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ABSTRACT

We introduce semi-offline reinforcement learning (RL), a new formalization of
the sequential decision-making problem for portfolio optimization. Unlike the
standard and the fully-offline RL settings, the unique challenge of semi-offline
RL is the limited access to an actively evolving environment. Therefore, ex-
isting online/offline RL approaches are incapable of handling the distributional
shift between the fixed observations in the training set and those in an out-of-
distribution test domain. In this paper, we propose a novel off-policy RL al-
gorithm named stationarity-constrained MDP (SC-MDP), which decouples the
previously-collected training observations into two streams of stationary and
non-stationary latent variables through a probabilistic inference framework. We
demonstrate that in this way, the learned policies can be persistently profitable
despite rapidly-changing environment dynamics. Our approach remarkably out-
performs the existing online RL algorithms, advanced offline RL methods, and
state-of-the-art stock prediction models on three real-world financial datasets.

1 INTRODUCTION

Portfolio optimization is a typical real-world application of reinforcement learning (RL), which re-
quires the agents to identify and capitalize on promising trading opportunities. However, it presents
two practical challenges that may violate the basic assumptions of standard RL approaches:

1. RL agents can only learn from a fixed set of historical data, e.g., daily stock prices and trading
volumes, without further opportunity to fully explore the environment.

2. Policies are learned and executed in evolving domains with non-stationary dynamics and rewards,
in the sense that the assumption of stationarity of standard RL no longer holds.

To learn from the offline data, the advanced off-policy RL approaches, such as BCQ (Fujimoto
et al., 2019) and CQL (Kumar et al., 2020), are mainly focused on tackling the overestimation
problem of Q values, which is induced by the distributional shift between the learned policy â ∼
πθ(a|s) and that in the previously-collected dataset a ∼ D. However, we rethink the challenge of Q-
overestimation and find that it is not significant in our setup. Because unlike offline RL, in portfolio
optimization, agents can interact with offline data to try new actions and collect rewards according to
the investment returns. We formalize this problem setting with semi-offline reinforcement learning.

In semi-offline RL, as shown in Figure 1(a-b), there are two kinds of states. The offline states,
denoted by s′, are restricted in the static dataset with state transitions independent of the actions. For
example, they may reflect the global dynamics of the historical financial markets. Other parts of the
states (termed as online states), denoted by s, can be updated in an interactive manner by exploring
new actions. In our setup, they may reflect the account balance and current assets. In this paper,
we demonstrate that due to the distributional shift1 induced by the non-stationarity of s′, existing
online/offline RL algorithms, such as SAC (Haarnoja et al., 2018), BCQ (Fujimoto et al., 2019), and
CQL (Kumar et al., 2020), are incapable of learning consistently profitable policies â ∼ πθ(a|s, s′)
across the evolving domains, making them ineffective for the semi-offline RL setting.

1Since we have very limited access to the feasible state space of s′ in the offline dataset, the performance of
the RL algorithms is severely affected by the distributional shift of s′ across domains.
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Figure 1: (a-b) In comparison with the offline RL setting, in semi-offline RL, the agent can interact
with the offline dataset by trying new actions, updating parts of the states, and receiving corre-
sponding rewards in a pre-defined form. (c) The graphical model of stationarity-constrained MDP
(SC-MDP) with two streams of stationary and non-stationary latent variables that are inferred from
a fixed set of observations. The key idea is to make the learned variables and corresponding policies
more robust to the distributional shift of the dynamics in an actively evolving environment.

The goal of this work is to develop a semi-offline RL approach that can cope with the non-stationarity
of the offline states over the training dataset and the online test environment. To this end, we intro-
duce the stationarity-constrained Markov decision process (SC-MDP), which decouples the offline
state dynamics with two sequences of latent variables, as shown in Figure 1(c). Both variables are
presented as Gaussian distributions. Specifically, the non-stationary variable uns is inferred from
the observed daily technical indicators of stock prices and trading volumes. As the number of assets2

increases, the above observations may rapidly change over time, which indicates a larger distribu-
tional shift across domains. To ease such non-stationarity, we draw upon ideas from the probabilistic
inference to derive uns that can reason about the stationary component in the offline observations,
i.e., the covariance matrix between the technical indicators of each asset over the past year. On
the other side, we infer the stationary variable ustnr from the covariance matrix and keep it from
learning static representations by forcing it to reason about the daily offset of future observations.

We evaluate the SC-MDP algorithm on three trading benchmarks from the NASDAQ and Chinese
stock markets, as well as the cryptocurrencies market. Our approach consistently outperforms exist-
ing RL and stock prediction models. In summary, the contributions of this paper are as follows:

• We present semi-offline RL, a new problem setting in which the key challenge is to mitigate the
distributional shift in state space between a previously-collected dataset and evolving test domains.

• We propose SC-MDP, a novel off-policy algorithm, to address the challenge of non-stationarity in
the semi-offline setting. The decoupling of the stationary and non-stationary latent states enables
the learned policy to be persistently effective for highly dynamic environments.

We focus on finding an RL solution to portfolio optimization. Nevertheless, the semi-offline RL is
a general setting. The key idea of SC-MDP can also be applied to other decision-making problems
with highly non-stationary dynamics and limited data collection, such as recommendation systems.

2 PROBLEM SETUP

2.1 PORTFOLIO OPTIMIZATION PROBLEM DEFINITION

As a MDP problem, the portfolio optimization involves observing change of stock market, and
taking an action to maximize rewards under a trading strategy, written as M := (S,A, r, T, ρ, γ),
including a state space S, action space A, Markovian transition kernel T (s′|s, a), reward function
r(s, a), initial state distribution ρ(s0), and discount factor γ ∈ (0, 1). We give the definitions of
state space, action space and reward function in our semi-offline RL framework as following.

2We perform portfolio optimization over nearly 100 stocks in our experiments.
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State space. We use three types of information that the trading agent receives on the stock datasets:
(i) the technical indicators Otech

t ∈ RN×K , where N is the number of concurrent time series and K
is the number of statistics that capture the 146 dynamics of the time series, in which we randomly
select half of the time series and mask their input statistics by zero; (ii) the covariance matrix Ocov

t ∈
RN×N between sequences of daily close prices of all concurrent time series over a fixed period of
time before t; (iii) the account state st ∈ RN+1, representing the amount and the balance of each
holding stock.

Action space. After analyzing various information, the trading agent needs to interact with the
environment by executing a trade. We use at ∈ RN in a continuous action space to denote the
action at each time step, and then discretized into multiple discrete intervals of daily trading signals,
indicating the amount of buying, holding, or selling shares on each trading target.

Reward function. The reward rt ∼ R(st, at) is defined as the daily portfolio return ratios.

2.2 OFFLINE AND SEMI-OFFLINE REINFORCEMENT LEARNING

In the offline RL, the environment is not available during the training phase, and we have access
only to a fixed dataset Denv = {(st, at, rt, st+1)} , which pre-collected by a behavior policy πβ .
The distribution induced by Denv is called as the behavioral distribution. The goal in offline RL
is to find the best policy given this particular offline dataset D. However, standard off-policy deep
reinforcement learning algorithms such as SAC and DDPG are incapable of learning well in offline
setting due to overestimation of values induced by the distributional shift between the behavioral
policy and the learned policy.

Semi-offline RL allows the agent to interact with offline data to take new actions, which decreases
distributional shift by constantly collecting new data. As shown in Figure 1, the states include offline
states s′ and online states s. At each time step, we take Otech

t and Ocov
t as the input states, and learn

stationary and non-stationary latent variables {ustnr
t , uns

t } from them to make up offline states s′.
After combining s′ and s, we can better train a policy in an interactive environment.

3 STATIONARITY-CONSTRAINED MARKOV DECISION PROCESS

As aforementioned, we have formulated portfolio optimization problem as a semi-offline RL task,
that is, the RL agent can collect more (at, rt) pairs under the finite state set S besides the tuples
collected by expert policy. Unlike the difficulty of overestimating the values in the offline setting,
the new challenge in our task lies in the distribution shift of state between the training and test
sets. To tackle this challenge, we formulate the portfolio optimization problem as an stationarity-
constrained Markov decision process (SC-MDP), which corresponds to a sequence of stationary
MDPs, represented in a latent space with the help of deep neural networks.

3.1 STATIONARITY-CONSTRAINED STATE REPRESENTATION

State distribution mismatch. Through experimental validation, we find that using the trajectories
collected by expert policy as our initial buffer will improve the performance of the RL algorithms.
Similarly to the offline RL, the datasets from behavior policy and the learned policy has a certain
distributional shift at the start of training. As a result, the mainstream offline RL algorithms like BCQ
(Fujimoto et al., 2019) and CQL (Kumar et al., 2020) or imitation learning can be used as a kind
of method for this problem. However, the key challenge existed in the portfolio optimization semi-
offline RL task is the distributional shift of the observation due to the complexity and uncertainty in
investment markets, while the available viable solutions mentioned above are unable to tackle this
difficulty. (Experimental verification of the points in this paragraph can be checked in section 4.1.)
By analyzing the two subparts the covariance matrix Ocov

t and common technical indicators Otech
t

included in the currently defined RL observation – Ot, the issues arisen from them show in two
aspects. On the one hand, the non-stationary characteristic in Otech

t mainly causes the distributional
shift of Ot, which will bring about a degradation in the performance of the trained RL models on the
test set. On the other hand, the time-invariant nature of the Ocov

t poses difficulties for learning the
distribution of actions based on different states. Therefore, we propose two state learners in which
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Ôtech
t+1Ôtech
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Figure 2: Unlike previous RL-for-finance methods, our method builds the decision module upon
learned representations provided by the non-stationary state learner and stationary state learner. In
each state learner, there exists three modules: a prior learner, a posterior learner and a decoder. In
particular, the critic propagates its gradients of state values back into two state learners.

any subpart of the state takes another as a supervised constraint and learns a kind of representation
that encapsulates the data characteristics of both sides under the hidden space.

Non-stationary state learner. As shown in Figure 2 (Left), the non-stationary state learner in-
cludes three parts. The posterior leaner takes the Ocov

t as input and we will get a latent variable
zt sampled from its output distribution N(µ, σ). The target of the decoder is to decode the Ocov

t
given the zt. On top of that, the prior learner takes the non-stationary observation Otech

t as input and
learns a distribution that is as close as possible to the output of the posterior learner by using the
KL-divergence as a constraint. The process can be formulated as follows:

µ, σ = Encϕ(Ocov
t )

zt ∼ N (µ, σ)

Ôcov
t = Decψ(zt)

µ′, σ′ = Encφ(Otech
t )

(1)

And the loss function can be represented as:

J ns
t = ℓ2(Ô

cov
t , Ocov

t )− βDKL(qϕ(zt|Ocov
t )∥pφ(zt|Otech

t )) (2)

Under the constraint of the loss function, the distribution N (µ′, σ′) learned from Otech
t will gradu-

ally move closer to the N (µ, σ) with the stationary property, which will mitigating the distribution
differences between the training and test sets. Therefore, we define uns

t = concat(µ′, σ′) as part of
the state used in decision module.

Stationary state learner. The structure of the stationary state learner is similar to that of the
non-stationary state learner. However, considering the stationary property in the covariance matrix,
we add Otech

t as an additional condition in all three subparts of the state learner and reconstruct the
technical indicators at the next time step (Otech

t+1). Under the constraint of L2 loss and KL-divergence,
the distribution from prior learner will not only has the property of non-stationary, but also reflects
the distribution of technical indicators in the future. We define ustnr

t = concat(µ′′, σ′′) as a second
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Algorithm 1 Stationarity-Constrained Markov Decision Process (SC-MDP)
Input: env, αQ, απ , αns, αstnr

1: Randomly initialize θQ, θπ , θns, θstnr
2: Load replay buffer D collected by the expert policy
3: for i=1, 2, ... do
4: Get state st, Ocov

t , Otech
t from the env, get uns

t = Encϕ(Ocov
t ), ustnr

t = Encω(Otech
t ), then

s = concat(st, uns
t , u

stnr
t )

5: Collect trajectory τ i with πθ(a|s) and update replay buffer D[i]← τ i with observed data
6: for j=1, 2, ..., N do
7: Sample a batch of steps E from D

{Update actor and critic}
θQ ← θQ − αQ∇θQJQ, θπ ← θpi− απ∇θπJπ
{Update non-stationary state learner}
θns ← θns − αns∇θns(J ns

L2 + J ns
KL + JQ)

{Update stationary state learner}
θstnr ← θstnr − αstnr∇θstnr(J stnr

L2 + J stnr
KL + JQ)

8: end for
9: end for

source of the state st. The process and the loss function can be represented as follows:

µ, σ = Encϕ(Ocov
t )

zt ∼ N (µ, σ)

Ôcov
t = Decψ(zt)

µ′, σ′ = Encφ(Otech
t )

(3)

J stnr
t = ℓ2(Ô

tech
t+1, O

tech
t+1)− βDKL(qα(zt|Otech

t+1, O
tech
t )∥pω(Ocov

t , Otech
t )) (4)

3.2 POLICY OPTIMIZATION

We formulate RL-based portfolio optimization as a new problem which we called SC-MDP. Instead
of learning the policy directly from the observed data, we takes a combined state space S that
involves the learned representations from the two state learner branches and account related state.
The final state used in decision module can be formulated by st = concat(uns

t , u
stnr
t , s′t). On the

experiment part, the RL algorithm exploits soft actor-critic (SAC) (Haarnoja et al., 2018) to learn
the trading policy. The parametric soft Q-function in the critic network is trained by minimizing the
following soft Bellman residual. Note that we omit the subscript t for simplicity.

L (ϕi,D) = E
(s,a,r,sn,d)∼D

[
(Qϕi

(s, a)− y (r, sn, d))
2
]
,

with y (r, sn, d) = r + γ(1− d)

(
min
j=1,2

Qϕtarg,j (sn, ãn)− α log πθ (ãn | sn)
)

ãn ∼ πθ (· | sn) ,

(5)

where s and sn are integrated state at the current and the next time step, ãn is sampled from the
action distribution given sn, and d is the indicator for the end of the episode. To avoid the over-
estimation problem, we take the clipped double-Q trick used in SAC. As for the actor network, the
training objective can be shown as follows:

max
θ

E
ξ∼D

[
min
j=1,2

Qϕj (s, ãθ(s, ξ))− α log πθ (ãθ(s, ξ) | s)
]
, (6)

where ξ is a noise sampled from normal Gaussian distribution using the re-parameterization trick.
The entropy loss term in each objective encourages the decision module to take more stochastic ac-
tions for better exploration. Our method takes an end-to-end architecture and the critic network also
propagates the analytic gradients of state values back into the two state learner branches. Algorithm
1 shows the whole process of our algorithm.
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Table 1: Statistical details of the financial investment datasets.

Market # Stocks / Cryptocurrencies # Train Days # Test Days

CSI-300 95 1935 728
NASDAQ-100 86 2000 756
Cryptocurrency 27 1108 258

Table 2: Results on the NASDAQ-100 dataset.

Method Traininig Set Test Set
PR↑ AR↑ SR↑ MDD↓ PR↑ AR↑ SR↑ MDD↓

Imitation learning 0.298 0.302 1.000 0.214 0.100 0.106 0.364 0.470
Vanilla SAC (offline) - - - - 0.521 0.263 1.278 0.240
Vanilla SAC (Haarnoja et al., 2018) 0.330 0.045 2.282 0.064 0.398 0.199 1.342 0.212
BCQ-SAC 0.299 0.041 1.807 0.088 0.442 0.228 1.324 0.199
CQL-SAC 0.324 0.044 1.654 0.129 0.449 0.194 0.947 0.283
SC-MDP 0.407 0.054 2.591 0.069 0.563 0.274 1.306 0.273

4 EXPERIMENTS

4.1 DATASET

To reduce the impact of different training and test set lengths on model performance, we explicitly
define the length of each episode length as 250 days (approximately the number of trading days in a
year) and slice the test set into 10 episodes with the same steps and different start dates, and compare
the performance by calculating the average performance of the model on ten different test sets. We
use portfolio return (PR), annual return (AR), Sharpe ratio (SP), and maximum drawdown (MDD)
as the evaluation metrics.

CSI-300 Stock Dataset. The Chinese stock dataset contains stock data from the CSI-300 Com-
posite Index from 01/17/2011 to 12/30/2021. As shown in Table 1, the dataset is divided into the
training and test splits containing the basic stock price-volume information in 1,935 days and 728
trading days respectively. Furthermore, we follow the work from (Feng et al., 2019) to retain the
stocks that have been traded on more than 98% training days since 01/17/2011. Our investment
pool contains 95 stocks. If a stock in the training set is suspended from trading, we interpolate the
missing data in using the daily rate of change of the CSI-300 Composite Index.

NASDAQ-100 Stock Dataset. For the NASDAQ stock dataset, we collect the daily price-volume
records and related technical indicators between 01/17/2011 and 12/30/2021 from the website of
Yahoo Finance3. We use the 98% criteria to filter stocks, which derives an investment pool of 86
stocks, and then fill in the missing data based on the daily rate of change of the NASDAQ 100 Index.
We construct the training and test datasets that involve 2,000 and 756 trading days respectively.

Cryptocurrency Market Dataset. Apart from the stock market datasets, we evaluate SC-MDP
by using it to make trading decisions in the cryptocurrency market. With the 98% filtering criteria,
we select 27 cryptocurrencies and collect their daily records between 11/01/2017 and 05/01/2022
from Yahoo Finance. We split the data into a training set of 1,108 trading days and a test set of 258
trading days.

4.2 PRELIMINARY FINDINGS

Does expert policy benefit OOD decision-making? Yes, but it generally improves SAC by a
small margin. As shown in Table 2, we can see that modeling the semi-offline RL problem using the
SC-MDP framework (SC-MDP) can better unleash the strength of the expert policy compared with
the vanilla SAC (offline) on the test set.

3https://github.com/ranaroussi/yfinance
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Figure 3: We examine the corresponding value estimate of SAC, BCQ-SAC and CQL-SAC on the
NASDAQ training and test sets. Specifically, we validate the value estimate of SAC on the offline
and semi-offline two settings respectively. An estimate of the true value of the semi-offline agent,
evaluated by Monte Carlo returns, is represented as the green line.

Table 3: Results on the CSI-300 dataset.

Method Traininig Set Test Set
PR↑ AR↑ SR↑ MDD↓ PR↑ AR↑ SR↑ MDD↓

Imitation learning 0.442 0.448 1.134 0.241 0.090 0.091 0.379 0.201
Vanilla SAC () 0.021 0.010 0.204 0.261 0.617 0.343 1.779 0.238
BCQ-SAC 0.099 0.045 0.614 0.169 0.511 0.295 1.717 0.199
CQL-SAC 0.004 0.002 0.116 0.180 0.561 0.329 1.705 0.214
SC-MDP 0.119 0.054 0.680 0.172 0.677 0.345 2.015 0.206

Use imitation learning to solve our task. As aforementioned, we take expert policy for the ini-
tialization of the buffer, which means we buy a stock each day that has the highest return in the next
day and sell it on the third day. Inspired by this, we try to use imitation learning for expert policy,
and we adopt the Transformer’s architecture and formulate the problem of predict the stock with
highest return ratio as a classification problem. However, from Table 2, it can be found that it is
difficult to estimate expert actions via supervised learning as the performance behaves poor on the
test set, also the accuracy can only reached 7.00%. Similar conclusions were obtained in the other
two datasets. Based on the above findings, we decide to abstract the portfolio optimization problem
as a semi-offline RL learning task with the help of expert policy as our initial buffer.

Offline RL methods cannot solve semi-offline RL problems. From the Figure 3 (The Left and
middle one), it can be found that under the setting of semi-offline, the problem of over-estimation has
been largely alleviated. Furthermore, from the right one in Figure 3 , CQL have a worse estimation
of values (the orange line) on the test set compared with its estimation on the training set (the blue
line), which means the main challenge exists in semi-offline setting is the state distributional shift
problem. Therefore, offline RL methods like BCQ and CQL are not the best solutions for our task.

4.3 MAIN RESULTS

Performance on three datasets. Table 3 shows qualitative results on the CSI-300 training and
test set. Although the performance of SC-MDP doesn’t perform as well as the imitation learning,
it reaches the best on the test set. Compared with the dramatic performance degradation on the test
set of imitation learning method, the core problem to be solved in this paper: the state distributional
shift problem, can be demonstrated explicitly. Also, from the Table 2, we can see that SC-MDP
achieves the best portfolio return on both training and test set. Furthermore, on the Cryptocurrency
market ( Table 4), most of the methods (like vanilla SAC and CQL-SAC) have a loss on the test
set, which means the data property in this dataset shows uncertainty. Also it means the policy
learning becomes more difficult, however, SC-MDP still achieves profitable average results which
demonstrates the effectiveness of the state constraint mechanism in solving the problem.

Ablation study. To verify the performance of two state learners proposed in the SC-MLP frame-
work. We compare two variants on the NASDAQ dataset and in each variant, we replace the con-
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Table 4: Results on the cryptocurrencies dataset.

Method Traininig Set Test Set
PR↑ AR↑ SR↑ MDD↓ PR↑ AR↑ SR↑ MDD↓

Imitation learning 1.486 1.510 1.444 0.359 -0.414 -0.416 -0.575 0.589
Vanilla SAC () 4.857 0.575 2.53 0.316 -0.080 0.081 0.149 0.482
BCQ-SAC 1.911 0.316 1.833 0.385 0.151 0.153 0.544 0.487
CQL-SAC 1.452 0.696 1.451 0.422 -0.105 -0.107 0.193 0.521
SC-MDP 3.134 0.440 2.050 0.403 0.227 0.230 0.644 0.504

Table 5: Ablation study on the NASDAQ dataset.

Method Test Set
PR↑ AR↑ SR↑ MDD↓

SC-MDP w/o ns state learner 0.278 0.122 1.022 0.226
SC-MDP w/o stnr state learner 0.399 0.191 1.183 0.256
SC-MDP 0.509 0.495 1.212 0.282

strained state ut with the original input ot. From Table 5, we can see that removing any state learner
leads to a remarkable performance drop, and each branch makes essential contributions to the final
performance of our final approach.

5 RELATED WORK

5.1 OFFLINE REINFORCEMENT LEARNING

Offline RL (Riedmiller, 2005; Levine et al., 2020; Lange et al., 2012) has recently emerged as
a prominent paradigm in control and decision-making learning, covering the domains including
robotic manipulation (Singh et al., 2020), healthcare (Wang et al., 2018) and NLP (Jaques et al.,
2020). The main challenge of offline RL is the insufficient coverage of the offline dataset due to lack
of interaction with the environment, which results in the distributional shift between the learned
policy and the behavior policy (Fujimoto et al., 2019). There are two mainstream methods to handle
this challenge. Fisrt, the policy is regularized to avoid visiting the state-action pairs which are not
in offline dataset (Wu et al., 2019b; Ghasemipour et al., 2021; Dadashi et al., 2021; Fujimoto & Gu,
2021). Second, it is a feasible way to learn conservative value functions which penalize the estimated
values of the unseen state-action pairs (Kumar et al., 2020; Buckman et al., 2020). Drawing on these
prior works, we study portfolio optimization in the semi-offline RL setting.

5.2 REINFORCEMENT LEARNING FOR PORTFOLIO OPTIMIZATION

In the field of portfolio optimization, there have been many attempts (Théate & Ernst, 2021; Weng
et al., 2020; Liang et al., 2018; Benhamou et al., 2020) to use RL methods to make trading decisions.
The main differences among these approaches can be roughly summarized in three aspects: the
definition of the input states (Zhong et al., 2020; Liu et al., 2021; Weng et al., 2020), the engineering
of reward functions (Liang et al., 2018; Suri et al., 2021), and the RL algorithms (Benhamou et al.,
2020; Hu & Lin, 2019; Huotari et al., 2020). Zhong et al. (Zhong et al., 2020) used Q-learning
to learn a policy on an electronic exchange in discrete state and action spaces. Wang et al. (Wang
et al., 2019) proposed AlphaStock which uses the RL method to optimize the parameters of a stock
prediction model to reach a good performance under a fixed strategy. Liu et al. (Liu et al., 2021)
presented a framework named FinRL that integrated multiple off-the-shelf RL algorithms such as
Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and DDPG (Lillicrap et al., 2015). We use its SAC
implementation as an important baseline model of SC-MDP. Notably, most of these approaches
formulate the task as an MDP problem, which has limited information in their state space. To grasp
more information, our approach learns a mapping from different kinds of hidden representations to
integrated latent state space. Besides, FinRL (Liu et al., 2021) defines the states as a combination of
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the covariance matrix of the close prices of all stocks and the MACD indicators, whose dimension
will sharply increase with the growth of the number of stocks.

5.3 STOCK PREDICTION MODELS

Mainstream stock prediction methods can be divided into three categories. CNN-based methods
(Hoseinzade & Haratizadeh, 2019; Wen et al., 2019; Maqsood et al., 2020; Eapen et al., 2019) take
the historical data of different stocks as a set of input feature maps of a convolutional neural network.
In contrast, RNN-based methods (Li et al., 2018; Zhang et al., 2017; Long et al., 2020; Qin et al.,
2017; Feng et al., 2018) are better at capturing the underlying sequential trends in stocks. Other
network structures are used in the recurrent architecture to jointly model the long-term dynamics and
the correlations between stocks, such as attention mechanisms (Hu et al., 2018; Li et al., 2018; Wu
et al., 2019a), dilated convolutions (Wang et al., 2021; Cho et al., 2019), and graph neural networks
(Feng et al., 2019; Wang et al., 2021; Patil et al., 2020). In this paper, we use stock prediction as a
predictive coding strategy, extracting short-term and long-term future dynamics from noisy market
observations into the state space of the RL agent.

6 CONCLUSIONS

In this work, we introduce the semi-offline RL, a new setting of the sequential decision-making prob-
lem. Unlike other RL settings, its unique challenge is the limited access to an actively evolving envi-
ronment. To solve this problem, we propose a novel off-policy RL algorithm named SC-MDP. Our
approach exploits a probabilistic inference framework to decouple the previously-collected training
observations into two independent streams of stationary and non-stationary latent variables. SC-
MDP remarkably outperforms the existing online RL algorithms, advanced offline RL methods,
and state-of-the-art stock prediction models on three real-world financial datasets. We demonstrate
that by decoupling and leveraging non-stationary variables, the learned policies can be persistently
profitable despite rapidly-changing environment dynamics.
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