu et al., 2021) and structural fingerprints Fp(s, i), Fp(s, j)
via CrystalNN (Zimmermann & Jain, 2020). The model ϕ is trained via the binary classification loss

LCSPML = BCE(ϕ(|Fpc,i − Fp(c, j)|),1∥Fp(s,i)−Fp(s,j)∥<δ).

Here, δ is a threshold used to determine if the structures of Mi and Mj are similar. We adopt
δ = 0.3 in line with the setting of Kusaba et al. (2022). The ranking score is defined as ϕ(|Fp(c, q)−
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Figure 4: Architecture of the denoising model.

Fp(c, k)|) for a query composition Aq and a candidate composition Ak, implying the probability of
similarity.

Element Substitution. The second step is to assign the atoms in the query composition to the
template with the corresponding element ratio (1/5 for Ca in CaTiO3). For the elements with the
same ratio (Ca and Ti), we solve the optimal transport with the L2-distance between the element
descriptors as the cost.

Refinement. Finally, we refine the structure via DiffCSP++ by adding noise to timestep t and apply
the generation process under the constraints provided by the template. Practically, we select t = 50
for MPTS-52 and t = 100 for Perov-5 and MP-20.
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Figure 5: Pipeline of DiffCSP++ combined with CSPML.

Table 5: CSP results of the CSPML templates. MR stands for Match Rate.
Perov-5 MP-20 MPTS-52

MR (%) RMSE MR (%) RMSE MR (%) RMSE

CSPML (Kusaba et al., 2022) 51.84 0.1066 70.51 0.0338 36.98 0.0664
DiffCSP++ (w/ CSPML) 52.17 0.0841 70.58 0.0272 37.17 0.0676

More Results. We further provide the performance of the CSPML templates in Table 5. DiffCSP++
exhibits generally higher match rates and lower RMSE values upon the CSPML templates. This un-
derscores the model’s proficiency in refining structures. Note that the refinement step is independent
of the template-finding method, and more powerful ranking models or substitution algorithms may
further enhance the CSP performance.

B.3 HYPER-PARAMETERS AND TRAINING DETAILS

We follow the same data split as proposed in CDVAE (Xie et al., 2021) and DiffCSP (Jiao et al.,
2023). For the implementation of the CSPML ranking models, we construct 100,000 positive and
100,000 negative pairs from the training set for each dataset to train a 3-layer MLP with 100 epochs
and a 1 × 10−3 learning rate. To train the DiffCSP++ models, we train a denoising model with
6 layers, 512 hidden states, and 128 Fourier embeddings for each task and the training epochs are
set to 3500, 4000, 1000, 1000 for Perov-5, Carbon-24, MP-20, and MPTS-52. The diffusion step
is set to T = 1000. We utilize the cosine scheduler with s = 0.008 to control the variance of
the DDPM process on k and A, and an exponential scheduler with σ1 = 0.005, σT = 0.5 to

17



Published as a conference paper at ICLR 2024

�������������

���������������

���������������

�������������

���������������

Figure 6: Different structures generated upon the same space group constraints.

control the noise scale on F . The loss coefficients are set as λk = λ′F = 1, λ′A = 20. We
apply γ = 2× 10−5 for Carbon-24, 1× 10−5 for MPTS-52 and 5× 10−6 for other datasets for the
corrector steps during generation. For sampling from q′ in Eq. (7), we first sample ϵF ∼ N (0, σ2

t I),
select Rs0 for each Wyckoff position to acquire ϵ′F ′ [:, s] = R†

s0ϵF ′ [:, s], and finally achieve F ′
t as

F ′
t = w(F ′

0 + ϵ′F ′), where the operation w(·) preserves the fractional part of the input coordinates.
To expand the atom types and coordinates of N ′ Wyckoff positions to N atoms, we first ensure
that all atoms in one Wyckoff position have the same type, i.e. asi = a′

s, and then determine
the fractional coordinate of each atom via the basic fractional coordinate f ′

s and the corresponding
transformation pair (Rsi , tsi), meaning fsi = Rsif

′
s + tsi .

C MORE VISUALIZATIONS

We provide visualizations in § 5.4 from a CSP perspective to demonstrate the proficiency of our
method in generating structures of identical composition but within varying space groups. Transi-
tioning to the ab initio generation task, we attain an inverse objective, that is, to generate diverse
structures originating from the same space group as determined by the template structure. This is
further illustrated in Figure 6.

D CODES

Our code is available at https://github.com/jiaor17/DiffCSP-PP.
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